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Abstract

With the blasting increase of wireless data traffic, incuntbeireless service providers (WSPSs)
face critical challenges in provisioning spectrum reseui@iven the permission of unlicensed access
to TV white spaces, WSPs can alleviate their burden by etipipthe concept of “capacity offload” to
transfer part of their traffic load to unlicensed spectrumr. $uch use cases, a central problem is for
WSPs to coexist with others, since all of them may accessnheemsed spectrum without coordination
thus interfering each other. Game theory provides toolsgpfedicting the behavior of WSPs, and we
formulate the coexistence problem under the framework afcmoperative games as a capacity offload
game (COG). We show that a COG always possesses at least mmstpaiegy Nash equilibrium (NE),
and does not have any mixed-strategy NE. The analysis mewddull characterization of the structure
of the NEs in two-player COGs. When the game is played regated each WSP individually updates
its strategy based on its best-response function, thetiggprocess forms a best-response dynamic. We
establish that, for two-player COGs, alternating-move-besponse dynamics always converge to an NE,
while simultaneous-move best-response dynamics doeshways converge to an NE when multiple
NEs exist. When there are more than two players in a COG, ifnigtgvork configuration satisfies

certain conditions so that the resulting best-responsamiecs become linear, both simultaneous-move
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and alternating-move best-response dynamics are guathtdeconverge to the unique NE.
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I. INTRODUCTION

With the blasting increase of wireless data traffic from n@pligations such as smartphones, a
solution for wireless service providers (WSPs) is to maleafghe concept of “capacity offload”
to transfer part of their traffic load elsewhere off the maystem, to alleviate the load thus
improving the overall system capacity. In industry, fengiband WiFi networks are the primary
candidates for capacity offload! [1]/[2]. As the Federal Comioations Commission (FCC) and
other regulatory bodies have recently permitted unlicéresscess to TV white space spectrum
[3], it becomes possible for WSPs to use dynamic spectrurasactechniques to offload their
traffic from their own licensed bands (i.e., private bands}he publicly available unlicensed
bands (i.e., shared bands). A natural question thus comes:tevhat is the impact of the
additional unlicensed spectrum on coexistence? A geneaalldhck associated with unlicensed
spectrum is the so-called tragedy of the commans [4], ite,dpectrum may be overused by
WSPs without admission fee and the communication may enepexcessive interferencel [5].

We consider a simplified network model as depicted in Figur&udppose a time-division
channel access scheme, so that in each time slot only oneegsgment is active in each
WSP’s network. The WSPs utilize the additional unlicenspdctrum simultaneously, due to
absence of coordination among different WSPs on spectrionation. A user equipment can
communicate with its serving WSP in the corresponding peiveEnd and the shared band at the
same time. Communication in the private band is free frorarfetence of other WSPs, while
in the shared band, a receiver will experience interferericen other WSPs’ transmissions. A
transmitter has an average power constraint and thus needle®tate its power budget between
its private band and the shared band. The power allocatrategies of WSPs thus lead to an
inherent interaction among the WSPs, thus determining thehaviors.

Game theory is a powerful tool in analyzing and predictingcomes of interactive decision
making processes. In this work, we use game theory to andhgénteraction among WSPs,
and formulate such interaction into a capacity offload ga®@G): WSPs are players of the
game, power allocation schemes (i.e., how to split each W$BWwer budget between private
band and shared band) constitute the strategy space of eSéh &kid achievable rates are the
utility functions of WSPs. Due to the lack of coordinatiohetrelationship among the WSPs is

competitive; that is, a COG is non-cooperative and each W8&#dwxchoose a power allocation
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strategy to attempt to maximize its achievable rate regasdbf other WSPs.

There has recently been a heightened interest in the apphisaof game theory in wireless
networks; see, e.g.. [6] and references therein. Works svinesdels bear similarities to ours,
however, are relatively few, summarized as follows. [Ih [fhle authors considered a network
consisting of two interfering links for which both sourcesvh access to a common relay which
has access to bands orthogonal to that used by the sourc{f], ihe authors considered a
network consisting of two source-destination links ance¢hbands, assuming that one of the
bands is shared by the transmitters while the other two barglgrivate. The analysis therein
is based on results of supermodular games, with strategyespi#efined in a way such that the
game has strategic complementarities. Unfortunately, dparoach does not apply for games
with more than two players, as that we consider in this paper.

Through the analysis of the COG, we arrive at a number ofésterg conclusions. The COG
always has at least one pure-strategy NE when all WSPs addetnainistic strategies (i.e.,
pure strategies). When WSPs reach an NE, none of them woulkl iheentive to unilaterally
deviate from the NE since otherwise the deviation would elese its utility [9]. Even if we
permit mixed strategies, i.e., an WSP choosing its strataggomly according to a probability
distribution over its strategy space, the COG does not gesagy mixed-strategy NE. The NE of
a COG is not necessarily unique, and the number of NEs depgratsthe network parameters.
As an illustration, we fully characterize the NEs for twaypér COGs, for all possible network
parameters.

We then examine the behavior of best-response learningitiigns [10] which requires only
local information for each WSP, to study how to reach an NE idisributed way. In best-
response learning algorithms, a COG is played repeatedlyra@ach time slot, an WSP updates
its strategy based on its best-response function with oédpeother WSPs’ strategies in the
previous time slot. WSPs can update their strategies esin@ultaneously or alternatingly. Our
findings are as follows. For a two-player COG, alternatingvenbest-response dynamics always
converge to an NE, regardless of the number of NEs in the gaimereas the simultaneous-move
best-response dynamic does not always converge to an NE nvbkiple NEs exist, depending
upon the initial strategies adopted. For COGs with more ttvam WSPs, the convergence
property is generally difficult to analyze due to the nordinty in the best-response functions.

But we find that when the network parameters are configuredwaysuch that each WSP’s
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best-response function is linear with respect to other WStPastegies, both simultaneous-move
and alternating-move best-response dynamics are guadatdeconverge to the unique NE of
the COG.

The remaining part of the paper is organized as follows. i&edf] formulates the capacity
offload problem as a non-cooperative game and sets someasasimptions for analysis. Section
[MMestablishes the existence of pure-strategy NE and tmeaxistence of mixed-strategy NE for
COGs, and characterizes the structure of the NEs in twoepl@DGs. Sectioh IV analyzes the
convergence properties of best-response learning digusitfor approaching NEs. Sectiéd V
provides numerical results to illustrate the behaviorseafhing algorithms. Finally, Sectigon VI

concludes the paper.

II. MODEL AND GAME-THEORETIC CONSIDERATIONS
A. System model

An abstract model for capacity offloading may be describedolisws; also see Figurg] 2.
Assume that a sef = {1,---, K}, of access points from different WSPs are deployed in a
geographic area. Suppose that each WSP, say ¥ 8Ecupies a private band, whose bandwidth
is B, Hertz. A shared band, whose bandwidthAs Hertz, can be accessed and made use of
by all WSPs. So the total available bandwidihHertz, consists of all WSP’s private bands and
the shared band; that i&} = (o + >, . 8x) B Hertz, wherea = B, /B and 5, = B, /B, for
ke X.

We assume that the transmitter of WEMPas an average power constraift and that it can
arbitrarily allocate its power on its own private band and sihared band. Denote by € [0, 1]
the fraction of WSP:’s power allocated on its private band; that is, the WSP tratssat power
x, P in its private band, and atl — z)P; in the shared barHj.WSPs deploy time-division
channel access scheme, so that in each time slot, a WSP iegbiusansmits information to a
single user equipment. All receivers are subject to adelitite Gaussian noise with zero mean
and power spectral density,. We further assume that all the link channels are frequdiaty-

among which i | is the channel gain of the link from WSPs transmitter to its corresponding

It is reasonable for each WSP to use up all its power. If therpower left unallocated for an WSP, it can allocate this

residual power on its private band to increase its achievedite without creating extra interference to other WSPs.
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receiver in both its private band and the shared band,

and? is the channel gain of the link
from WSP j’s transmitter to WSH:’s receiver.

The considered frequency-flat fading model is somewhaticése in that the channel gains
over the private bands and the share band are set identigalwbuld occur mainly in situations
where the private bands and the shared band are not far afiatjuency. Using such a simplified
model, however, we are able to convey our key ideas effdgtwithout dwelling in tedious
technicalities. Extensions to more general fading modelpassible; see, e.g.,/[8]. In the sequel,
we usec; ; to replace|h; ;|?/B andcy . to replace|hy x|/ B, to simplify notations.

We denote the symbols transmitted by WEP transmitter bys, ;. (in its private band) and
ss., (in the shared band), with time indices suppressed. So teviexl baseband signals at WSP
k’s receiver can be written ag, . = hixSpx + 2 (iN its private band) and , = hy xSs i +
Zjex\{k} hirss; + zsk (in the shared band), whet®||z,|*] = noB;B, E[|zs|?] = noaB,
E[|spxl?] = zxP. and E[|ssx|*] = (1 — 2x)Px. We consider a naive coding scheme in which
all transmitted symbols follow Gaussian codebooks andeakivers adopt single-user decoding
treating others’ signals as noise. Hence, Wi&Pachievable rate (normalized bYy) is:

(1 — x) Prcr i
nox + Z]EK\{I@}(l - Ilfj)PjCij

uk(x) = alog, (1 +

-~

in t]};e sh;:red band (l)

e C

M) (bits/Hertz),
oSk .,

in the private band

+5 log, (1 +

(.

where vectorx = (z1,--- ,xx)’ represents the power allocation strategies adopted byeall t
WSPs. Due to the lack of coordination among WSPs, it is restderto suppose that each WSP
adopts its individual strategy to attempt to maximize itsxaachievable rate, regardless of other
WSPs’ rates. This situation is formally described by the C@®oduced in the following.

B. Game-theoretic model

We define the pure-strategy form of COGRs- (K, (X )rex, (ur)rex), in whichX represents
the set of players (i.e., the WSPsY,, is the set of WSP:'s pure strategies, i.e., the power
allocation ratiox;, € [0,1], and the utility functionu, is given by [(1). More generally, we

may also consider mixed strategies: each pladyet X chooses its strategy, following a
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discrete probability distributiom(z;) = (wkw(l), e v%,;p<N>)T € A(Xy) over a finite strategy
space (Whererk@](c”) represents the probabili:y that WS{I;Dchooses strategy,i”)) or following

a probability distribution functionr,(xz) € A(X}) over a continuous strategy space, where
fol mr(xp)dxy = 1, () > 0. For mixed strategies, the utility functian, of playerk is defined

as the expectation af;, in (1) with respect to the probability distributions of alagers’ strategies.
We can define the mixed strategic-form game for COGas (K, (A(Xy))kex, (Un)pex)-

The definitions of pure-strategy and mixed-strategy NEsaaréollows [11].

Definition 1 (Pure-strategy Nash equilibriumj strategy profilex* = (z7, ..., 2%)T is a pure-
strategy NE for the COG, itk € K andVz, € X, ug(z},x*,) > up(v,,x*,), where the
subscript—£ represents all the players other than plager

Definition 2 (Mixed-strategy Nash equilibriumf mixed-strategy profiler* is a mixed-strategy
NE for the COG, ifvk € K andVr, € A(X}), (), 7,) > ax(m, 7 ), wheret,(r) =
Eq[ug(zr, x_ k)] : A(X7) X ... x A(Xg) — R.

IIl. ANALYSIS OF NASH EQUILIBRIA

In this section, we establish the existence of pure-styaitdl§, as well as the nonexistence
of mixed-strategy NE, for COGs. With the aid of explicit bessponse function, we fully
characterize the structure of NEs for two-player COGs, apldiying the relationship between

network parameters and the NEs.

A. Existence of Pure-strategy NE

The existence of pure-strategy NEs for COGs is an applicaifahe following lemma.

Lemma 1 (Roser [12])At least one NE exists for every conca¥eplayer game.

For a concave game, the joint strategy set is convex, clasedaunded, and for each player
k € X, its utility function is continuous with respect to the jbistrategy and is concave with
respect to playek’s strategy. Then we state the existence theorem as follows:

Theorem 1 (Existence of pure-strategy NB)pure-strategy COGG = (K, (Xi)rex, (Ur)kex),
always possesses at least one NE, i.e., there is at leastrategg profilex* = (x%, -+, 2%)T
such thatuy (2}, x* ) > u(x,, x*,) holds,Vk € K, Vz, € X,.

Proof: By lemmall, it suffices to verify that the pure-strategy CO@ isoncavek -player

game:
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1) The pure-strategy is from a convex, closed and bounded set, namélyx - - - x X =
{x= (21, ,zK)|zr €[0,1),for k=1,--- K},
2) Playerk’s utility function, ux(x), defined by[(IL), is continuous ix and is concave iny,

since

DPup(x) _ aP;?Ci,k B @cP/?CZ,k <0
o} o + 3 ienc(l — ) Picjul®  (noBr + wplrers)?

B. Nonexistence of Mixed-strategy NE

Theorem[ L guarantees that at least one pure-strategy NE,ekig it is remains unclear
whether a mixed-strategy NE exists. In the following, weeralt this possibility.
Theorem 2 (Nonexistence of mixed-strategy NEQr a COG, there is no mixed strategy that
makes the players reach an NE.
Proof: For a givenk, let us fix players—k's strategy probability distribution as*, (x_;) €
A(X_g). Regarding the utilityu,, of playerk, we have

1
ﬂk(ﬂ'k,ﬂ'ik) :/ /uk(xk,x_k)wk(xk)wik(x_k)dxkdx_k
X_/0

! 1 — )P
_ / / {a log, [ 1+ ( ) Prcy
X_x/0 no + Zjeﬂ(\{k}(l — ;) Pjcj

xiPre
+ B log, (1 TRl kk) }ﬂk(xk)wik(x_k)dxkdx_k
oSk

(®) 1 — 2\ P
< / {a log, (1 + Jo(@ = mp) Pecy ey (wy ) day >
X_k

Ny + Z]EK\{.’C}(]' - Zlfj)PjCng

1
2 Prer ome (2 )dax
i) | oy

1—E P,
= / {a log, [ 1+ ( [2e]) P
Xy noa + Zjej{\{k}(l — ;) Pjcji

Elxg]| P
+ B log, (1 + M) ]Wik(x—k)dx—m
oSk

where (a) follows from Jensen’s inequality. Singgx) is strictly concave inz;, (cf. proof of
Theorem[1L), we achieve equality in (a) if and onlyzif = E[z;] with probability 1, which

+ i log, <1 +

’Pure strategies are degenerated mixed strategies, andcimeeal from the consideration.
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means that playet’s strategy set is deterministic. So it is optimal for playeto adopt a pure
strategy to maximize its utility, and the same conclusi@oapplies to every other player. Thus
we rule out the possibility for mixed strategies being ojtirand complete the proof. [ ]

According to Theoreml2, in the following we only need to foarspure strategies.

C. Best-response Functions

Sinceuy(x) is strictly concave i, playerk may choose a pure strategy € [0, 1] satisfying

auk(xk, X_k)

to maximize its utility when its opponent players adopt teigg x_,. Solving [2), we get

Bk Zjeﬂ{\{k} Picjr(1 — ;)
a+ By Prey '

T =S fk(X_k) = 14

3)

Taking into account that,, is no greater than one, we obtain the best-response funidttgnof

playerk as

Tl =S BRk (X_k)

. B > jesovwy Licin(l — ;)
= min 14 ,1 5. 4
{a + B Prey i @)
We can determine the NEs of a COG by solving the equations
{L'k:BRk(X_k), fork=1,--- K. (5)

Note that the equations may have multiple solutions, cpomeding to multiple NEs, as illustrated

in the next subsection.

D. Characterization of NEs for Two-player COGs

When a COG has only two players, it is convenient to desctieer¢lationship between the

number and behavior of NEs and network parameters. The tayem@’ best-response functions

are:
_ o B Pyean _
T = BRl(.TQ) = min {a n ﬁl |:1 + Pchl (1 .TQ):| ,1} y (6)
. B2 [ Pic } }
= BR = 1 = (1 — 1. 7
2 = BRa(ar) =min {22 |14 P20 -0 )
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When we draw both players’ best-response functions in threesa, , =, )-coordinate diagram,
by the definition of NE, the intersection points of the two taesponse functions correspond to
the NEs of the COG. Depending upon the network parametegsiumber and locations of the
NEs vary, as illustrated in Figureéd 3-7. The behavior of N&s lse summarized in the following
theorem.

Theorem 3:For a two-player COG, it has

1) a unique NE as the solution of

51 Pyey
= 14 —(1 — ,
. a+ Py P101,1< 72)
52 Pici o
= 14 1— ,
2 OZ+B2 PQCQQ( «Tl)

when the network parameters satisfy (see Figuire 3)
c Pya+ c P a+
G2 _Prath 1 Poath

and : 8

C2.92 P By Ci1 P, B ( )
2) a unique NE a$z,xs) = <aﬁ161, 1), when (see Figurgl 4)

cl2 . Pra+ B o1 Pra+ B

—= > = and —— < — : 9

22 P B a1 P B ®
3) a unique NE agz,x2) = ( 7af252)’ when (see Figurgl 4)

cl2  Pa+p co1 _ Pra+ B

— < = and —— > — ; 10

2 Pi P a1 Py B (10)
4) three NEs as those listed in cases 1)-3) above togethen gee Figurg]5)

ap  Bratph g ca Bath (11)

C2.92 P By Ci1 P, B
For this case, there are two singular subcases. If any ongediro inequalities becomes
equality, the three NEs collapse into two, since the NE irecBscoincides with the NE
in case 2) or 3); see Figufreé 6. If both of the two inequalitiesdme equal, there are an

infinite number of NEs since the two lines

51 [ Pycy }
= 1+ —(1 — ,
o a+ f P101,1( z2)
52 [ Picy o }
= 1+ 1-—
2 a+ B P2022( )

coincide for allz; € [afﬁz, 1]; see Figurel7.
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Let us make a few comments regarding Theotém 3. Through®whies, we notice that the

behavior of NEs depends upon the comparison between twmkegtsgantities,

c1 2P, Co.0 P Co1 P c11 P
1271 versus—22—2, and 22 versus—i-—. (12)
a+ B B2 a+ By o

In the first comparisong; »P /(o + 1) can be viewed as the interference strength to player
2, when playerl evenly distributes its power across its private band andsttaged band, and
c22P2 /P2 can be viewed as the signal strength to plagavhen it exclusively uses its private
band. The two quantities in the second comparison can alsotbereted correspondingly. It
is interesting that the comparison between these seeminghlated quantities determines the
behavior of NEs in the game.

The NE in case 1) implies that both players allocate a pomibtheir power budgets to the
shared band, so that they indeed coexist tolerating a nemtapunt of interference. According

to (8), this occurs when the interference strengths to btatheps are weak. The NE in case 2)

a+pB1’ ? a+B2
shared band, while the other player evenly distributesatsgr across its private band and the

or 3), ( b1 1) or <1 Bo ) implies that player2 or player1 completely retreats from the

shared band. This is the unique stable operating point (iLE) when one player experiences
strong interference while the other’s interference isl stikak. In case 4), the interference
strengths to both players are strong, and it is intereshag then the system may reach any of
three equilibrium operating points: players coexistinghvi the shared band, and either player

completely retreating from the shared band.

V. BESTFRESPONSEDYNAMICS FOR DISTRIBUTED LEARNING

Having established the existence of NEs in COGs, in this@gctve focus on the behavior
of best-response dynamics for distributed learning, torema whether the dynamics’ evolution
eventually leads all players to reach an NE. We begin withndeji the best-response dynamic
learning procedures. We then fully characterize the cammse properties of best-response
dynamics for two-player COGs. Finally foK-player COGs, we establish the convergence
properties of best-response dynamics, when the netwodnpaers are such that the resulting

best-response functions are all linear.
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10

A. Best-response dynamics

We assume that in a best-response dynamic process, when@layerk decides to update
its strategy at time instant it possesses the knowledge of the other players’ jointegjiesx_,
at ¢, and the updating rule is

2,(t"T) = BRp(x_x(t)). (13)

That is, the updated strategy right after the time instantis the one that maximizes the utility
uy, given the strategies of the other players .ainspecting the best-response functidns (4), we
note that in order to update,, it is only necessary for WSR’s receiver to measure the level

of aggregated interference in the shared bang, ., Pjc;x(1 — z;). Furthermore, we may

o B 1 —ay
xk_mm{oz—l—ﬁk {1—1— SIRR]’l}’ (14)

rewrite (4) as

where
Pkck,k(l — .Tk)
Zjeﬂ(\{k} Picjr(l — ;)
denotes the signal-to-interference ratio (SIR) of Wi&receiver in the shared band.

SIR,, & (15)

In the following, we consider two situations. In the firstusition, all the players update their
strategies simultaneously. We call this simultaneousearmest-response dynamic (SMBRD). In
the second situation, the players update their strateggsestially, in a periodic round robin
fashion. We call this alternating-move best-response ayn@AMBRD).

For the two kinds of best-response dynamics, we proposeoll@ving distributed learning
algorithms. In the algorithm description, we assume forpdicity that time is slotted and updates
occur at the beginning of each time slot.

Simultaneous-M ove Best-Response Dynamic (SMBRD):

For each playek € X:
Step 1: At timet = 0, playerk selects an initial strategy;(0) arbitrarily within [0, 1];
Step 2: At timet + 1, given the measurement 8fR,(¢), player k updates its strategy to

zi(t+1) = min { 2o |14 gl ] 1)
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11

Step 3: Increase the time slot index #a- 1 and go back to step 2 until all the players’
strategies become stationary or the time index reachegdésernbed maximum number

of iterations.

Alternating-M ove Best-Response Dynamic (AMBRD):

Without loss of generality, we assume that tkigplayers update their strategies sequentially and
periodically, from playerl until player K in each updating cycle.
Step 1: At timet = 0, player1 selects an initial strategy, (0) arbitrarily within [0, 1];
Step 2: For each playdr=2,--- | K, it takes turns to revise its strategy at time k& — 1.
Given the measurement 8fR,(t+ k — 1), playerk updates its strategy to,(t + k) =

: 3 1 :
min {a+kﬁk [1 T SIRk(t+k—1)] ; 1}’
Step 3: Increase the time index to+ K, and playerl updates its strategy according to

z1(t+ K) = min {aﬁlﬁl [1 + SIRl(t}i—K—l)} ,1}. Go back to step 2 until all the players’

strategies become stationary or the time index reachesdésenbed maximum number

of iterations.

B. Convergence Analysis for Two-player COGs

In this subsection, we analyze the simple case where them@dy two players in the COG. Let
us begin with the SMBRD, whose execution exhibits a sequehs&ategies of the two players.
From the best-response functions of the two players, welssehe sequence of strategies can

be decomposed into the following two subsequences
Sequencelal : (z1(0),z2(1)), (21(2),22(3)),-- -,
and Sequence[b] : (z2(0),z1(1)), (z2(2),21(3)),- - -,

each of which evolves independently of the other. Sequahas[ uniquely determined by
player 1's initial strategyz;(0), and Sequence[b] by,(0). So we can study each sequence’s
convergence property individually. Only when these two saguences’ limits coincide, the

SMBRD converges; otherwise the SMBRD exhibits a cyclingawatr between the limits of
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12

the two subsequences. In the following discussion, for timtal simplicity, we abbreviatd {3)
asxy = fr(x_g) = —bpr_j + ax, Whereay, b, > 0 for k = 1,2, and denote the intersection of
the two lines by(z}, z3). We then discuss the convergence property of the two segqaemaer

difference network parameters.
1) When the COG only has a unique NE:

a) When condition:
12 _ Pya+ b1

o1 Pra+ B
and —— < —
C292 P 52 C1,1 P, 51

is satisfied, the unique NE ig7, z3), the solution ofzy, = —bx_i + a (k = 1,2);

(16)

see Figuré3. By symmetry we only discuss Sequence[a]'sezgance property and
the discussion for Sequence[b] is similar. From the coongi{16), ifz, () > f, (1),
we have

x1(t+2) — 2] = biba[z(t) — 7], (17)

in which 0 < b, < 1. So the updating process af (¢) will converge toz;. If
z1(t) < fy (1), then we havery(t + 1) = 1, zy(t +2) = fi(1) > f; (1), which
again enters the regime df (17) and thug¢) will converge tox] and x5 (t) will
converge toBR,(z}) = x5. The analysis of Sequence[b] yields the same result, and
we therefore see that undér(16), both Sequence[a] and Segjb¢ converge to the
unique NE.

b) when condition:
CL2 &a + 5

1 Pra+ B
> and == < —
C2.2 P By Ci1 P, By
is satisfied (cf. Figurél4), similar to the discussion abave,can verify that both

(18)

Sequence[a] and Sequence[b] converge to thé ;& ), 1) given any initial strategies
(1(0),z2(0)). For the other symmetric case, both sequences will convertiee NE
(1, f2(1)).
Therefore, when the COG has only one NE, SMBRD will alwaysveoge to the NE.
2) When the COG has two NEs, by symmetry we only discuss the whgre conditions

cle  Pra+ B 21 Pra+ B

—= > — and —— = —

€22 P, 52 €11 P, 51
are satisfied (cf. Figuitd 6). Note that with the conditidns; > 1. Similar to the discussion

(19)

above, we see that when(0) < 1, Sequence[a] convergesf (1), 1), but whenz,(0) =

November 5, 2018 DRAFT



13

1, Sequence[a] converges {o, f»(1)). For Sequence[b], when,(0) < f»(1), we have
x1(1) = 1 andz(2) = f»(1), and then Sequence[b] converges1of,(1)); whenz,(0) >
f2(1), due tob;b, > 1 and

Sequence[b] converges (¢ (1), 1). Therefore, under the conditioris {19), when the initial
strategiesx(0) fall within region | in Figure[6, SMBRD converges to the NF; (1), 1),
and when the initial strategies(0) fall within region Il, SMBRD ends up with cycling
between strategiesf; (1), f2(1)) and(1,1).
3) When the COG has three NEs, the conditions
01,2>&Oé+51 d% ECH'ﬁz

an >
€22 P, 52 C1,1 P, 51
are satisfied (cf. Figurg 5). We trace the evolution of thausages and get the following

(21)

result. For Sequencela], when the initial strategy sasisfi€¢0) < z7, it converges to the
NE (f1(1),1), otherwise it converges to another NE, f»(1)). For Sequence[b], when
the initial strategy satisfies,(0) < xz3, it converges to the NE1, f»(1)), otherwise it
converges to another NEf(1), 1). Therefore, under the conditioris (21), when the initial
strategiesx(0) fall within region | in Figure[5, SMBRD converges to the NF; (1), 1),
when the initial strategieg(0) fall within region Il or Ill, SMBRD ends up with cycling
between strategigsf; (1), f>(1)) and(1, 1), and when the initial strategieg0) fall within
region 1V, SMBRD converges to the N&, f»(1)).

4) When the COG has an infinite number of NEs, the conditions

G2 _Path o hoth
C2.2 P By Ci1 P, By
are satisfied (cf. Figurel 7). For Sequence[a], when thealndirategy satisfies;(0) <

f1(1), it converges to the NEf;(1), 1), otherwise it converges to the NEk; (0), f2(z1(0)));
for Sequence[b], when the initial strategy satisfigéd) < f»(1), it converges to the NE

(22)

(f1(z2(0)), z2(0)), otherwise it converges to N&, f,(1)). Therefore, under the conditions
(22), when the initial strategies(0) fall within region | in Figure[¥, SMBRD ends up
with cycling between strategiddi(1), z2(0)) and (fi(22(0)), 1), whenx(0) falls within
region Il, SMBRD ends up with cycling between strategigs(z2(0)), f2(x1(0))) and
(21(0),22(0)), whenx(0) falls within region Ill, SMBRD ends up with cycling between
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strategies(fi(1), f2(1)) and (1,1), and whenx(0) falls within region 1V, SMBRD ends
up with cycling between strategi€s; (0), f2(1)) and (1, f2(z1(0))).

Summarizing the discussion above for various conditiors,see that both Sequence[a] and
Sequencelb], which are respectively determined by thalstrategies:; (0) andz,(0), converge
to limiting strategies. However, under several conditidhe two sequences do not converge to
the same limiting strategies, and then SMBRD does not cgevedn the other hand, because
an AMBRD corresponds to exactly one of the two sequencescdheergence of AMBRD is
guaranteed. So for two-player COGs we obtain the followimgptem regarding the convergence
property of best-response dynamics.

Theorem 4 (Convergence of two-player dynami¢)r a two-player COG, SMBRD is guar-
anteed to converge to an NE starting from an arbiteaffy) if and only if the COG has only
one NE; in contrast, AMBRD always converges to an NE regasdte the number of NEs in
the COG.

The fact that AMBRD always converges for any initial jointagegies is desirable from an
engineering perspective. It guarantees that a distribotdiork protocol designed based on
AMBRD does terminate after a sufficient number of updatesidang the so-called “ping-pong
effect”.

C. Convergence Analysis fdt-player COGs with Linear Best-responses

The analysis of the convergence property, when it comes ta rgeneral case in which a
COG consists ofK > 2 players, becomes difficult due to the lack of convenient prtgs
such as potential ganJaaer supermodular gamgsln the following, we analyze the convergence
property of K-player COGs which admit linear best-response functions.

The best-response functionl (4) implies that plagewill allocate all its power to its private
band when the aggregated interference from other playengishared band exceeds a threshold.

When the interference is not too strong, the best-respomsetibns become linear without

3The COG is not an exact potential game except for very spebiaices of network parameters, since in general we have
8%u; 32“;‘

Soi05; 7 Dui0n) 1 # 7 [13], and we were unsuccessful in verifying whether it is adireal potential game.

40nly for two-player COGs it is possible to convert the COG® isupermodular games][8], and in general COGs are not

. 2w,
supermodular sinceZ—4i— > 0 does not always hold for alt;, ;.
0w,
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saturation. This occurs if

Br > ey Dicin(l — )
1+
a+ By Prey i

<1 (23)

holds for each playet € K. To ensure that the best-response functions are linean ging
initial strategies throughout the execution of best-respodynamics, we need (23) to hold for
any z;, € [0,1], k € K. This consideration hence leads to the conditions
3 P < %Pkck,k, Vk € K. (24)
JEX\{k}
We first establish that under conditions](24) a COG has a enNf.
Theorem 5:For a K-player COG satisfying (24), it has a unique NE.
Proof: Under the assumption of_(R4), all the best-response fum&tare linear, and by

rearranging terms we see that the NEs of the COG shouldsatisf

x* = Ax" + b, (25)
where A is a K x K matrix in which A(k, j) = — 2229 for j + k and A(k, k) = 0, and

b(k) = B iexPicik gor p 1,..., K. From [23), we have

a+Br  Prckk
4 Br 1
E Ak = E Pjc;
| ( 7])| O{"_/Bk PkaJf J;ﬁk ]ijk

#k
B I«
< —P
o+ B Prer i B KCkik
«
= <1 26
forall k =1,..., K. Hence from Gershgorin’s circle theorem (see, e.g., [1#B, bound[(26)

implies that the maximum eigenvalue of matrixsatisfies|\,..x| < 1. Hence the matrix — A
is nonsingular, so that the solution ®f = Ax* + b is unique, given by* = (I — A)~'b with
x* € (0,1)X due to Theorem]1. |
The convergence of SMBRD is a direct convergence of Thebgiem 5
Theorem 6:For a K-player COG satisfying (24), SMBRD is guaranteed to coneemgthe
unique NE.
Proof: The updating process of SMBRD can be written as the followiegation,

x(t+1) = Ax(t) + b. (27)
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From the proof of Theorerl 5, we see that the iteration (27)lagajly asymptotically stable
since all eigenvalues of matri® satisfy|\;| < 1. So we conclude that unddr (24), SMBRD is
guaranteed to converge to the unique NE givenxby= (I — A)~'b. [ |

Establishing the convergence of AMBRD is similar while &ditmore involved, as provided
by the proof of the following theorem.

Theorem 7:For a K-player COG satisfying (24), AMBRD is guaranteed to coneetg the
unique NE.

Proof: Under the assumption of_(R4), when playlerupdates its strategy, the updating

process of AMBRD can be written as
x(t+ 1) = Agx(t) + by, (28)

where A, is a K x K unit diagonal matrix, except that itsth row is replaced by thé-th row
of the matrixA. The elements of the length-vectorb,, are all zero except that itsth element
is the k-th element ofb. So if we view a full updating cycle from playdrto player K as a

whole, the updating iteration is like

1
x((i+ 1K) = [[ Ax(iK)+b, i=0,1,..., (29)
k=K
where
2 3
b= [] Asbr+ J] Axb2+... + Axbi_1 + by (30)
k=K k=K

So in order to prove that the AMBRD converges, it suffices taldsh that all the eigenvalues
of H;lf:K A, satisfy |\;| < 1. For this, we again utilize Gershgorin’s circle theoremowimg

that the row norm of [,_ A is smaller than one.

Denote thek-th row elements ofd, by [ak1,akz, ..., ar k], in whicha,, = 0 anday; =
Ak, j) = —Oﬁ%k% for j # k. Let us trace the calculation cIf[,i:K Ay to check that all

of its absolute row sums are smaller than one. For this, wevdhoinduction the following

claim: each of the first rows of A = H,ﬁ,:l A has its absolute sum smaller than one, for
l=1,... K.
For [ = 1, the claim apparently holds. Fdr= 2, A® = A,A;. Its first row remains

la11,a19,...,a1 k], whose absolute row sum is smaller than one, by the assumti@4). Its

second row is
lagpa11, (agia12 + ag2), (az1a13 + ass), ..., (az101 Kk + a2 K)],

November 5, 2018 DRAFT



17

whose absolute row sum is

IN

K
lag,1a1,1] + Z |ag,1a1,5 + ag ;|
j=2

K K
|az,1] Z a1 + Z |as]
j=1 =2

K K
< |a271\ -1+Z|a27j| :Z|a27j| < 1.
j=2 g=1

So the claim holds foi = 2. Now assume that the claim holds up fijland examined(+1),
For notational simplicity we denote theth row elements ofA®) by [agfi,agg, e ,ag}{]. Since
AEFD = 4, AW we see that its first rows remain those ofl"), thus satisfying their absolute

row sums smaller than one by assumption. For(fits 1)-th row, the first/ elements are

@ @

+1 l )
al(ﬂ’]). = al+1,1ag7)j + 141,209 ; + ...+ A41,00; 5, )= 1,...,1,
and the lastX’ — [ elements are
I+1 ! ! l .
al(HJ)- = al+1,1a§7)j + al+172aé,)j 4+ ...+ al+1,lal(73 +ay, J=l0+1,... K.
So we have
K ! K K
(1+1) 0]
Z il = Z |ar41,i) Z a; ;| + Z [raswi
i=1 j=1

j=1 j=l+1

l K

< Z lar1.4] + Z |l < 1,

i=1 j=l+1
where the first inequality is frofx +y| < |z|+|y|, the second inequality is from the assumption
of induction forA®, and the third inequality is from the assumption for ;. As we letl increase
from 1 to K —1, we establish the claim that each of the rowsi6f) = [],_, A has its absolute
sum smaller than one, and thus Gershgorin’s circle theoneanagitees that all the eigenvalues
of [T,_y Ax satisfy || < 1.
Consequently, the iteratioh (29) has a unique fixed point as

1 -1
x* = (I -1 Ak> b, (31)
k=K
which, from the nature of AMBRD, is a NE of the underlying CO@n the other hand, Theorem

indicates that the NE is unique underl(24). Therefore wetlsaethe fixed point in[(31) has
to coincide with the unique NE of the COG given in Theorlem &, k* = (I — A)~'b. n
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V. NUMERICAL RESULTS

In this section, we perform some numerical simulations ligsitate the analysis in Section
V] First, We fix the spectrum allocation as= 0.5, 5, = 0.5/K, k =1,..., K. The average
power budgets for all the WSPs are identicalfas= 1, and the power spectral density of white
Gaussian noise is, = 1072. We use Monte Carlo simulation, in which the initial jointategies
are uniformly distributed in the entire product strategaan to verify the relationship between
the network parameters and the best-response dynamiceerg@mce property. In simulation,

we view an iteration as converged when either the condition

max{|z(t + 1) — 2 (t)[} < e =107 (32)
S
is met for SMBRD, or the condition
rl?a%ﬂxk(tjtj) —x(t+j—K)|} <e= 1072, Vj=1,--- K (33)
S

is met for AMBRD. The maximum number of updates in an iterati® set asl00.

When a COG has only two players, the convergence properti&rD and AMBRD by sim-
ulations is depicted in Figute 8. We consider four sets ofingt parameteric; o/ca 2, c21/c11) =
(0.4,0.6), (3,4), (3.5,4), (3, 3), which correspond to four different cases: a COG having oBe N
two NEs, three NEs and an infinite number of NEs. We use enapidemulative distribution
functions to characterize each best-response dynamiaigeogence property. From Figure 8, we
verify that AMBRD always converges to an NE for all cases, #rat SMBRD only converges
when a COG has a unique NE. Nevertheless, when a COG has aWiEjuSMBRD converges
more quickly than AMBRD.

When a COG has four players, we perform a corresponding atroal with the convergence

property depicted in Figuriel 9. We consider three differatgrference matrices:

[ 1 02 01 04 [ 1 06 14 1.6 ] [ 1 14 20 09 ]
04 1 05 0.3 14 1 09 14 04 1 16 2.1
C, = C, = Cs =
03 04 1 0.6 23 14 1 2.0 14 22 1 09
| 04 02 05 1 | (09 0.7 14 1 | 12 21 30 1 |

They respectively correspond to weak interference (candit(24) satisfied for all players),
medium interference (conditions_(24) satisfied for all boe glayers), and strong interference

(conditions [(24) unsatisfied for all players). From the dation results, we verify the validity
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of the analysis in Section [VAC for the case of weak interieee Furthermore, we observe that
SMBRD and AMBRD may also converge to an NE even when the lesgtense functions are

nonlinear with saturation, although our analysis in SediMis not able to ensure so. When the
interference is weak, SMBRD converges more quickly than AIBwhereas as the interference

becomes strong, AMBRD converges more quickly than SMBRD.

VI. CONCLUSION

In this paper, motivated by the emerging use case of capafdiliyad, we considered the
interference management problem in which different WSRscale their transmission power
resources between their own private bands and a shared bdaold s simultaneously available
to all of the WSPs. Taking into account the non-cooperataticiship among the WSPs, we
formulated the problem into a non-cooperative game andyaedl its properties. We further
proposed two distributed learning dynamics for each WSPdividually learn from its local
measurement to reach an NE, and analyzed the convergenperims of the dynamics. A
number of topics may be explored for future research, inoestablishing the convergence
properties for generak’-user COGs without linear best-responses, cooperativeeghaoretic
formulations, and design of effective mechanisms for imptboverall utilities for WSPs and

even spectrum allocators.
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(a) System model

Fig. 1. An example of typical capacity offload scenarios
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(a) Transmission in private bands

Fig. 2. Mathematical model of capacity offload
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Fig. 3. Case 1) of Theorefl 3. The network parameters safisf(1) < fi(1) and f;'(1) < f2(1), and thus the two

best-response functions intersect at only one point asakelil by(z7, z5), corresponding to the unique NE in the COG.

Fig. 4. Cases 2) and 3) of Theordth 3. Here we depict the situdtr case 2) only, and that for case 3) is similar. The

network parameters satisff ' (1) > f1(1) and f; *(1) < f2(1), and thus the two best-response functions intersect only at

(A() =25 1).
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n A

o B
[Ml)_a+ﬂ,’ lj(ﬁl(l), 1)
! N 1

Fig. 5. Case 4) of Theorefl 3. The network parameters safisf(1) > fi(1) and f;'(1) > f2(1), and thus the two

best-response functions intersect at three points, asatati in the figure.

(£'m, 1)

________________ L f:m:a'fzﬂ]

Fig. 6. The special subcase with two NEs of case 4). The n&twarameters satisfy; ' (1) > f1(1) and ;7' (1) = f2(1),
and thus the intersecting poilt, z3) in Figure[% coincides witf(sz(l) = af%). The other possibilityf;* (1) = f1(1)
and f;'(1) > f2(1) is similar and thus omitted for conciseness.
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L A0 :ﬁ]

Fig. 7. The special subcase with an infinite number of NEs s&c4). The network parameters satigly' (1) = f1(1) and
(1) = f2(1), and thus the two slope segments of the best-response dusatbmpletely coincide, leading to an infinite

number of NEs.
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Fig. 8. Convergence property of two-player COGs
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AMBRD VS. SMBRD (K-player)
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Fig. 9. Convergence property of four-player COGs
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