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Abstract

In the paper, we study the service procs$s) of an independent and identically distributedd.) Nakagami-
m fading channel, which is defined as the amount of serviceigedy i.e., the integral of the instantaneous
channel capacity over time By using the Characteristic Function (CF) approach andrifieitely divisible law,
it is proved that, other than certain generally recognizeéaves form or a stochastic process, the channel service
processS(t) is a deterministic linear function of time namely,S(t) = ¢;, -t wherec;, is a constant determined
by the fading parameter.. Furthermore, we extend it to geneiald. fading channels and present an explicit
form of the constant service ratg. The obtained work provides such a new insight on the systesigd of
joint source/channel coding that there exists a codingraehsuch that a receiver can decode with zero error
probability and zero high layer queuing delay, if the traitten maintains a constant data rate no more tjan
Finally, we verify our analysis through Monte Carlo simigas.

Index Terms

i.i.d. fading channels; Nakagami-m fading; channel service mgicéme linearity.

I. INTRODUCTION

In a wireless communication system, signal from a transmittsually travels over multiple reflective,
diffracted and scattered paths to a receiver. As a resul, réfteived signal may fluctuate violently and
the receivedsignal to noise ratio(SNR) varies randomly over time. This phenomenon is refetceas the
multipath propagation. In particular, when these multipsignals naturally arrived at the receiver, the fading
usually occurs, which is characterized by Rayleigh, Ric@nthe Nakagamin fading models. In general, the
Nakagamim fading [1] includes a wide range of multipath channels vigstihg parametem. For instance,
the Nakagamin distribution includes the one-sided Gaussian distribbui@ = 1,/2), which corresponds to the
highest amount of multipath fading scenario. The Rayleiigtribution is also included by setting = 1, which

is most applicable when there is no dominant propagationgatbe line of sight (LOS) between a transmitter

(K+1)?
2K+1 !

+1)2

4 as the value ofn, i.e.,m =

and the receiver. Moreover, if one tak

then the Nakagamis

distribution reduces approximately to the Rician distfilba with parameterk’, which models the situation
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when there exists a fixed LOS component in the received nghrafact, for the modeling of fading channels
in practical communication systems, the Nakagamdistribution often gives the best fit to both urban and
indoor multipath propagation.

For a wireless link over fading channel, the study of its citgehas always been of interest. In literature,
the Shannon(ergodig capacitywith the channel side information (CSI) at a receiver for aprage power
constrainP is given in [2]. In this case, the transmission data rate dherchannel is constant regardless of
instantaneous SNR at the receiver. The capacity-achiesodg has to be sufficiently long so that a received
codeword is affected by all possible fading states. Besttlesergodic capacity, theutage capacitydefines
the maximal (fixed) rate achievable in all non-outage stafiéls asymptotically small error probability [3],]4].
This capacity usually applies to slowly-varying channelseve instantaneous SNR is constant over a number
of transmission slots and changes to a new value followintpitefading distribution. Moreover, in[5], the
authors considered the capacity of fading channels with gifbrmation at both encoder and decoder with
optimal water filling power allocation. In[6], it providedha@xhaustive review on the information-theoretic and
communication features of fading channels and derived dpadties of fading channels with and without the
channel side information.

Furthermore, from a viewpoint of cross layer design mettiod,authors in[[[7] investigated fading channels
in terms of the high layer Qos parameters. According to thgelaeviation theory and Legendre transformation,
they proposed a link-layer channel model ternedféctive capacitfEC) which specifies the maximum trans-
mission data rate supported by a fading channel under ne@as metrics, such as the maximum delay and
the buffer overflow probability. However, their result inves a lot of inevitable approximation, which limits
its application. Consequently, to facilitate the applimatof EC theory, the authors|[8].][9] derived the close
form of EC function for both correlated Rayleigh and Nakagamfading channels with the consideration
of Doppler effect and presented the error analysis of thesorement-based estimation algorithm of the EC
function.

In this paper, we first investigate the service procggs of thei.i.d. fading channels with the CSI available
at the receiver. Here, the service procggs) is defined as the integral of the instantaneous channel itgpac
over timet. As the Nakagamin fading model is widely used and includes several classiinfadnodels
by differentm parameters, this paper is focused on the characteristiddakfigamim fading channels. For
such channels, the channel magnitude gain varies randastibving Nakagamim distribution, the service
processS(t) should also be a stochastic process. However, by using fimétety divisible law [10] and the

1K is the ratio between the power in the LOS component and theageenon-LOS multipath componenis [13]. F&r = 0 it is
Rayleigh fading, and folX = +oco it has no fading.
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Fig. 1. The transmission system model

CF (Characteristic Function) approach, we prove that theice processS(¢) is itself a deterministic linear
function of timet, i.e., S(t) = ¢, - t wherec}, is a constant determined by the fading parameteThen the
result is applied to three special cases of Nakaganiading channel, namely, the Rayleigh fading channel,
the Rician fading channel and the AWGN channel. Also, theesponding service rates are derived. Finally,
we prove that the time linearity nature 6f¢) maintains for all kinds of.i.d. fading channels more than the
Rayleigh, Rician and Nakagami fading. In terms of our arig)ysindicates in theory that there exists a channel
coding scheme such that a constant data rate can be suppgréed.i.d. fading channel with no queuing delay
in the viewpoint of application layer. Therefore, thied. fading channels have constant and stable transmission
ability, just like the AWGN channels.

In summary, traditionally the ergodic is only consideredoag statistic characteristic of fading channels.
However, it is proved in this paper that the ergodic capaisitynore than that. In faci,i.d. fading channels
have the deterministic ability to support a constant traféite ¢,, which is equal to the ergodic capacity.
Particularly, there are two points that should be notedstlyirthe deterministic time linearity of the service
process is related to the fluid traffic model on the large ticedes. That is to say, the traffic data is infinitely
divisible and we are interested in the channel performaree long periods rather than its performance on the
order of symbols. Compared with the time scale interestezglduration when channel gain is constant is very
short. Therefore, the channel can be treated as very fasigfalannel without loss of generality. However, the
duration when channel gain is constant still contains mdanoel uses so that tlg achievable coding scheme
can be realized by adapting coding rate according to thergHatondition. Secondly, what we are saying is
about the deterministic time linearity ¢f(¢) rather thanE[S(¢)] or @ Specifically, given an arbitrary time
to, one hasS(ty) is a constant equal to, - to instead of a random variable. And as varies, S(tg) is a
deterministic function of, instead of a stochastic process. However, the statemesits{l§(¢)] is a linear
function of ¢t and @ reduces to a constant are straightforward.

The rest of the paper is organized as follows. In Sediibn #,describe the system model, including the
fading channel model. The theoretical analysis is develapeSectior Il andIV. More specifically, we prove

the time-linearity of the channel service procesg) for i.i.d. Nakagimisn fading channels by using the

CF approach and the infinitely divisible law in Sectiod lllurthermore, we derive the corresponding linear
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Fig. 2. Characterization of the source traffic and channelise process

coefficients i.e., the constant service rafe Then, in Sectiofi IV, we show that the deterministic tinreekrity
nature exists for all kinds ofi.d. fading channels. Numerical results via Monte Carlo simatet provided
in Sectior[Y to confirm the time-linearity nature 6{¢). This section also provides some related discussions.

Finally, we conclude the paper in Section VI.

Il. SYSTEM MODEL

We consider an adaptive transmission model shown inJFigh&.sburce maintains a constant data fatend
the transmitter adapts the transmission K@te) according to the channel condition. The source traffic strea
and channel service ability are matched by a First In First GUFO) buffer. Let B(¢) denote the queuing
length in the buffer in nats at the mome&nand D(¢) denote the latency that the data arriving in the system at
the moment will suffer from, namely, the delay between its arrival tiraed the moment it has been served.

Next, we defineS(t) as the amount of service provided by the fading channel thgilmoment, namely,
the solid curve shown in Fidl 2, anfi(t) as the amount of actual utilized service of the channel uhél
momentt for the source traffic, namely, the dotted curve. Intuitiy¢he relationship among(t), D(t), S(t)
and S(t) is depicted in Figl2. Note that we hawt) < S(t) always satisfied. The reason is that, until any
momentt, the amount of actually provided service, i.§(,t), should always be jointly upper-bounded by the
amount of source trafficKt), and the potential amount of service which the channel cavige, namelyS(t).

By its physical meaningS(t) is given by

S(t) = /0 C(r)dr, (1)
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whereC'(7) is the instantaneous capacity of the time varying channgire 7.
Note that since the instantaneous capacity) is a stochastic process for> 0. Therefore,S(¢) is also a
stochastic process which is equivalent to the stochadigtal in the sense of zero mean-square error, based

on the stochastic calculus theory. That is, for any tin¥ 0, the following relation holds,

E((S(1) - / C(r)dr)?] = 0. @)

However, one amazing thing is that it will be proved tlit) has time-linearity nature which means its
profile is a line, other than certain generally recognizedreshown in Fig[R.

In particular, for the channel service procesg@) associated with the instantaneous channel capédty
mentioned above, we consider a continuous time Nakagarfd@eing channel with the stationary and ergodic
time varying channel gaig(t) and additive white Gaussian noise (AWGN]}t). For any moment,, the
channel gainy(to) is Nakagamim distributed and the corresponding power gain is denoteg(hy) = g°(to).

Form > % their probability density functiongp.d.f) are given by

Ao =25 T (32)
m _m mfymil —
p,y (7) - (FT) I‘(m) e, (Sb)

whereg(t) is independent of both the channel input process and any gtti¢ for ¢ # ¢/, and so isy(t). Here,

P, is the average received signal power of a receiver unitmistaway and’(-) is the Gamma function. Let

P, denote the average transmit power of the signal, Apdienote the noise power spectral dendity.is the
limited bandwidth of the received signal. Note that, withtnss of generality, letl and « denote the distance
between the transmitter and receiver and the path loss expomspectively. Then, the instantaneous received

SNR is given by

V() Pd™
SNR = ——— 4
WNy “)
and the corresponding instantaneous capacity of the fazliagnel innats is given by
_ () Prd™
C(t)y=Wln(1+ Ny ). (5)

In particular, form = 1, the Nakagamin distribution is reduced to the Rayleigh distribution, whis given

by
29 —g*
Py(g) = Hre T, (62)
Ta 1 =
Py = e (6b)
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_ (K+1)?

The Rician distribution can also be approximated by the aka-n distribution by settingn

2K+1 °
The Rician distribution in terms of parametiris given by
29(K +1 K +1)g?
P = g(P )exp[_K_( u )g ]
K(K +1
fo(2g\| FEEEL) g0, ™

where K = g—z is the ratio between the power in the LOS component and theageenon-LOS multipath
components.
Upon all of the preparation above, we will begin to analyze $krvice procesS(t) and study its property

next.

1. TIME-LINEARITY OF S(t) FORNAKAGAMI FADING CHANNELS

In this paper, we are interested in the statistic charatiesi of S(¢) and study some properties of such a
process by exploiting its Characteristic Function (CF)e@fically, for ani.i.d. Nakagamim fading channel,
we give the following theorem which is one of the main conttibns of the paper.

Theorem1: For an i.i.d. Nakagamin fading channel, the amount of service provided by the chiaduming
timet, namely,S(t), is a deterministic linear function of time i.e., S(t) = ¢, - t, wherec}, is a constant and

given by

%) PrPt L
o W B ymeteva 8
om F(m)/0 B Npae ¥ T DYy, ®)

where P, is the average received signal power of the sigmél.is the noise power spectral density] is the
received signal bandwidth; is the average transmit power anlblis the distance between the transmitter and
receiver. The functiol' (i) = [ t™~'e~"dt is the Gamma function.

First, note thatc}, is not the instantaneous capacity of the channel, nand&ly), which means that we
havec;, # dS(t)/dt. However, there does not exist any contradiction. Actuafly) is continuous and non-
differentiable in[0, ¢], just like the Brown motion process, which is an integratidra Gaussian process. It is
easy to understand since the signal obeying Nakagardistribution can be viewed as the square root of the
summation o2m squared independent Gaussian random variables. Henees fhé similar property as Brown
motion naturally.

To proveTheoreml, we first show thab(¢) is a Levy Process. Then, its CF is derived based on the irfinite

divisible law for the Levy process. With the CF, the theoresn de proved then.

A. Review of the Levy Process and Infinitely Divisibility

We first review the definition oEevy process and infinitely divisibilitgs below.

Definition 1 [10]: X = {X(¢)}:>0 is said to be d.evy processf
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1) X has independent increments.

2) X(0)=0 is satisfied almost surely.

3) X is stochastically continuous, i.e., fer> 0, X (¢ + s) — X (s) Ly 0ast—o.

4) X is time homogeneous, i.e., for> 0, £L(X (t 4+ s) — X (s)) does not depend on> 0.

5) X is Right Continuous with Left Limits (RCLL) almost surely.

Definition 2 [12]: a probability distributiont” of a random variable on the real lineiigfinitely divisible if,
for every positive integen, there exists i.i.d. random variables\y, ..., X,, whose sum is equivalent t& in
distribution. Note that these random variables do not have to obey the same probabilityilition asX.

According to the definition oEevy process and infinitely divisibilitthe condition of the infinitely divisibility
for a Levy process is given by the following proposition.

Proposition 1: For a random vectorY” in R?, the following three statements are equivaléfiheorem 1.3

[10)).

1) Y is infinitely divisible.

2) o1+ +Y,,, %y for somei.i.d. array (Ys, j)n>1,r.>j>1, Wherer, — oo.

3) VY - X, for some Levy procesX in RY.

Next, we shall show that the service procés§t)};> satisfies the five conditions given Definition1 and
it is a Levy process. First, for the channel magnitude ggit) which isi.i.d. in our discussion, the service
processS(t) has independent increments. Second, the condKi@) = 0 is easily satisfied. Third, it is clear
that S(t) is stochastically continuous due to the conditi&iit + s) — X (s) = f;” C(r)dr Ly 0ast — 0.
Besides,S(¢) is also time homogeneous since its componénts) is i.i.d. over 7. Finally, it is easy to see
that S(¢) is Right Continuous with Left Limits (RCLL), since there i® reap inS(¢) and for anyt > 0, S(t)
exists.

Thus, according tdroposition1, the distribution ofS(¢) is infinite divisible and, for any. > 0, S(¢) can
be decomposed into the sum wofi.i.d. random variables.

Now, for sufficiently largelV, we define the time resolutiohT = % and obtain the sampless,, = C(t,,) At

wheret,, = nAr,n=20,1,--- ,N. Then, we get
N N
S(t) = I}gnoo P C(tn)At = J\}E)noo ;Asnv 9)

whereAs,, arei.i.d. random variables by the same probability distribution,akhiill be given in SectiofTII-B.
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B. Derivation of the CDF of”(¢) and As,,

To develop the CF of’(¢t) and As,,, we need to derive their Cumulative Distribution Functi@DE) first.

More specifically, for the CDF o’(¢), it is given by
Fo(e) = P{C(t) < ¢}

W Nod® .
B - 1) (10)

W Ngd® <
Wi (e )

= P{y(t) <

m

_ 1 m. ., ,ymfle— P"’Yd')/

“ 1 7,
and, for the CDF ofAs,,, it is given by
Fas, (As) = P{As,, < As}

As
= Fo(x) (11)

“ e 7",

According to the CDF expression dfs,, given in Eqni(Ill), we introduce the following proposition.

A

%(t)da(ewi,. -1)
— —m

A leT P gy,

Proposition 2: For an arbitrary € > 0, the equation below

lim P{As, >¢c} =0 (12)
N—o0
is always satisfied.
Proof: According to the CDF ofAs,, in Eqn.[11), we get
i P{As, > ¢}
= lim {1 — Fas,(e)}
N—o0
Lo WNod® (s 1) (13)
= lim {1— —— (=)™ ' m-le=#74
Am =y B e v}
=0.

Thus, no leap exists at any timefor S(¢), which indicates thatS(t) is continuous in mean-square right

continuous with left limits[J

Until now, with the CDF ofAs,,, we can derive the CF af(¢) in Section1II-C.

C. Derivation of the CF of5(¢)
First,let us calculate the CF dfs,, as follows,

pas, () = Be™]

. / ¢ 23qF, (As)
0
- m a 14
(i)r(l ) mlg]}[:)d )m /oo xiAWAT(xil)m—lef VXTA}‘,’td (zfl)dx ( )
rit 1
1 Nod® o . . _ mWNd®
(:b)r(m) mV;jPZd—)m/ (y+ 1)V ATy e TR Yay,
T 0
DRAFT
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where some variable substitutions are used,:e.g.eﬁ in (a) andy = « — 1 in (b), respectively. Note that

i = +/—1 is the imaginary unit and'(m fo tm—le~tdt is the Gamma Function.
Next, asN — oo, we have the foIIowmg result.

o o . mW Ngd®
1 mW Nod )m/ (y + 1)AWATym—1,- o Ydy
0

lim
VY T(m)' PP

1 Nod® e ) . _mWNgd®
mW Nod )m/ (y + )PWATym-1 = Yy
0

A v TR, v
1 mW Nod® o0 1 _mvgz\;gday 15
_ m m Ny (15)
T(m)' PP, ) /0 yooe W
(i) 1 mWNOdO‘ m PPy

T B ) Gavmea) 1M
:17
where the variable substitution= %ﬁ‘iday is used in (a).

With the CF ofAs,,, to derive the CF of5(¢), we first give the following lemma.

Lemmal: The following item

1 mWNOdO‘ o IAWA 1 _ mWNpd®
m 1 TAWAT, ™M Py Dt yd —1

is an infinitesimal of the same order withr, where At = %
Proof: To prove one is an infinitesimal of the same order with theeptive need to compute

1 (mWNgd f + 1)1/\WAT m—1 ,mV;TJ\;UYd Yy — 1
L L\ PPy 0 W Y € Y
AT—0 AT
— lim 1 (mWNon)m
B AT—0 F(m) PrPt
o . mW Ngd®
/ AW (y+ 1) Iy + Dy leT T P Vdy
0
a 1 W Nod*® _, _mWNgd®,
@ r(m)(mPP(z /\W/ n(y+1)y™ e PR Ydy
(b) PP m—1 _—z
= iAW 1 d
a / MW N © TV e Tz
9 W, (16)

where, in (a) we apply the L'Hopital’s rule and in (b), we useiable substitutions = My and in (c),

1 e P.P, 1
=— In(——F———2z+1)2" “dz. 17
o () /0 n(mWNOdO‘Z +1)2" e *dz a7)

If ¢q is finite, then the limit in (b) should also be finite and the gfris completed. This can be assured by
Lemma2. O

Lemma?2: ¢ is finite and its lower and upper bound are given by

PP,
< 18
a<c< T Node” (18)
whereI'(s,z) = [ t*"'e~!dt is the incomplete Gamma Function and- FF(Z” ﬁ) (g + 1)

Proof: It is easy to see thaty is a finite number if it is finitely lower and upper bounded.sBiy, for its

lower bound we have
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1 e P.P,
o —)/ In(——L— 24+ 1)2" e %dz
0

T(m) Jo — mWNod® "
ﬁF(m,l)ln( Vl;rjs;da +1)
=a

where (a) comes from the fact that> 1.

Similarly, for its upper bound we have

o ﬁ/{) ln(#f\zdaz +1)2" e ?dz
@ _1 > PP
—T'(m) Jg mWNyd®

P.P, T(m+1)

TmWNod®  T(m)
(b) PrPt
~ W Nyde’

where we have (&) by inequality( =2 + 1) < 5=z and (b) followsI'(m + 1) = mI'(m). Based

2.2 ez

(19b)

o . _ mW Ngd®
onLemmal andLemma2, it is assured tha(tﬁn)(%)m Jo- (y+ 1)AwaATym=le 7t Ydy —1) and

AT are of the same ordelr]

Finally, by using the properties given by {15) afd (IlI-C) liemmal, the CF ofS(¢) can be derived as

follows.

. 1 mWNyd®
_ m, 20
Alﬂo[r(m) =55 ) (20)

o0 . mW Ngd®
/ (y+ 1)1/\WATym—1e— oy ydy]ALT
0

(@)

= [1+iAWeoAT + o( AT)] 57

lim

AT—0
(:b)ei/\Wcot

where in (a), we use the property given by (Ill-C) and (b)duals the known resulim,_,(1 4 kz)* = e*.

Besides, the relationship between the moments of a randomabl@X and its CFpx ()\) is given by

E(X) = %sﬁlx()\)h:o, (21a)
B(X?) = Z%@"X()\)h:o- (21b)
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Then we get the following numerical characteristicsSgt) directly,

1
E(S(t) = ;‘Pls(t)()\ﬂ/\:o = Weot, (22a)
1
B(S%(t)) = Z.—2<P//S(t)(>\)|A:0 = [Weot]?. (22b)
By using the results given by (22a) ad (P2b), the variancg(of is

D(S(t)) = E(S*(t)) — E*(S(t)) = 0. (23)

It is clear that for any given, S(¢) is a random variable with zero variance, namely,

S(t) = E[S(t)] = Weot. (24)

This means that it is a deterministic linear functiontdh accord with the expression i (24), whergis
given by [17) and the linear coefficieay, is given by [8) inTheoreml. Up to now, we complete the proof of
Theoreml.

Next, based offheoreml, we investigate three special cases of Nakaganfding channel, namely, = 1,

m = (f;i)f andm = oo, which corresponds to the Rayleigh fading channel, theaRi¢ading channel and

the channel with no fading, respectively.

Firstly, for thei.i.d. Rayleigh fading channel, we have the following corollary.

Corollary 1: For an i.i.d. Rayleigh fading channel, the service procgss) is a deterministic linear function
of timet¢ given byS(t) = ¢, - t, wherec?, is a constant and given by

wnNod® VW Nod“
ro= PrP Ej
Cra=We ( 7P,

); (25)

whereP, is the average received signal powsf, is the noise power spectral density; is the received signal
bandwidth, P, is the average transmit power antlis the distance between the transmitter and receiver. The

function

) +oo —x 1 12 13
El(ac):/ ex d$:n+lnx—x+§%—g%+

is the exponential integration where tlkiler’s constant isn = fﬁoo e

x
x

dx = 0.577215655.

Proof: It is known that Rayleigh distribution is a special case @kiigami distribution form = 1. Then,
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according to[(B), we have

* ok
Cra = lem:1

w & P.P; 1
([ (— D)y e Yy Y
(oo | gy + D™ e

(a) S _
2w [ o1 1)evd
/O H(WN0 oy T e vy
o0 26
® PP / 7y 1 (26)
0

= ———dy
[ P, Py
W Nod Tl

oo —z
(c) W Ngd® e
= We PP dz

WNgd® 2
Pr Py

wnod® WV Nod®
= — Pr Py E
We i( 7D, ),

where (a) followsl'(1) = 1. We apply the integration by parts in (b) and variable stilttin z = y +

PPy
W Node

in (c). O
Secondly, for the.i.d. Rician fading case, we have the following corollary.
Corollary 2: For an i.i.d. Rician fading channel, the service procéts) is a deterministic linear function

of timet given byS(t) = ¢, - t, wherec?, is a constant and given by

% w o P.P; K%
Cri = S RTD2. (e oy + Dy=ire Ydy, (27)
F((2K+)1 ) (2K+)1 W Nod

where Rician parametek = ;—22 is the ratio between the power in the LOS component and thexgeeon-
LOS multipath componentd/, is the noise power spectral densiy] is the received signal bandwidtl®; is

the average transmit power andlis the distance between the transmitter and receiver.

_ (K+1)?

For this corollary, we simply substitute = 5

in (8) and this complets the proof. Note that we did not
get an explicit closed form expression here. Some upper@merlbounds may be needed. We shall discuss it
in the future.

Furthermore, for the case when there is no fading, we havéotlmving corollary.

Corollary 3: For an i.i.d. Nakagamin fading channel with negligible fading, i.em — oo, the service
processS(t) is a deterministic linear function of timegiven byS(t) = ¢ - t, wherec’ is a constant and

given by
P.P, )
W Node””

¢t =Win(l + (28)

where P, is the average received signal powe¥, is the noise power spectral densit; is the average

transmit power andi is the distance between the transmitter and receiver.
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Proof: Let m — oo in (8), we have

* *
Cho = Cplm—oo

. W o PrPt -1 —
mesoo I'(m) /0 n(mWNodO‘y Ty ey

(a) PPt 1 o
< lim Whh(——————— Ly leTVd 1 29
- ml—r>noo n(mWN()da F(m) /0 vy ¢ vt ) ( )

P.P, 1
= lim Wl
mgnoo Il( WN()dO‘ mF(m)
P.P, )
W Node’’

where (a) follows the Jensen’ inequality and the uncﬂho(nw%y + 1) is an concave function of and

C(m+1)+1)

= Win(l+

(b) follows I'(m + 1) = mI'(m).

However, we can see frori (8b) that

lim p{™ =6(y - P,). (30)

m— 00

It is easy to understand because no fading exists wher oo and the channel power gain is a constant
/P, between the transmitter and the receiver. Hence, in (d19)f (Be equality holds. O
It is worthy to be noted that this result can be predicateditinely in AWGN channel, which further comfired

our developed theory ifheoreml.

IV. TIME-LINEARITY OF GENERAL i.i.d. FADING CHANNELS

In this section, we will show that the deterministic timedarity is true for arbitrary.i.d. fading channels.

Assume ari.i.d. fading channel with its power gain(t) following distributionp.(y). Let C(t) andS(t) be
the instantaneous channel capacity and the service progedsave the following theorem.

Theorem 2: For an arbitrary i.i.d. fading channel with itg.d.f. p,(y), the service proces$(t) is a

deterministic linear function of time given byS(t) = c; - t, wherecj, is a constant and given by

* o P
cp = W/O ln(WN;day + 1)py(y)dy, (31)

where Ny is the noise power spectral density] is the received signal bandwidtl?; is the average transmit
power andd is the distance between the transmitter and receiver.
The proof of Theorem2 is similar to that ofTheoreml and its sketch is provided below.

Firstly, we get the CDF of’(t) and As,, by
WNod® (v
Fe(o = | Py ()d, (322)
0

Pac,(89)= | po (7). (32b)

Then we derive the CF oAs,,.
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s, (A) = B(e?)

(i)/ €i)\ASdFAsn (AS) (33)
0
W Nod* [ . W Nod®
® Whod? / erwary, NI g,
Pt 1 Pt

where in (b) we apply the variable substitution= WA

Tt

From the step (a) in[(33), it is easy to see thata, .opas, (A) = 1. With the similar computational

procedure ad(Il[-C), we have

AT*}O AT

(et + 1 (0)dy. (34)

Finally, the CF ofS(t) can be derived as
(V) = Jim [oas, (V)Y

= lim [pa,, (V)37

AT—0

= lim [1+i)\WAT/ In(
0

AT—0

) (35)
Y+ 1)py(y)dy + o(AT)] 27

WN de
. e t
eXP[MWt/O 1H(WN0day + Dpy(y)dyl.

According to [21), we geE(S(t)) = c;, -t and D(S(t)) = 0, wherec; is given by [31). This means that

S(t) = ¢, -t and completes the proof dheorem2.
Up to now, we have proved that the deterministic time-liitgamature exists for all kinds of.i.d. fading

channels and also derived the linear coefficients i.e., dnetant service rate), for all kinds of fading channels.

V. NUMERICAL RESULTS AND DISCUSSIONS

To demonstrate the time-linearity of the channel serviae@ssS(t), we consider a point to point commu-
nication system over ahi.d. fading channel, as shown in Figl 1, where the average LOSvest@ower P,
is 3dB, the system bandwidtihKHz and transmitting power i85dBW . Suppose that the distance between
the transmitter and the receiveri800m and the pathloss exponent4sIn particular, another very important
parameter which will greatly affect the simulation is thengding interval, i.e.,A7r. As shown previously,
Theoreml is assured only i\t = ¢/N — 0. Therefore, the sampling interval should be as small asilgess
or say, for certain fixed observation duratigrthe number of samples, i.e\, should be as large as possible.
We select the sampling interval 8s s namely, N > 107 samples in one second, which is in good agreement
with the parameter in practical communication systems.

We consider theé.i.d. Rayleigh fading channel and measure the amount of sef/iteby statistics with an
observation duration of = 5s and run it independently fa500 rounds. It is observed in Fif] 3 that for certain

fixed moment such as= 5s, the variance of5(t) is almost zero which means that it is deterministic linear
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Fig. 3. The Rayleigh channel service process S(t) v.s. numbsimulation round. (Observation duratien= 5s for each round.)
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Fig. 4. The Rayleigh channel service process S(t) v.s. vagen time

function of ¢. The simulation result also fits the, by (28) perfectly. It can be further observed in the detail
when the vertical coordinate axis is zoomed in that therestilesmall fluctuations. However, the maximum
deviation ratio ofS(t) from the average value in all of the simulation rounds is kes®2.6 x 10~> and will
decrease when smalléxr is used. Fidll4 illustrates the channel service proc&ss v.s. observation time. It
confirms the deterministic time-linearity of the channels= processs(t) for each timet, which is consistent
with our theoretical analysis, hamely, the amount of chhsaevice increases linearly with time

In Fig[d, we provide the, v.s. Nakagami parameter andc’; v.s. Rician parametek. As is known, the
Nakagami channel withn = 1 and the Rician channel witk' = 0 both reduce to the Rayleigh channel. It
is observed in Figl15 that the',|,,.—1 = ;| k=0 and they fit the service provided by a Rayleigh channel in
5 seconds, i.e.5(t)|;=5, which is shown in Fig[]3. The AWGN channel capacity,,» with a average LOS
received powerPr is also presented in Fig] 5, and it can be seen thah dsr K) increases, the}, andc’,

increase accordingly and will convergencectg = cqugn, Which confirmsCorollary 2 andCorollary 3.
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By these simulation results, the deterministic time-litgaof the extensively investigatedi.d. fading
channels is verified once again. In the paps(t) is defined as a stochastic integration and is investigated
in the sense of mean square. Therefore, at any tintg¢) is a constant other than a random variable, so is
&. To make the problem more trackable, we adopt in the papemplssy method to approximate it, i.e.,
S(t) = imy oo Zf’ C(t,)At. During a sampling time, it is assumed that the channel gairains unchanged,
which is a commonly used processing method for integratidhen the sampling interval goes to zero, one
can get the integration value. More importantly, such atitmgawill not change the inherent characteristic of
S(t). Besides, we adopt the blocking fading concept for the soitplof expression. This is similar to the
approximation of the Brown motion by random walking, whehbthe two items are stochastic processes.
However, it is really a lucky thing and it can be proved in thsper that the variance of the independent
increment procesS(t) is zero, i.e.,.D[S(t)] = 0. This is totally different fromD[E[S(¢)]] = 0 or D[@] =0
and is a new result. As mentioned previously, there still ssme points to be noted. The channel service
considered is a concept of large time scales other than thiagfgproperty in small scales. In fact, it holds
when the ratio of the observation time and the sampling ti@g (s sulfficiently large. And even for a block
fading channel, the result holds if the observation titmis sufficiently large. However, if one investigates
the channel service on smaller time scales, some physigat tl@chnologies should be used to adapt to the
instantaneous channel fluctuations, namely the fadingackeristic of the channel. To achieve this goal, buffers
must be used at the transmitter. In this way, data can bedstorthe buffer at the transmitter when the channel

is in bad condition. For this topic, we have obtained somalte®n the channel utilization and buffer overflow

probability, which will be presented in our following works
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V1. CONCLUSIONS

This work introduced a new picture @f.d. fading channels from the viewpoint of the cross layer. That i
we proved that the channel service proc#$s) of ani.i.d. fading channel is a deterministic linear function
of time ¢, by using the CF approach based on the infinitely divisible Bhis work provides some significant
insights in both theory and applications. First, differotn conventional ergodic capacity or outage capacity, it
asserts that thiei.d. fading channel has a deterministic transmission abilityother words, there exists a coding
scheme such that the receiver can decode with zero erroalpitityp, if the transmitter maintains a constant data
rate no more thany, in the point of view from application layer. Second, in opig@s$o conventional opinions,
this work asserts that the high layer queuing delay is adstrde zero as long as the transmission data rate
is less thanc;. Otherwise, the queuing delay will be upper-bounded, whécetermined by the difference

between the transmission data rate apd
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