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Abstract—The aim of this paper is to study the effect of
cooperation on system delay, quantified as the number of
retransmissions required to deliver a broadcast message toall
intended receivers. Unlike existing works on broadcast scenarios,
where distance between nodes is not explicitly considered,we
examine the joint effect of small scale fading and propagation
path loss. Also, we study cooperation in application to finite
networks, i.e. when the number of cooperating nodes is small.
Stochastic geometry and order statistics are used to develop
analytical models that tightly match the simulation results for
non-cooperative scenario and provide a lower bound for delay in
a cooperative setting. We demonstrate that even for a simple
flooding scenario, cooperative broadcast achieves significantly
lower system delay.

Index Terms—Cooperative diversity, network latency, stochas-
tic geometry, outage probability, order statistics.

I. I NTRODUCTION

Cooperation between wireless nodes has gained wide at-
tention as it allows trading extra spatial degree of freedom
for reduced outage probability, increased capacity or lower
power consumption [1], [2]. Several works have studied the
effects of node cooperation on broadcast scenarios, where a
source wants to deliver a message to multiple destinations [3],
[4]. However, until recently [5], explicit network geometry
and associated path loss (PL) effects were either ignored, or
considered for some special network settings. Namely, in [3] a
framework facilitating outage probability analysis is proposed
for cooperative multicast schemes in presence of Rayleigh
fading in dense wireless networks, i.e. when the number of
nodes is large. In [4] PL between nodes has been considered
in context of power efficiency of broadcast strategies againin
the context of dense networks.

The aim of this work is to analyze the transmission delay
for broadcast in networks withfinite number of highly mobile
nodes and to compare performance of cooperative broadcast
to conventional non-cooperative protocol. We also aim a
realistic description of channel conditions, and use stochastic
geometry to account for path loss in addition to small scale
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Rayleigh fading. Stochastic geometry tools that allow joint
treatment of both channel and location randomness have been
studied in-depth for infinite networks in [6]. However, their
potential has not been applied widely to cooperation, and only
initial analysis of inter-node distances for finite networks was
presented in [7].

Our main contribution is in the methodology that allows
analysis offinite random networks, incorporating both chan-
nel and node location randomness. We show that tractable
analytical results, that match closely to Monte-Carlo sim-
ulations, can be derived for realistic fading and path loss
conditions. Our results demonstrate that cooperative schemes
can achieve significantly lower system delay compared to non-
cooperative broadcast. We also provide simulation resultsto
emphasize the impact of network size and node density on
performance of broadcast schemes. Namely, performance of
the non-cooperative scheme depends primarily on network
size, whereas the cooperative scheme is more sensitive to node
density.

II. SYSTEM MODEL

In this section, we briefly describe broadcast protocols
which have been studied, discuss required stochastic geom-
etry theory and transmission latency metric. A circular cell
structure is considered with the source node located in the
center. The source aims to deliver a common message to all
N randomly located and highly mobile wireless nodes.

A. Broadcast protocols

We will adopt broadcast schemes previously used in [3]
as a basis for studied protocols. Incooperative broadcast
the source broadcasts a message in the first time slot, and
continues until at least one receiver receives it correctly. After
that the source remains silent, while all successful receivers
cooperate by simultaneously retransmitting the message to
remaining nodes in subsequent time slots until all nodes
receive the message. Any receiver is assumed to process
signals only from the nearest transmitter. Fornon-cooperative
broadcast– only source transmits and all remaining nodes
listen.

Note that non-orthogonal transmissions used in this work
may lead to performance degradation due to multipath ar-
rivals of the same message. This effect is accounted for by
Rayleigh fading. Similar setting has been used in [8], where
cooperatively transmitted signals were additionally coherently
combined at destination. Although coherent combining can

http://arxiv.org/abs/1306.4230v1
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Fig. 1. A realisation of Binomial point process withN = 10 nodes in a
circular cell.

improve performance, it is difficult to implement due to system
overhead. Therefore, only the nearest transmitter’s signal is
considered in this paper as its power is expected to dominate
the rest.

A high mobility (HM) model [9] is used in this paper, where
node positions change randomly and independently in each
time slot. In practice, node locations may be dependent and
follow certain law. Such mobility models could be described
by more advanced PP constructions, for example, the hard-
core PP [10] could be used to capture the effect of minimal
expected node speed. A setting with static nodes was studiedin
[11], where Voronoi tessellations were used to derive bounds
on broadcast capacity. System performance will definitely
depend on the chosen mobility model, however the impact
that different mobility models have is beyond the scope of
this paper.

B. Point processes for node location description

Point processes provide a mechanism to analyze interactions
between spatially distributed objects, such as wireless nodes
[10], which allows general yet simple results compared to
conventional methods [12].

Of particular importance is the Poisson point process (PPP),
characterised by two fundamental properties [10]: (1) the
probability of having exactlyN nodes in a Borel subset set
A of some observation windowW is Poisson distributed with
parameterλ·νd(A); (2) the counts of points in disjoint subsets
of W are independent. Hereλ is the node density andνd(A)
is Lebesgue measure (i.e. length, area or volume ofA) andW
is a geometrical construction in space, where the point process
is observed. For our purposes1, W = b2(o,R) denotes a 2-
dimensional diskb2 of radiusR centered at origino, andA
is a geometrical shape, entirely contained inW .

While PPPs allow getting valuable results for asymptotic
scenarios, once the number of nodes in the network is known,

1Interested reader can find a general treatment on types and interactions of
sets in [10].

the PPP model becomes inappropriate since the node counts
in different locations become dependent (see [10, p.27] and
[7]). Therefore we further work with a binomial point process
(BPP), characterised by having exactlyN nodes located ran-
domly and independently inW (Fig. 1). Since HM is assumed,
each time slot faces a new realization of the BPP, and we can
treat the nodes that have received the message correctly and
those that have not as two separate BPPs.

C. Latency metric and signal model

The metric of our interest is the number of transmission
attempts, or time slots,K required to deliver a broadcast
message to allN nodes within the observation windowW .
The expected number of required transmissionsK̄ can be
found as

K̄ =

∞∑

k=1

k · P (K = k|N), (1)

whereP (K = k|N) denotes the probability that, conditioned
on havingN nodes in total, exactlyk transmissions will be
sufficient to reach all nodes.

We consider joint effect of small scale Rayleigh fading
and propagation loss due to respective node locations. In
particular, the signal received by nodei from transmitterj
can be expressed as

yi = hij

√

Ptx · l(rij) · xj + nw, (2)

where xj is the message, transmitted byj-th node,Ptx –
transmission power;nw is zero-mean AWGN with variance
σ2
w; hij ∼ N (0; 1) represents the effect of small scale fading;

l(rij) =
(
1 + rαij

)−1
is the path loss function [4],rij is the

distance between nodesi andj andα is the path loss exponent.
A message is considered to be successfully delivered if the

capacity of communication channel between the transmitting
and receiving node is sufficient for transmission at required
data rateR:

log

(

1 +
|hij |2Ptx
(
1 + rαij

)
σ2
w

)

≥ R. (3)

Probability of such event can be described as probability of
success and expressed as

Ps = Pr

(

|hij |2

1 + rαij
≥ θ

)

, (4)

wherehij andrij are random variables andθ =
σ2
w(2R−1)

Ptx
is

the threshold for successful reception.

III. L ATENCY ANALYSIS FOR NON-COOPERATIVE

BROADCAST

In order to find the expected number of required transmis-
sions K̄ we need to estimate the probabilityP (K = k|N),
described earlier. LetSk, k ∈ [1,K], be the random variable,
representing the number of successful nodes obtained as a
result of k-th transmission stage, andTk =

∑k

i=1 Si be the
total number of successful nodes afterk transmissions. Then
the broadcast process completes whenTK =

∑K

i=1 Si = N .
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Pnc
k = P (K = k|N) = P (Tk = N |N) =

∑

(Tk−1,Sk)∈ck

{P1(Sk|N − Tk−1) · P (Tk−1|N)} =
∑

(Tk−1,Sk)∈ck

{

P1(Sk|N − Tk−1)

×
∑

(Tk−2,Sk−1)∈ck−1

{

P1(Sk−1|N − Tk−2) · . . . ·
∑

(T1,S2)∈c2

{P1(S2|N − T1) · P1(T1|N)} . . .

}}

,

(5)

Therefore, the metric of our interest can be expressed as sum
of probabilities of all possible outcomes of thek transmission
stages which lead to the completion of the process in exactly
K = k time slots, as can be seen from (5) on top of this page.
The conditions of summationsci, i ∈ [2, k] in (5) are given
as:

ck =
{
Tk−1 ∈ [0, N − 1], Sk ∈ [1, N ] : Tk−1 + Sk = N

}
;

ck−1 =
{
Tk−2 ∈ [0, Tk−1], Sk−1 ∈ [0, Tk−1] :

Tk−2 + Sk−1 = Tk−1

}
;

(6)
Thus to evaluate (5), we need to calculateP1(Si|N − Ti−1),
which denotes the probability of getting exactlySi successful
nodes out ofN − Ti−1 as a result of source transmission.
To achieve this we will first obtain the distribution function of
the compound random variableZ =

|hij |
2

1+rα
ij

for the independent
and identically distributed (i.i.d.) receivers and then use order
statistics.

Proposition 1 (Joint fading-path loss distribution):The
cumulative distribution function (CDF) of the compound
random variableZ = |h|2l(r), where|h|2 is the amplitude of
Rayleigh fading coefficient andl(r) = (1 + rα)−1 is the path
loss function, is given by

FZ (θ) = 1−
δe−θ

Rdθδ
γ(δ, Rθ), (7)

with γ(·) denoting the lower incomplete Gamma function,d
is the number of dimensions andδ = d/α is used for brevity.

Proof: We can express the CDF of the random variable
Z = |h|2

1+rα
asFZ(θ) = Pr(|h|2 < θ (1 + rα)). Let us consider

components of Z individually and distinguish three cases:
θ ∈ (0,∞), θ = 0 andθ = ∞.
The amplitude of Rayleigh fading coefficient is a Chi-square
distributed random variable with two degrees of freedom,
which is equivalent to the exponential distribution, i.e.|h|2 ∼
Exp(1). The points of the BPP insideW are i.i.d. distributed
with common density function (see [6] and [13])

frα(y) =
λ(y)

Λ(W )
=

δyδ−1

Rd
, y ∈ [0, Rα] , (8)

where Λ(W ) = # {Φ ∩W} =
∫

B

λ(w)dw is the counting

measure for the originating PPP, with#{·} denoting the
number of elements in a set;λ(w) is the intensity of points
in d dimensions, andδ = d

α
is used for compactness. We can

now findFZ (θ) for the three regions ofθ. For θ ∈ (0,∞):

FZ(θ) = Pr(|h|2 < θ (1 + rα))

=

y=Rα
∫

y=0

frα(y)

x=θ(1+y)∫

x=0

f|h|2(x)dxdy

=

Rα
∫

0

δyδ−1

Rd

(

1− e−θ(1+y)
)

dy

=
δ

Rd

Rα
∫

0

yδ−1dy

︸ ︷︷ ︸

=1

−
δe−θ

Rd

Rα
∫

0

yδ−1 · e−θydy

= 1−
δe−θ

Rdθδ
γ(δ, Rαθ).

(9)

The cases ofθ = 0 andθ = ∞ correspond to the events of the
path gain being less than zero or less than infinity. Therefore
we can write:

FZ(0) = Pr(|h|2 < 0) = 0, FZ(∞) = Pr(|h|2 < ∞) = 1.

Next we use the above result to derive the probability
P1(Si|N − Ti−1) that there are exactlySi successful nodes
out of N − Ti−1 receivers. For simplicity, we will denote
Nr = N − Ti−1

Corollary 2 (Order statistics):The conditional probability
of having exactlySi successful nodes out ofNr receivers is

Pr(Si|Nr) =

(
Nr

Si

)(

1−
δe−θ

Rdθδ
γ(δ, Rαθ)

)Nr−Si

×

(
δe−θ

Rdθδ
γ(δ, Rαθ)

)Si
(10)

Proof: GivenNr nodes in the processΨ, the probability
that there are exactlySi successful receivers after the first
transmission attempt can be expressed as:

Pr(Si|Nr) = Pr(Z(Nr−Si) < θ,Z(Nr−Si+1) ≥ θ), (11)

where the termsZ(1) < Z(2) < . . . < Z(Nr−Si) <
Z(Nr−Si+1) < . . . < Z(Nr) correspond to ordered realizations
of the random variableZ, for which probability distributions
are known. Using order statistics and Proposition 1 we can



4

P c
k = P (Tk = N |N) =

∑

(Tk−1,Sk)∈ck

{Pk(Sk|N − Tk−1) · P (Tk−1|N)} =
∑

(Tk−1,Sk)∈ck

{

Pk(Sk|N − Tk−1)

×
∑

(Tk−2,Sk−1)∈ck−1

{

Pk−1(Sk−1|N − Tk−2) · . . . ·
∑

(T1,S2)∈c2

{P2(S2|N − T1) · P1(T1|N)} . . .

}}

,

(14)

rewrite (11) as

Pr(Si|Nr) =

θ∫

0

∞∫

θ

fZ(Nr−Si)
,Z(Nr−Si+1)

(u, v)dvdu

=

(
Nr

Si + 1

) θ∫

0

(FZ(u))
Nr−Si−1 dFZ(u)

×

∞∫

θ

(1− FZ(v))
Si−1 dFZ(v)

=

(
Nr

Si

)

(FZ(θ))
Nr−Si (1− FZ(θ))

Si ,

(10)

whereFZ(θ) is defined in (7). Ifδ = 1, we getγ(δ, Rαθ) =

γ(1, Rαθ) = 1− e−Rdθ and:

Pr(Si|Nr) =

(
Nr

Si

)
1

(Rdθ)Nr

(

e−θ − e−θ(Rd+1)
)Si

×
(

Rdθ − e−θ + e−θ(Rd+1)
)Nr−Si

.

(11)

Substitution of (10) or (11) into (5) gives the desired expected
number of required transmissions for non-cooperative broad-
cast.

IV. L ATENCY ANALYSIS FOR COOPERATIVE BROADCAST

A. General setting

Following the same line of reasoning as for (5), we find
all possible combinations of outcomes of thek transmission
stages leading toTk = N using (14) on top of this page,
where the summation conditionsci are identical to (6). Here
the probabilityPi(Si|N − Ti−1) denotes the chance to get
exactly Si successful nodes as a result ofi-th transmission
given N − Ti−1 remaining receivers. The case ofi = 1
corresponds to non-cooperative transmission by the source,
which has been analyzed in previous section.2 We will further
estimatePi = Pi(Si|N − Ti−1) for cooperative stages.

B. Estimation ofPi = Pi(Si|N − Ti−1)

At the i-th stage the message is retransmitted by all success-
ful receivers, originated in(i−1) previous transmission stages.
We are interested in the event when exactlySi of the receivers

2It has to be mentioned that there is a non-zero probability that a number
of source transmissions will not reach any of the receivers,meaning that
cooperative stage cannot start. Equation (14) accounts forsuch events, with the
probability of throttle transmissionsPi(Si|N−0) equivalent to the probability
of getting zero successful nodes in a non-cooperative scenario P1(S1 = 0|N).

successfully receive the message while(N − Ti−1 − Si) do
not.

Any particular receiver can be treated as a reference point
of a BPP of transmitters, containingTi−1 nodes. As each re-
ceiver is restricted to processing signals only from the nearest
transmitter, we would like to find correspondingdistribution
of SNR under joint effect of fading and path loss. Associated
difficulty is that the BPP process of the transmitters becomes
anisotropic once the observation point is shifted from the
origin of circular cell. However, we will concentrate on the
isotropic scenario with the reference point located at the origin,
which will give an approximation of performance, keeping
derivations feasible.

Since the distributions of distances from all receivers to
transmitters are assumed to be identical, we can express the
probabilityPi(Si|N − Ti−1) of getting exactlySi successful
nodes givenN − Ti−1 remaining receivers as

Pi(Si|N − Ti−1) =

(
N − Ti−1

Si

)

PSi
s (1− Ps)

N−Ti−1−Si ,

(15)

wherePs = P
(

|h|2

1+rα
≥ θ
)

is the probability of successful
communication for transmitter-receiver pair. Next we will
estimatePs.

Proposition 3 (Probability of success):Under an isotropic
BPP assumption, the probability of successful communication
between a receiver and its nearest transmitter under the joint
effect of Rayleigh fading and path loss ofl(r) = (1 + rα)

−1

for δ = d
α
= 1 is

Ps = Pr

(
|h|2

1 + rα
≥ θ

)

= e−θT !

(
T−1∑

i=0

(−1)i

(θRd)i+1(T − 1− i)!
−

(−1)T−1e−θRd

(θRd)T

)

.

(16)
Proof: The proof has two main logical steps. First we

extend the result, originally reported in [7] for distribution
of distances to points of a BPP, to density function ofα-
th powers of distances. Next, the latter is used to derive the
probability of success of communication of a node with the
nearest transmitter, taking into account both Rayleigh fading
and path loss via a compound random variable.

1) General distribution of distances andα-th powers of
distances: We start with a general BPP, i.e. with reference
point located arbitrarily (eg. Figure 1 in [7]). Under reference
point we understand a receiver, and the points of the BPP are
theTi−1 transmitters. We will denoteTk−1 asT for brevity.

Let rn denote the random distance from a reference pointx
to n-th nearest neighbor, then, conditioned on having exactly
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T nodes, the complementary cumulative distribution function
(CCDF) of rn is [7]

F̄rn(r) =

n−1∑

i=0

(
T

i

)

pi(1− p)T−i, (17)

wherep is the probability that a node falls into a subsetB
of the observation windowW . In caseB = bd(x, r) is a d-
dimensional ball with radiusr and centered atx, p can be
expressed in general in terms of counting measures as [13,
p.24]

p = p(x, r) =
Λ(B)

Λ(W )
=

∫

bd(x,r)∩W

f(r)dr, (18)

where f(r) is the common density function of i.i.d. nodes
randomly distributed inW .

f(r) =
λ(r)

Λ(W )
=

drd−1

Rd
, r ∈ [0, R]. (19)

In case of the nearest neighbor, the CCDF and probability
density function (PDF) ofr1 are respectively

F̄r1(r) = (1− p)T , (20)

fr1(r) = T (1− p)T−1 dp
dr

. (21)

With the assumption of an isotropic BPP and the observation
point located in the origino, the intersection ofbd(o, r) and
W has an area ofbd(o, r). Therefore we can expressp as

p = p(0, r) =
Λ(bd(o, r))

Λ(W )
=
( r

R

)d

(22)

Substituting this into (20) yields

F̄r1(r) = (1−
( r

R

)d

)T =
1

RdT

(
Rd − rd

)T
, (23)

fr1(r) = T (1− p)T−1 d
dr

( r

R

)d

=
T

RdT

(
Rd − rd

)T−1
drd−1. (24)

Using derived distributions property [14, p.208] PDF ofrα1
can be expressed as

frα1 (y) =
δT

RdT

(
Rd − yδ

)T−1
yδ−1, y ∈ [0, Rα]. (25)

2) The joint distribution:We can now use the distribution
of compound RV |h|2

1+rα1
, since each individual distribution is

known.

Pr

(
|h|2

1 +Rα
1

≥ θ

)

=

Rα
∫

0

frα1 (y)

∞∫

θ(1+y)

f|h|2(x)dxdy

=
δT e−θ

RdN

Rα
∫

0

(
Rd − yδ

)T−1
yδ−1e−θydy.

(26)

For the special case ofδ = 1, we getp = y/Rd and

Pr(
|h|2

1 + rα1
≥ θ) =

Te−θ

RdT

Rα=Rd
∫

0

(
Rd − y

)T−1
e−θydy.

(27)

2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

SNR, dB

E
xp

ec
te

d 
nu

m
be

r 
of

 tr
an

sm
is

si
on

s

N = 5, Path loss exponent = 2

 

 
Non−coop, R=1, sim
Non−coop, R=1, theory
Non−coop, R=2, sim
Non−coop, R=2, theory
Non−coop, R=3, sim
Non−coop, R=3, theory
Coop, R=1, sim
Coop, R=1, theory
Coop, R=2, sim
Coop, R=2, theory
Coop, R=3, sim
Coop, R=3, theory

Fig. 2. Theoretical and simulated system latency.

SubstitutingRd − r = x we obtain

Pr(
X

Y
≥ θ) =

Te−θ

RdT

x=Rd−Rd
∫

x=Rd−0

xT−1e−θ(Rd−x)(−dx)

=
Te−θe−θRd

RdT

Rd
∫

0

xT−1eθxdx,

(28)

Using [15, p.176 5.1.2.1.6] we can find the solution of the
integral as

Pr(
X

Y
≥ θ)

=
Te−θ

RdT

(

e−θ(Rd−x)

θ

T−1∑

i=0

(−1)i

θi
(T − 1)!

(T − 1− i)!
xT−1−i

) ∣
∣
∣
∣

x=Rd

x=0

= e−θT !

(
T−1∑

i=0

(−1)i

(θRd)i+1(T − 1− i)!
−

(−1)T−1e−θRd

(θRd)T

)

.

(29)

Combination of (16), (15) and (14) gives us the expected
number of transmissions required to reach all nodes using
cooperative broadcast protocol.

V. NUMERICAL RESULTS AND COMPLEXITY ANALYSIS

A. Numerical results

In this subsection we evaluate performance of cooperative
and non-cooperative broadcast protocols, and verify analytical
results obtained above. The baseline setting is as follows:
N nodes are placed uniformly and randomly on a disk with
radiusR, and the source of the broadcasted message is located
at the center. Target data rate is 1 bit/s/Hz, channel noise
is assumed to be complex Gaussian and path loss exponent
α = 2. Simulation results are averaged over 1000 random
network realizations. The number of intended receivers is set
to beN = 5 and the set of radius values isR ∈ [1, 2, 3].

Figure 2 illustrates the expected number of required trans-
missions to complete a broadcast. We observe that simulation
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Fig. 3. Transmission delay as a function of network size and node density.

results for non-cooperative broadcast match tightly the ana-
lytical calculations, verifying the accuracy of the developed
model. For cooperative broadcast, analytical results report
lower expected system delay compared to simulations. This
mismatch is understood to be caused by the assumption used
in calculation of parameterp in (22) that the process of
transmitters is isotropic with respect to any receiver. In reality,
receivers closer to cell boundary have larger expected distance
to the nearest transmitter. The increase of the mismatch with
R can be explained by the limit of integration in (26): for a
node shifted from the origin by distance∆, the upper outer
integration limit should be adjusted to(R + ∆)α. Precise
account for above factors significantly complicates analysis,
whereas presented simplified model for cooperative broadcast
can serve as a reasonable approximation. From Figure 2 we
observe that cooperative broadcast achieves lower transmission
delay compared to non-cooperative scenario, especially for
larger-sized networks. An intuitive explanation is that ina
larger network signal attenuation can be more severe for

distant nodes. To emphasize the role of network properties
on studied broadcast protocols a set of simulations was per-
formed. The SNR level was fixed at 5 dB and the number of
nodes was rounded up asN =

⌈
ρπR2

⌉
, with ρ denoting the

node density. Figure 3 depicts the dependency of transmission
delay on network size and node density for non-cooperative
and cooperative schemes. It is evident that performance of the
non-cooperative scheme is primarily affected by the cell size,
and the node density has relatively weaker effect. In contrast,
for cooperative scenario the impact of network size on system
latency diminishes with the increase of node density. These
results suggest that cooperative schemes can be particularly
effective in geometrically large networks with moderate node
density. In addition, cooperative scheme achieves significantly
lower delay compared to non-cooperative scheme in the same
setting.

B. Complexity analysis

Presented analytical results are not in closed form and
require multiple iterations of computations. In this subsection
we estimate the order of computational complexity required
to find the expected number of required transmissionsK̄
using (1). Note that complexities for cooperative and non-
cooperative schemes differ only in calculation of the exact
number of successful nodes after a transmission attempt using
(10) or (15). Therefore, we develop the complexity order based
on the non-cooperative case.

First, to obtainK̄, summation of infinite number of terms
is required in (1). However, the number of terms, contributing
significantly toK̄ can be limited by some thresholdK ′. For
example, the typical number of transmissionsK̄ required to
reach 10 nodes at 3 dB transmit SNR in Rayleigh fading is
roughly 16, which is far below infinity and does not change
significantly after K ′ = 25. Therefore, we will use the
following approximation:

K̄ =

∞∑

k=1

k · P (K = k|N) ≈
K′

∑

k=1

k · P (K = k|N) (30)

We will further estimate the number of operationsX1 required
to evaluate (1) as a function of the number of nodesN and
the thresholdK ′.

Expression (5) is a summation of all possible outcomes of
k ∈ [1,K ′] transmissions leading to delivery of broadcasted
message to allN nodes. Using methodology in [16, p.43], one
can find that the number of such combinations isC(N, k) =

(N+k−2)!
(N−1)!(k−1)! . Each summation term in (5) consists of a product
of k probabilities, calculated using (10). Let us denote asX
the number of operations (i.e. additions or multiplications),
required to evaluate (10). Then, each term of summation in
(5) would needXk operations, and evaluation of (5) would
takeX5 = Xk ·C(N, k) such operations. Finally, the number
of operations required to evaluate (1) can be found as

X1 =

K′

∑

k=1

Xk · C(N, k) + ǫ, (31)

whereǫ is the total number of intermediate multiplications and
additions involved in (1) and (5). Since order of complexity
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is determined by the highest-order term [17] we can ignoreǫ
and express it as

O
(

XK′

C(N,K ′)
)

. (32)

Such complexity order restricts application of this type ofanal-
ysis to large values of system parameters, however for finite
networks with fixed and small number of nodes, calculations
can be done in realistic times.

VI. CONCLUSION

In this correspondence, we analyzed the impact of node
cooperation on system delay for broadcast scenarios in finite
wireless networks. Developed analytical models, that incor-
porate both channel and node location randomness, match
precisely simulated non-cooperative broadcast, and provide a
close approximation for cooperative scheme. The framework
used in this work can be extended to capturing important
network geometry properties in more complex scenarios.
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