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Abstract

With the blasting increase of wireless data traffic, incumbent wireless service providers (WSPs)

face critical challenges in provisioning spectrum resource. Given the permission of unlicensed access

to TV white spaces, WSPs can alleviate their burden by exploiting the concept of “capacity offload” to

transfer part of their traffic load to unlicensed spectrum. For such use cases, a central problem is for

WSPs to coexist with others, since all of them may access the unlicensed spectrum without coordination

thus interfering each other. Game theory provides tools forpredicting the behavior of WSPs, and we

formulate the coexistence problem under the framework of non-cooperative games as a capacity offload

game (COG). We show that a COG always possesses at least one pure-strategy Nash equilibrium (NE),

and does not have any mixed-strategy NE. The analysis provides a full characterization of the structure

of the NEs in two-player COGs. When the game is played repeatedly and each WSP individually updates

its strategy based on its best-response function, the resulting process forms a best-response dynamic. We

establish that, for two-player COGs, alternating-move best-response dynamics always converge to an NE,

while simultaneous-move best-response dynamics does not always converge to an NE when multiple

NEs exist. When there are more than two players in a COG, if thenetwork configuration satisfies

certain conditions so that the resulting best-response dynamics become linear, both simultaneous-move

and alternating-move best-response dynamics are guaranteed to converge to the unique NE.
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I. INTRODUCTION

With the blasting increase of wireless data traffic from new applications such as smartphones, a

solution for wireless service providers (WSPs) is to make use of the concept of “capacity offload”

to transfer part of their traffic load elsewhere off the main system, to alleviate the load thus

improving the overall system capacity. In industry, femtocell and WiFi networks are the primary

candidates for capacity offload [1] [2]. As the Federal Communications Commission (FCC) and

other regulatory bodies have recently permitted unlicensed access to TV white space spectrum

[3], it becomes possible for WSPs to use dynamic spectrum access techniques to offload their

traffic from their own licensed bands (i.e., private bands) to the publicly available unlicensed

bands (i.e., shared bands). A natural question thus comes tous: what is the impact of the

additional unlicensed spectrum on coexistence? A general drawback associated with unlicensed

spectrum is the so-called tragedy of the commons [4], i.e., the spectrum may be overused by

WSPs without admission fee and the communication may encounter excessive interference [5].

We consider a simplified network model as depicted in Figure 1. Suppose a time-division

channel access scheme, so that in each time slot only one userequipment is active in each

WSP’s network. The WSPs utilize the additional unlicensed spectrum simultaneously, due to

absence of coordination among different WSPs on spectrum allocation. A user equipment can

communicate with its serving WSP in the corresponding private band and the shared band at the

same time. Communication in the private band is free from interference of other WSPs, while

in the shared band, a receiver will experience interferences from other WSPs’ transmissions. A

transmitter has an average power constraint and thus needs to allocate its power budget between

its private band and the shared band. The power allocation strategies of WSPs thus lead to an

inherent interaction among the WSPs, thus determining their behaviors.

Game theory is a powerful tool in analyzing and predicting outcomes of interactive decision

making processes. In this work, we use game theory to analyzethe interaction among WSPs,

and formulate such interaction into a capacity offload game (COG): WSPs are players of the

game, power allocation schemes (i.e., how to split each WSP’s power budget between private

band and shared band) constitute the strategy space of each WSP, and achievable rates are the

utility functions of WSPs. Due to the lack of coordination, the relationship among the WSPs is

competitive; that is, a COG is non-cooperative and each WSP would choose a power allocation
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strategy to attempt to maximize its achievable rate regardless of other WSPs.

There has recently been a heightened interest in the applications of game theory in wireless

networks; see, e.g., [6] and references therein. Works whose models bear similarities to ours,

however, are relatively few, summarized as follows. In [7],the authors considered a network

consisting of two interfering links for which both sources have access to a common relay which

has access to bands orthogonal to that used by the sources. In[8], the authors considered a

network consisting of two source-destination links and three bands, assuming that one of the

bands is shared by the transmitters while the other two bandsare private. The analysis therein

is based on results of supermodular games, with strategy spaces defined in a way such that the

game has strategic complementarities. Unfortunately, that approach does not apply for games

with more than two players, as that we consider in this paper.

Through the analysis of the COG, we arrive at a number of interesting conclusions. The COG

always has at least one pure-strategy NE when all WSPs adopt deterministic strategies (i.e.,

pure strategies). When WSPs reach an NE, none of them would have incentive to unilaterally

deviate from the NE since otherwise the deviation would decrease its utility [9]. Even if we

permit mixed strategies, i.e., an WSP choosing its strategyrandomly according to a probability

distribution over its strategy space, the COG does not possess any mixed-strategy NE. The NE of

a COG is not necessarily unique, and the number of NEs dependsupon the network parameters.

As an illustration, we fully characterize the NEs for two-player COGs, for all possible network

parameters.

We then examine the behavior of best-response learning algorithms [10] which requires only

local information for each WSP, to study how to reach an NE in adistributed way. In best-

response learning algorithms, a COG is played repeatedly and in each time slot, an WSP updates

its strategy based on its best-response function with respect to other WSPs’ strategies in the

previous time slot. WSPs can update their strategies eithersimultaneously or alternatingly. Our

findings are as follows. For a two-player COG, alternating-move best-response dynamics always

converge to an NE, regardless of the number of NEs in the game;whereas the simultaneous-move

best-response dynamic does not always converge to an NE whenmultiple NEs exist, depending

upon the initial strategies adopted. For COGs with more thantwo WSPs, the convergence

property is generally difficult to analyze due to the nonlinearity in the best-response functions.

But we find that when the network parameters are configured in away such that each WSP’s
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best-response function is linear with respect to other WSPs’ strategies, both simultaneous-move

and alternating-move best-response dynamics are guaranteed to converge to the unique NE of

the COG.

The remaining part of the paper is organized as follows. Section II formulates the capacity

offload problem as a non-cooperative game and sets some basicassumptions for analysis. Section

III establishes the existence of pure-strategy NE and the non-existence of mixed-strategy NE for

COGs, and characterizes the structure of the NEs in two-player COGs. Section IV analyzes the

convergence properties of best-response learning algorithms for approaching NEs. Section V

provides numerical results to illustrate the behaviors of learning algorithms. Finally, Section VI

concludes the paper.

II. M ODEL AND GAME-THEORETIC CONSIDERATIONS

A. System model

An abstract model for capacity offloading may be described asfollows; also see Figure 2.

Assume that a set,K = {1, · · · , K}, of access points from different WSPs are deployed in a

geographic area. Suppose that each WSP, say WSPk, occupies a private band, whose bandwidth

is Bp,k Hertz. A shared band, whose bandwidth isBs Hertz, can be accessed and made use of

by all WSPs. So the total available bandwidth,B Hertz, consists of all WSP’s private bands and

the shared band; that is,B = (α +
∑

k∈K βk)B Hertz, whereα = Bs/B andβk = Bp,k/B, for

k ∈ K.

We assume that the transmitter of WSPk has an average power constraintPk, and that it can

arbitrarily allocate its power on its own private band and the shared band. Denote byxk ∈ [0, 1]

the fraction of WSPk’s power allocated on its private band; that is, the WSP transmits at power

xkPk in its private band, and at(1 − xk)Pk in the shared band.1 WSPs deploy time-division

channel access scheme, so that in each time slot, a WSP exclusively transmits information to a

single user equipment. All receivers are subject to additive white Gaussian noise with zero mean

and power spectral densityn0. We further assume that all the link channels are frequency-flat,

among which|hk,k|
2 is the channel gain of the link from WSPk’s transmitter to its corresponding

1It is reasonable for each WSP to use up all its power. If there is power left unallocated for an WSP, it can allocate this

residual power on its private band to increase its achievable rate without creating extra interference to other WSPs.
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receiver in both its private band and the shared band, and|hj,k|
2 is the channel gain of the link

from WSPj’s transmitter to WSPk’s receiver.

The considered frequency-flat fading model is somewhat restrictive in that the channel gains

over the private bands and the share band are set identical. This would occur mainly in situations

where the private bands and the shared band are not far apart in frequency. Using such a simplified

model, however, we are able to convey our key ideas effectively without dwelling in tedious

technicalities. Extensions to more general fading models are possible; see, e.g., [8]. In the sequel,

we usecj,k to replace|hj,k|
2/B andck,k to replace|hk,k|

2/B, to simplify notations.

We denote the symbols transmitted by WSPk’s transmitter bysp,k (in its private band) and

ss,k (in the shared band), with time indices suppressed. So the received baseband signals at WSP

k’s receiver can be written asyp,k = hk,ksp,k + zp,k (in its private band) andys,k = hk,kss,k +
∑

j∈K\{k} hj,kss,j + zs,k (in the shared band), whereE[|zp,k|2] = n0βiB, E[|zs,k|
2] = n0αB,

E[|sp,k|
2] = xkPk and E[|ss,k|

2] = (1 − xk)Pk. We consider a naive coding scheme in which

all transmitted symbols follow Gaussian codebooks and all receivers adopt single-user decoding

treating others’ signals as noise. Hence, WSPk’s achievable rate (normalized byB) is:

uk(x) =α log2

(

1 +
(1− xk)Pkck,k

n0α +
∑

j∈K\{k}(1− xj)Pjcj,k

)

︸ ︷︷ ︸

in the shared band

+βk log2

(

1 +
xkPkck,k
n0βk

)

(bits/Hertz)

︸ ︷︷ ︸

in the private band

,

(1)

where vectorx = (x1, · · · , xK)
T represents the power allocation strategies adopted by all the

WSPs. Due to the lack of coordination among WSPs, it is reasonable to suppose that each WSP

adopts its individual strategy to attempt to maximize its own achievable rate, regardless of other

WSPs’ rates. This situation is formally described by the COG, introduced in the following.

B. Game-theoretic model

We define the pure-strategy form of COG asG = 〈K, (Xk)k∈K, (uk)k∈K〉, in whichK represents

the set of players (i.e., the WSPs),Xk is the set of WSPk’s pure strategies, i.e., the power

allocation ratioxk ∈ [0, 1], and the utility functionuk is given by (1). More generally, we

may also consider mixed strategies: each playerk ∈ K chooses its strategyxk following a
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discrete probability distributionπk(xk) = (π
k,x

(1)
k

, · · · , π
k,x

(N)
k

)T ∈ ∆(Xk) over a finite strategy

space (whereπ
k,x

(n)
k

represents the probability that WSPk chooses strategyx(n)
k ) or following

a probability distribution functionπk(xk) ∈ ∆(Xk) over a continuous strategy space, where
∫ 1

0
πk(xk)dxk = 1, πk(xk) ≥ 0. For mixed strategies, the utility function̄uk of playerk is defined

as the expectation ofuk in (1) with respect to the probability distributions of all players’ strategies.

We can define the mixed strategic-form game for COG asG
′

= 〈K, (∆(Xk))k∈K, (ūk)k∈K〉.

The definitions of pure-strategy and mixed-strategy NEs areas follows [11].

Definition 1 (Pure-strategy Nash equilibrium):A strategy profilex∗ = (x∗
1, ..., x

∗
K)

T is a pure-

strategy NE for the COG, if∀k ∈ K and ∀x
′

k ∈ Xk, uk(x
∗
k,x

∗
−k) ≥ uk(x

′

k,x
∗
−k), where the

subscript−k represents all the players other than playerk.

Definition 2 (Mixed-strategy Nash equilibrium):A mixed-strategy profileπ∗ is a mixed-strategy

NE for the COG, if∀k ∈ K and ∀π
′

k ∈ ∆(Xk), ūk(π
∗
k, π

∗
−k) ≥ ūk(π

′

k, π
∗
−k), where ūk(π) =

Eπ[uk(xk,x−k)] : ∆(X1)× ...×∆(XK) −→ R.

III. A NALYSIS OF NASH EQUILIBRIA

In this section, we establish the existence of pure-strategy NE, as well as the nonexistence

of mixed-strategy NE, for COGs. With the aid of explicit best-response function, we fully

characterize the structure of NEs for two-player COGs, by displaying the relationship between

network parameters and the NEs.

A. Existence of Pure-strategy NE

The existence of pure-strategy NEs for COGs is an application of the following lemma.

Lemma 1 (Rosen [12]):At least one NE exists for every concaveK-player game.

For a concave game, the joint strategy set is convex, closed and bounded, and for each player

k ∈ K, its utility function is continuous with respect to the joint strategy and is concave with

respect to playerk’s strategy. Then we state the existence theorem as follows:

Theorem 1 (Existence of pure-strategy NE):A pure-strategy COG,G = 〈K, (Xk)k∈K, (uk)k∈K〉,

always possesses at least one NE, i.e., there is at least one strategy profilex∗ = (x∗
1, · · · , x

∗
K)

T

such thatuk(x
∗
k,x

∗
−k) ≥ uk(x

′

k,x
∗
−k) holds,∀k ∈ K, ∀x

′

k ∈ Xk.

Proof: By lemma 1, it suffices to verify that the pure-strategy COG isa concaveK-player

game:
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1) The pure-strategyx is from a convex, closed and bounded set, namelyX1 × · · · ×XK =

{x = (x1, · · · , xK)|xk ∈ [0, 1], for k = 1, · · · , K};

2) Playerk’s utility function, uk(x), defined by (1), is continuous inx and is concave inxk,

since

∂2uk(x)

∂x2
k

= −
αP 2

k c
2
k,k

[n0α +
∑

j∈K(1− xj)Pjcj,k]2
−

βkP
2
k c

2
k,k

(n0βk + xkPkck,k)2
< 0.

B. Nonexistence of Mixed-strategy NE

Theorem 1 guarantees that at least one pure-strategy NE exists, but it is remains unclear

whether a mixed-strategy NE exists. In the following, we rule out this possibility.

Theorem 2 (Nonexistence of mixed-strategy NE):For a COG, there is no mixed strategy that

makes the players reach an NE.2

Proof: For a givenk, let us fix players−k’s strategy probability distribution asπ∗
−k(x−k) ∈

∆(X−k). Regarding the utilitȳuk of playerk, we have

ūk(πk, π
∗
−k) =

∫

X−k

∫ 1

0

uk(xk,x−k)πk(xk)π
∗
−k(x−k)dxkdx−k

=

∫

X−k

∫ 1

0

[

α log2

(

1 +
(1− xk)Pkck,k

n0α +
∑

j∈K\{k}(1− xj)Pjcj,k

)

+ βk log2

(

1 +
xkPkck,k
n0βk

)]

πk(xk)π
∗
−k(x−k)dxkdx−k

(a)

≤

∫

X−k

[

α log2

(

1 +

∫ 1

0
(1− xk)Pkck,kπk(xk)dxk

n0α +
∑

j∈K\{k}(1− xj)Pjcj,k

)

+ βk log2

(

1 +

∫ 1

0
xkPkck,kπk(xk)dxk

n0βk

)]

π∗
−k(x−k)dx−k

=

∫

X−k

[

α log2

(

1 +
(1− E[xk])Pkck,k

n0α +
∑

j∈K\{k}(1− xj)Pjcj,k

)

+ βk log2

(

1 +
E[xk]Pkck,k

n0βk

)]

π∗
−k(x−k)dx−k,

where (a) follows from Jensen’s inequality. Sinceuk(x) is strictly concave inxk (cf. proof of

Theorem 1), we achieve equality in (a) if and only ifxk = E[xk] with probability 1, which

2Pure strategies are degenerated mixed strategies, and are excluded from the consideration.
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means that playerk’s strategy set is deterministic. So it is optimal for playerk to adopt a pure

strategy to maximize its utility, and the same conclusion also applies to every other player. Thus

we rule out the possibility for mixed strategies being optimal and complete the proof.

According to Theorem 2, in the following we only need to focuson pure strategies.

C. Best-response Functions

Sinceuk(x) is strictly concave inxk, playerk may choose a pure strategyxk ∈ [0, 1] satisfying

∂uk(xk,x−k)

∂xk

= 0, (2)

to maximize its utility when its opponent players adopt strategyx−k. Solving (2), we get

xk , fk(x−k) =
βk

α + βk

[

1 +

∑

j∈K\{k} Pjcj,k(1− xj)

Pkck,k

]

. (3)

Taking into account thatxk is no greater than one, we obtain the best-response functionBRk of

playerk as

xk , BRk(x−k)

= min

{

βk

α + βk

[

1 +

∑

j∈K\{k} Pjcj,k(1− xj)

Pkck,k

]

, 1

}

. (4)

We can determine the NEs of a COG by solving the equations

xk = BRk(x−k), for k = 1, · · · , K. (5)

Note that the equations may have multiple solutions, corresponding to multiple NEs, as illustrated

in the next subsection.

D. Characterization of NEs for Two-player COGs

When a COG has only two players, it is convenient to describe the relationship between the

number and behavior of NEs and network parameters. The two players’ best-response functions

are:

x1 = BR1(x2) = min

{
β1

α + β1

[

1 +
P2c2,1
P1c1,1

(1− x2)

]

, 1

}

, (6)

x2 = BR2(x1) = min

{
β2

α + β2

[

1 +
P1c1,2
P2c2,2

(1− x1)

]

, 1

}

. (7)
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When we draw both players’ best-response functions in the same (x1, x2)-coordinate diagram,

by the definition of NE, the intersection points of the two best-response functions correspond to

the NEs of the COG. Depending upon the network parameters, the number and locations of the

NEs vary, as illustrated in Figures 3-7. The behavior of NEs can be summarized in the following

theorem.

Theorem 3:For a two-player COG, it has

1) a unique NE as the solution of

x1 =
β1

α+ β1

[

1 +
P2c2,1
P1c1,1

(1− x2)

]

,

x2 =
β2

α+ β2

[

1 +
P1c1,2
P2c2,2

(1− x1)

]

,

when the network parameters satisfy (see Figure 3)

c1,2
c2,2

<
P2

P1

α + β1

β2
and

c2,1
c1,1

<
P1

P2

α + β2

β1
; (8)

2) a unique NE as(x1, x2) =
(

β1

α+β1
, 1
)

, when (see Figure 4)

c1,2
c2,2

≥
P2

P1

α + β1

β2

and
c2,1
c1,1

<
P1

P2

α + β2

β1

; (9)

3) a unique NE as(x1, x2) =
(

1, β2

α+β2

)

, when (see Figure 4)

c1,2
c2,2

<
P2

P1

α + β1

β2
and

c2,1
c1,1

≥
P1

P2

α + β2

β1
; (10)

4) three NEs as those listed in cases 1)-3) above together, when (see Figure 5)

c1,2
c2,2

>
P2

P1

α + β1

β2

and
c2,1
c1,1

>
P1

P2

α + β2

β1

. (11)

For this case, there are two singular subcases. If any one of the two inequalities becomes

equality, the three NEs collapse into two, since the NE in case 1) coincides with the NE

in case 2) or 3); see Figure 6. If both of the two inequalities become equal, there are an

infinite number of NEs since the two lines

x1 =
β1

α+ β1

[

1 +
P2c2,1
P1c1,1

(1− x2)

]

,

x2 =
β2

α+ β2

[

1 +
P1c1,2
P2c2,2

(1− x1)

]

coincide for allx1 ∈
[

β2

α+β2
, 1
]

; see Figure 7.
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Let us make a few comments regarding Theorem 3. Throughout its cases, we notice that the

behavior of NEs depends upon the comparison between two setsof quantities,

c1,2P1

α + β1
versus

c2,2P2

β2
, and

c2,1P2

α + β2
versus

c1,1P1

β1
. (12)

In the first comparison,c1,2P1/(α + β1) can be viewed as the interference strength to player

2, when player1 evenly distributes its power across its private band and theshared band, and

c2,2P2/β2 can be viewed as the signal strength to player2 when it exclusively uses its private

band. The two quantities in the second comparison can also beinterpreted correspondingly. It

is interesting that the comparison between these seeminglyunrelated quantities determines the

behavior of NEs in the game.

The NE in case 1) implies that both players allocate a portionof their power budgets to the

shared band, so that they indeed coexist tolerating a certain amount of interference. According

to (8), this occurs when the interference strengths to both players are weak. The NE in case 2)

or 3),
(

β1

α+β1
, 1
)

or
(

1, β2

α+β2

)

, implies that player2 or player1 completely retreats from the

shared band, while the other player evenly distributes its power across its private band and the

shared band. This is the unique stable operating point (i.e., NE) when one player experiences

strong interference while the other’s interference is still weak. In case 4), the interference

strengths to both players are strong, and it is interesting that then the system may reach any of

three equilibrium operating points: players coexisting within the shared band, and either player

completely retreating from the shared band.

IV. BEST-RESPONSEDYNAMICS FOR DISTRIBUTED LEARNING

Having established the existence of NEs in COGs, in this section, we focus on the behavior

of best-response dynamics for distributed learning, to examine whether the dynamics’ evolution

eventually leads all players to reach an NE. We begin with defining the best-response dynamic

learning procedures. We then fully characterize the convergence properties of best-response

dynamics for two-player COGs. Finally forK-player COGs, we establish the convergence

properties of best-response dynamics, when the network parameters are such that the resulting

best-response functions are all linear.
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A. Best-response dynamics

We assume that in a best-response dynamic process, whenevera playerk decides to update

its strategy at time instantt, it possesses the knowledge of the other players’ joint strategiesx−k

at t, and the updating rule is

xk(t
+) = BRk(x−k(t)). (13)

That is, the updated strategyxk right after the time instantt is the one that maximizes the utility

uk given the strategies of the other players att. Inspecting the best-response functions (4), we

note that in order to updatexk, it is only necessary for WSPk’s receiver to measure the level

of aggregated interference in the shared band,
∑

j∈K\{k} Pjcj,k(1 − xj). Furthermore, we may

rewrite (4) as

xk = min

{
βk

α + βk

[

1 +
1− xk

SIRk

]

, 1

}

, (14)

where

SIRk ,
Pkck,k(1− xk)

∑

j∈K\{k} Pjcj,k(1− xj)
(15)

denotes the signal-to-interference ratio (SIR) of WSPk’s receiver in the shared band.

In the following, we consider two situations. In the first situation, all the players update their

strategies simultaneously. We call this simultaneous-move best-response dynamic (SMBRD). In

the second situation, the players update their strategies sequentially, in a periodic round robin

fashion. We call this alternating-move best-response dynamic (AMBRD).

For the two kinds of best-response dynamics, we propose the following distributed learning

algorithms. In the algorithm description, we assume for simplicity that time is slotted and updates

occur at the beginning of each time slot.

Simultaneous-Move Best-Response Dynamic (SMBRD):

For each playerk ∈ K:

Step 1: At timet = 0, playerk selects an initial strategyxk(0) arbitrarily within [0, 1];

Step 2: At timet + 1, given the measurement ofSIRk(t), playerk updates its strategy to

xk(t+ 1) = min
{

βk

α+βk

[

1 + 1
SIRk(t)

]

, 1
}

;
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Step 3: Increase the time slot index tot + 1 and go back to step 2 until all the players’

strategies become stationary or the time index reaches the prescribed maximum number

of iterations.

Alternating-Move Best-Response Dynamic (AMBRD):

Without loss of generality, we assume that theK players update their strategies sequentially and

periodically, from player1 until playerK in each updating cycle.

Step 1: At timet = 0, player1 selects an initial strategyx1(0) arbitrarily within [0, 1];

Step 2: For each playerk = 2, · · · , K, it takes turns to revise its strategy at timet+ k − 1.

Given the measurement ofSIRk(t+k−1), playerk updates its strategy toxk(t+k) =

min
{

βk

α+βk

[

1 + 1
SIRk(t+k−1)

]

, 1
}

;

Step 3: Increase the time index tot + K, and player1 updates its strategy according to

x1(t+K) = min
{

β1

α+β1

[

1 + 1
SIR1(t+K−1)

]

, 1
}

. Go back to step 2 until all the players’

strategies become stationary or the time index reaches the prescribed maximum number

of iterations.

B. Convergence Analysis for Two-player COGs

In this subsection, we analyze the simple case where there are only two players in the COG. Let

us begin with the SMBRD, whose execution exhibits a sequenceof strategies of the two players.

From the best-response functions of the two players, we see that the sequence of strategies can

be decomposed into the following two subsequences

Sequence[a] : (x1(0), x2(1)) , (x1(2), x2(3)) , · · · ,

and Sequence[b] : (x2(0), x1(1)) , (x2(2), x1(3)) , · · · ,

each of which evolves independently of the other. Sequence[a] is uniquely determined by

player 1’s initial strategyx1(0), and Sequence[b] byx2(0). So we can study each sequence’s

convergence property individually. Only when these two subsequences’ limits coincide, the

SMBRD converges; otherwise the SMBRD exhibits a cycling behavior between the limits of
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the two subsequences. In the following discussion, for notational simplicity, we abbreviate (3)

asxk = fk(x−k) = −bkx−k + ak, whereak, bk > 0 for k = 1, 2, and denote the intersection of

the two lines by(x∗
1, x

∗
2). We then discuss the convergence property of the two sequences under

difference network parameters.

1) When the COG only has a unique NE:

a) When condition:
c1,2
c2,2

<
P2

P1

α + β1

β2
and

c2,1
c1,1

<
P1

P2

α + β2

β1
(16)

is satisfied, the unique NE is(x∗
1, x

∗
2), the solution ofxk = −bkx−k + ak (k = 1, 2);

see Figure 3. By symmetry we only discuss Sequence[a]’s convergence property and

the discussion for Sequence[b] is similar. From the conditions (16), ifx1(t) > f−1
2 (1),

we have

x1(t+ 2)− x∗
1 = b1b2[x1(t)− x∗

1], (17)

in which 0 < b1b2 < 1. So the updating process ofx1(t) will converge tox∗
1. If

x1(t) < f−1
2 (1), then we havex2(t + 1) = 1, x1(t + 2) = f1(1) > f−1

2 (1), which

again enters the regime of (17) and thusx1(t) will converge tox∗
1 and x2(t) will

converge toBR2(x
∗
1) = x∗

2. The analysis of Sequence[b] yields the same result, and

we therefore see that under (16), both Sequence[a] and Sequence[b] converge to the

unique NE.

b) when condition:
c1,2
c2,2

≥
P2

P1

α + β1

β2

and
c2,1
c1,1

<
P1

P2

α+ β2

β1

(18)

is satisfied (cf. Figure 4), similar to the discussion above,we can verify that both

Sequence[a] and Sequence[b] converge to the NE(f1(1), 1) given any initial strategies

(x1(0), x2(0)). For the other symmetric case, both sequences will convergeto the NE

(1, f2(1)).

Therefore, when the COG has only one NE, SMBRD will always converge to the NE.

2) When the COG has two NEs, by symmetry we only discuss the case where conditions

c1,2
c2,2

>
P2

P1

α+ β1

β2
and

c2,1
c1,1

=
P1

P2

α + β2

β1
(19)

are satisfied (cf. Figure 6). Note that with the conditions,b1b2 > 1. Similar to the discussion

above, we see that whenx1(0) < 1, Sequence[a] converges to(f1(1), 1), but whenx1(0) =
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1, Sequence[a] converges to(1, f2(1)). For Sequence[b], whenx2(0) ≤ f2(1), we have

x1(1) = 1 andx2(2) = f2(1), and then Sequence[b] converges to(1, f2(1)); whenx2(0) >

f2(1), due tob1b2 > 1 and

x2(t+ 2)− x∗
2 = b1b2[x2(t)− x∗

2], (20)

Sequence[b] converges to(f1(1), 1). Therefore, under the conditions (19), when the initial

strategiesx(0) fall within region I in Figure 6, SMBRD converges to the NE(f1(1), 1),

and when the initial strategiesx(0) fall within region II, SMBRD ends up with cycling

between strategies(f1(1), f2(1)) and (1, 1).

3) When the COG has three NEs, the conditions

c1,2
c2,2

>
P2

P1

α+ β1

β2
and

c2,1
c1,1

>
P1

P2

α + β2

β1
(21)

are satisfied (cf. Figure 5). We trace the evolution of the sequences and get the following

result. For Sequence[a], when the initial strategy satisfies x1(0) < x∗
1, it converges to the

NE (f1(1), 1), otherwise it converges to another NE(1, f2(1)). For Sequence[b], when

the initial strategy satisfiesx2(0) < x∗
2, it converges to the NE(1, f2(1)), otherwise it

converges to another NE(f1(1), 1). Therefore, under the conditions (21), when the initial

strategiesx(0) fall within region I in Figure 5, SMBRD converges to the NE(f1(1), 1),

when the initial strategiesx(0) fall within region II or III, SMBRD ends up with cycling

between strategies(f1(1), f2(1)) and(1, 1), and when the initial strategiesx(0) fall within

region IV, SMBRD converges to the NE(1, f2(1)).

4) When the COG has an infinite number of NEs, the conditions

c1,2
c2,2

=
P2

P1

α+ β1

β2

and
c2,1
c1,1

=
P1

P2

α + β2

β1

(22)

are satisfied (cf. Figure 7). For Sequence[a], when the initial strategy satisfiesx1(0) <

f1(1), it converges to the NE(f1(1), 1), otherwise it converges to the NE(x1(0), f2(x1(0)));

for Sequence[b], when the initial strategy satisfiesx2(0) < f2(1), it converges to the NE

(f1(x2(0)), x2(0)), otherwise it converges to NE(1, f1(1)). Therefore, under the conditions

(22), when the initial strategiesx(0) fall within region I in Figure 7, SMBRD ends up

with cycling between strategies(f1(1), x2(0)) and (f1(x2(0)), 1), whenx(0) falls within

region II, SMBRD ends up with cycling between strategies(f1(x2(0)), f2(x1(0))) and

(x1(0), x2(0)), whenx(0) falls within region III, SMBRD ends up with cycling between
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strategies(f1(1), f2(1)) and (1, 1), and whenx(0) falls within region IV, SMBRD ends

up with cycling between strategies(x1(0), f2(1)) and (1, f2(x1(0))).

Summarizing the discussion above for various conditions, we see that both Sequence[a] and

Sequence[b], which are respectively determined by the initial strategiesx1(0) andx2(0), converge

to limiting strategies. However, under several conditions, the two sequences do not converge to

the same limiting strategies, and then SMBRD does not converge. On the other hand, because

an AMBRD corresponds to exactly one of the two sequences, theconvergence of AMBRD is

guaranteed. So for two-player COGs we obtain the following theorem regarding the convergence

property of best-response dynamics.

Theorem 4 (Convergence of two-player dynamics):For a two-player COG, SMBRD is guar-

anteed to converge to an NE starting from an arbitraryx(0) if and only if the COG has only

one NE; in contrast, AMBRD always converges to an NE regardless of the number of NEs in

the COG.

The fact that AMBRD always converges for any initial joint strategies is desirable from an

engineering perspective. It guarantees that a distributednetwork protocol designed based on

AMBRD does terminate after a sufficient number of updates, avoiding the so-called “ping-pong

effect”.

C. Convergence Analysis forK-player COGs with Linear Best-responses

The analysis of the convergence property, when it comes to more general case in which a

COG consists ofK > 2 players, becomes difficult due to the lack of convenient properties

such as potential games3 or supermodular games.4 In the following, we analyze the convergence

property ofK-player COGs which admit linear best-response functions.

The best-response function (4) implies that playerk will allocate all its power to its private

band when the aggregated interference from other players inthe shared band exceeds a threshold.

When the interference is not too strong, the best-response functions become linear without

3The COG is not an exact potential game except for very specialchoices of network parameters, since in general we have
∂2ui

∂xi∂xj
6=

∂2uj

∂xi∂xj
, i 6= j [13], and we were unsuccessful in verifying whether it is an ordinal potential game.

4Only for two-player COGs it is possible to convert the COGs into supermodular games [8], and in general COGs are not

supermodular since∂2ui

∂xi∂xj
> 0 does not always hold for allxi, xj .
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saturation. This occurs if

βk

α + βk

[

1 +

∑

j∈K\{k} Pjcj,k(1− xj)

Pkck,k

]

< 1 (23)

holds for each playerk ∈ K. To ensure that the best-response functions are linear given any

initial strategies throughout the execution of best-response dynamics, we need (23) to hold for

any xk ∈ [0, 1], k ∈ K. This consideration hence leads to the conditions

∑

j∈K\{k}

Pjcj,k <
α

βk

Pkck,k, ∀k ∈ K. (24)

We first establish that under conditions (24) a COG has a unique NE.

Theorem 5:For aK-player COG satisfying (24), it has a unique NE.

Proof: Under the assumption of (24), all the best-response functions are linear, and by

rearranging terms we see that the NEs of the COG should satisfy

x
∗ = Ax∗ + b, (25)

whereA is a K ×K matrix in whichA(k, j) = − βk

α+βk

Pjcj,k
Pkck,k

for j 6= k andA(k, k) = 0, and

b(k) = βk

α+βk

∑
j∈K

Pjcj,k

Pkck,k
, for k = 1, . . . , K. From (24), we have

∑

j 6=k

|A(k, j)| =
βk

α+ βk

1

Pkck,k

∑

j 6=k

Pjcj,k

<
βk

α+ βk

1

Pkck,k

α

βk

Pkck,k

=
α

α+ βk

≤ 1, (26)

for all k = 1, . . . , K. Hence from Gershgorin’s circle theorem (see, e.g., [14]),the bound (26)

implies that the maximum eigenvalue of matrixA satisfies|λmax| < 1. Hence the matrixI −A

is nonsingular, so that the solution ofx∗ = Ax∗ + b is unique, given byx∗ = (I −A)−1
b with

x
∗ ∈ (0, 1)K due to Theorem 1.

The convergence of SMBRD is a direct convergence of Theorem 5.

Theorem 6:For aK-player COG satisfying (24), SMBRD is guaranteed to converge to the

unique NE.

Proof: The updating process of SMBRD can be written as the followingiteration,

x(t + 1) = Ax(t) + b. (27)
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From the proof of Theorem 5, we see that the iteration (27) is globally asymptotically stable

since all eigenvalues of matrixA satisfy |λk| < 1. So we conclude that under (24), SMBRD is

guaranteed to converge to the unique NE given byx
∗ = (I − A)−1

b.

Establishing the convergence of AMBRD is similar while a little more involved, as provided

by the proof of the following theorem.

Theorem 7:For aK-player COG satisfying (24), AMBRD is guaranteed to converge to the

unique NE.

Proof: Under the assumption of (24), when playerk updates its strategy, the updating

process of AMBRD can be written as

x(t+ 1) = Akx(t) + bk, (28)

whereAk is aK ×K unit diagonal matrix, except that itsk-th row is replaced by thek-th row

of the matrixA. The elements of the length-K vectorbk are all zero except that itsk-th element

is the k-th element ofb. So if we view a full updating cycle from player1 to playerK as a

whole, the updating iteration is like

x((i+ 1)K) =
1∏

k=K

Akx(iK) + b̃, i = 0, 1, . . . , (29)

where

b̃ =
2∏

k=K

Akb1 +
3∏

k=K

Akb2 + . . .+ AKbK−1 + bK . (30)

So in order to prove that the AMBRD converges, it suffices to establish that all the eigenvalues

of
∏1

k=K Ak satisfy |λk| < 1. For this, we again utilize Gershgorin’s circle theorem, showing

that the row norm of
∏1

k=K Ak is smaller than one.

Denote thek-th row elements ofAk by [ak,1, ak,2, . . . , ak,K ], in which ak,k = 0 and ak,j =

A(k, j) = − βk

α+βk

Pjcj,k
Pkck,k

for j 6= k. Let us trace the calculation of
∏1

k=K Ak to check that all

of its absolute row sums are smaller than one. For this, we show by induction the following

claim: each of the firstl rows of A(l) =
∏1

k=l Ak has its absolute sum smaller than one, for

l = 1, . . . , K.

For l = 1, the claim apparently holds. Forl = 2, A(2) = A2A1. Its first row remains

[a1,1, a1,2, . . . , a1,K ], whose absolute row sum is smaller than one, by the assumption of (24). Its

second row is

[a2,1a1,1, (a2,1a1,2 + a2,2), (a2,1a1,3 + a2,3), . . . , (a2,1a1,K + a2,K)] ,
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whose absolute row sum is

|a2,1a1,1|+
K∑

j=2

|a2,1a1,j + a2,j | ≤ |a2,1|
K∑

j=1

|a1,j|+
K∑

j=2

|a2,j|

< |a2,1| · 1 +
K∑

j=2

|a2,j| =
K∑

j=1

|a2,j| < 1.

So the claim holds forl = 2. Now assume that the claim holds up tilll, and examineA(l+1).

For notational simplicity we denote thei-th row elements ofA(l) by [a
(l)
i,1, a

(l)
i,2, . . . , a

(l)
i,K ]. Since

A(l+1) = Al+1A
(l), we see that its firstl rows remain those ofA(l), thus satisfying their absolute

row sums smaller than one by assumption. For its(l + 1)-th row, the firstl elements are

a
(l+1)
l+1,j = al+1,1a

(l)
1,j + al+1,2a

(l)
2,j + . . .+ al+1,la

(l)
l,j , j = 1, . . . , l,

and the lastK − l elements are

a
(l+1)
l+1,j = al+1,1a

(l)
1,j + al+1,2a

(l)
2,j + . . .+ al+1,la

(l)
l,j + al+1,j , j = l + 1, . . . , K.

So we have
K∑

j=1

∣
∣
∣a

(l+1)
l+1,j

∣
∣
∣ ≤

l∑

i=1

|al+1,i|

K∑

j=1

∣
∣
∣a

(l)
i,j

∣
∣
∣+

K∑

j=l+1

|al+1,j|

<

l∑

i=1

|al+1,i|+

K∑

j=l+1

|al+1,j| < 1,

where the first inequality is from|x+y| ≤ |x|+ |y|, the second inequality is from the assumption

of induction forA(l), and the third inequality is from the assumption forAl+1. As we letl increase

from 1 to K−1, we establish the claim that each of the rows ofA(K) =
∏1

k=K Ak has its absolute

sum smaller than one, and thus Gershgorin’s circle theorem guarantees that all the eigenvalues

of
∏1

k=K Ak satisfy |λk| < 1.

Consequently, the iteration (29) has a unique fixed point as

x
∗ =

(

I −

1∏

k=K

Ak

)−1

b̃, (31)

which, from the nature of AMBRD, is a NE of the underlying COG.On the other hand, Theorem

5 indicates that the NE is unique under (24). Therefore we seethat the fixed point in (31) has

to coincide with the unique NE of the COG given in Theorem 5, i.e.,x∗ = (I −A)−1
b.
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V. NUMERICAL RESULTS

In this section, we perform some numerical simulations to illustrate the analysis in Section

IV. First, We fix the spectrum allocation asα = 0.5, βk = 0.5/K, k = 1, . . . , K. The average

power budgets for all the WSPs are identical asPk = 1, and the power spectral density of white

Gaussian noise isn0 = 10−2. We use Monte Carlo simulation, in which the initial joint strategies

are uniformly distributed in the entire product strategy space, to verify the relationship between

the network parameters and the best-response dynamics’ convergence property. In simulation,

we view an iteration as converged when either the condition

max
k∈K

{|xk(t+ 1)− xk(t)|} ≤ ǫ = 10−2 (32)

is met for SMBRD, or the condition

max
k∈K

{|xk(t+ j)− xk(t+ j −K)|} ≤ ǫ = 10−2, ∀j = 1, · · · , K (33)

is met for AMBRD. The maximum number of updates in an iteration is set as100.

When a COG has only two players, the convergence property of SMBRD and AMBRD by sim-

ulations is depicted in Figure 8. We consider four sets of network parameters:(c1,2/c2,2, c2,1/c1,1) =

(0.4, 0.6), (3, 4), (3.5, 4), (3, 3), which correspond to four different cases: a COG having one NE,

two NEs, three NEs and an infinite number of NEs. We use empirical cumulative distribution

functions to characterize each best-response dynamic’s convergence property. From Figure 8, we

verify that AMBRD always converges to an NE for all cases, andthat SMBRD only converges

when a COG has a unique NE. Nevertheless, when a COG has a unique NE, SMBRD converges

more quickly than AMBRD.

When a COG has four players, we perform a corresponding simulation, with the convergence

property depicted in Figure 9. We consider three different interference matrices:

C1 =










1 0.2 0.1 0.4

0.4 1 0.5 0.3

0.3 0.4 1 0.6

0.4 0.2 0.5 1










, C2 =










1 0.6 1.4 1.6

1.4 1 0.9 1.4

2.3 1.4 1 2.0

0.9 0.7 1.4 1










, C3 =










1 1.4 2.0 0.9

0.4 1 1.6 2.1

1.4 2.2 1 0.9

1.2 2.1 3.0 1










.

They respectively correspond to weak interference (conditions (24) satisfied for all players),

medium interference (conditions (24) satisfied for all but one players), and strong interference

(conditions (24) unsatisfied for all players). From the simulation results, we verify the validity
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of the analysis in Section IV-C for the case of weak interference. Furthermore, we observe that

SMBRD and AMBRD may also converge to an NE even when the best-response functions are

nonlinear with saturation, although our analysis in Section IV is not able to ensure so. When the

interference is weak, SMBRD converges more quickly than AMBRD; whereas as the interference

becomes strong, AMBRD converges more quickly than SMBRD.

VI. CONCLUSION

In this paper, motivated by the emerging use case of capacityoffload, we considered the

interference management problem in which different WSPs allocate their transmission power

resources between their own private bands and a shared band which is simultaneously available

to all of the WSPs. Taking into account the non-cooperate relationship among the WSPs, we

formulated the problem into a non-cooperative game and analyzed its properties. We further

proposed two distributed learning dynamics for each WSP to individually learn from its local

measurement to reach an NE, and analyzed the convergence properties of the dynamics. A

number of topics may be explored for future research, including establishing the convergence

properties for generalK-user COGs without linear best-responses, cooperative game-theoretic

formulations, and design of effective mechanisms for improved overall utilities for WSPs and

even spectrum allocators.
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Fig. 1. An example of typical capacity offload scenarios
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best-response functions intersect at only one point as indicated by(x∗

1, x
∗

2), corresponding to the unique NE in the COG.
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Fig. 4. Cases 2) and 3) of Theorem 3. Here we depict the situation for case 2) only, and that for case 3) is similar. The

network parameters satisfyf−1
2 (1) ≥ f1(1) and f−1

1 (1) < f2(1), and thus the two best-response functions intersect only at
(

f1(1) =
β1

α+β1

, 1
)

.
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Fig. 5. Case 4) of Theorem 3. The network parameters satisfyf−1
2 (1) > f1(1) and f−1

1 (1) > f2(1), and thus the two

best-response functions intersect at three points, as indicated in the figure.
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Fig. 6. The special subcase with two NEs of case 4). The network parameters satisfyf−1
2 (1) > f1(1) andf−1

1 (1) = f2(1),

and thus the intersecting point(x∗

1, x
∗

2) in Figure 5 coincides with
(

1, f2(1) =
β2

α+β2

)

. The other possibilityf−1
2 (1) = f1(1)

andf−1
1 (1) > f2(1) is similar and thus omitted for conciseness.
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Fig. 7. The special subcase with an infinite number of NEs of case 4). The network parameters satisfyf−1
2 (1) = f1(1) and

f−1
1 (1) = f2(1), and thus the two slope segments of the best-response functions completely coincide, leading to an infinite

number of NEs.
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Fig. 8. Convergence property of two-player COGs
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Fig. 9. Convergence property of four-player COGs
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