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On the Spatial Predictability of
Communication Channels

Mehrzad Malmirchegini, Student Member, IEEE, and Yasamin Mostofi, Member, IEEE

Abstract—In this paper, we are interested in fundamentally
understanding the spatial predictability of wireless channels.
We propose a probabilistic channel prediction framework for
predicting the spatial variations of a wireless channel, based on
a small number of measurements. By using this framework, we
then develop a mathematical foundation for understanding the
spatial predictability of wireless channels. More specifically, we
characterize the impact of different environments, in terms of
their underlying parameters, on wireless channel predictability.
We furthermore show how sampling positions can be optimized to
improve the prediction quality. Finally, we show the performance
of the proposed framework in predicting (and justifying the
predictability of) the spatial variations of real channels, using
several measurements in our building.

Index Terms—Spatial predictability, Wireless channels, Prob-
abilistic modeling and estimation.

I. INTRODUCTION

IN the past few years, the sensor network revolution has
created the possibility of exploring and controlling the

environment in ways not possible before[2], [3]. The vision
of a multi-agent robotic network cooperatively learning and
adapting in harsh unknown environments to achieve a common
goal is closer than ever. Since each agent has a limited sensing
capability, the group relies on networked sensing and decision-
making to accomplish the task. Thus, maintaining connectivity
becomes considerably important in such networks. In the
robotics and control community, considerable progress has
been made in the area of networked robotic and control
systems [4]. However, ideal or over-simplified models have
typically been used to model the communication links among
agents. For instance, disk models are commonly used, where
the link quality is assumed above an acceptable threshold in
a disk around the transmitter, with no connectivity outside of
the disk, as shown in Fig. 1 (top-left).

In order to realize the full potentials of these networks, an
integrative approach to communication and motion planning
issues is essential, i.e., each robot should have an awareness
of the impact of its motion decisions on link qualities, when
planning its trajectory [5]. This requires each robot to assess
the quality of the communication link in the locations that
it has not yet visited. As a result, proper prediction of the
communication signal strength and fundamentally understand-
ing the spatial predictability of a wireless channel, based on
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Fig. 1: (top) Different connectivity models for the communication
channel to the fixed transmitter at (0,0) coordinate: (top-left) sim-
plified disc model that is commonly used in the robotic-network
literature (top-middle) our probabilistic path loss model, and (top-
right) our general probabilistic model. (bottom) underlying dynamics
of the received signal power across a route in the basement of ECE
building.

only a few measurements, become considerably important. In
the communications community, rich literature was developed,
over the past decades, for the characterization and modeling of
wireless channels [6]–[9]. If all the information about object
positions, geometry and dielectric properties is available, ray
tracing methods could be used to model the spatial variations
of the received signal strength in a given area [10]. However,
such approaches require knowing the environment, in terms
of locations of the objects and their dielectric properties,
which is prohibitive for real-time networked robotic appli-
cations. Furthermore, such approaches can not provide a
fundamental understanding of wireless channel predictability.
In the wireless communication literature, it is well established
that a communication channel between two nodes can be
probabilistically modeled as a multi-scale dynamical system
with three major dynamics: small-scale fading (multipath),
large-scale fading (shadowing) and path loss [6]–[8]. Fig.
1, for instance, shows the received signal power across a
route in the basement of the ECE building at UNM. The
three main dynamics are marked on the figure. The measured
received signal is the small-scale fading. In order to extract the
large-scale component, the received signal should be averaged
locally over a distance of 5λ to 40λ (depending on the
scenario), where λ is the transmission wavelength [7], [11]. In
the example of Fig. 1, for instance, we averaged the channel
locally over the length of 5λ = 62.5cm, by using a moving
average (frequency of operation is 2.4GHz). Once we have
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the large-scale component, the distance-dependent path loss is
calculated by finding the best line fit to the log of the received
measurements [6], [7], [12].

It is the goal of this paper to utilize such probabilis-
tic link models and fundamentally characterize the spatial
predictability of a wireless channel. More specifically, we
build on our previously proposed channel prediction work
[1], where we developed a probabilistic framework in which
each robot can spatially predict the channel, based on a small
number of measurements. Fig. 1 (top-middle) and Fig. 1 (top-
right), for instance, illustrate how this framework enables a
more realistic characterization of wireless channels and their
connectivity, as compared to the commonly-used disk model
of Fig. 1 (top-left). In this paper, we then mathematically
characterize the impact of different environments, in terms of
their underlying parameters, on channel spatial predictability.
Furthermore, we show the optimum distribution of the sparse
sampling positions in order to maximize channel predictability.
We emphasize that we are not suggesting that a wireless
channel is fully predictable, as it is not. Rather, our goal is to
develop a mathematical characterization of how predictable
a wireless channel can be and understand the impact of
different underlying parameters on its predictability. Thus,
we also test our mathematical framework on real channel
measurements in Section VI, where we show the impact of
different environments on wireless channel predictability. In
general, predicting the spatial variations of a random field,
based on sparse sampling, has also been of interest in other
areas such as meteorology, ecological systems, and acoustic
field estimation, just to name a few [13], [14]. However, to
the best of authors’ knowledge, no framework has yet been
developed to mathematically characterize and understand the
spatial predictability of a general random field or wireless
channels in particular. As such, the contribution of this paper
is beyond only understanding the spatial predictability of wire-
less channels and can possibly benefit other areas that require
estimation of a random field, based on sparse measurements.
The rest of the paper is organized as follows. In Section
II, we describe our proposed probabilistic channel prediction
framework. In Section III, we mathematically characterize
the impact of different underlying channel parameters on
the prediction performance, assuming perfectly-estimated path
loss parameters. In Section IV, we mathematically characterize
the impact of different environments and sampling positions
on the estimation of path loss parameters and show how
to optimize the positions of the sparse samples. Then, in
Section V, we extend the analysis of Section III to characterize
wireless channel predictability in the presence of path loss
estimation error. In Section VI, we show the performance of
the proposed framework in predicting (and understanding the
predictability of) the spatial variations of real channels, using
several measurements in our building. We conclude in Section
VII.

II. MODEL-BASED ESTIMATION OF CHANNEL SPATIAL

VARIATIONS

As mentioned in the previous section, a communication
channel between two nodes can be modeled as a multi-scale
dynamical system with three major dynamics: small-scale

fading (multipath), large-scale fading (shadowing) and path
loss. Let ΥRX(q) denote the received signal strength (power),
in the transmission from a fixed transmitter at qb ∈ K to a
mobile node at q ∈ K, where K ⊂ R

2 denotes the workspace.
Consider the case where the channel to the fixed transmitter
is narrowband. Furthermore, assume that the workspace is not
changing with time, i.e. the environmental features that impact
the wireless transmission in the workspace are time-invariant.
Our proposed framework can be extended to time-varying
environments, as we briefly discuss later in this section. Then,
we have the following at the output of the power detector:
ΥRX(q) = g(q)PT + �, where PT and g(q) denote the
transmitted power and channel gain (square of the amplitude
of the baseband equivalent channel), at position q, respectively
and � represents the power of the receiver thermal noise [6].
Define Υ(q) � ΥRX(q) − �. We assume that the receiver
can estimate and remove the noise power to obtain Υ(q).1

Υ(q) is proportional to g(q) and can be modeled as a multi-
scale dynamical system with three major dynamics: multipath
fading, shadowing and path loss. We can then characterize
Υ(q) by a 2D non-stationary random field with the following
form [6]: Υ(q) = ΥPL(q)ΥSH(q)ΥMP(q), where ΥMP(q)
and ΥSH(q) are random variables representing the impact of
multipath fading and shadowing components respectively and
ΥPL(q) = KPL

‖q−qb‖nPL is the distance-dependent path loss.2 In
this model, the multipath fading coefficient, ΥMP(q), has a unit
average. Let ΥdB(q) = 10 log10

(
Υ(q)

)
represent the received

signal strength in dB. We have

ΥdB(q) = 10 log10
(
KPL

)
+ΥMP, dB︸ ︷︷ ︸

KdB

−10nPL log10
(‖q − qb‖

)
+ ν(q) + ω(q), (1)

where ΥMP, dB = 10 E

{
log10

(
ΥMP(q)

)}
is the average of

the multipath fading in dB, ν(q) = 10 log10
(
ΥSH(q)

)
is a

zero-mean random variable representing the shadowing effect
in dB and ω(q) = 10 log10

(
ΥMP(q)

) − ΥMP, dB is a zero-
mean random variable, independent of ν(q), which denotes the
impact of multipath fading in dB, after removing its average.
In the communication literature, the distributions of ΥMP(q)
and ΥSH(q) (or equivalently the distributions of ω(q) and
ν(q)) are well established based on empirical data [8]. For
instance, Nakagami distribution is shown to be a good match
for the distribution of ΥMP(q) in several environments [6]. In
this case, we have the following Nakagami distribution, with
parameter m and unit average, for the distribution of ΥMP(q):
fΥMP(x) =

mmxm−1

Γ(m) e−mx, where Γ(.) represents the Gamma
function. This then results in the following distribution for

1Most related device drivers provide an estimate on the noise power.
MadWiFi, for instance, estimates the noise power by using the often-used
formula of KBol ×Tenv×BW [15], where KBol is the Boltzmann’s constant,
Tenv is the environment temperature and BW is the utilized bandwidth. Its
newer versions can even provide a better online assessment, by using the
measurements from the silent mode (when no transmission) [16].

2In this paper, we follow the convention of [7] and use the term “shadow-
ing” to refer to the large-scale fading after its mean (path loss) is removed
in the dB domain. More specifically, ΥSH is the large-scale fading after its
average (path loss) is removed in the dB domain. Furthermore, we use the
term “multipath fading” to refer to the normalized small-scale fading, i.e. with
unit average. Then, ΥMP is the normalized small-scale fading.
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ω(q): fω(x) = ln(10)
10 10(x+ΥMP, dB)/10fΥMP

(
10(x+ΥMP, dB)/10

)
.

Some experimental measurements have also suggested Gaus-
sian to be a good enough yet simple fit for the distribution of
ω(q) [17]. We will take advantage of this Gaussian simplifi-
cation later in our framework. As for the shadowing variable,
log-normal is shown to be a good match for the distribution of
ΥSH(q). Then, we have the following zero-mean Gaussian pdf
for the distribution of ν(q): fν(x) = 1√

2πα
e−x2/2α, where α

is the variance of the shadowing variations around path loss.

Characterizing the spatial correlation of ω(q) and ν(q)
is also considerably important for our model-based channel
prediction framework. However, we do not attempt to predict
the multipath component, ω(q), due to the fact that it typically
decorrelates fast and that the form of its correlation function
can change considerably, depending on the angle of arrival and
position of the scatterers. Therefore, in our proposed frame-
work we only predict the path loss and shadowing components
of the channel. The impact of multipath will then appear in the
characterization of the prediction error variance, as we shall
see. As for the spatial correlation of shadowing, [18] charac-
terizes an exponentially-decaying spatial correlation function,
which is widely used: E

{
ν(q1)ν(q2)

}
= α e−‖q1−q2‖/β ,

for q1, q2 ∈ K where α denotes the shadowing power and
the correlation distance, β, controls the spatial correlation
of the channel [18]. For some examples of a time-varying
environment, Oestges et al. model the slow temporal-variation
of the channel as a zero-mean Gaussian variable with an
exponential temporal correlation in the dB domain [27]. Thus,
Eq. 1 can be extended to such time-varying cases by adding
this additional variable to Eq. 1. In general, however, finding
one model for characterizing the time-variations of different
features in the environment is a challenging task and a subject
of further studies. Such temporal variations can also be treated
as disturbance in the prediction process.

Next, we describe our proposed model-based channel pre-
diction framework. Consider the case where a wireless chan-
nel to a fixed transmitter is sparsely sampled at positions
Q = {q1, q2, · · · , qk} ⊂ K, in a given environment. These
channel measurements can be gathered by one or a number
of cooperative homogenous robots, equipped with identical
receivers, making measurements along their trajectories. Let
a region or an environment refer to an area over which
the underlying channel parameters, such as α and β, can
be considered constant. The four marked areas of Fig. 10
are examples of such regions. First, consider the case that
all the k measurements belong to one region and that we
are predicting the channel in the same region. We show
how to relax this assumption later in this section. Let DQ
and YQ = [y1, · · · , yk]T ∈ R

k denote the corresponding
distance vector to the transmitter in dB and the vector of
all the available channel measurements (in dB) respectively:

DQ =
[
10 log10(‖q1 − qb‖), · · · , 10 log10(‖qk − qb‖)

]T
and

YQ = [y1, · · · , yk]T ∈ R
k. We have,

YQ =
[
1k −DQ

]︸ ︷︷ ︸
HQ

θ + ϑQ +ΩQ, (2)

where 1k denotes the vector of ones with the length of k, θ =

[KdB nPL]
T is the vector of the path loss parameters, ϑQ =[

ν1, · · · , νk
]T

with νi = ν(qi) and ΩQ =
[
ω1, · · · , ωk

]T
with ωi = ω(qi), for i = 1, · · · , k. Based on the log-
normal model for shadowing, ϑQ is a zero-mean Gaussian
random vector with the covariance matrix RQ ∈ R

k×k, where[
RQ

]
i,j

= α e−‖qi−qj‖/β , for qi, qj ∈ Q. The term ΩQ
denotes the impact of multipath fading in dB domain. As men-
tioned earlier, some empirical data have shown Gaussian to be
a good match for the distribution of wi [17]. For instance, Fig.
2 compares the match of both Nakagami and lognormal to the
distribution of multipath fading (ΥMP) for a stationary section
of our collected data of Fig. 1. As can be seen, Nakagami
provides a considerably good match while lognormal can be
acceptable, depending on the required accuracy. Thus, in order
to facilitate the mathematical derivations in our prediction
framework, we take wi to have a Gaussian distribution. In
addition, multipath fading typically decorrelates considerably
fast, making learning of its correlation function, based on
sparse possibly non-localized samples, considerably challeng-
ing if not infeasible. There is also no one general function that
can properly model its correlation in all the environments as
its form depends heavily on the angle of arrival and position
of the scatterers. While approaches based on the estimation of
the power spectrum and linear prediction have been utilized
to predict the immediate values of multipath, based on past
observations, such approaches require dense sampling in order
to capture correlated multipath samples. Finally, even if its
correlation function is learned, it typically can not be taken
advantage of, in the prediction framework, unless the location
of the channel to be predicted is very close to the position of
one of the available measurements. Thus, we take ΩQ to be an
uncorrelated zero-mean Gaussian vector with the covariance
of E

{
ΩQΩT

Q
}

= σ2Ik×k , where Ik×k is a k × k identity

matrix and σ2 = E
{
ω2(q)

}
= 100

∫∞
0

log210(x)fΥMP(x)dx −
100

(∫∞
0

log10(x)fΥMP(x)dx
)2

is the power of multipath fad-
ing (in dB domain). In other words, our framework does not
attempt to predict the multipath component and assumes the
worst case of uncorrelated multipath (worst from a prediction
standpoint). The estimated variance of multipath then appears
in our assessment of channel prediction error variance, as we
shall see. Note, however, that this is only for the purpose of our
modeling. When we show the performance of this framework,
we use real measurements where the multipath component will
have its natural distribution and correlation function. We then
define ΞQ � ϑQ+ΩQ, which is a zero-mean Gaussian vector
with the covariance matrix of Rtot,Q � RQ + σ2Ik×k . In our
model-based probabilistic framework, we first need to estimate
the parameters of the model (θ,α, β and σ2) and then use these
parameters to estimate the channel. Let fYQ(YQ|θ, α, β, σ2)
denote the conditional pdf of YQ, given the parameters θ, α,
β and σ2. Under the assumption of independent multipath
fading variables, Eq. 2 will result in the following:

fYQ(YQ|θ, α, β, σ2)

=
e−

1
2

(
YQ−HQθ

)T (
αRnorm,Q(β)+σ2Ik×k

)−1(
YQ−HQθ

)
(2π)k/2

(
det

[
αRnorm,Q(β) + σ2Ik×k

])1/2
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Fig. 2: Comparison of Nakagami and lognormal for the distribution
of small-scale fading.

where Rnorm,Q = 1
αRQ denotes the normalized version of

RQ. Next, we characterize the Maximum Likelihood (ML)
estimation of the underlying channel parameters.

[θ̂ML, α̂ML, β̂ML, σ̂
2
ML]

= argmaxθ,α,β,σ2 ln
(
fYQ(YQ|θ, α, β, σ2)

)
= argminθ,α,β,σ2

(
YQ −HQθ

)T (
αRnorm,Q(β) + σ2Ik×k

)−1

× (
YQ −HQθ

)
+ ln

(
det

[
αRnorm,Q(β) + σ2Ik×k

])
,

which results in:

θ̂ML =
(
HT

Q
(
α̂MLRnorm,Q(β̂ML) + σ̂2

ML

)−1
HQ

)−1

×HT
Q
(
α̂MLRnorm,Q(β̂ML) + σ̂2

ML

)−1
YQ. (3)

Finding a closed-form expression for α̂ML, β̂ML and σ̂2
ML, how-

ever, is challenging. For the special case where Ωk is negligi-
ble, the ML estimation of channel parameters can be simplified
to:

θ̂ML,σ2=0 =(
HT

QR
−1
norm,Q(β̂ML,σ2=0)HQ

)−1

HT
QR

−1
norm,Q(β̂ML,σ2=0)YQ,

α̂ML,σ2=0 =
1

k

(
YQ −HQθ̂ML,σ2=0

)T
R−1

norm,Q(β̂ML,σ2=0)

× (
YQ −HQθ̂ML,σ2=0

)
,

β̂ML,σ2=0 = argmin
β

[
Y T
Q PT

Q,ML(β)R
−1
norm,Q(β)PQ,ML(β)YQ

]k
× det

[
Rnorm,Q(β)

]
, (4)

where PQ,ML(β) = Ik×k −
HQ

(
HT

QR
−1
norm,Q(β)HQ

)−1

HT
QR

−1
norm,Q(β). Under the

assumption that β is known, it can be shown that θ̂ML,σ2=0 is
an unbiased estimator and achieves the Cramer-Rao bound.
Furthermore, for large number of sampling points k, we can
show that α̂ML,σ2=0 is unbiased and achieves the Cramer-Rao
bound as well. We skipped the details of the proofs due to
the space limitation. The ML estimator will therefore be our
benchmark in the estimation of the channel parameters.

As can be seen, in order to estimate θ and α, we first need
to estimate β, which is challenging. Furthermore, finding the

ML estimation of the channel parameters for the general case,
where σ2 �= 0, is computationally complex. Therefore, we
next devise a suboptimum but simpler estimation strategy. Let
χ = α + σ2 denote the sum of the shadowing and multipath
powers. A Least Square (LS) estimation of θ and χ then results
in:

θ̂LS =
(
HT

QHQ
)−1

HT
QYQ, (5)

χ̂LS|θ=θ̂LS
=

1

k
Y T
Q
(
Ik×k −HQ

(
HT

QHQ
)−1

HT
Q
)2

YQ

=
1

k
Y T
Q
(
Ik×k −HQ

(
HT

QHQ
)−1

HT
Q
)
YQ, (6)

where HQ is full rank, except for the case where the sam-
ples are equally-distanced from the transmitter. Since such
a special case is very low probable, we assume that HQ
is full rank throughout the paper unless otherwise is stated.
We refer to this suboptimal approach as LS throughout
the paper. We next discuss a more practical but subopti-
mum strategy to estimate β. Let Il =

{
(i, j)

∣∣qi, qj ∈
Q such that ‖qi − qj‖ = l

}
denote the pairs of points in

Q which are located at distance l from each other. Let
YQ,cent,LS =

(
Ik×k − HQ

(
HT

QHQ
)−1

HT
Q
)
YQ represent the

centered version of the measurement vector, when path loss
parameters are estimated using the LS estimator of Eq. 5.
Define r̂Q(l) � 1

|Il|
∑

(i,j)∈Il
[YQ,cent,LS]i[YQ,cent,LS]j to be

the numerical estimate of the spatial correlation function at
distance l, where |.| represents the cardinality of the argument
set and [.]i denotes the ith element of the argument vector.

We have [α̂LS, β̂LS] = argminα,β
∑

l∈LQ w(l)
[
ln
(
αe−l/β

)−
ln
(
r̂Q(l)

)]2
, where LQ = {l|0 < r̂Q(l) < χ̂LS|θ=θ̂LS

} and

w(l) can be chosen based on our assessment of the accuracy of
the estimation of r̂Q(l). For instance, if we have very few pairs
of measurements at a specific distance, then the weight should
be smaller. Let LQ = {l1, l2, · · · , l|LQ|} denote an ordered set
of all the possible distances among the measurement points.
We have the following Least Square estimator of α and β:[

ln(α̂LS)
1

β̂LS

]
= (MT

LQWLQMLQ)
−1MT

LQWLQb where MLQ =⎡
⎢⎣1 −l1

...
...

1 −l|LQ|

⎤
⎥⎦ , b =

⎡
⎢⎣ ln

(
r̂Q(l1)

)
...

ln
(
r̂Q(l|LQ|)

)
⎤
⎥⎦ and WLQ =

diag[w(l1), · · · , w(l|LQ|)]. We then have, σ̂2
LS = χ̂LS|θ=θ̂LS

−
α̂LS for the estimation of the multipath power (in dB domain).
Note that the estimated values of the shadowing parameters
should satisfy: 0 < α̂LS ≤ χ̂LS|θ=θ̂LS

and β̂LS > 0. If due to
the lack of enough measurements, any of these are violated,
we take α̂LS and β̂LS to be zero. This means that, in this case,
we can not estimate the correlated part of the channel.

Once the underlying parameters of our model are esti-
mated, channel at position q ∈ K can be estimated as
follows. We have the following for the probability distribution
of ΥdB(q), conditioned on all the gathered measurements
and the underlying parameters: f(ΥdB(q)|YQ, θ, α, β, σ2) ∼
N (

Υ̃dB,Q(q), σ2
dB,Q(q)

)
with

Υ̃dB,Q(q) � E

{
ΥdB(q)

∣∣∣ YQ, θ, α, β, σ2
}
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= hT (q)θ + φT
Q(q)R

−1
tot,Q

(
YQ −HQθ

)
and

σ2
dB,Q(q) � E

{(
ΥdB(q)− Υ̃dB,Q(q)

)2 ∣∣∣ θ, α, β, σ2
}

= α+ σ2 − φT
Q(q)R

−1
tot,QφQ(q), (7)

where h(q) =
[
1 − D{q}

]T
, D{q} = 10 log10

(‖q − qb‖
)

and φQ(q) = α
[
e−

‖q1−q‖
β , · · · , e− ‖qk−q‖

β
]T

denotes the cross
covariance between Q and q. Therefore, the Minimum Mean
Square Error (MMSE) estimation of ΥdB(q), assuming perfect
estimation of the underlying parameters, is given by Υ̃dB,Q(q).
We then have the following by considering the true estimated
parameters: Υ̂dB,Q(q) = hT (q)θ̂ + φ̂T

Q(q)R̂
−1
tot,Q

(
YQ −HQθ̂

)
,

where φ̂Q(q) =
[
α̂ e−‖q−q1‖/β̂ , · · · , α̂ e−‖q−qk‖/β̂

]T
and

R̂tot,Q = α̂Rnorm,Q(β̂) + σ̂2Ik×k .
The prediction quality at position q improves, the more

correlated the available channel measurements become with
the value of the channel at position q. In order to mathemat-
ically assess this, the next lemma characterizes the average
number of the available measurements at the β neighborhood
of the point to be predicted, for the case of randomly-
distributed available channel measurements in 1D. The β-
neighborhood of a point q, in the workspace K, is defined
as {z ∈ K|d(z, q) < β}, where d(z, q) denotes the Euclidian
distance between points z and q.

Lemma 1: Consider the case that k channel measurements,
at positions {q1, q2, · · · , qk} are available, for predicting the
channel at point q. Let Nβ(Q, q) represent the number of
points in Q = {qi}ki=1, which are located in the β neighbor-
hood of q, where q and {qi}ki=1 are i.i.d. random positions,
uniformly distributed over the workspace K = [0, L]. We

then have, Nβ(Q, q) = k
(
2 β
L − β2

L2

)
, where Nβ(Q, q) =

EQ,q

{
Nβ(Q, q)

}
and EQ,q{.} represents the expected value

w.r.t. Q and q.
Proof: The proof is straightforward.

Special case - probabilistic path loss: If the knowledge
of beta is not available or is not used in the prediction
(thus beta is assumed zero), then Eq. 7 results in the same
probability distribution for all the points that are equally-
spaced from the transmitter. An example of this case can be
seen in Fig. 1 (top-middle), where we have the same predicted
probability of connectivity (probability that the ΥdB(q) is
above a given threshold) for all the points at a given radius
from the transmitter. Our more general case of Eq. 7 is then
shown in Fig. 1 (top-right), where a probability distribution
(and a resulting probability of connectivity) is assigned to
each point in the workspace. Both these cases result in a
more comprehensive channel prediction than the commonly-
used disk model of Fig. 1 (top-left).

Next we show the reconstruction of two real channels,
using our proposed method. The performance metric is the
Average Normalized Mean Square Error (ANMSE) of the
estimated channel, where the following Normalized Mean

Square Error, NMSE =

[
∫
K(ΥdB(q)−Υ̂dB,Q(q))2dA∫

K Υ2
dB(q)dA

]
, is averaged

over several different randomly-selected sampling positions,
for a given percentage of collected samples. Fig. 3 (top) shows
the reconstruction performance for an outdoor channel across
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Fig. 3: Impact of different environments on channel prediction
performance, using real channel measurements. (top) indoor and
outdoor, (middle) main room (R1) and hallway (R2) of Fig. 10 and
(bottom) hallways R2 and R3 of Fig. 10.

a street in downtown San Francisco [19] as well as for an
indoor channel measurement along a route in the basement
of the ECE building at UNM. The indoor experiment uses
an 802.11g WLAN card while the outdoor measurement is
based on measuring receptions from an AT&T cell tower [19].
For both cases, all the underlying parameters are estimated
using the LS approach of this section. Consider the outdoor
case, for instance. We have the measurements of the received
signal power, every 2mm along a street of length 16m in San
Francisco, mounting to 8000 samples. Fig. 3 (top) then shows
the prediction performance where only a percentage of the
total samples were available to a node. The available measure-
ments are randomly chosen over the street. 5% measurements,
for instance, means that a robot has collected 400 samples,
randomly over that street, based on which it will predict the
channel over the whole street. The prediction error variance
is −29dB for the case of 5% measurements. It can be seen
that both channels can be reconstructed with a good quality.
The outdoor channel, however, can be reconstructed with a
considerably better quality. This is expected as the indoor
channel suffers from a more severe multipath fading, which
makes it less spatially predictable.

A. Space-varying Underlying Parameters and Adaptive Chan-
nel Prediction

So far, we considered channel prediction over a small
enough space such that the underlying channel parameters
can be considered constant over the workspace. However,
if the available channel samples belong to a large enough
space (such as the entire floor), the underlying parameters
can be space-varying. In this part, we show how the pre-
vious framework can be extended to an adaptive approach,
in order to address the case where the operation, and the
corresponding available channel measurements, are over a
large space. Basically, a robot can use its localization and
mapping information (which it will have for navigation and
collision avoidance) to detect when something changes in the
structure of its environment. For instance, it can detect when
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it moves out of a room to a hallway or when it reaches an
intersection. Thus, we assume that the underlying parameters
can possibly change when some environmental factors change.
From analyzing several real measurements, this is a reasonable
assumption. While there could possibly be cases that are not
captured by this assumption, i.e. having a drastic change in an
underlying parameter without any environmental change, such
cases are rare and the robot can not know about it to adapt its
strategy anyways.

Let a region denote a place of operation where there is
no environmental changes and the underlying parameters can
be considered constant (such as a room or a hallway with no
intersection that leads to the transmitter). In order to allow the
node to give less weight to the available measurements that are
collected in different regions and/or are far from the position
where the channel needs to be estimated, we introduce a
forgetting factor and a distance-dependent weight. This allows
the node to adapt the impact of a sample measurement on
its prediction framework. The forgetting factor is used to let
the node give less impact to a measurement if it belongs
to a different region, as compared to the place where the
robot needs to predict the channel. On the other hand, the
distance-dependent weight allows the robot to give less weight
to the farther measurements. Consider the case where the
workspace consists of p different regions, i.e. K =

⋃p
i=1 Ri.

Let τi represent the region, where the ith measurement belongs
to, i.e. qi ∈ Rτi . Define the forgetting matrix F , with
the following characteristics: 1) F is symmetric, 2) F is
stochastic and 3) [F ]i,j = fi,j is proportional to the similarity
between regions i and j. The third property implies that,
maxj fj,i = fi,i and fi,j ≥ fi,k iff regions i and j have more
environmental features in common, as compared to regions
i and k. Furthermore, let G denote the functional space of
all non-increasing functions on R+. For q ∈ Rm ⊂ K,
we define the corresponding weight matrix as: [ΨQ(q)]i,i =
fτi,m × gτi,m(‖q − qi‖) and [ΨQ(q)]i,j = 0 for i �= j, where
gτi,m ∈ G. One candidate for g is an exponential function:

gτi,m(‖q−qi‖) = e
− ‖q−qi‖

bτi,m . fτi,m and bτi,m are design param-
eters, which the robot can choose. They impact how conserva-
tive the robot will be in taking the measurements of different
regions into account. Let θ̂WLS(q) = minθ

∥∥∥Ψ 1
2

Q(q)
(
YQ −

HQθ
)∥∥∥2 denote the weighted LS estimation of the path loss

parameters, for prediction at position q ∈ Rm. We then have,
θ̂WLS(q) =

(
HT

QΨQ(q)HQ
)−1

HT
QΨQ(q)YQ. The channel and

other underlying parameters can be similarly estimated.

Fig. 4 shows the performance of our adaptive approach
when a robot moves along a street. The channel measurement
is in reception from an AT&T cell tower, in a street in San
Francisco [19], which experiences very different path loss
exponents due to the presence of an intersection that leads
to the transmitter. The robot samples the channel as it moves
along the street and estimates the path loss slope, without any
a priori information in this environment. The figure compares
the performance of the non-adaptive case with that of the
adaptive one and shows that we can benefit considerably from
the adaptation. Next, Fig. 3 (middle) shows the prediction
quality when a number of robots operate in our basement,
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Fig. 4: Performance of our adaptive approach, in estimating the path
loss slope, when a robot moves along a street in San Francisco and
samples the channel along its trajectory [19]–(top) channel received
power across the street along with its best slope fit and (bottom)
prediction error variance of the robot, as it moves along the street
and measures the channel.

over a large area and cooperate for channel prediction. The
regions of operation are R1 and R2, as indicated in Fig. 10.
Note that the performance is simulated, in this case, using
real channel measurements in this environment. It can be
seen that the adaptive approach can improve the performance
as compared to the non-adaptive case. In the non-adaptive
case, all the gathered and communicated measurements are
utilized by each robot for channel prediction, without taking
into account that these measurements may belong to different
regions. It can be seen that we can benefit a couple of dBs,
by using the adaptive approach. In other tests in different
environments, we also observed that the adaptation may make
a negligible difference if different regions are not that much
different, in terms of their underlying parameters, as expected.
Fig. 3 (bottom) shows an example of such a case for operation
over a different area in our basement. It can be seen that the
performance curves are very close.

In this paper, it is our goal to fundamentally understand the
impact of different environments (in terms of their underlying
parameters) on the proposed channel prediction framework.
Consider the four marked regions of Fig. 10 for instance.
We want to understand how the channel prediction quality
changes (and justify the observed behaviors) when we move
from one region to another. Therefore, in the rest of the paper,
we consider the non-adaptive channel prediction framework,
to predict the channel over a region where the underlying pa-
rameters can be considered constant. We then characterize the
impact of different environments (in terms of the underlying
channel parameters) on the prediction framework.

III. IMPACT OF CHANNEL PARAMETERS ON THE

PREDICTION ERROR VARIANCE

In this section, we characterize the impact of the underlying
channel parameters on the spatial predictability of a wireless
channel. We assume that the underlying parameters are esti-
mated perfectly in this section to avoid error propagation from
parameter estimation to channel prediction. In the subsequent
sections, we then extend our analysis to take the impact of the
estimation error of key underlying parameters into account.
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Let ΥdB(q) = 10 log10
(
Υ(q)

)
represent the received signal

strength at position q ∈ K in dB. Based on the gathered
measurements at Q ⊂ K, the goal is to estimate the channel
at q ∈ K\Q, using the channel predictor, Υ̃dB,Q(q) of Eq. 7,
with the corresponding error covariance of σ2

dB,Q(q). We next
characterize the impact of different channel parameters on this
prediction. We first introduce the following lemmas.

Lemma 2: Let Ψ(t) be an invertible matrix for t ∈ R. We
have dΨ−n

dt = −Ψ−n dΨn

dt Ψ−n, where n is a positive integer.
Proof: Taking the derivative from both sides of equation

Ψn(t)Ψ−n(t) = Ik×k , with respect to t, proves the lemma.

Lemma 3: Let J be an n-by-m matrix with the rank of m
and Ψ be an n-by-n full rank matrix. If matrix Ψ is positive
definite (Ψ 	 0), then JTΨJ is positive definite.

Proof: See [20] for a proof.
Theorem 1: The estimation error variance, σ2

dB,Q, is an
increasing function of α and σ2 for α, σ2 ∈ [0,∞) and an
invertible Rnorm,Q.

Proof: We first show that the estimation error vari-
ance is an increasing function of σ2. Let φnorm,Q(q) =
1
αφQ(q) denote the normalized cross covariance be-
tween Q and q. We have σ2

dB,Q(q) = α + σ2 −
αφT

norm,Q(q)
(
Rnorm,Q + σ2

α Ik×k

)−1
φnorm,Q(q). For α = 0,

we have d
dσ2σ

2
dB,Q(q)

∣∣∣
α=0

= 1 > 0, ∀σ2 ∈ [0,∞). For

α �= 0, taking the derivative with respect to σ2 (using Lemma
2) and then applying Lemma 3 result in: d

dσ2σ
2
dB,Q(q) =

1 + φT
norm,Q(q)

(
Rnorm,Q + σ2

α Ik×k

)−2
φnorm,Q(q) > 0, ∀σ2 ∈

[0,∞) and for an invertible Rnorm,Q, which completes the
proof. We next prove that σ2

dB,Q(q) is an increasing function of
α. First assume that σ2 �= 0. Taking the derivative with respect
to α results in: d

dασ
2
dB,Q(q) = 1 − φT

norm,Q(q)
[(
Rnorm,Q +

σ2

α Ik×k

)−1
+ σ2

α

(
Rnorm,Q + σ2

α Ik×k

)−2
]
φnorm,Q(q). Define

f(α) � d
dασ

2
dB,Q(q). f is of class C∞ on R

+ with the
following properties: 1) f(0) = 1, 2) f(∞) = 1 −
φT

norm,Q(q)R
−1
norm,Qφnorm,Q(q) > 0 and 3) d

dαf(α) < 0.
First property can be easily confirmed. We next prove the

second property. Let Rnorm,Q⋃{q} represent the correlation
matrix corresponding to Q⋃{q}. We have Rnorm,Q⋃{q} =[

Rnorm,Q φnorm,Q(q)
φT

norm,Q(q) 1

]
, where Rnorm,Q⋃{q} is assumed

invertible. Thus, under the assumption that Rnorm,Q is in-
vertible, the second property can be easily confirmed,
using the Schur complement of Rnorm,Q block [21].
Next we prove the third property. We have d

dαf(α) =

−φT
norm,Q(q)

d
dα

[(
Rnorm,Q + σ2

α Ik×k

)−1
+ σ2

α

(
Rnorm,Q +

σ2

α Ik×k

)−2
]
φnorm,Q(q) = −φT

norm,Q(q)
σ2

α
d
dα

[(
Rnorm,Q +

σ2

α Ik×k

)−2
]
φnorm,Q(q) = −2σ4φT

norm,Q(q)
(
αRnorm,Q +

σ2Ik×k

)−3
φnorm,Q(q). Since

(
αRnorm,Q + σ2Ik×k

) 	 0, we
can then easily show that d

dαf(α) < 0 using Lemma 3. By
using these three properties, we have f(α) > 0, which means
that the estimation error variance is an increasing function of
α ∈ [0,∞). Furthermore, if σ2 = 0 and Rnorm,Q is invertible,
then d

dασ
2
dB,Q(q)

∣∣
σ2=0

= f(∞), which is positive as shown
for property 2. Therefore, estimation variance is an increasing

function of α in this case too.
We next characterize the impact of β on the prediction

quality, using properties of the Euclidean Distance Matrix
(EDM) [22]. Given the position set Q = {q1, q2, · · · , qk} ⊂
K, the EDM Π =

[
πi,j

] ∈ R
k×k is defined entry-wise as[

Π
]
i,j

= πi,j = ‖qi − qj‖2 for i, j = 1, 2, · · · , k. We have
the following properties for the EDM:

1)
√
πi,j ≥ 0 for i �= j and

√
πi,j = 0 for i = j.

2)
√
πi,j =

√
πj,i.

3)
√
πi,l +

√
πl,j ≥ √

πi,j for i �= j �= l.

Theorem 2: Matrix Π =
[
πi,j

] ∈ R
k×k is EDM if and

only if −V T
k ΠVk 
 0,ΠT = Π and πi,i = 0 for 1 ≤ i ≤ k,

where Vk is the full-rank skinny Schoenberg auxiliary matrix:

Vk � 1√
2

[ −1Tk−1

I(k−1)×(k−1)

]
∈ R

k×k−1.

Proof: Readers are referred to [22] for the details of the
proof.

Theorem 3: Let T =
[
ti,j

] ∈ R
k×k represent the entry-

wise square root of Π =
[
πi,j

] ∈ R
k×k where ti,j = π

1
2

i,j . If
Π is EDM, then T is EDM. This case is of interest because
it corresponds to the absolute distance matrix.

Proof: Readers are referred to [22]–[24] for the details
of the proof.

Lemma 4: The Hadamard product (Schur product) of
two positive-definite matrices is positive-definite and the
Hadamard product of two positive-semidefinite matrices is
positive-semidefinite.

Proof: Readers are referred to Theorem 7.5.3 of [20] for
more details.

Theorem 4: The estimation error variance is a decreasing
function of β ∈ (0,∞) for σ2 �= 0 and a non-increasing
function of β ∈ (0,∞) for σ2 = 0 and an invertible Rnorm,Q.

Proof: Case of α = 0 is not of interest in this
theorem since we are interested in the impact of shadow-
ing. Therefore, in this proof we assume that α �= 0. Let
δQ(q) =

[‖q1 − q‖, ‖q2 − q‖, · · · , ‖qk − q‖]T represent
the distance vector between the set Q and position q �∈ Q
and ΔQ(q) � diag

[
δQ(q)

]
. Let

[
TQ

]
i,j

=‖ qi − qj ‖,
∀qi, qj ∈ Q, denote the absolute distance matrix corre-
sponding to the set Q. First assume that σ2 �= 0. We
have Eq. 8, shown at the top of the next page, where (•)
denotes the Hadamard product. Moreover, it can be con-
firmed that Rnorm,QΔQ(q) = Rnorm,Q • (

1kδ
T
Q(q)

)
. There-

fore, we have: d
dβσ

2
dB,Q(q) = − 1

β2φ
T
Q(q)R

−1
tot,Q

[
α
(
1kδ

T
Q(q)+

δQ(q)1Tk − TQ
)
• Rnorm,Q + 2σ2ΔQ(q)

]
R−1

tot,QφQ(q). From
Lemma 4, we know that the Hadamard product of two
positive-semidefinite matrices is positive-semidefinite. There-
fore, to prove that d

dβσ
2
dB,Q(q)

∣∣
σ2 �=0

< 0, it suffices to show
that 1kδ

T
Q(q) + δQ(q)1Tk − TQ is positive-semidefinite

(
we

know that ΔQ(q) 	 0
)
. Let T{q}⋃Q =

[
0 δTQ(q)

δQ(q) TQ

]
∈

R
(k+1)×(k+1) represent the distance matrix corresponding to

{q}⋃Q. Let ei denote a unit vector in R
k+1, where all

the entries are zero except for the ith one. Therefore, the
Schoenberg auxiliary matrix can be represented as Vk+1 =
1√
2

[
e2 − e1, · · · , ek+1 − e1

]
. We have:
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d

dβ
σ2

dB,Q(q) = − 1

β2
φT
Q(q)

[
ΔQ(q)R−1

tot,Q − αR−1
tot,Q

(
TQ •Rnorm,Q

)
R−1

tot,Q +R−1
tot,QΔQ(q)

]
φQ(q)

= − 1

β2
φT
Q(q)R

−1
tot,Q

[
Rtot,QΔQ(q)− αTQ •Rnorm,Q +ΔQ(q)Rtot,Q

]
R−1

tot,QφQ(q)

= − 1

β2
φT
Q(q)R

−1
tot,Q

[
α
(
Rnorm,QΔQ(q) + ΔQ(q)Rnorm,Q − TQ •Rnorm,Q

)
+ 2σ2ΔQ(q)

]
R−1

tot,QφQ(q), (8)

−
[
V T
k+1T{q}⋃QVk+1

]
i,j

= −1

2

(
ei+1 − e1

)T
T{q}⋃Q

(
ej+1 − e1

)

= −1

2

(
eTi+1T{q}⋃Qej+1 − eT1 T{q}⋃Qej+1 − eTi+1T{q}⋃Qe1

)

=
1

2

(
‖qj − q‖+ ‖qi − q‖ − ‖qi − qj‖

)

=
1

2

[
1kδ

T
Q(q) + δQ(q)1Tk − TQ

]
i,j
.

Then, matrix T{q}⋃Q is EDM using Theorem 3. Therefore,
applying Theorem 2 for EDM T{q}⋃Q results in: 1kδTQ(q) +
δQ(q)1Tk −TQ = −2V T

k+1T{q}⋃QVk+1 
 0, which completes
the proof. Next consider the case where σ2 = 0. A similar
derivation will result in d

dβσ
2
dB,Q(q)

∣∣∣
σ2=0

≤ 0, under the
assumption that Rnorm,Q is invertible. Therefore, the estimation
error variance is a non-increasing function of β in this case.

Note that path loss parameters, KdB and nPL, do not affect
the estimation error variance in this case. In Section VI, we
show the impact of different environments (with different
underlying parameters) on channel predictability, using several
measurements in our building. We next characterize the impact
of the underlying parameters on the estimation of path loss
parameters.

IV. IMPACT OF CHANNEL PARAMETERS ON PATH LOSS

ESTIMATION

In this section, we explore the effect of the underlying
channel parameters on the estimation of path loss parameters.
To provide a benchmark, we first consider the ML estimator
of Eq. 3, where we assume that α, β and σ2 are perfectly
known. We then consider the Least Square estimator of
Eq. 5 for a more realistic case, where α, β and σ2 are not
known at the time of estimating path loss parameters. Let
θ̂ML = [K̂dB,ML n̂PL,ML]

T denote the ML estimation of path
loss parameters as denoted by Eq. 3. We have the following
error covariance matrix: Cθ,ML = E

{(
θ−θ̂ML

)(
θ−θ̂ML

)T}
=(

HT
QR

−1
tot,QHQ

)−1
, where σ2

K̂dB,ML
= [Cθ,ML]1,1 and σ2

n̂PL,ML
=

[Cθ,ML]2,2 denote the ML estimation error variance of K̂dB,ML

and n̂PL,ML respectively. We have the following Theorem.
Theorem 5: Both σ2

K̂dB,ML
and σ2

n̂PL,ML
are increasing func-

tions of α and σ2 for α, σ2 ∈ [0,∞) and an invertible Rnorm,Q.

Proof: We have Cθ,ML =
(
HT

Q
(
αRnorm,Q +

σ2Ik×k

)−1
HQ

)−1

, where Rnorm,Q = 1
αRQ. Taking

the derivative with respect to α results in: dCθ,ML

dα =

−Cθ,ML
d
dα

(
HT

Q
(
αRnorm,Q + σ2Ik×k

)−1
HQ

)
Cθ,ML =

Cθ,MLH
T
Q
(
αRnorm,Q + σ2Ik×k

)−1
Rnorm,Q

(
αRnorm,Q +

σ2Ik×k

)−1
HQCθ,ML. By using Lemma 3 and the assumption

that Rnorm,Q 	 0, we can easily see that dCθ,ML

dα 	 0. Let
e1 = [1 0]T and e2 = [0 1]T denote unit vectors in R

2. We
have: d

dασ
2
K̂dB,ML

= d
dα

(
eT1 Cθ,MLe1

)
= eT1

dCθ,ML

dα e1 > 0 and
d
dασ

2
n̂PL,ML

= d
dα

(
eT2 Cθ,MLe2

)
= eT2

dCθ,ML

dα e2 > 0. To show that
the estimation error of path loss parameters is an increasing
function of σ2, it suffices to show that dCθ,ML

dσ2 	 0. We have,
dCθ,ML

dσ2 = −Cθ,MLH
T
Q

d
dσ2

(
αRnorm,Q+σ2Ik×k

)−1
HQCθ,ML =

Cθ,MLH
T
Q
(
αRnorm,Q + σ2Ik×k

)−2
HQCθ,ML 	 0, for

α, σ2 ∈ [0,∞) and an invertible Rnorm,Q.
In general, the estimation error variance of path loss pa-

rameters does not have monotonic behavior as a function of
β. To get a better understanding of the impact of correlation
distance on the estimation of path loss parameters, we consider
two extreme cases of β = 0 and β = ∞. More specifically, we
characterize the optimum positions of the measurement points
at both extremes and find the minimum achievable estimation
error variance.

A. Case of β = 0: In this case, Rtot,Q
(
β = 0

)
=

(α + σ2)Ik×k and the error covariance matrix of path loss
parameters can be characterized as:

lim
β→0

Cθ,ML = (α+ σ2)(HT
QHQ)−1

= (α+ σ2)

[
k −1TkDQ

−1TkDQ DT
QDQ

]−1

=
α+ σ2

DT
QAkDQ

[
DT

QDQ 1TkDQ
1TkDQ k

]
, (9)

where Ak = kIk×k − 1k1
T
k . As can be seen, the estimation

error variances of both KdB and nPL are functions of sampling
positions (Q).

Lemma 5: Matrix Ak = kIk×k − 1k1
T
k has 0 and k as

eigenvalues with the multiplicity of 1 and k − 1 respectively.
Let v1 ∈ span{1k} and v2 ∈ 1⊥k , where 1⊥k =

{
v
∣∣vT 1k = 0

}
.

We have Akv1 = 0 and Akv2 = kv2.
Proof: The proof is straightforward and is omitted.

Theorem 6: Let D1k
Q and D

1⊥k
Q denote the projection of

DQ to span{1k} and 1⊥k subspaces respectively. The optimum
positioning, which minimizes both σ2

K̂dB,ML
and σ2

n̂PL,ML
for the

case of β = 0, is

Qopt
PL,β=0 = argmax

Q
||DQ||22, s.t. Q ⊂ K and D1k

Q = 0.

(10)

Proof: We have the following optimum positioning
in order to minimize the estimation error variance of
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KdB, using Rayleigh-Ritz theorem [20]: Qopt
σ2
K̂dB,ML,β=0

=

argmin s.t. Q⊂K σ2
K̂dB,ML,β=0

= argmax s.t. Q⊂K
DT

QAkDQ
DT

QDQ
={

Q
∣∣Q ⊂ K and D1k

Q = 0
}
. This optimization problem

can have multiple solutions, depending on the structure of
the space, all of which achieve the minimum error vari-
ance of α+σ2

k . Similarly, we have the following to mini-
mize the estimation error variance of nPL: Qopt

σ2
n̂PL,ML,β=0

=

argmin s.t. Q⊂K σ2
n̂PL,ML,β=0

= argmax s.t. Q⊂K DT
QAkDQ =

argmax
s.t. Q⊂K and D

1k
Q =0

||DQ||22. Therefore, Eq. 10 repre-
sents the optimum positioning which satisfies both objectives.

Next, we provide an intuitive interpretation. Similar to Eq.
2, the measurement vector can be represented by YQ =
(KdB × k)u1 + (−nPL‖DQ‖2)u2 + ΞQ, where u1 = 1k√

k

and u2 = DQ
‖DQ‖2

are normalized vectors. Then, the problem
becomes similar to the decoding problem in CDMA (Code
Division Multiple Access) systems. Thus, we have DQ ∈ 1⊥k .
Moreover, maximizing k and ‖DQ‖2, which can be interpreted
as maximizing the SNR of each term, results in a better
estimation of KdB and nPL respectively.

B. Case of β = ∞: Next we characterize the impact of
correlation on the estimation quality of path loss parameters,
when β goes to ∞. To simplify the derivations, we define
two variables: ρ = α

σ2 for σ2 �= 0, which denotes the
ratio of the power of shadowing to multipath power (in dB)
and χ = α + σ2, which represents the sum of the two
powers. The following can be easily confirmed for σ2 �= 0: 1)
limβ→∞ Rtot,Q =

(
ρ1k1

T
k + Ik×k

)
χ

1+ρ , 2) limβ→∞ R−1
tot,Q =(

Ik×k − ρ
1+ρk1k1

T
k

)
1+ρ
χ (using Matrix Inversion Lemma), 3)

limβ→∞ 1TkR
−1
tot,Q1k = k 1+ρ

1+ρk
1
χ , 4) limβ→∞ 1TkR

−1
tot,QDQ =(

1TkDQ
)

1+ρ
1+ρk

1
χ , 5) limβ→∞ DT

QR
−1
tot,QDQ =

(
DT

QDQ −
ρ

1+ρk

(
1TkDQ

)2)1+ρ
χ = DT

Q
(
ρAk + Ik×k

)
DQ 1+ρ

1+ρk
1
χ . Using

the above equations, we have Eq. 11, shown at the top of next
page.

Remark 1: It can be seen from Eq. 11 that Theorem 6 also
characterizes the optimum positioning for this case. Moreover,
if Qopt

PL denotes the solution of Eq. 10, then we have,

σ2
K̂dB,ML

∣∣∣
β=0

=
α+ σ2

k
, σ2

K̂dB,ML

∣∣∣
β=∞

= α+
σ2

k
,

σ2
n̂PL,ML

∣∣∣
β=0

=
α+ σ2

‖DQopt
PL
‖2 and σ2

n̂PL,ML

∣∣∣
β=∞

=
σ2

‖DQopt
PL
‖2 .

(12)

As can be seen, the fully correlated case provides a smaller
estimation error variance for nPL and larger for KdB. In [5], we
showed that the slope of path loss, nPL, has the most impact
on the overall channel estimation error variance. Thus, case
of β = ∞ would be more desirable than β = 0.

Remark 2: Consider the case where multipath effect is
negligible, i.e., σ2 = 0. We have

lim
β→∞

Cθ,ML,σ2=0 =

[
α 0
0 0

]
. (13)

For this case, the measurement vector becomes YQ = HQθ+
�1k, where � ∼ N (0, α) with N denoting a Gaussian

distribution. Thus, for k ≥ 2, the slope of path loss, −nPL, can
be perfectly estimated. However, the uncertainty of � results
in a bias in the estimation of KdB, as can be seen from Eq.
13. It can also be seen that the estimation error covariance is
not a function of the sampling positions anymore.
We next characterize the LS estimation of path loss parame-
ters. Let θ̂LS denote the LS estimation of path loss parameters
as denoted by Eq. 5. We have the following error covariance
matrix: Cθ,LS =

(
HT

QHQ
)−1

HT
QRtot,QHQ

(
HT

QHQ
)−1

. The
following Theorem characterizes some properties of this esti-
mator.

Theorem 7: Let θ̂LS and Cθ,LS represent the Least Square
estimator of path loss parameters and the corresponding es-
timation error covariance matrix respectively. Let σ2

K̂dB,LS
and

σ2
n̂PL,LS

denote the LS error variances of K̂dB,LS and n̂PL,LS

respectively. We have the following properties:
1) Cθ,LS 
 Cθ,ML.
2) σ2

K̂dB,LS
and σ2

n̂PL,LS
are increasing functions of σ2 for α,

σ2 ∈ [0,∞). Moreover, σ2
K̂dB,LS

and σ2
n̂PL,LS

are increasing

functions of α for α, σ2 ∈ [0,∞) and an invertible
Rnorm,Q.

3) Both ML and LS estimators provide the same estimation
error covariance matrices if β = 0 or ∞.

Proof: The first property says that the ML estimator out-
performs the LS one, as expected. We skip the mathematical
proof due to space limitations. The second property can be
easily confirmed by taking the derivatives with respect to σ2

and α. We next prove the third property. For β = 0, we
have Rtot,Q = (α + σ2)Ik×k , resulting in limβ→0Cθ,LS =

limβ→0 Cθ,ML = α+σ2

DT
QAkDQ

[
DT

QDQ 1TkDQ
1TkDQ k

]
. For β =

∞, we have Rtot,Q = α1k1
T
k + σ2Ik×k , Cθ,LS =

α
(
HT

QHQ
)−1(

HT
Q1k1

T
kHQ

)(
HT

QHQ
)−1

+σ2
(
HT

QHQ
)−1

and Eq. 14, shown at the next page. Therefore, we have

lim
β→∞

Cθ,LS = α

[
1 0
0 0

]
+

σ2

DT
QAkDQ

[
DT

QDQ 1TkDQ
1TkDQ k

]

=

⎡
⎣α+

DT
QDQ

DT
QAkDQ

σ2 1Tk DQ
DT

QAkDQ
σ2

1Tk DQ
DT

QAkDQ
σ2 k

DT
QAkDQ

σ2

⎤
⎦ .

By comparing this equation to Eq. 11, the third property can
be verified.

Remark 3: Theorem 7 (3) shows that the optimum posi-
tioning of Eq. 10 minimizes the estimation error variance of
the LS case too.

We next verify the derived theorems, using a simulated
channel. Fig. 5 shows a simulated channel, generated with
our probabilistic channel simulator [25], with the following
parameters: frequency of operation of 1GHz, θ = [−22 3.0]T ,√
α =

√
8dB and β = 1m. As for multipath fading, this

channel experiences a correlated Rician fading, with Jakes
power spectrum [8], which results in the multipath fading
getting uncorrelated after 0.12m. The pdf of a unit-average
Rician distribution, with parameter Kric, is given by [6]:
fΥMP(x) = (1+Kric)e

−Kric−(1+Kric)xI0

(
2
√
xKric(Kric + 1)

)
,

where I0(.) is the modified zeroth-order Bessel function. Note
that Kric = 0 results in an exponential distribution, which
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lim
β→∞

Cθ,ML = lim
β→∞

(
HT

QR
−1
tot,QHQ

)−1

= lim
β→∞

[
1TkR

−1
tot,Q1k −1TkR

−1
tot,QDQ

−1TkR
−1
tot,QDQ DT

QR
−1
tot,QDQ

]−1

=
1 + ρk

1 + ρ
χ× 1(

1 + ρk
)
DT

QAkDQ
×
[
DT

Q
(
ρAk + Ik×k

)
DQ 1TkDQ

1TkDQ k

]
=

χ

1 + ρ

⎡
⎣ρ+ DT

QDQ
DT

QAkDQ
1Tk DQ

DT
QAkDQ

1Tk DQ
DT

QAkDQ
k

DT
QAkDQ

⎤
⎦

=

⎡
⎣α+

DT
QDQ

DT
QAkDQ

σ2 1Tk DQ
DT

QAkDQ
σ2

1Tk DQ
DT

QAkDQ
σ2 k

DT
QAkDQ

σ2

⎤
⎦ . (11)

(HT
QHQ

)−1(
HT

Q1k1
T
kHQ

)(
HT

QHQ
)−1

=
1(

DT
QAkDQ

)2

[
DT

QDQ 1TkDQ
1TkDQ k

] [
k2 −k

(
1TkDQ

)
−k

(
1TkDQ

) (
1TkDQ

)2 ] [
DT

QDQ 1TkDQ
1TkDQ k

]

=
1(

DT
QAkDQ

)2

[
k2
(
DT

QDQ
)− k

(
1TkDQ

)2 −k
(
DT

QDQ
)(
1TkDQ

)
+
(
1TkDQ

)3
0 0

] [
DT

QDQ 1TkDQ
1TkDQ k

]
=

[
1 0
0 0

]
(14)
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Fig. 5: A 2D simulated channel at 1GHz frequency with the
following underlying parameters: θ = [−22 3.0]T ,

√
α =

√
8dB,

β = 1m and σ =
√
2dB. The transmitter is located at qb = [0 0]T .

experiences a considerable amount of channel variations,
while Kric = ∞ results in no fading, i.e., we will have a
channel with only path loss and shadowing. Multipath power
(in dB), σ2, is related to Kric as follows: σ2 = E

{
ω2(q)

}
=

100
∫∞
0 log210(x)fΥMP(x)dx−100

( ∫∞
0 log10(x)fΥMP(x)dx

)2

.

For the simulated channel of Fig. 5, σ =
√
2 dB, which

corresponds to Kric = 19.
Fig. 6 and Fig. 7 show the impact of the correlation distance,

β, on the estimation variance of KdB and nPL respectively. In
this example, the workspace is a ring with an inner radius
of 0.3m and an outer radius of 3.3m, superimposed on the
simulated channel of Fig. 5, such that the centers of the rings
are positioned at the transmitter. We consider the case where
k = 8 samples are taken from the workspace. Furthermore, we
compare the performance for the case of random uniformly-
distributed samples with the case where samples are optimally
positioned based on Theorem 6. For this workspace, enforcing
D1k

Q = 0 results in max ‖DQ‖22 = 100k log210(
10
3 ), which can
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Fig. 6: Impact of β on the estimation of KdB for both optimum
positioning of Theorem 6 and random sampling.
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Fig. 7: Impact of β on the estimation of nPL for both optimum
positioning of Theorem 6 and random sampling.

be achieved if and only if half of the samples are distributed
on the inner circle while the other half are on the outer one.
Therefore, we assume that four samples are equally-spaced on
the inner circle while the other four are equally-spaced on the
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Fig. 8: Average Normalized Mean Square Error (ANMSE), spatially
averaged over different channel realization and random sampling
positions, as a function of the % of estimation error in α̂, β̂ and
θ̂ [5].

outer one.3 The figures show that the optimum positioning of
Theorem 6 can reduce the error, especially for the estimation
of nPL (which will have the most impact on the overall channel
estimation error [5]). It can also be seen that as β approaches
0 or ∞, both estimators have the same quality as predicted by
Theorem 7. Finally, the performances of the two estimators
are not that different for other values of β in this example.

V. PERFORMANCE ANALYSIS USING UNBIASED

ESTIMATION OF PATH LOSS PARAMETERS

In Section III, we considered the impact of the underlying
parameters on the spatial predictability of a wireless chan-
nel, where we assumed that the underlying parameters are
estimated perfectly. In this section, we extend that analysis
to also consider the impact of estimation error in path loss
parameters. In [5], authors analyzed the sensitivity of channel
predication to the estimation of the underlying parameters.
Fig. 8 shows the impact of parameter estimation error on
the overall channel prediction performance. For each curve,
only one parameter is perturbed while the rest are assumed
perfectly estimated. It can be seen that the curves attain
their minima when there is no parameter estimation error, as
expected. We can furthermore observe that uncertainty in the
estimation of different parameters impacts the performance
differently. As can be seen, the prediction is more sensitive
to path loss parameters (especially path loss exponent nPL).
In other words, the effect of an error in the estimation of
the shadowing parameters is almost negligible, as compared
to the error in path loss estimation. As such, in this section
we extend the analysis of Section III to the case where errors
in the estimation of path loss parameters are also considered.
Consider the case where path loss parameters are estimated
using an unbiased estimator.4 We next characterize the error
variance of channel prediction for this case, assuming that the
error in the estimation of α, β and σ2 is negligible. Since we
are considering both the ML and LS estimators, we assume

3Note that the multipath components of different sampling points become
uncorrelated with 100% probability for the case of optimum positioning and
95% probability for the case of random.

4The unbiased estimator can be either ML or LS.

that Rtot,Q is invertible in the rest of the section (This is
naturally implied if σ2 �= 0). Let θ̂unb = SYQ denote an
unbiased estimator of θ. We have the following for the error
covariance matrix Cθ, unb = SRtot,QST , with SHQ = Ik×k .

Let Υ̂dB,Q,θ̂unb
(q) = E

{
ΥdB(q)

∣∣∣ YQ, θ = θ̂unb, α, β, σ
2
}

denote the estimation of channel at position q, when path loss
parameters are estimated using the aforementioned unbiased
estimator:

Υ̂dB,Q,θ̂unb
(q) = hT (q)θ̂unb + φT

Q(q)R
−1
tot,Q

(
YQ −HQθ̂unb

)
=
[(

hT (q)− φT
Q(q)R

−1
tot,QHQ

)
S + φT

Q(q)R
−1
tot,Q

]
︸ ︷︷ ︸

GQ

YQ.

We have the following characterization for the error
variance of channel estimation: σ2

dB,Q,θ̂unb
(q) �

E

{(
ΥdB(q) − Υ̂dB,Q,θ̂unb

(q)
)2 ∣∣∣ α, β, σ2

}
=

E
{(

hT (q)θ + Ξ{q} − GQYQ
)(

hT (q)θ + Ξ{q} −
GQYQ

)T}
= E

{(
Ξ{q} − GQΞQ

)(
Ξ{q} − GQΞQ

)T}
=

α + σ2 + GQRtot,QGT
Q − GQφQ(q) − φT

Q(q)G
T
Q, where

Ξ{q} = ν(q) + ω(q) denotes the sum of shadowing
and multipath power (in dB domain) at position
q. It can be easily confirmed that GQRtot,QGT

Q =(
hT (q) − φT

Q(q)R
−1
tot,QHQ

)
SRtot,QST

(
hT (q) −

φT
Q(q)R

−1
tot,QHQ

)T

− φT
QR

−1
tot,QφQ + GQφQ(q) + φT

Q(q)GT
Q.

Therefore, we have Eq. 15, shown at the top of the next
page. The initial uncertainty of channel estimation at q can be
represented by α+ σ2 − φT

QR
−1
tot,QφQ if path loss is perfectly

removed. Then, the second term of Eq. 15 is an increase
in the error due to error propagation in the estimation of θ.
As can be seen, σ2

dB,Q,θ̂unb
(q) is not a function of θ since

Υ̂dB,Q,θ̂unb
(q) is an unbiased estimator of channel at position

q.
In the previous sections, we showed that as α and σ2

increase, the estimation of path loss parameters as well as
channel prediction quality become worse. Thus, we expect
to have the same trend, when considering both path loss
estimation error and channel predictability. We next study
the effect of correlation distance on the overall performance.
Similar to Section IV, we consider two cases of β = 0,∞
and characterize the overall channel estimation error variance.
Moreover, we propose an optimum positioning scheme that
minimizes the overall channel estimation error for these two
cases.

Theorem 8: Let Qopt
σ2

dB,Q,θ̂ML/LS
(q),β=0,∞,σ2 �=0

5 denote the

optimum positioning which minimizes the overall estimation
error variance at q for both β = 0 and ∞ and σ2 �= 0,
considering path loss estimation through either ML or LS.
We have 1

k1
T
kDQopt

σ2
dB,Q,θ̂ML/LS

(q),β=0,∞,σ2 �=0

= D{q}.

Proof: For β = ∞, we have limβ→∞ φQ(q) =
ρ

1+ρχ1k, ∀q ∈ K, where ρ = α
σ2 and χ = α + σ2.

If σ2 �= 0, then using properties 3 and 4 of Section

5The notation θ̂ML/LS denotes that the estimation of path loss parameters
can be either θ̂ML|α,β,σ2 or θ̂LS.
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σ2
dB,Q,θ̂unb

(q) = α+ σ2 − φT
QR

−1
tot,QφQ︸ ︷︷ ︸

initial ch. est. error var. if path loss is perfectly known

+
(
hT (q)− φT

Q(q)R
−1
tot,QHQ

)
Cθ, unb

(
hT (q)− φT

Q(q)R
−1
tot,QHQ

)T

︸ ︷︷ ︸
increase in error var. due to error propagation from est. of θ

.

(15)

lim
β→∞

(
hT (q)− φT

Q(q)R
−1
tot,QHQ

)
Cθ,ML/LS,β=∞

(
hT (q)− φT

Q(q)R
−1
tot,QHQ

)T

=
DT

QDQ + ρ
(
1TkDQ

)2 − 2(1 + ρk)1TkDQD{q} + k(1 + ρk)D2
{q}

(1 + ρ)(1 + ρk)DT
QAkDQ

χ =

(
1TkDQ − kD{q}

)2
ρ+DT

QDQ − 21TkDQD{q} + kD2
{q}

(1 + ρ)(1 + ρk)DT
QAkDQ

χ.

(16)

IV-B, we get limβ→∞ hT (q) − φT
Q(q)R

−1
tot,QHQ =[

1 − ρ
1+ρχ limβ→∞ 1TkR

−1
tot,Q1k − D{q} +

ρ
1+ρχ limβ→∞ 1TkR

−1
tot,QDQ

]
=
[

1
1+ρk

ρ
1+ρk1

T
kDQ−D{q}

]
and limβ→∞ φT

QR
−1
tot,QφQ = ρ2k

(1+ρ)(1+ρk)χ.
Moreover, from Eq. 11 and Theorem 7, we have
Cθ,ML/LS,β=∞ � limβ→∞ Cθ,ML = limβ→∞ Cθ,LS =

χ
1+ρ

⎡
⎣ρ+ DT

QDQ
DT

QAkDQ
1Tk DQ

DT
QAkDQ

1Tk DQ
DT

QAkDQ
k

DT
QAkDQ

⎤
⎦ , where Ak =

kIk×k − 1k1
T
k . After some lines of derivations, Eq. 16,

shown at the next page, can be derived. Thus, we have the
following for Eq. 15:

lim
β→∞

σ2
dB,Q,θ̂ML/LS

(q) = χ

[
1− ρ2k

(1 + ρ)(1 + ρk)

+

(
1TkDQ − kD{q}

)2
ρ+DT

QDQ − 21TkDQD{q} + kD2
{q}

(1 + ρ)(1 + ρk)DT
QAkDQ

]

=
Q1ρ+Q2

(1 + ρ)(1 + ρk)DT
QAkDQ

χ, (17)

where Q1 = (k + 1)DT
QAkDQ +

(
1TkDQ − kD{q}

)2
and

Q2 = DT
QAkDQ + DT

QDQ − 21TkDQD{q} + kD2
{q}. It can

be easily confirmed that Q1 = kQ2. Therefore, we have
limβ→∞ σ2

dB,Q,θ̂ML/LS
(q) = Q2

(1+ρ)DT
QAkDQ

χ = Q2

DT
QAkDQ

σ2.

Moreover, we have:

lim
β→0

σ2
dB,Q,θ̂ML/LS

(q) =
(
1 + hT (q)

(
HT

QHQ
)−1

h(q)
)
χ

=
Q2

DT
QAkDQ

χ. (18)

Thus, the optimum positioning which minimizes chan-
nel estimation error variance for both β = 0 and ∞
is Qopt

σ2
dB,Q,θ̂ML/LS

(q),β=0,∞,σ2 �=0
= argminQ Q2

DT
QAkDQ

. We

have, Q2

DT
QAkDQ

= 1 +
DT

QDQ−21Tk DQD{q}+kD2
{q}

DT
QAkDQ

= 1 +

1
k

DT
QAkDQ+

(
1Tk DQ−kD{q}

)2

DT
QAkDQ

= 1 + 1
k + 1

k

(
1Tk DQ−kD{q}

)2

DT
QAkDQ

.

It can be easily confirmed that Ak is positive-semidefinite.
Thus, under full rank assumption of HQ (as discussed in
Section II), we have DT

QAkDQ > 0. Therefore, to minimize
the estimation error variance for both β = 0 and ∞, we need
1TkDQ = kD{q} for DQ ∈ R

k\span{1k}.
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Fig. 9: Impact of β on the channel predictability, when considering
path loss estimation error.

Case of σ2 = 0 and β = 0 can be treated the same as
Eq. 18 with χ = α, which results in the same optimum
positioning scheme. However, if σ2 = 0 and β = ∞, for
k ≥ 2, the channel variations can be perfectly estimated at
each point. Theorem 8 shows that the optimum positioning

results in ‖q − qb‖ =
(∏k

i=1 ‖q − qi‖
) 1

k

. This suggests that
the optimum measurement positions should be chosen such
that the distance of q to the transmitter be the geometric
average of the distances of the measurement points to the
transmitter. Let Q′ = Qopt

σ2
dB,Q,θ̂ML/LS

(q),β=0,∞,σ2 �=0
denote the

optimum positioning. We have,

lim
β→0

σ2
dB,Q′,θ̂ML/LS

(q) = α+ σ2 +
α+ σ2

k
and

lim
β→∞

σ2
dB,Q′,θ̂ML/LS

(q) = σ2 +
σ2

k
. (19)

For β = 0, as k goes to ∞, the estimation error of path
loss parameters goes to 0 and the estimation error variance
becomes α+σ2. This value is an initial uncertainty assuming
known path loss parameters. For the case of β = ∞, on the
other hand, the estimation error variance becomes σ2 as k
goes to ∞. Fig. 9 shows the impact of correlation distance β
on the estimation performance when path loss parameters are
estimated using an ML/LS estimator. The impact of optimum
positioning of Theorem 8 can also be seen from the figure.



976 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 11, NO. 3, MARCH 2012

 

 

  −77 dBm

  −65 dBm

  −53 dBm

  −41 dBm

  −28 dBm

  −16 dBm

R4

R1

R2

R3

Fig. 10: Blueprint of the portion of the basement of the ECE bldg.
at UNM where channel measurements are collected. A colormap of
the measured received signal power is superimposed on the map. R1
denotes the main room, where the transmitter is located (as marked
on the figure). R2, R3 and R4 correspond to different hallways at the
basement. See the PDF file for a colored version of the map.
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Fig. 11: Comparison of channel predictability for different regions
of Fig. 10.

For this example, the workspace is a 2m × 2m square with√
α =

√
8dB and σ =

√
2dB, where k = 10 samples are taken

from the workspace (either randomly or optimally). The y axis
then represents the estimation performance after averaging
over several runs of channel realization and sampling patterns.
As can be seen, ML and LS estimators provide very similar
performance in this case. Furthermore, optimizing the position
of the samples, according to Theorem 8 can improve the
performance considerably.

VI. NUMERICAL ANALYSIS ON REAL CHANNEL

MEASUREMENTS

In this section, we show the impact of different envi-
ronments, and their underlying parameters, on channel pre-
dictability, using real channel measurements. Fig. 10 shows
the blueprint of a portion of the basement of the Electrical and
Computer Engineering building at UNM. We used a Pioneer-
AT robot to make several measurements along different routes
in the basement, in order to map the received signal strength
(each route is a straight line). As mentioned earlier, the robot is
equipped with an 802.11g wireless card, with transmission at
2.4 GHz. It uses the MadWiFi device driver to measure the re-

ceived signal power [16]. The figure also shows a color-map of
our measured received signal power. In order to see the impact
of different underlying parameters on channel predictability,
the area is divided into four regions of R1, · · · , R4, as can be
seen from the figure. Since we are dealing with real data, we
can not check the accuracy of the estimation of the underlying
parameters. As such, we use all the measurements in each
region, to estimate the underlying parameters of that region,
which are then used to understand channel predictability of
each region. We use the LS estimator of Section II, in order to
estimate channel parameters of each region. As can be seen, as
the distance to the transmitter increases, nPL (the slope of path
loss) increases. This phenomena has previously been reported
in the literature as well [26]. Another interesting phenomenon
is the shadowing behavior. As can be seen, correlation distance
(β) increases as we get farther from the transmitter and move
to the hallways. This makes sense as shadowing is the result
of the transmitted signal being possibly blocked by a number
of obstacles before reaching the receiver. Finally, for region
R1 (the main room), multipath fading is the dominant term,
as can be seen. This is expected since that room is rich in
scatterers and reflectors, with no major obstacle. Next, we
consider channel predictability of different regions and relate
the observed behaviors to the underlying parameters of Table I.

Fig. 11 compares channel prediction quality of different
regions (measured by Average Normalized MSE as defined in
Section II), given the parameters of Table I. As can be seen,
region R4 has the best performance, as compared to the other
regions. From Table I, region R4 has the smallest α+ σ2 and
good amount of correlation, which result in better predictabil-
ity. On the other hand, region R1 experiences considerable
multipath fading and negligible shadowing, which results in
the worst predictability. Regions R2 and R3 have similar per-
formances, since one has a higher shadowing correlation while
the other experiences lower α+σ2. As was shown earlier, path
loss parameters do not impact channel predictability. We next
study the impact of each individual channel parameter on the
estimation performance more closely.

Table I also shows channel parameters corresponding to
three pairs of routes in the basement of ECE building at
UNM (pairs A, B and C). Each pair is chosen such that only
one parameter changes and the rest are almost the same. Fig.
12 (top) shows the impact of the shadowing power on the
estimation performance. As can be seen, for A1/A2 pair, the
correlation distance and multipath power are almost the same.
However, A1 has a smaller shadowing power, which results in
a better estimation performance. Fig. 12 (middle) and Fig. 12
(bottom) show the impact of correlation distance and multipath
power on the estimation performance respectively. For each
case, other channel parameters are almost the same. As can
be seen, B2 with its higher correlation distance and C1 with its
smaller multipath power provide better predictability. It should
be noted that subtracting the estimated thermal noise power
(which is provided by the wireless card) from each reception
results in a maximum improvement of 0.1dB for all our results.

VII. CONCLUSION

In this paper, we developed a probabilistic channel predic-
tion framework for predicting the spatial variations of a wire-
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TABLE I: Channel Parameters for Different Regions and Routes

Region KdB nPL α β σ2

R1 -20.8870 1.2272 negligible negligible 22.1238
R2 -21.4677 2.3878 10.7772 0.0979 2.8862
R3 -17.9694 2.9795 8.6385 0.3231 7.6628
R4 68.7836 9.9392 2.0157 1.4377 7.5687
A1 - - 8.2164 0.0809 2.9721
A2 - - 11.6332 0.0860 2.9313
B1 - - 11.7535 0.2858 6.3979
B2 - - 11.6029 0.5832 6.1956
C1 - - 10.4193 0.2258 5.1696
C2 - - 10.3451 0.2396 7.2873
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Fig. 12: Impact of (top) shadowing power, (middle) correlation distance and (bottom) multipath power on channel prediction performance,
using real channel measurements of Fig. 10.

less channel, based on a small number of measurements. We
then proposed a mathematical foundation for understanding
the spatial predictability of wireless channels. More specifi-
cally, we characterized the impact of different environments,
in terms of their underlying parameters, on wireless channel
predictability. We furthermore showed how sampling positions
can be optimized to improve the prediction quality. Finally,
we showed the performance of the proposed framework in
predicting (and justifying the predictability of) the spatial
variations of real channels, using several measurements in our
building. Overall, the proposed framework can be utilized for
communication-aware operation of robotic networks. There
are several possible extensions of this work. For instance,
we are currently working on characterizing the impact of the
underlying parameters on the estimation of shadowing power
and correlation distance, which will be the subject of another
paper.
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