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Abstract

In the paper, we study the service processS(t) of an independent and identically distributed (i.i.d.) Nakagami-

m fading channel, which is defined as the amount of service provided, i.e., the integral of the instantaneous

channel capacity over timet. By using the Characteristic Function (CF) approach and theinfinitely divisible law,

it is proved that, other than certain generally recognized curve form or a stochastic process, the channel service

processS(t) is a deterministic linear function of timet, namely,S(t) = c∗m ·t wherec∗m is a constant determined

by the fading parameterm. Furthermore, we extend it to generali.i.d. fading channels and present an explicit

form of the constant service ratec∗p. The obtained work provides such a new insight on the system design of

joint source/channel coding that there exists a coding scheme such that a receiver can decode with zero error

probability and zero high layer queuing delay, if the transmitter maintains a constant data rate no more thanc∗p.

Finally, we verify our analysis through Monte Carlo simulations.

Index Terms

i.i.d. fading channels; Nakagami-m fading; channel service process; time linearity.

I. I NTRODUCTION

In a wireless communication system, signal from a transmitter usually travels over multiple reflective,

diffracted and scattered paths to a receiver. As a result, the received signal may fluctuate violently and

the receivedsignal to noise ratio(SNR) varies randomly over time. This phenomenon is referred to as the

multipath propagation. In particular, when these multipath signals naturally arrived at the receiver, the fading

usually occurs, which is characterized by Rayleigh, Rician, or the Nakagami-m fading models. In general, the

Nakagami-m fading [1] includes a wide range of multipath channels via adjusting parameterm. For instance,

the Nakagami-m distribution includes the one-sided Gaussian distribution (m = 1/2), which corresponds to the

highest amount of multipath fading scenario. The Rayleigh distribution is also included by settingm = 1, which

is most applicable when there is no dominant propagation along the line of sight (LOS) between a transmitter

and the receiver. Moreover, if one takes(K+1)2

2K+1 as the value ofm, i.e., m = (K+1)2

2K+1 , then the Nakagami-m

distribution reduces approximately to the Rician distribution with parameterK, which models the situation

This paper has been published onIEEE Trans. Wireless Commun., May, 2012.
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when there exists a fixed LOS component in the received signal1. In fact, for the modeling of fading channels

in practical communication systems, the Nakagami-m distribution often gives the best fit to both urban and

indoor multipath propagation.

For a wireless link over fading channel, the study of its capacity has always been of interest. In literature,

the Shannon(ergodic) capacitywith the channel side information (CSI) at a receiver for an average power

constrainP is given in [2]. In this case, the transmission data rate overthe channel is constant regardless of

instantaneous SNR at the receiver. The capacity-achievingcode has to be sufficiently long so that a received

codeword is affected by all possible fading states. Besidesthe ergodic capacity, theoutage capacitydefines

the maximal (fixed) rate achievable in all non-outage stateswith asymptotically small error probability [3], [4].

This capacity usually applies to slowly-varying channels where instantaneous SNR is constant over a number

of transmission slots and changes to a new value following certain fading distribution. Moreover, in [5], the

authors considered the capacity of fading channels with side information at both encoder and decoder with

optimal water filling power allocation. In [6], it provided an exhaustive review on the information-theoretic and

communication features of fading channels and derived the capacities of fading channels with and without the

channel side information.

Furthermore, from a viewpoint of cross layer design method,the authors in [7] investigated fading channels

in terms of the high layer Qos parameters. According to the large deviation theory and Legendre transformation,

they proposed a link-layer channel model termedeffective capacity(EC) which specifies the maximum trans-

mission data rate supported by a fading channel under certain Qos metrics, such as the maximum delay and

the buffer overflow probability. However, their result involves a lot of inevitable approximation, which limits

its application. Consequently, to facilitate the application of EC theory, the authors [8], [9] derived the close

form of EC function for both correlated Rayleigh and Nakagami-m fading channels with the consideration

of Doppler effect and presented the error analysis of the measurement-based estimation algorithm of the EC

function.

In this paper, we first investigate the service processS(t) of the i.i.d. fading channels with the CSI available

at the receiver. Here, the service processS(t) is defined as the integral of the instantaneous channel capacity

over time t. As the Nakagami-m fading model is widely used and includes several classic fading models

by differentm parameters, this paper is focused on the characteristics ofNakagami-m fading channels. For

such channels, the channel magnitude gain varies randomly following Nakagami-m distribution, the service

processS(t) should also be a stochastic process. However, by using the infinitely divisible law [10] and the

1K is the ratio between the power in the LOS component and the average non-LOS multipath components [13]. ForK = 0 it is

Rayleigh fading, and forK = +∞ it has no fading.
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Fig. 1. The transmission system model

CF (Characteristic Function) approach, we prove that the service processS(t) is itself a deterministic linear

function of timet, i.e.,S(t) = c∗m · t wherec∗m is a constant determined by the fading parameterm. Then the

result is applied to three special cases of Nakagami-m fading channel, namely, the Rayleigh fading channel,

the Rician fading channel and the AWGN channel. Also, the corresponding service rates are derived. Finally,

we prove that the time linearity nature ofS(t) maintains for all kinds ofi.i.d. fading channels more than the

Rayleigh, Rician and Nakagami fading. In terms of our analysis, it indicates in theory that there exists a channel

coding scheme such that a constant data rate can be supportedby ani.i.d. fading channel with no queuing delay

in the viewpoint of application layer. Therefore, thei.i.d. fading channels have constant and stable transmission

ability, just like the AWGN channels.

In summary, traditionally the ergodic is only considered asone statistic characteristic of fading channels.

However, it is proved in this paper that the ergodic capacityis more than that. In fact,i.i.d. fading channels

have the deterministic ability to support a constant trafficrate c∗m, which is equal to the ergodic capacity.

Particularly, there are two points that should be noted. Firstly, the deterministic time linearity of the service

process is related to the fluid traffic model on the large time scales. That is to say, the traffic data is infinitely

divisible and we are interested in the channel performance over long periods rather than its performance on the

order of symbols. Compared with the time scale interested, the duration when channel gain is constant is very

short. Therefore, the channel can be treated as very fast fading channel without loss of generality. However, the

duration when channel gain is constant still contains many channel uses so that thec∗p achievable coding scheme

can be realized by adapting coding rate according to the channel condition. Secondly, what we are saying is

about the deterministic time linearity ofS(t) rather thanE[S(t)] or S(t)
t

. Specifically, given an arbitrary time

t0, one hasS(t0) is a constant equal toc∗p · t0 instead of a random variable. And ast0 varies,S(t0) is a

deterministic function oft0 instead of a stochastic process. However, the statements that E[S(t)] is a linear

function of t and S(t)
t

reduces to a constant are straightforward.

The rest of the paper is organized as follows. In Section II, we describe the system model, including the

fading channel model. The theoretical analysis is developed in Section III and IV. More specifically, we prove

the time-linearity of the channel service processS(t) for i.i.d. Nakagimi-m fading channels by using the

CF approach and the infinitely divisible law in Section III. Furthermore, we derive the corresponding linear
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Fig. 2. Characterization of the source traffic and channel service process

coefficients i.e., the constant service ratec∗m. Then, in Section IV, we show that the deterministic time-linearity

nature exists for all kinds ofi.i.d. fading channels. Numerical results via Monte Carlo simulations provided

in Section V to confirm the time-linearity nature ofS(t). This section also provides some related discussions.

Finally, we conclude the paper in Section VI.

II. SYSTEM MODEL

We consider an adaptive transmission model shown in Fig. 1. The source maintains a constant data rateR and

the transmitter adapts the transmission rateC(t) according to the channel condition. The source traffic stream

and channel service ability are matched by a First In First Out (FIFO) buffer. LetB(t) denote the queuing

length in the buffer in nats at the momentt andD(t) denote the latency that the data arriving in the system at

the momentt will suffer from, namely, the delay between its arrival timeand the moment it has been served.

Next, we defineS(t) as the amount of service provided by the fading channel untilthe momentt, namely,

the solid curve shown in Fig. 2, and̃S(t) as the amount of actual utilized service of the channel untilthe

momentt for the source traffic, namely, the dotted curve. Intuitively, the relationship amongB(t), D(t), S̃(t)

andS(t) is depicted in Fig. 2. Note that we havẽS(t) ≤ S(t) always satisfied. The reason is that, until any

momentt, the amount of actually provided service, i.e.,S̃(t), should always be jointly upper-bounded by the

amount of source traffic (Rt), and the potential amount of service which the channel can provide, namely,S(t).

By its physical meaning,S(t) is given by

S(t) =

∫ t

0

C(τ)dτ , (1)

September 28, 2021 DRAFT
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whereC(τ) is the instantaneous capacity of the time varying channel attime τ .

Note that since the instantaneous capacityC(t) is a stochastic process fort ≥ 0. Therefore,S(t) is also a

stochastic process which is equivalent to the stochastic integral in the sense of zero mean-square error, based

on the stochastic calculus theory. That is, for any timet ≥ 0, the following relation holds,

E[(S(t)−
∫ t

0

C(τ)dτ )2] = 0. (2)

However, one amazing thing is that it will be proved thatS(t) has time-linearity nature which means its

profile is a line, other than certain generally recognized curve shown in Fig. 2.

In particular, for the channel service processS(t) associated with the instantaneous channel capacityC(t)

mentioned above, we consider a continuous time Nakagami-m fading channel with the stationary and ergodic

time varying channel gaing(t) and additive white Gaussian noise (AWGN)n(t). For any momentt0, the

channel gaing(t0) is Nakagami-m distributed and the corresponding power gain is denoted byγ(t0) = g2(t0).

For m ≥ 1
2 , their probability density functions(p.d.f) are given by

pmg (g) = 2(
m

Pr

)
m g2m−1

Γ(m)
e

−mg2

Pr , (3a)

pmγ (γ) = (
m

Pr

)m
γm−1

Γ(m)
e

−mγ
Pr , (3b)

whereg(t) is independent of both the channel input process and any other g(t′) for t 6= t′, and so isγ(t). Here,

Pr is the average received signal power of a receiver unit distance away andΓ(·) is the Gamma function. Let

Pt denote the average transmit power of the signal, andN0 denote the noise power spectral density.W is the

limited bandwidth of the received signal. Note that, without loss of generality, letd andα denote the distance

between the transmitter and receiver and the path loss exponent, respectively. Then, the instantaneous received

SNR is given by

SNR =
γ(t)Ptd

−α

WN0
, (4)

and the corresponding instantaneous capacity of the fadingchannel innats is given by

C(t) = W ln(1 +
γ(t)Ptd

−α

WN0
). (5)

In particular, form = 1, the Nakagami-m distribution is reduced to the Rayleigh distribution, which is given

by

prag (g) =
2g

Pr

e
−g2

Pr , (6a)

praγ (γ) =
1

Pr

e
−γ
Pr . (6b)

September 28, 2021 DRAFT
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The Rician distribution can also be approximated by the Nakagami-m distribution by settingm = (K+1)2

2K+1 .

The Rician distribution in terms of parameterK is given by

p
ri
g =

2g(K + 1)

Pr

exp[−K −
(K + 1)g2

Pr

]

I0(2g

√

K(K + 1)

Pr

), g ≥ 0, (7)

whereK = s2

σ2 is the ratio between the power in the LOS component and the average non-LOS multipath

components.

Upon all of the preparation above, we will begin to analyze the service processS(t) and study its property

next.

III. T IME-L INEARITY OF S(t) FOR NAKAGAMI FADING CHANNELS

In this paper, we are interested in the statistic characteristics ofS(t) and study some properties of such a

process by exploiting its Characteristic Function (CF). Specifically, for an i.i.d. Nakagami-m fading channel,

we give the following theorem which is one of the main contributions of the paper.

Theorem1: For an i.i.d. Nakagami-m fading channel, the amount of service provided by the channel during

time t, namely,S(t), is a deterministic linear function of timet, i.e.,S(t) = c∗m · t, wherec∗m is a constant and

given by

c∗m =
W

Γ(m)

∫ ∞

0

ln(
PrPt

mWN0dα
y + 1)ym−1e−ydy, (8)

wherePr is the average received signal power of the signal.N0 is the noise power spectral density,W is the

received signal bandwidth,Pt is the average transmit power andd is the distance between the transmitter and

receiver. The functionΓ(m) =
∫∞

0
tm−1e−tdt is the Gamma function.

First, note that,c∗m is not the instantaneous capacity of the channel, namely,C(t), which means that we

havec∗m 6= dS(t)/dt. However, there does not exist any contradiction. Actually, S(t) is continuous and non-

differentiable in[0, t], just like the Brown motion process, which is an integrationof a Gaussian process. It is

easy to understand since the signal obeying Nakagami-m distribution can be viewed as the square root of the

summation of2m squared independent Gaussian random variables. Hence, it has the similar property as Brown

motion naturally.

To proveTheorem1, we first show thatS(t) is a Levy Process. Then, its CF is derived based on the infinitely

divisible law for the Levy process. With the CF, the theorem can be proved then.

A. Review of the Levy Process and Infinitely Divisibility

We first review the definition ofLevy process and infinitely divisibilityas below.

Definition 1 [10]: X = {X(t)}t≥0 is said to be aLevy processif
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1) X has independent increments.

2) X(0)=0 is satisfied almost surely.

3) X is stochastically continuous, i.e., fors ≥ 0, X(t+ s)−X(s)
P−→ 0 as t → 0.

4) X is time homogeneous, i.e., fort ≥ 0, L(X(t+ s)−X(s)) does not depend ons ≥ 0.

5) X is Right Continuous with Left Limits (RCLL) almost surely.

Definition 2 [12]: a probability distributionF of a random variable on the real line isinfinitely divisible, if,

for every positive integern, there existsn i.i.d. random variablesX1, ..., Xn whose sum is equivalent toX in

distribution. Note that thesen random variables do not have to obey the same probability distribution asX .

According to the definition ofLevy process and infinitely divisibility, the condition of the infinitely divisibility

for a Levy process is given by the following proposition.

Proposition 1: For a random vectorY in R
d, the following three statements are equivalent(Theorem 1.3

[10]).

1) Y is infinitely divisible.

2) Yn,1 + · · ·+ Yn,rn

d−→ Y for somei.i.d. array (Yn,j)n≥1,rn≥j≥1, wherern → ∞.

3) Y
d
== X1 for some Levy processX in R

d.

Next, we shall show that the service process{S(t)}t≥0 satisfies the five conditions given inDefinition1 and

it is a Levy process. First, for the channel magnitude gaing(t) which is i.i.d. in our discussion, the service

processS(t) has independent increments. Second, the conditionS(0) = 0 is easily satisfied. Third, it is clear

that S(t) is stochastically continuous due to the conditionX(t + s) −X(s) =
∫ s+t

s
C(τ)dτ

P−→ 0 as t → 0.

Besides,S(t) is also time homogeneous since its componentsC(τ) is i.i.d. over τ . Finally, it is easy to see

thatS(t) is Right Continuous with Left Limits (RCLL), since there is no leap inS(t) and for anyt ≥ 0, S(t)

exists.

Thus, according toProposition1, the distribution ofS(t) is infinite divisible and, for anyn > 0, S(t) can

be decomposed into the sum ofn i.i.d. random variables.

Now, for sufficiently largeN , we define the time resolution∆τ = t
N

and obtain the samples∆sn = C(tn)∆t

wheretn = n∆τ, n = 0, 1, · · · , N . Then, we get

S(t) = lim
N→∞

N∑
n=0

C(tn)∆t = lim
N→∞

N∑
n=0

∆sn, (9)

where∆sn arei.i.d. random variables by the same probability distribution, which will be given in Section III-B.

September 28, 2021 DRAFT
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B. Derivation of the CDF ofC(t) and∆sn

To develop the CF ofC(t) and∆sn, we need to derive their Cumulative Distribution Function (CDF) first.

More specifically, for the CDF ofC(t), it is given by

FC(c) = P{C(t) < c}

= P{γ(t) < WN0d
α

Pt

(e
c
W − 1)}

=
1

Γ(m)
(
m

Pr

)m
∫ WN0dα

Pt
(e

c
W −1)

0

γm−1e−
m
Pr

γdγ,

(10)

and, for the CDF of∆sn, it is given by

F∆sn(∆s) = P{∆sn < ∆s}

= FC(
∆s

∆τ
)

=
1

Γ(m)
(
m

Pr

)m
∫ WN0dα

Pt
(e

∆s
W∆τ −1)

0

γm−1e−
m
Pr

γdγ.

(11)

According to the CDF expression of∆sn given in Eqn.(11), we introduce the following proposition.

Proposition 2: For an arbitrary ε > 0, the equation below

lim
N→∞

P{∆sn > ε} = 0 (12)

is always satisfied.

Proof: According to the CDF of∆sn in Eqn.(11), we get

lim
N→∞

P{∆sn > ε}

= lim
N→∞

{1− F∆sn(ε)}

= lim
∆τ→0

{1− 1

Γ(m)
(
m

Pr

)m
∫ WN0dα

Pt
(e

ε
W∆τ −1)

0

γm−1e−
m
Pr

γdγ}

=0.

(13)

Thus, no leap exists at any timet for S(t), which indicates thatS(t) is continuous in mean-square right

continuous with left limits.�

Until now, with the CDF of∆sn, we can derive the CF ofS(t) in Section III-C.

C. Derivation of the CF ofS(t)

First,let us calculate the CF of∆sn as follows,

ϕ∆sn(λ) = E[eiλ∆s]

=

∫

∞

0

e
iλ∆s

dF∆sn(∆s)

(a)
=

1

Γ(m)
(
mWN0d

α

PrPt

)m
∫

∞

1

x
iλW∆τ (x− 1)m−1

e
−

mWN0dα

PrPt
(x−1)

dx

(b)
=

1

Γ(m)
(
mWN0d

α

PrPt

)m
∫

∞

0

(y + 1)iλW∆τ
y
m−1

e
−

mWN0dα

PrPt
y
dy,

(14)

September 28, 2021 DRAFT
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where some variable substitutions are used, e.g.x = e
∆s

W∆τ in (a) andy = x− 1 in (b), respectively. Note that

i =
√
−1 is the imaginary unit andΓ(m) =

∫∞

0
tm−1e−tdt is the Gamma Function.

Next, asN → ∞, we have the following result.

lim
N→∞

1

Γ(m)
(
mWN0d

α

PrPt

)m
∫

∞

0

(y + 1)iλW∆τ
y
m−1

e
−

mWN0dα

PrPt
y
dy

= lim
∆τ→0

1

Γ(m)
(
mWN0d

α

PrPt

)m
∫

∞

0

(y + 1)iλW∆τ
y
m−1

e
−

mWN0dα

PrPt
y
dy

=
1

Γ(m)
(
mWN0d

α

PrPt

)m
∫

∞

0

y
m−1

e
−

mWN0dα

PrPt
y
dy

(a)
=

1

Γ(m)
(
mWN0d

α

PrPt

)m(
PrPt

mWN0dα
)mΓ(m)

=1,

(15)

where the variable substitutionz = mWN0d
α

PrPt
y is used in (a).

With the CF of∆sn, to derive the CF ofS(t), we first give the following lemma.

Lemma1: The following item

1

Γ(m)
(
mWN0d

α

PrPt

)m
∫ ∞

0

(y + 1)iλw∆τym−1e−
mWN0dα

PrPt
ydy − 1

is an infinitesimal of the same order with∆τ , where∆τ = t
N

.

Proof: To prove one is an infinitesimal of the same order with the other, we need to compute

lim
∆τ→0

1
Γ(m)

(mWN0d
α

PrPt
)m

∫

∞

0
(y + 1)iλW∆τym−1e

−
mWN0dα

PrPt
y
dy − 1

∆τ

= lim
∆τ→0

1

Γ(m)
(
mWN0d

α

PrPt

)m ×

∫

∞

0

iλW (y + 1)iλW∆τ ln(y + 1)ym−1
e
−

mWN0dα

PrPt
y
dy

(a)
=

1

Γ(m)
(
mWN0d

α

PrPt

)m · iλW

∫

∞

0

ln(y + 1)ym−1
e
−

mWN0dα

PrPt
y
dy

(b)
=

1

Γ(m)
· iλW

∫

∞

0

ln(
PrPt

mWN0dα
z + 1)zm−1

e
−z

dz

(c)
= iλWc0, (16)

where, in (a) we apply the L’Hôpital’s rule and in (b), we usevariable substitutionsz = mWN0d
α

PrPt
y and in (c),

c0 =
1

Γ(m)

∫ ∞

0

ln(
PrPt

mWN0dα
z + 1)zm−1e−zdz. (17)

If c0 is finite, then the limit in (b) should also be finite and the proof is completed. This can be assured by

Lemma2. �

Lemma2: c0 is finite and its lower and upper bound are given by

a ≤ c0 ≤ PrPt

WN0dα
, (18)

whereΓ(s, x) =
∫∞

x
ts−1e−tdt is the incomplete Gamma Function anda = Γ(m,1)

Γ(m) ln( PrPt

mWN0dα + 1).

Proof: It is easy to see thatc0 is a finite number if it is finitely lower and upper bounded. Firstly, for its

lower bound we have

September 28, 2021 DRAFT
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c0 =
1

Γ(m)

∫ ∞

0

ln(
PrPt

mWN0dα
z + 1)zm−1e−zdz

>
1

Γ(m)

∫ ∞

1

ln(
PrPt

mWN0dα
z + 1)zm−1e−zdz

(a)

≥ 1

Γ(m)

∫ ∞

0

ln(
PrPt

mWN0dα
· 1 + 1)zm−1e−zdz

=
1

Γ(m)
Γ(m, 1) ln(

PrPt

mWN0dα
+ 1)

d
=a,

(19a)

where (a) comes from the fact thatz ≥ 1.

Similarly, for its upper bound we have

c0 =
1

Γ(m)

∫ ∞

0

ln(
PrPt

mWN0dα
z + 1)zm−1e−zdz

(a)

≤ 1

Γ(m)

∫ ∞

0

PrPt

mWN0dα
z · zm−1e−zdz

=
PrPt

mWN0dα
Γ(m+ 1)

Γ(m)

(b)
=

PrPt

WN0dα
,

(19b)

where we have (a) by inequalityln( PrPt

mWN0dα z + 1) ≤ PrPt

mWN0dα z and (b) followsΓ(m+ 1) = mΓ(m). Based

on Lemma1 andLemma2, it is assured that( 1
Γ(m) (

mWN0d
α

PrPt
)m

∫∞

0 (y+1)iλw∆τym−1e−
mWN0dα

PrPt
ydy− 1) and

∆τ are of the same order.�

Finally, by using the properties given by (15) and (III-C) inLemma1, the CF ofS(t) can be derived as

follows.

ϕs(t)(λ) = E[eiλs(t)]

= lim
N→∞

[ϕ∆sn(λ)]
N

= lim
∆τ→0

[ϕ∆sn(λ)]
t

∆τ

= lim
∆τ→0

[
1

Γ(m)
(
mWN0d

α

PrPt

)m·
∫ ∞

0

(y + 1)iλW∆τym−1e−
mWN0dα

PrPt
ydy]

t
∆τ

(a)
= lim

∆τ→0
[1 + iλWc0∆τ + o(∆τ)]

t
∆τ

(b)
=eiλWc0t

(20)

where in (a), we use the property given by (III-C) and (b) follows the known resultlimx→0(1 + kx)
1
x = ek.

Besides, the relationship between the moments of a random variableX and its CFϕX(λ) is given by

E(X) =
1

i
ϕ′
X(λ)|λ=0, (21a)

E(X2) =
1

i2
ϕ′′

X(λ)|λ=0. (21b)
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Then we get the following numerical characteristics ofS(t) directly,

E(S(t)) =
1

i
ϕ′
S(t)(λ)|λ=0 = Wc0t, (22a)

E(S2(t)) =
1

i2
ϕ′′

S(t)(λ)|λ=0 = [Wc0t]
2. (22b)

By using the results given by (22a) and (22b), the variance ofS(t) is

D(S(t)) = E(S2(t)) − E2(S(t)) = 0. (23)

It is clear that for any givent, S(t) is a random variable with zero variance, namely,

S(t) = E[S(t)] = Wc0t. (24)

This means that it is a deterministic linear function oft in accord with the expression in (24), wherec0 is

given by (17) and the linear coefficientc∗m is given by (8) inTheorem1. Up to now, we complete the proof of

Theorem1.

Next, based onTheorem1, we investigate three special cases of Nakagami-m fading channel, namelym = 1,

m = (K+1)2

2K+1 andm = ∞, which corresponds to the Rayleigh fading channel, the Rician fading channel and

the channel with no fading, respectively.

Firstly, for the i.i.d. Rayleigh fading channel, we have the following corollary.

Corollary 1: For an i.i.d. Rayleigh fading channel, the service processS(t) is a deterministic linear function

of time t given byS(t) = c∗ra · t, wherec∗ra is a constant and given by

c∗ra = We
WN0dα

PrPt Ei(
WN0d

α

PrPt

), (25)

wherePr is the average received signal power,N0 is the noise power spectral density,W is the received signal

bandwidth,Pt is the average transmit power andd is the distance between the transmitter and receiver. The

function

Ei(x) =
∫ +∞

x

e−x

x
dx = η + lnx− x+

1

2

x2

2!
− 1

3

x3

3!
+ · · ·

is the exponential integration where theEuler’s constant isη =
∫ 0

+∞
e−x

x
dx = 0.577215655.

Proof: It is known that Rayleigh distribution is a special case of Nakagami distribution form = 1. Then,

September 28, 2021 DRAFT



12

according to (8), we have

c∗ra = c∗m|m=1

= { W

Γ(m)

∫ ∞

0

ln(
PrPt

mWN0dα
y + 1)ym−1e−ydy}|m=1

(a)
= W ·

∫ ∞

0

ln(
PrPt

WN0dα
y + 1)e−ydy

(b)
= W

PrPt

WN0dα

∫ ∞

0

e−y 1
PrPt

WN0dα y + 1
dy

(c)
= We

WN0dα

PrPt

∫ ∞

WN0dα

PrPt

e−z

z
dz

= −We
WN0dα

PrPt Ei(
WN0d

α

PrPt

),

(26)

where (a) followsΓ(1) = 1. We apply the integration by parts in (b) and variable substitution z = y+ PrPt

WN0dα

in (c). �

Secondly, for thei.i.d. Rician fading case, we have the following corollary.

Corollary 2: For an i.i.d. Rician fading channel, the service processS(t) is a deterministic linear function

of time t given byS(t) = c∗ri · t, wherec∗ri is a constant and given by

c∗ri =
W

Γ( (K+1)2

2K+1 )

∫ ∞

0

ln(
PrPt

(K+1)2

2K+1 WN0dα
y + 1)y

K2

2K+1 e−ydy, (27)

where Rician parameterK = s2

σ2 is the ratio between the power in the LOS component and the average non-

LOS multipath components,N0 is the noise power spectral density,W is the received signal bandwidth,Pt is

the average transmit power andd is the distance between the transmitter and receiver.

For this corollary, we simply substitutem = (K+1)2

2K+1 in (8) and this complets the proof. Note that we did not

get an explicit closed form expression here. Some upper and lower bounds may be needed. We shall discuss it

in the future.

Furthermore, for the case when there is no fading, we have thefollowing corollary.

Corollary 3: For an i.i.d. Nakagami-m fading channel with negligible fading, i.e.,m → ∞, the service

processS(t) is a deterministic linear function of timet given byS(t) = c∗∞ · t, wherec∗∞ is a constant and

given by

c∗∞ = W ln(1 +
PrPt

WN0dα
), (28)

wherePr is the average received signal power,N0 is the noise power spectral density,Pt is the average

transmit power andd is the distance between the transmitter and receiver.
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Proof: Let m → ∞ in (8), we have

c∗∞ = c∗m|m→∞

= lim
m→∞

W

Γ(m)

∫ ∞

0

ln(
PrPt

mWN0dα
y + 1)ym−1e−ydy

(a)

≤ lim
m→∞

W ln(
PrPt

mWN0dα
1

Γ(m)

∫ ∞

0

y · ym−1e−ydy + 1)

= lim
m→∞

W ln(
PrPt

WN0dα
1

mΓ(m)
Γ(m+ 1) + 1)

(b)
= W ln(1 +

PrPt

WN0dα
),

(29)

where (a) follows the Jensen’ inequality and the unctionln( PrPt

mWN0dα y + 1) is an concave function ofy and

(b) follows Γ(m+ 1) = mΓ(m).

However, we can see from (3b) that

lim
m→∞

p(m)
γ = δ(γ − Pr). (30)

It is easy to understand because no fading exists whenm → ∞ and the channel power gain is a constant

√
Pr between the transmitter and the receiver. Hence, in (a) of (29), the equality holds. �

It is worthy to be noted that this result can be predicated intuitively in AWGN channel, which further comfired

our developed theory inTheorem1.

IV. T IME-LINEARITY OF GENERAL i.i.d. FADING CHANNELS

In this section, we will show that the deterministic time-linearity is true for arbitraryi.i.d. fading channels.

Assume ani.i.d. fading channel with its power gainγ(t) following distributionpγ(γ). Let C(t) andS(t) be

the instantaneous channel capacity and the service process, we have the following theorem.

Theorem 2: For an arbitrary i.i.d. fading channel with itsp.d.f. pγ(γ), the service processS(t) is a

deterministic linear function of timet given byS(t) = c∗p · t, wherec∗p is a constant and given by

c∗p = W

∫ ∞

0

ln(
Pt

WN0dα
y + 1)pγ(y)dy, (31)

whereN0 is the noise power spectral density,W is the received signal bandwidth,Pt is the average transmit

power andd is the distance between the transmitter and receiver.

The proof ofTheorem2 is similar to that ofTheorem1 and its sketch is provided below.

Firstly, we get the CDF ofC(t) and∆sn by

FC(c) =

∫ WN0dα

Pt
(e

c
W −1)

0

pγ(γ)dγ, (32a)

F∆sn(∆s) =

∫ WN0dα

Pt
(e

∆s
W∆τ −1)

0

pγ(γ)dγ. (32b)

Then we derive the CF of∆sn.
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ϕ∆sn(λ) = E(eiλ∆sn)

(a)
=

∫ ∞

0

eiλ∆sdF∆sn(∆s)

(b)
=

WN0d
α

Pt

∫ ∞

1

xiλW∆τpγ(
WN0d

α

Pt

(x − 1))dx,

(33)

where in (b) we apply the variable substitutionx = ∆s
W∆τ

.

From the step (a) in (33), it is easy to see thatlim∆τ→0 ϕ∆sn(λ) = 1. With the similar computational

procedure as (III-C), we have

lim
∆τ→0

ϕ∆sn(λ) − 1

∆τ
= iλW

∫ ∞

0

ln(
Pt

WN0dα
y + 1)pγ(y)dy. (34)

Finally, the CF ofS(t) can be derived as

ϕS(t)(λ) = lim
N→∞

[ϕ∆sn(λ)]
N

= lim
∆τ→0

[ϕ∆sn(λ)]
t

∆τ

= lim
∆τ→0

[1 + iλW∆τ

∫ ∞

0

ln(
Pt

WN0dα
y + 1)pγ(y)dy + o(∆τ)]

t
∆τ

=exp[iλWt

∫ ∞

0

ln(
Pt

WN0dα
y + 1)pγ(y)dy].

(35)

According to (21), we getE(S(t)) = c∗p · t andD(S(t)) = 0, wherec∗p is given by (31). This means that

S(t) = c∗p · t and completes the proof ofTheorem2.

Up to now, we have proved that the deterministic time-linearity nature exists for all kinds ofi.i.d. fading

channels and also derived the linear coefficients i.e., the constant service ratec∗p, for all kinds of fading channels.

V. NUMERICAL RESULTS AND DISCUSSIONS

To demonstrate the time-linearity of the channel service processS(t), we consider a point to point commu-

nication system over ani.i.d. fading channel, as shown in Fig. 1, where the average LOS received powerPr

is 3dB, the system bandwidth1KHz and transmitting power is15dBW . Suppose that the distance between

the transmitter and the receiver is1000m and the pathloss exponent is4. In particular, another very important

parameter which will greatly affect the simulation is the sampling interval, i.e.,∆τ . As shown previously,

Theorem1 is assured only if∆τ = t/N → 0. Therefore, the sampling interval should be as small as possible,

or say, for certain fixed observation durationt, the number of samples, i.e.,N , should be as large as possible.

We select the sampling interval as0.1µs namely,N ≥ 107 samples in one second, which is in good agreement

with the parameter in practical communication systems.

We consider thei.i.d. Rayleigh fading channel and measure the amount of serviceS(t) by statistics with an

observation duration oft = 5s and run it independently for500 rounds. It is observed in Fig. 3 that for certain

fixed moment such ast = 5s, the variance ofS(t) is almost zero which means that it is deterministic linear
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Fig. 4. The Rayleigh channel service process S(t) v.s. observation time

function of t. The simulation result also fits thec∗ra by (25) perfectly. It can be further observed in the detail

when the vertical coordinate axis is zoomed in that there arestill small fluctuations. However, the maximum

deviation ratio ofS(t) from the average value in all of the simulation rounds is lessthan2.6× 10−5 and will

decrease when smaller∆τ is used. Fig.4 illustrates the channel service processS(t) v.s. observation timet. It

confirms the deterministic time-linearity of the channel service processS(t) for each timet, which is consistent

with our theoretical analysis, namely, the amount of channel service increases linearly with timet.

In Fig.5, we provide thec∗m v.s. Nakagami parameterm andc∗ri v.s. Rician parameterK. As is known, the

Nakagami channel withm = 1 and the Rician channel withK = 0 both reduce to the Rayleigh channel. It

is observed in Fig. 5 that thec∗m|m=1 = c∗ri|K=0 and they fit the service provided by a Rayleigh channel in

5 seconds, i.e.,S(t)|t=5, which is shown in Fig. 3. The AWGN channel capacitycawgn with a average LOS

received powerPr is also presented in Fig. 5, and it can be seen that asm (or K) increases, thec∗m andc∗ri

increase accordingly and will convergence toc∗∞ = cawgn, which confirmsCorollary 2 andCorollary 3.
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By these simulation results, the deterministic time-linearity of the extensively investigatedi.i.d. fading

channels is verified once again. In the paper,S(t) is defined as a stochastic integration and is investigated

in the sense of mean square. Therefore, at any timet, S(t) is a constant other than a random variable, so is

S(t)
t

. To make the problem more trackable, we adopt in the paper a sampling method to approximate it, i.e.,

S(t) = limN→∞

∑N
1 C(tn)∆t. During a sampling time, it is assumed that the channel gain remains unchanged,

which is a commonly used processing method for integration.When the sampling interval goes to zero, one

can get the integration value. More importantly, such a treating will not change the inherent characteristic of

S(t). Besides, we adopt the blocking fading concept for the simplicity of expression. This is similar to the

approximation of the Brown motion by random walking, where both the two items are stochastic processes.

However, it is really a lucky thing and it can be proved in thispaper that the variance of the independent

increment processS(t) is zero, i.e.,D[S(t)] = 0. This is totally different fromD[E[S(t)]] = 0 or D[S(t)
t
] = 0

and is a new result. As mentioned previously, there still aresome points to be noted. The channel service

considered is a concept of large time scales other than the fading property in small scales. In fact, it holds

when the ratio of the observation time and the sampling time (t
∆t

) is sufficiently large. And even for a block

fading channel, the result holds if the observation timet is sufficiently large. However, if one investigates

the channel service on smaller time scales, some physical layer technologies should be used to adapt to the

instantaneous channel fluctuations, namely the fading characteristic of the channel. To achieve this goal, buffers

must be used at the transmitter. In this way, data can be stored in the buffer at the transmitter when the channel

is in bad condition. For this topic, we have obtained some results on the channel utilization and buffer overflow

probability, which will be presented in our following works.
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VI. CONCLUSIONS

This work introduced a new picture ofi.i.d. fading channels from the viewpoint of the cross layer. That is,

we proved that the channel service processS(t) of an i.i.d. fading channel is a deterministic linear function

of time t, by using the CF approach based on the infinitely divisible law. This work provides some significant

insights in both theory and applications. First, differentfrom conventional ergodic capacity or outage capacity, it

asserts that thei.i.d. fading channel has a deterministic transmission ability. In other words, there exists a coding

scheme such that the receiver can decode with zero error probability, if the transmitter maintains a constant data

rate no more thanc∗p in the point of view from application layer. Second, in opposite to conventional opinions,

this work asserts that the high layer queuing delay is assured to be zero as long as the transmission data rate

is less thanc∗p. Otherwise, the queuing delay will be upper-bounded, whichis determined by the difference

between the transmission data rate andc∗p.
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