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Abstract

In this thesis, we consider the cooperative spectrum sensing problem in cogni-

tive radio with energy detection. Secondary users with non-identical, independent

sensing channels make 1-bit sensing decisions and report their decisions to the

secondary base station over orthogonal noisy fading channels. The base station

has knowledge of the reporting channel coefficients and actsas a fusion center by

combining the decisions with anM-out-of-K rule. We allow the secondary users

to trade sensing time slots for additional reporting time slots to increase the signal-

to-noise ratios of the reporting channels. We derive the corresponding false alarm

and missed detection probabilities, which are functions ofthe secondary sensor

decision thresholds and the durations for sensing and reporting. Furthermore, we

bound these probabilities and impose a practical convex region to enable the appli-

cation of convex optimization for minimization of the falsealarm probability for

a target missed detection probability. We consider the two cases where the instan-

taneous and the average reporting channels are known for optimization. Allowing

secondary users to trade sensing time slots for additional reporting time slots is

shown to significantly improve sensing performance in both cases, even with poor

sensing channels and a small number of secondary users.
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Chapter 1

Introduction

1.1 Background

1.1.1 Cognitive Radio

The introduction of cognitive radio in [1] set the foundation for what has become a

very active research area for wireless communications in the last decade. Cognitive

radio envisions the deployment of wireless devices that aresufficiently intelligent

to operate autonomously and adaptively.

In [2], two primary objectives for cognitive radio were identified: reliable com-

munication and efficient use of wireless spectrum. The latter objective is often

regarded as requiring modifications to the traditional wireless spectrum licensing

model to enable implementation. The traditional licensingmodel is an approach

where specific companies or applications are given exclusive rights to a particular

frequency band. In practice, many licensed bands are actually unoccupied in ei-

ther time or space or both. However, it is unreasonable to expect license holders

to sacrifice their exclusivity to a band to permit gains in wireless efficiency. If un-

licensed wireless users could access spectrum when it is unoccupied by licensed

users, i.e., by taking advantage of spectral holes, then a significant increase in wire-

less spectral efficiency could result while protecting the interests of those who hold

licenses. Unlicensed access would require not only major technological advances,

but also regulatory approval to condone its use. Regulatorybodies are interested in
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modifying the traditional spectrum access model [3], thereby motivating research

to guide these changes.

One standard has already been written to implement aspects of cognitive radio

technology in real environments. The Institute of Electrical and Electronics En-

gineers (IEEE) Standard 802.22 was recently published withthe aim of enabling

wireless internet access for sparsely populated rural areas using frequency bands

licensed to television broadcasters [4]. Publication of the standard means that com-

panies can now build and sell devices that meet the specifications of the standard.

In a cognitive radio context, licensed users (such as television transmitters or

cellphones) are called Primary Users (PUs) while unlicensed users are called Sec-

ondary Users (SUs) [5]. This naming convention is more general because some

applications with rights to a particular frequency band maynot hold an actual li-

cense, e.g., wireless microphones are also considered incumbents for IEEE Stan-

dard 802.22 [4]. Referring to unlicensed users as secondaryemphasizes that their

access to spectrum is contingent on the existent of a spectral hole.

1.1.2 Spectrum Sensing

The monitoring of frequency bands in order to identify the presence of an active

transmitter is known as spectrum sensing, and is one of the fundamental problems

in cognitive radio [5]. It is particularly critical for scenarios where primary and

secondary networks do not communicate directly, and is listed as one of the cogni-

tive radio capabilities required for IEEE Standard 802.22 devices [4]. The correct

identification of spectral holes is then dependent on the reliability of the secondary

network’s spectrum sensing.

There are three main categories of spectrum sensing [6]:

1. Coherent detection with a matched filter can be deployed when the channel

realization between the PU and the SU is known. This is not necessarily a

realistic assumption because direct communication is normally required in

order to learn the instantaneous channel.

2. Cyclostationary feature detectors can identify PUs by analyzing the spectral

correlation of the frequency band. Modulated signal energycan be differen-

tiated from uncorrelated noise because of the cyclostationarity embedded in
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the transmitted signal. While accurate, these detectors are computationally

complex.

3. Energy detection measures the energy of the received signal at the sensor

and makes a decision based on a sensing threshold. This method is preferred

when the information known about the PU is limited; the powerof the PU

signal is sufficient, though this information must be accurate in order for

energy detection to be reliable. Nevertheless, energy detection is the most

popular method for spectrum sensing due to its low complexity [6–10], and

we adopt it for the analysis in this thesis.

Cooperative spectrum sensing, where multiple SUs share sensing data to im-

prove performance in detecting the status of a PU, was first applied to cognitive

radio in [5] and has seen significant research interest in thepast few years. A re-

cent survey that summarizes the many challenges in applyingcooperative spectrum

sensing to cognitive radio is found in [6]. SUs act as local sensors that indepen-

dently assess whether the PU is active or idle. Most literature in this area considers

the presence of a secondary base station that receives sensing results reported from

the SUs, cf. e.g. [7–16]. The base station then acts as a Fusion Center (FC) by

fusing the individual reporting results to obtain a global decision. Detecting the

PU as idle indicates the ability to use the PU’s frequency band for secondary data

transmission, thereby increasing wireless efficiency.

The feasibility of SU operation depends on the false alarm and missed detec-

tion probabilities of cooperative spectrum sensing. Falsealarm occurs when the

secondary network declares that the PU is active and it is actually idle. When there

is a false alarm, the secondary network is not taking advantage of a legitimate

opportunity to transmit. Missed detection occurs when the secondary network de-

clares that the PU is idle and it is actually active. When there is missed detection,

the secondary network may attempt transmission and therebygenerate undesired

interference to the PU. Furthermore, its own transmission may be unsuccessful due

to the PU’s activity. There is typically a tradeoff between these two probabilities,

and while the PU would prefer a low missed detection probability, the secondary

network would prefer a low false alarm probability.
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1.1.3 Decision Fusion

As noted, the FC is used to combine information received by the sensors to obtain

a global decision. There are two main categories of fusion, depending on what is

transmitted by the sensors. If the sensors transmit their raw sensing data or statis-

tics, i.e., the power of the received signal, then the FC can deploy soft combining.

If the sensors make a local decision based on their sensing thresholds and transmit

their decisions to the FC, then the FC deploys hard combiningor decision fusion

[6].

Decision fusion is advantageous in a cognitive radio context where we cannot

assume that sensors have large reporting bandwidth available; every sensor must

report no more than 1 bit of information, so a narrow dedicated channel is sufficient

for the secondary network’s reporting requirements. Soft combining, however,

requires much more bandwidth to sufficiently quantize the sensing results.

Decision fusion can be optimally implemented by the Chair-Varshney rule,

which requires previous knowledge of the false alarm and missed detection proba-

bilities associated with each sensor [17]. Simpler methodsinclude counting rules,

such that sensors effectively vote with their sensing decisions and the FC uses a

vote threshold to make a global decision. The most common counting rules are

the OR-rule, where one sensor detecting the PU as active is sufficient for the FC to

declare the same, and the AND-rule, where all sensors must declare that the PU is

active [17].

1.2 Related Work

The derivation of false alarm and missed detection probabilities where the SUs use

an Lp-norm detector and perfect reporting has been recently performed in [18],

for which the energy detector is a special case (i.e.,p = 1). The missed detec-

tion probability was averaged over the Rayleigh-faded sensing channels, since it

was assumed that the instantaneous sensing channels were unknown to the SUs.

Furthermore, in [7], these probabilities have been derivedusing energy detectors

where band-limited reporting channels are impaired by noise and fading.

In practice, it is of interest to optimize performance by minimizing the false

alarm probability given a target missed detection probability (or vice versa). Op-
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timization has previously been performed for cooperative spectrum sensing with

perfect reporting, cf. e.g. [8, 9, 11–13].

In [8], network throughput is maximized by optimizing the division of time

slots between sensing the PU and performing secondary data transmission. Both

soft and hard combining are considered.

In [9], the number of SUs and the SU sensing thresholds are optimized to min-

imize the total error probability (false alarm plus missed detection), under the as-

sumption that all SUs have identical sensing channels. The analysis determines the

optimal counting rule, the optimal local sensing threshold, and the optimal number

of users to select for sensing when the number of sensors becomes large.

In [11], throughput is maximized by optimizing the SU sensing thresholds and

decision fusion weights. Convexity of the sensing error probabilities is shown with

respect to the SU thresholds but the results are for a sensingchannel that is known

at the base station.

In both [12] and [13], one error probability is minimized with respect to a target

for the other. In [12], the decision threshold is optimized for a model where the FC

knows the distances between the PU and the SUs. Small-scale fading is ignored,

so the analysis is relatively simplified. The FC applies AND-rule and OR-rule. In

[13], the number of local sensing operations is optimized, given that each operation

has known false alarm and missed detection probabilities. The FC uses OR-rule,

and multiple antennas at the SUs enable simultaneous sensing and reporting.

The optimization of spectrum sensing with imperfect reporting channels has

usually been performed with the assumption that the reporting channel has unlim-

ited bandwidth, cf. e.g. [14–16]. Furthermore, optimization with limited reporting

bandwidth has focussed primarily on OR-rule and AND-rule (cf. e.g. [8, 12, 13]),

whereas optimization generalized toM-out-of-K rules has assumed that all sensors

have identical sensing performance, as in [9]. A realistic physical environment

is inhomogeneous, so we can expect that the strength of the sensing and reporting

channels vary among the SUs. For example, the relative location of the SUs to both

the PU and base station, and the placement of obstacles, can contribute to channel

strength. Thus, it is of interest to optimize scenarios where SUs report over fad-

ing channels, and where the inhomogeneity of the physical environment results in

some SUs having stronger reporting channels than others.
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1.3 Scope and Contributions

This thesis considers SUs that sense a single PU using energydetection. The

Rayleigh fading sensing channels are modelled as independent andnon-identical.

We also assume that we have limited reporting bandwidth. Thus, after sensing,

each SU makes a local decision (“active” or “idle”) about thePU that is reported

to the base station over a Rayleigh fading channel. All reporting channels are also

modelled as independent and non-identical. The base station acts as a FC by infer-

ring the decision of each SU before combining the decisions with anM-out-of-K

rule to reach a global decision.M-out-of-K rules facilitate closed-form expressions

for the network false alarm and missed detection probabilities.

The contributions of this thesis are as follows:

1. In constrast to existing work, we allow the SUs to increasethe number of

reporting time slots by sacrificing sensing time slots. Thisis motivated by

[10], which showed notable performance gain by perfectly reporting 2 bits

instead of 1. However, in contrast to [10], our design repeats the binary

decisions of the SUs to increase the Signal-to-Noise Ratios(SNRs) of the

faded and noisy reporting channels.

2. We derive expressions for the false alarm and missed detection probabilities

of the network, as functions of the SU decision thresholds and the number

of reporting time slots for each SU. Our analysis assumes that each SU

senses long enough such that its energy detection decision variables can be

modelled as Gaussian distributed via the central limit theorem. We derive

these probabilities for instantaneous reporting channel realizations as well

as for average reporting channels. We begin with the single-SU network

case as a foundation to extend to the general, multi-SU network case.

3. We apply upper bounds and impose convex constraints that make the false

alarm and missed detection probabilities jointly convex with respect to the

SU decision thresholds and the number of reporting time slots for each SU.

This enables the application of convex optimization techniques to quickly

and efficiently minimize the secondary network’s false alarm probability un-

der a target missed detection probability (or vice versa). We consider the
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two cases where the instantaneous and average reporting channel gains are

known for optimization to investigate the tradeoffs of optimizing less fre-

quently.

4. Simulation results show that our proposed upper bounds are reasonably tight

while enabling very good performance with only a small number of sensors.

We also show that the secondary network sensing performancebenefits sub-

stantially from the ability to optimize the number of reporting time slots over

optimization of the local decision thresholds alone.

1.4 Organization

The rest of this thesis is organized as follows. In Chapter 2,we introduce the

cognitive radio network model with the notation used for therest of the work. In

Chapter 3, we derive the sensing error probabilities of the single-SU network and

formulate convex upper bounds. In Chapter 4, we extend the work in Chapter 3

to the general, multi-SU network. In Chapter 5, we present and discuss detailed

simulation results for a secondary network in both the single-SU and multi-SU

cases. In Chapter 6, we present conclusions and possibilities for future work.
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Chapter 2

Network Model

This chapter introduces the network model studied and the notation used through-

out the rest of this thesis.

In Section 2.1, we describe the topology of the primary and secondary net-

works. We present our assumptions regarding the operation of the two networks,

and we briefly motivate the need for spectrum sensing in this environment.

In Sections 2.2 and 2.3, we describe the secondary network’ssensing and re-

porting channels, respectively. We also define how much the secondary network

knows about these channels.

In Section 2.4, we formally define the secondary network’s probabilities of

false alarm and missed detection, which are the core performance metrics for our

spectrum sensing analysis. We include notation for referring to specific subsets of

SUs in the network.

2.1 Network Topology

There is a single transmitting PU, as in Fig. 2.1. The PU couldbe serving, for

example, as the broadcast tower for a licensed network. The PU transmits with av-

erage transmission powerPt over the frequency band monitored by the secondary

network. For convenience of the analysis, we do not considerthe broadcasting car-

rier frequency by representing all signals with their complex baseband equivalents.

The secondary network hasK SUs in addition to its own base station. The

8



Figure 2.1: Secondary network near a primary transmitter.

network intends to utilize the PU’s frequency band only whenit believes that the

PU is idle. Thus, we do not need to consider the PU’s intended receivers in our

analysis. We assume that the secondary network is not in direct communication

with the PU, so the secondary network must perform spectrum sensing to assess

the current activity of the PU. The spectrum sensing is cooperative in the sense that

the SUs make local sensing decisions that are reported to thebase station, which

fuses the results to obtain a global sensing decision. Thus,we hereafter refer refer

to the SUs as (local) sensors and the base station as the Fusion Center (FC).

2.2 Sensing Channels

The channel between the PU and thekth sensor,hk, is Rayleigh fading with vari-

anceσ2
h,k, k∈ {1,2, . . . ,K}. The PU-SU channels are modelled as independent and

non-identically distributed. The signal received by thekth sensor is impaired by

complex Additive White Gaussian Noise (AWGN) with varianceσ2
n,k. Thus, the

kth sensor’s sensing SNR isγS,k = Ptσ2
h,k/σ2

n,k, and we letγS = [γS,1,γS,2, . . . ,γS,K ].

Each sensor has a fixed interval ofN time slots during which it has to perform

9



Figure 2.2: Division of sensing and reporting time slots for thekth sensor.

sensing and reporting with a single antenna, as in Fig. 2.2. The time slots are

assumed to all be of the same length, whether for sensing or reporting. The sensing

channel is assumed to have a coherence time sufficiently longfor hk to be assumed

constant for the entire interval. We also assume that the PU is either active or

idle for the entire interval, i.e., it does not cease or resume transmission within

the interval. This is not a particularly strong assumption;[19] shows only a minor

improvement for energy detectors that take into account PUsthat arrive or depart

randomly. Furthermore, we assume that each sensor has an accurate estimate of

Ptσ2
h,k, but does not know the instantaneous fading gainhk. Therefore, the sensors

use energy detection by sensing forNS,k time slots and applying decision threshold

τk to decide whether the PU is active or idle.

2.3 Reporting Channels

The remainingNR,k = N−NS,k time slots are used by the local sensor to report

its binary decision to the Fusion Center (FC). Each sensor transmits+1 if the

PU is deemed active, and−1 otherwise. The reporting channel between thekth

sensor and the FC,gk, is Rayleigh fading with varianceσ2
g,k. The channels between

the SUs and the FC are modelled as orthogonal, independent, and non-identically

distributed. The instantaneous reporting channel gains and variances are assumed

to be known at the fusion center.

The repeated reports are impaired by complex AWGN with variancesσ2
z,k.

Thus, thekth sensor’s instantaneous reporting SNR isγR,k = |gk|2/σ2
z,k, and we

let γR = [γR,1,γR,2, . . . ,γR,K ]. The kth sensor’s average reporting SNR isγR,k =
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σ2
g,k/σ2

z,k, and we letγR = [γR,1,γR,2, . . . ,γR,K ]. We assume thatγR is constant for

the interval ofN time slots, whileγS andγR are constant for multiple intervals.

2.4 Sensing Performance Metrics

Our goal is to detect when the PU is idle, so we are interested in characterizing the

false alarm and missed detection probabilities. LetH define the current state of the

PU, whereH = 1 means that the PU is active andH = 0 means that it is idle. The

FC makes global decision̂H, defined analogously toH. The network false alarm

probabilityPf FC and missed detection probabilityPmFC are defined as

Pf FC =Pr{Ĥ = 1 | H = 0}, (2.1)

PmFC=Pr{Ĥ = 0 | H = 1}. (2.2)

If the FC is basing its decision on only the inferred decisionfrom thekth sensor,

using the instantaneous reporting channel realization of that sensor, then we define

these single-sensor probabilities asPmFC,k andPf FC,k.

For fusion rule analysis, we must be able to refer to subsets of the sensors in

the network. LetSK,i be the union of all sets that combinei out of a total ofK

sensors, i.e.,SK,i contains
(K

i

)
sets ofi sensors. Furthermore, letSK,i, j be the jth

set inSK,i . The ordering of these sets is arbitrary but constant.
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Chapter 3

Single-Sensor Network

In this chapter, we derive and analyzePmFC,k andPf FC,k at the fusion center for a

given reporting channel. We present a set of constraints that enable upper bounds

onPmFC,k andPf FC,k to be convex with respect to the sensor’s local decision thresh-

old and the number of reporting time slots.PmFC,k andPf FC,k are also averaged over

the Rayleigh-faded reporting channel (then written asPmFC,k andPf FC,k, respec-

tively), for which the same constraints ensure convexity. The bounds enable us to

optimizePmFC,k andPf FC,k, and in Chapter 4 they facilitate the relaxation of the

generalK-sensor problem to a convex optimization problem. Detailedproofs of

some of the results in this chapter are omitted for narrativeclarity and are deferred

to the appendices.

In Section 3.1, we derive the analytical forms ofPmFC,k and Pf FC,k, assum-

ing that the sensor’s sensing decision variables can be modelled as Gaussian dis-

tributed. We also assume that the FC uses a coherent detectorfor receiving the

sensor’s reporting signal. The sensor is able to sacrifice sensing time slots for more

reporting time slots in order to increase the reporting SNR.

In Section 3.2, we derive closed-form upper bounds onPmFC,k and Pf FC,k.

These bounds are shown to be jointly convex with respect to the local sensor deci-

sion threshold and the number of reporting time slots with the imposition of a set

of convex constraints.

In Section 3.3, we derivePmFC,k andPf FC,k by averagingPmFC,k andPf FC,k over

the Rayleigh-faded reporting channel, respectively, while still assuming coherent
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detection at the FC. The intent is to save on computation and communication

time by optimizing less often, i.e., only when the variance of the reporting channel

changes. The constraints imposed in Section 3.2 still applyhere for convexity.

In Section 3.4, we formulate the single-sensor optimization problem where

we minimize the false alarm probability while satisying a target for the missed

detection probability.

3.1 FC Performance

3.1.1 Local Sensing

For our analysis, as in [18], we assume thatNS,k is large enough such that the

energy detection decision variables at the local sensor canbe modelled as Gaussian

distributed via the central limit theorem. We favor the Gaussian approximation

approach to facilitate tractability, unlike the analysis in [7], which relies on the

moment generating functions of the received signals. Thus,if the PU is idle, then

the variance of the signal received at the sensor isσ2
n,k/NS,k, and we obtain the

probability of false alarm at the local sensor,Pf L,k, as [18, Eq. 16]

Pf L,k = Q
(
(τk/σ2

n,k−1)
√

N−NR,k
)
, (3.1)

whereQ(·) is the GaussianQ-function. We immediately see that ifτk < σ2
n,k, then

the argument ofQ(·) would be negative andPf L,k > 0.5. Furthermore, an active

PU would only add to the energy of the signal received at the local sensor. Thus,

we will subsequently assume thatτk ≥ σ2
n,k, and the corresponding expression for

the probability of missed detection at the local sensor,PmL,k, averaged over the

Rayleigh-faded sensing channel, is [18, Eq. 26]

PmL,k = 1−exp
(
−ξ/(Ptσ2

h,k)
)
+ I , (3.2)
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where

I =
1√

2πPtσ2
h,k

exp

(

−ξ
Ptσ2

h,k

)
∫ π

2

0
sinθ exp

(

sin2θ
2Pt

2σ4
h,k

)

Sdθ , (3.3)

S=

[

1+erf

(

sinθ√
2Ptσ2

h,k

− ξ√
2sinθ

)

−2erf

(

sinθ√
2Ptσ2

h,k

)]

, (3.4)

ξ = (τk/σ2
n,k−1)

√
NS,k, (3.5)

Pt = Pt
√

NS,k/σ2
n,k, (3.6)

and erf(·) is the error function [20, p. 406]. Eqs. (3.1) and (3.2) (ignoring I in the

latter) show that increasingτk causes an increase inPmL,k and a decrease inPf L,k,

and vice versa.

3.1.2 Sensor Reporting

We next derive an expression forPmFC,k. The sensor makes 1-bit decisionĤL,k and

transmits it to the FC with a repetition code as

bk[n] = bk =

{

+1 if ĤL,k = 1, NS,k+1≤ n≤ N,

−1 if ĤL,k = 0, NS,k+1≤ n≤ N.
(3.7)

We note that, for a single reporting interval, ifĤL,k = 1, thenbk = −1 with

probabilityPmL,k andbk =+1 with probability(1−PmL,k). The FC receives

yk[n] = gkbk[n]+zk[n], NS,k+1≤ n≤ N, (3.8)

wherezk[n] is complex AWGN. The fusion center forms

yk =
1

NR,k

N

∑
n=NS,k+1

yk[n] = gkbk+zk, (3.9)

wherezk is complex AWGN with varianceσ2
z,k/NR,k. Thus, we see how increas-

ing the number of reporting time slots corresponds to an increase in the effective

reporting SNR. We construct a coherent detector where we multiply yk by g∗k/|gk|
and take the real component ((·)∗ denotes complex conjugation). Thus, we obtain
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PmFC,k as

PmFC,k =Pr{|gk|bk+ℜ{g∗kzk/|gk|}< 0 | H = 1}
=Pr{ℜ{g∗kzk/|gk|}< |gk|}(1−PmL,k)+Pr{ℜ{g∗kzk/|gk|}<−|gk|}PmL,k

= Q
(

|gk|
√

2NR,k/σ2
z,k

)

(1−PmL,k)+Q
(

−|gk|
√

2NR,k/σ2
z,k

)

PmL,k,

(3.10)

whereℜ{·} denotes the real component of a complex number. From the firstline

of (3.10), we see that the FC uses 0 as a decision threshold. Given that one of our

two design parameters is the local sensor decision threshold τk, one may validly

question whether the network could benefit by making the FC threshold variable. In

fact, this threshold was initially incorporated as a variable in our analysis. However,

it was found to complicate the convexity conditions while providing negligible

performance improvement. Thus, we set it to 0.

Analogously,Pf FC,k is obtained as

Pf FC,k = Q
(

−|gk|
√

2NR,k/σ2
z,k

)

Pf L,k+Q
(

|gk|
√

2NR,k/σ2
z,k

)

(1−Pf L,k). (3.11)

3.2 Closed-Form, Convex Bounds on Performance

3.2.1 Upper Bounds on Performance

Unfortunately, we cannot obtain (3.10) in closed form due tothe integral in (3.3).

We will, however, require a closed-form expression in orderto define tractable

optimization problems. Therefore, we derive a closed-formupper bound on (3.3)

that leads to a closed-form upper bound on (3.10).

Theorem 1 (Upper bound on (3.3)): Eq. (3.3) can be upper-bounded in closed
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form by

Ibound= Akxk

[

Bk−Ak
NSmax− (N−NR,k)√

2πN3/2
Smax

]

+Ck
(
2exp(−Akxk)+exp

(
−NSminx

2
k

))

+
Dk

√
(N−NR,k)

exp(−Akxk)

+
Ak√
2π

σ2
n,k

NSminxk−Ak+
√

NSmin

exp

(−Akxk−NSminx
2
k

2

)

, (3.12)

where

xk = τk/σ2
n,k−1, (3.13)

positive constants Ak,Bk,Ck, and Dk are given by

Ak =
σ2

n,k

Ptσ2
h,k

,

Bk =exp

(
1

2NSmax

A2
k

)

erf

(

1
√

2NSmax

Ak

)

,

Ck =
1
25

erfi

(

1
√

2NSmin

Ak

)

exp

(

− 1
2NSmax

A2
k

)

,

Dk =
1√
2π

Ak

(

2+
π
2

( √
NSmaxPtσ2

h,k

σ2
n +

√
NSmaxPtσ2

h,k

−1

))

, (3.14)

anderfi(·) is the imaginary error function [20, p. 427]. NSmin and NSmax are bounds

on NS,k that are introduced to simplify convexity analysis with minimal impact on

the value of Ibound.

Proof: Refer to Appendix A. The proof converts the error functions in (3.3) into

equivalentQ-functions, and then applies the “supertight bound” on theQ-function

given in [21] in addition to two Taylor series approximations.

If the argument ofQ(·) is negative, then 0.5<Q(·)< 1. We also aim to achieve

low PmL,k (i.e.,PmL,k � 1). Therefore, we upper-bound (3.10) by

PmFC,k ≤ Q
(

|gk|
√

2NR,k/σ2
z,k

)

+Akxk+ Ibound, (3.15)
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where we used a first degree Taylor series approximation of the non-integral com-

ponents ofPmL,k, i.e., 1−exp
(

−ξ/(Ptσ2
h,k)
)

, at τk = σ2
n,k, as otherwisePmL,k (ig-

noring theI term) is concave with respect toτk.

Eq. (3.11) is already in closed form. However, to define tractable optimization

problems, we upper-bound it by

Pf FC,k ≤ Q
(

|gk|
√

2NR,k/σ2
z,k

)

+Q
(
xk
√

N−NR,k
)
, (3.16)

where we used again that 0.5 < Q(·) < 1 when the argument ofQ(·) is negative,

andPf L,k � 1.

3.2.2 Convexity of Upper Bounds

We relaxNR,k to be a real number for optimzation (though in simulations and in

practice we round it to the nearest natural number), and present the following the-

orem:

Theorem 2 (Convexity of (3.15) and (3.16)): Eqs. (3.15) and (3.16) can be shown

to be jointly convex with respect toτk and NR,k, if we impose the following convex

constraints:

σ2
n,k− τk ≤ 0, (3.17)

1≤ NR,k ≤ NRmax, (3.18)

x−2
k − (1+

√
2)NSmin ≤ 0, (3.19)

σ2
n,k

N−NR,k
−Akxk < 0, (3.20)

2Akxk−E ≤ 0, (3.21)

A2
k exp(2Akxk)+

A2
k(N−NR,k)

3

N3
Smax

exp(E)−
2AkDkN

3/2
Smin

N3/2
Smax

−D2
k ≤ 0, (3.22)

where NRmax = N−NSmin, xk is as in (3.13), and E is a tunable parameter, defined

in (3.21), that limits the maximum value ofτk.

Proof: We prove the convexity of (3.16) and (3.15) in Appendices B and C, re-

spectively, by showing that the Hessians of (3.15) and (3.16) are non-negative once
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(3.17) to (3.22) are imposed [22, 23]. As discussed earlier,(3.17) is imposed so

that we are able to use (3.2). The local sensor must be able to report for at least one

time slot, soNR,k ≥ 1. Eq. (3.19) couplesτk with NR,k to makeIbound convex with

respect toτk. Eq. (3.20) is used with the “supertight bound” [21] to evaluate (3.3)

in closed form. Eq. (3.22) is less intuitive, but it ensures the joint convexity ofτk

andNR,k in Ibound. Eq. (3.21) is imposed to improve the tightness of (3.22) while

maintaining convexity.

We observe that there are both upper and lower bounds onτk andNR,k. This

means that there are both upper and lower limits on the valuesof PmFC,k andPf FC,k,

i.e., we cannot achieve arbitrarily small or largePmFC,k or Pf FC,k while maintain-

ing convexity. This phenomenon will become evident when analyzing Receiver

Operating Characteristics (ROCs).

3.3 Performance Averaged Over Reporting Channels

The sensing error performance as given by (3.15) and (3.16) must be re-evaluated

every time the reporting channel changes. Thus, the coherence time of the reporting

channel influences the optimization frequency. Significantnetwork resources (both

time and energy) could be consumed performing computationsand communicating

both environment parameters and optimal results. It may then be beneficial to

optimize less frequently, which we may do if we average performance over the

Rayleigh-faded reporting channel.

Eqs. (3.15) and (3.16) share a common reporting component that we define as

PR,k = Q
(

|gk|
√

2NR,k/σ2
z,k

)

. (3.23)

We can save on computation time and the corresponding communications over-

head by averaging (3.23) over the Rayleigh-faded reportingchannel, sinceγR,k is

constant for longer thanγR,k. This probability,PR,k, is defined and upper-bounded

in the following theorem:
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Theorem 3 (Upper bound onPR,k): PR,k is defined and then upper-bounded by

PR,k =
σ2

z,k

πNR,kσ2
g,k

∫ π
2

0

dθ
σ2

z,k

NR,kσ2
g,k
+1/sin2θ

≤
σ2

z,k

4NR,kσ2
g,k

. (3.24)

Proof: Refer to Appendix D. The proof of the definition is found usingthe Craig

representation of theQ-function (as in [18]) and a variable substitution. The upper

bound is derived by assuming thatσ2
z,k/(NR,kσ2

g,k) is relatively small (though we

are not required to impose another constraint).

The exact form in (3.24) allows us to average (3.10) and (3.11) over gk and

write

PmFC,k = PR,k(1−PmL,k)+ (1−PR,k)PmL,k, (3.25)

Pf FC,k = PR,k(1−Pf L,k)+ (1−PR,k)Pf L,k. (3.26)

The upper bound in (3.24) is trivially convex with respect toNR,k. Eqs. (3.15)

and (3.16) become

PmFC,k ≤ Akxk+ Ibound+
σ2

z,k

4NR,kσ2
g,k

, (3.27)

Pf FC,k ≤ Q
(
xk
√

N−NR,k
)
+

σ2
z,k

4NR,kσ2
g,k

, (3.28)

respectively. Note that, since (3.17) to (3.22) are derivedfrom the sensing com-

ponent of (3.15) and (3.16), (3.27) and (3.28) are jointly convex with respect toτk

andNR,k under the same set of constraints.

3.4 Single-Sensor Optimization Problem

Our goal is to optimize performance by minimizing one probability while satisfy-

ing a target for the other probability. Since we would like toguarantee a ceiling on

interference to the PU, we choose a target missed detection probability,PmFCTAR, as

in [13]. Thus, when the instantaneous reporting channel is known, the optimization
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problem for the single-sensor network can be formulated as

minimize Pf FC,k

subject to PmFC,k ≤ PmFCTAR

(3.17) to (3.22). (3.29)

Analogously, when only the average reporting channel is known, the optimiza-

tion problem for the single-sensor network can be formulated as

minimize Pf FC,k

subject to PmFC,k ≤ PmFCTAR

(3.17) to (3.22). (3.30)

Due to the convexity of the objective function and all of the constraints, prob-

lems (3.29) and (3.30) can both be solved by efficient algorithms such as the

interior-point method [22].

We emphasize that the frequency for solving (3.29) depends primarily on the

reporting channel coherence time (though also on the sensing channel coherence

time). Solving (3.29) offers improved spectrum sensing performance while using

(3.30) is less demanding on network resources.
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Chapter 4

Multi-Sensor Network

In this chapter, we derive and analyzePmFC andPf FC for the K-sensor network

using PmFC,k andPf FC,k. We can analogously derivePmFC andPf FC (averaging

probabilities over reporting channels) usingPmFC,k andPf FC,k if only the average

reporting channels are known. We upper-boundPmFC andPf FC to obtain a general-

ized convex multiplicative problem [24] for OR-rule. Subsequently, we relax this

problem to arrive at a convex optimization problem and extend the analysis to any

M-out-of-K rule. Detailed proofs of some of the results in this chapter are omitted

for narrative clarity and are deferred to the appendices. Throughout this chapter

we assume thatK ≥ 2.

In Section 4.1, we present the analytical forms ofPmFC andPf FC as functions

of the individualPmFC,k andPf FC,k. These expressions apply to anyM-out-of-K

rule. We derive upper bounds on bothPmFC andPf FC. For OR-rule, we show that

the upper bounds lead to a generalized convex multiplicative problem for network

optimization.

In Section 4.2, we relax the optimization problem for OR-rule to arrive at a set

of independent convex optimization subproblems. We achieve this by uncoupling

the missed detection target probability, resulting in one convex optimization sub-

problem corresponding to each sensor. We briefly discuss thetradeoffs of solving

the problems at the FC versus at the sensors.

In Section 4.3, we show that the approach used to formulate a set of convex

optimization subproblems when using OR-rule can be generalized to anyM-out-
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of-K rule.

4.1 Optimization Problem

The fusion center combines theK inferred local sensor decisions into a global

decision using anM-out-of-K rule. We focus attention on analysis for OR-rule (i.e.,

M = 1) for three reasons: 1) simplicity, 2) the analysis will lead to optimization of

anyM-out-of-K rule as a convex problem, and 3) we will suggest in Section 5.1that

optimized network performance will favor a rule that multiplies missed detection

probabilities, i.e., OR-rule.

4.1.1 Exact Expressions for Decision Fusion

Conveniently,PmFC and Pf FC can be writen as functions of the corresponding

single-sensor probabilities.Pf FC for any M-out-of-K rule, using our notation, is

[25, Eq. 10]

Pf FC =
K

∑
i=M

{(
i−M

∑
p=0

(−1)p
(

i
p

))(

∑
SK,i, j∈SK,i

∏
k∈SK,i, j

Pf FC,k

)}

. (4.1)

In other words, we sum every combination of products ofM false alarm prob-

abilities,M+1 false alarm probabilities, . . . , andK false alarm probabilities, and

every combination has a coefficient calculated by [26, p. 165]

i−M

∑
p=0

(−1)p
(

i
p

)

= (−1)i−M
(

i −1
i −M

)

. (4.2)

Similarly, [25] provides an expression for the probabilityof detection. How-

ever,PmFC is more relevant here, which we write as

PmFC=
K

∑
i=K−M+1

{(
i+M−K−1

∑
p=0

(−1)p
(

i
p

))(

∑
SK,i, j∈SK,i

∏
k∈SK,i, j

PmFC,k

)}

, (4.3)
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where [26, p. 165]

i+M−K−1

∑
p=0

(−1)p
(

i
p

)

= (−1)i+M−K−1
(

i −1
i +M−K−1

)

. (4.4)

4.1.2 Exact Expressions and Bounds for Decision Fusion

Our goal is to upper boundPf FC andPmFC by only considering the products of the

fewest probabilities, i.e. by only consideringi = M in (4.1) andi = K −M+1 in

(4.3). Products of more probabilities should be smaller since they are the product of

more positive terms less than or equal to one. However, this may not be the case if

the coefficients become large. We impose a constraint on the average sensing error

probability that guarantees an upper bound, as given in the following theorem:

Theorem 4 (Upper Bound onPf FC andPmFC): Pf FC and PmFC are upper-bounded

by

Pf FC ≤ ∑
SK,M, j∈SK,M

∏
k∈SK,M, j

Pf FC,k, (4.5)

PmFC≤ ∑
SK,K−M+1, j∈SK,K−M+1

∏
k∈SK,K−M+1, j

PmFC,k, (4.6)

if we impose the following constraints:

∑K
k=1Pf FC,k

K
≤ 2M+4

KM+K−M2−2M−1
, (4.7)

∑K
k=1 PmFC,k

K
≤ 2K −2M+6

KM−2K−M2+4M−4
, (4.8)

which are convex with respect toτk and NR,k, ∀k.

Proof: Refer to Appendix E. We compare binomial coefficients to showthat, when

applying (4.7) and (4.8), the negative terms in (4.2) and (4.3) are greater than the

positive terms in (4.2) and (4.3) that are ignored in (4.5) and (4.6).
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4.1.3 Bounds Applied to OR-Rule

For OR-rule (M = 1), the upper bound (4.6) forPmFC is equivalent to (4.3), so we

can ignore (4.8). The upper bound onPf FC is

Pf FC ≤
K

∑
k=1

Pf FC,k, (4.9)

which is tight when the individualPf FC,k terms are small. The upper bound (4.9)

is convex since it is a sum of convex functions. Furthermore,(4.7) becomes

K

∑
k=1

Pf FC,k ≤
6K

2K −4
. (4.10)

Assuming physically reasonablePf FC (i.e., Pf FC,k < 1), (4.10) can also be ig-

nored. Our optimization problem becomes

minimize
K

∑
k=1

Pf FC,k

subject to
K

∏
k=1

PmFC,k ≤ PmFCTAR

(3.17) to (3.22), ∀k, (4.11)

where we use upper bounds forPmFC,k andPf FC,k (from (3.15) and (3.16)).

4.1.4 Generalized Convex Multiplicative Programming

SincePmFC is the product of convex functions, (4.11) is not convex in general.

Problem (4.11) is an example of generalized convex multiplicative programming,

where a problem that is otherwise convex has either an objective term or one con-

straint that is a product of convex functions. This is a relatively new field of opti-

mization [24], though it has been shown that such a problem can be transformed

into a series of convex problems.

Problem (4.11) can be globally solved by the simplicial branch-and-reduce

method described in [27]. Simplicial branch-and-reduce represents the problem

in an equivalent form whereK-simplices (K-dimensional shapes with certain prop-
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erties) are used to represent the individual convex functions in the multiplicative

constraint. In each iteration of the method, one of the simplices is removed and

replaced withK moreK-simplices, and a corresponding convex problem is solved.

With each iteration, the convex problem complexity grows from the net gain of

(K − 1) K-simplices. However, the algorithm will eventually converge to the op-

timal solution. In practice, the execution time of the branch-and-reduce algorithm

in [27] grows prohibitively large asK increases. Thus, it is of interest to find a

simpler method for solving (4.11).

4.2 Suboptimal Convex Problem for OR-Rule

For OR-rule, we observe thatPmFC is a product of independently convex functions,

since eachPmFC,k is only a function of its correspondingτk andNR,k. Therefore,

dividing the missed detection target in (4.11) intoK targets,PmFCTAR,k (one for each

sensor), will createK independent convex subproblems.

A simple way to derivePmFCTAR,k would be to take theKth root ofPmFCTAR, as in

[12]. However, this ignores that some sensors can achieve better performance than

others due to stronger sensing or reporting channels. As noted in Section 3.2.2,

there is a lower limit on every achievablePmFC,k, which will vary from sensor to

sensor. Therefore, we propose scaling the target probability of each sensor based

on the best achievablePmFC,k of that sensor. So, we first solve

minimize PmFC,k

subject to (3.17) to (3.22), (4.12)

for all k sensors, which are convex optimization problems, and definePmFCmin,k

as the solution to (4.12). The network’s minimum missed detection probability,

PmFCmin, using OR-rule is then

PmFCmin =
K

∏
k=1

PmFCmin,k. (4.13)

Obviously, ifPmFCTAR = PmFCmin, then we requirePmFCTAR,k =PmFCmin,k,∀k. Oth-

erwise, at least one sensor will have an unachievable target, i.e.,PmFCTAR,k <
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PmFCmin,k for somek. WhenPmFCTAR > PmFCmin, it is reasonable to assign relatively

lower PmFCTAR,k to sensors that have lowerPmFCmin,k. We propose achieving this by

scaling each sensor’s target relative to its minimum as

PmFCTAR,k = PmFCmin,k

(
PmFCTAR

PmFCmin

)1/K

, (4.14)

where it is then straightforward to verify that

PmFCTAR =
K

∏
k=1

PmFCTAR,k. (4.15)

Thus, we relax (4.11) to arrive at the new problem

minimize
K

∑
k=1

Pf FC,k

subject to PmFC,k ≤ PmFCTAR,k, ∀k

(3.17) to (3.22), ∀k. (4.16)

Problem (4.16) readily decomposes intoK convex subproblems that can be

efficiently solved [22] either at the FC or at the sensors. TheFC knowsgk and

σ2
z,k, ∀k, but in order for it to solve all subproblems, it also needs tolearnPtσ2

h,k

andσ2
n,k, ∀k, via a feedback channel. However, thekth sensor knowsPtσ2

h,k and

σ2
n,k, so in order for it to solve thekth subproblem it only needs to learn|gk| and

σ2
z,k via a feedback channel. Either method requires feedback of the optimalτk and

NR,k, ∀k, between the sensors and the FC. For this thesis, we do not consider where

(4.16) is solved.

Relaxed problem (4.16) does not in general yield the optimalsolution. Recall

from Section 3.2.2 that there is also an upper limit on every achievablePmFC,k. In

the event that our scaling assignsPmFCTAR,k < PmFCmax,k for somek, wherePmFCmax,k

is the sensor’s maximum missed detection probability, thensolving (4.16) will

yield PmFC<PmFCTAR. There is generally a tradeoff between false alarm and missed

detection, so having a missed detection probability below the target means that we

are probably not minimizing the false alarm probability. Nevertheless, as will be

shown in Section 5.2 of this thesis, the target scaling approach usually yieldsPmFC
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andPf FC that are very close to the optimal solution of (4.11).

4.3 Suboptimal Convex Problem for Generalized
Counting Rule

We can generalize the formulation of (4.16) from (4.11) to any M-out-of-K rule.

Again, we use upper bounds forPmFC,k andPf FC,k (from (3.15) and (3.16)). We

keep the same objective function as in (4.16), even though itis no longer represen-

tative of the actualPf FC, in order to enable decomposition into convex subprob-

lems.

PmFCTAR,k requires scaling to achieve the upper bound defined by (4.6).As

a generalization of (4.14), we propose scaling each sensor’s target relative to its

minimum as

PmFCTAR,k = PmFCmin,k

(
PmFCTAR

PmFCmin

)1/(K−M+1)

, (4.17)

where it is then straightforward to verify that

PmFCTAR = ∑
SK,K−M+1, j∈SK,K−M+1

∏
k∈SK,K−M+1, j

PmFCTAR,k. (4.18)

As an example, we will verify (4.18) for the case ofK = 3, M = 2, as follows:

∑
SK,K−M+1, j∈SK,K−M+1

∏
k∈SK,K−M+1, j

PmFCTAR,k

= PmFCTAR,1PmFCTAR,2+PmFCTAR,1PmFCTAR,3+PmFCTAR,2PmFCTAR,3

=
PmFCTAR

PmFCmin

(PmFCmin,1PmFCmin,2+PmFCmin,1PmFCmin,3+PmFCmin,2PmFCmin,3)

=
PmFCTAR

PmFCmin

PmFCmin = PmFCTAR (4.19)

Thus, for anyM-out-of-K rule, we can solve (4.16) usingPmFCTAR,k, ∀k, found

by (4.17). Of course, we must also consider constraints (4.7) and (4.8), which we

were able to ignore for OR-rule.
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Chapter 5

Numerical Results and Discussion

In this Chapter, we present and discuss simulation results based on the analytical

results in Chapter 3 and Chapter 4.

In Section 5.1, we present Receiver Operating Characteristics (ROCs) for a

single-sensor optimization problem. We show the loss in accuracy and achievable

sensing performance due to bounding, and the performance loss incurred when op-

timizing less often (by optimizing based on the reporting channel variance instead

of the instantaneous reporting channel). We show that simulations are consistent

with the exact performance of the optimized network. We alsoconsider the effects

of using different interval lengthN.

In Section 5.2, we present ROCs for multi-sensor optimization problems. We

compare the application of differentM-out-of-K rules, showing that OR-rule en-

ables the best performance. We also consider the sensitivity of Pf FC to the qual-

ity of the sensing and reporting channels using two different fusion rules while

showing the benefits of optimizing the number of reporting time slots over only

optimizing the local decision thresholds.

Unless otherwise noted, results in this Chapter are for a simulated secondary

network with N = 5000 time slots. We letσ2
n,k = 1, σ2

z,k = 1, andPt = 1 (the

power units are arbitrary). For optimization, we setNRmax = N−NSmin = 1500,

NSmax = N−1, andE = 1. We assume that the PU is transmitting a Binary Phase-

Shift Keying (BPSK) signal.
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5.1 Single-Sensor Results

Chapter 3 presented numerous bounds to formulate (3.29) as aconvex optimiza-

tion problem. Before considering the overall,K-sensor network, we consider an

example to show the loss in accuracy and achievable sensing performance due to

the approximations and bounds of the single-sensor network. Consider thekth sen-

sor in a simulated secondary network where, unless otherwise noted, the average

sensing SNR isγS,k =−5dB.

Figs. 5.1 and 5.2 show the Receiver Operating Characteristic (ROC) when solv-

ing (3.29) forγR,k = −6dB and solving (3.30) forγR,k = −6dB, respectively. In

Fig. 5.1, we use different interval lengthsN and for each we setNRmax = 0.3N and

NSmax = N−1. In Fig. 5.2, solving (3.30) once via (3.28) and (3.27) is contrasted

with solving (3.29) 106 times via (3.16) and (3.15), each time withγR,k generated

based onγR,k, to show the loss due to optimizing less often and only using the

average reporting channels instead of the instantaneous ones. Missed detection is

represented byPmFCTAR,k, defined analogously toPmFCTAR,k. In both figures, the up-

per bound curves were obtained from the solutions of (3.29) and (3.30). To assess

bounding losses, curves are shown that were obtained using the solutions of (3.29)

in the exact expressions (3.10) and (3.11) and the solutionsof (3.30) in the exact

expressions and (3.25) and (3.26). We also show curves obtained by using the so-

lutions of (3.29) and (3.30) in the simulation of 106 noise and channel realizations.

In Fig. 5.1, the looseness of the upper bound curves is primarily horizontal; the

upper bounds onPmFC,k are looser than those onPf FC,k due to the upper bound on

(3.3) and the Taylor series upper bound of the non-integral components ofPmL,k.

The looseness means that the actual performance would be better than that given

by the optimal solution of (3.29). For largerN, the upper bound is tighter and

lower sensing error probabilities are achievable. Arbitrarily increasingN is con-

strained by the coherence time of the sensing channel and theneed of time to use

the frequency band for data transmission in the event that FCdecides that the PU

is absent.

The smallest false alarm probability plotted forN = 1000 in Fig. 5.1 is approx-

imately 0.002 and constitutes the smallest possible within the convexfeasibility

region due to the constraints onτk andNR,k. While it is possible to obtain a smaller
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Figure 5.1: ROC forγR,k =−6dB with 1 sensor and three different values of
N. The convex optimal curves were obtained using the solutions of (3.29) via
(3.16) and (3.15). The exact and simulation curves were obtained with the so-
lutions of (3.29) in exact expressions (3.10) and (3.11), and for the simulation
of 106 realizations of noises and sensing channels, respectively.

false alarm probability, convex optimization methods would no longer apply and

we would have to rely on less efficient and more time-consuming methods, such as

exhaustive search.

In Fig. 5.2, we see a decrease in performance when we optimizeonce based

on the variance of the reporting channel, as expected. The looseness of the upper

bound when optimizing once is comparable to the upper bound looseness when op-

timizing for the instantaneous reporting channel and averaging over many channel

realizations. If we can accept the computational and communications overhead of

optimizing more often, then we can achieve a measureable gain in performance.

However, if the overhead becomes cumbersome, then optimizing less often be-

comes a viable alternative.

In both Figs. 5.1 and 5.2, we see a small difference between the curve(s) ob-

tained from the exact expressions and the simulation curve(s), due to the Gaussian
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Figure 5.2: ROC for γR,k = −6dB with 1 sensor andN = 5000. One set of
curves was obtained by optimizing once, based onγR,k, by solving (3.30)
via (3.28) and (3.27), then using the solutions of (3.30) in exact expressions
(3.25) and (3.26), and finally the simulation of 106 realizations of noise and
sensing channels. The second set was obatined by optimizingfor 104 report-
ing channel realizations by solving (3.29) via (3.16) and (3.15), then using the
solutions of (3.29) in exact expressions (3.10) and (3.11),and finally the sim-
ulation of 100 realizations of noise and sensing channels for each reporting
channel realization.

approximation of the local energy detector decision variables and the rounding of

the optimalNR,k to the nearest integer for simulation. Fig. 5.1 shows that this dif-

ference shrinks with increasingN, as expected from the central limit theorem. We

also see that lowPf FC,k is more readily achievable than lowPmFC,k, as the lower

bounds onτk (i.e., (3.17) and (3.19)) are tighter constraints than the upper bound

(i.e., (3.21)). This implies that the design of a multi-sensor network will favor a

rule that multiplies missed detection probabilities and sums false alarm probabili-

ties (i.e., OR-rule).
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5.2 Multi-Sensor Results and Discussion

Unless otherwise noted, results in this section are for a simulated secondary net-

work with K = 4 sensors. For this value ofK, it is easy to show that constraints

(4.7) and (4.8) can be ignored for all rules. For all sensors,σ2
n,k = 1 andσ2

z,k = 1,

and we defineγS = [−7,−8,−9,−7]dB andγR = [−6,0,−4,−2]dB, so that the

sensors have unique pairs of sensing and reporting SNRs. Dueto similarity of

the results, we do not include optimizing for the average Rayleigh-faded reporting

channels,γR. Such results would only serve to further illustrate the loses due to

optimizing with less information.

All figures in this section show upper bounds obtained using the solutions of

the convex problem (4.16), where the upper boundPf FC’s are calculated from (4.5).

Curves are also shown that were obtained using the solutionsof (4.16) in the exact

expressions (3.10) and (3.11), and then combining the single-sensor probabilities

with (4.1).

5.2.1 Comparison of Fusion Rules

Fig. 5.3 shows the ROCs for the secondary network using all possibleM-out-of-K

rules whenK = 4. In addition to the aforementioned curves, it shows curvesob-

tained by using the solutions of (4.16) in the simulation of 106 realizations of noises

and sensing channels. Furthermore, for OR-rule (M = 1) it shows a curve obtained

by solving (4.11) with the branch-and-reduce method as a direct comparison to the

suboptimal convex approach.

In Fig. 5.3, we see that OR-rule is generally superior to all other rules and

that solving (4.16) yields performance identical to solving (4.11) for OR-rule, i.e.

our suboptimal convex problem yields the same solutions as applying the branch-

and-reduce method. The overall performance for AND-rule isweaker due to high

missed detection probabilities; we can only achievePmFCTAR ≥ 0.3 since the missed

detection performance of AND-rule (M = K = 4) is derived from the addition of

the single-sensorPmFC,k’s, which in turn are constrained by the lower bounds on

τk (i.e., via (3.17) and (3.19)). The performance of rulesM = 2 andM = 3 lie

in between that of OR-rule and AND-rule, as expected. The upper bounds on

all rules, which formed the basis of the optimization, are reasonably close to the
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Figure 5.3: Secondary network ROC with 4 sensors andN = 5000, usingM-
out-of-K rules. The convex optimal and branch-and-reduce curves were ob-
tained using the solutions of (4.16) and (4.11), respectively, where the latter
was only solved for OR-rule. The exact and simulation curveswere obtained
with the solutions of (4.16) in exact expressions (3.10), (3.11), and (4.1), and
for the simulation of 106 realizations of noises and sensing channels, respec-
tively.

exact performance. The looseness of the upper bounds has propagated from the

looseness of the upper bounds of the single-sensor false alarm and missed detection

probabilities.

As observed in the single-sensor case, there is a small difference between the

curves obtained from the exact expressions and the simulation curves, again due

to the Gaussian approximation of the energy detector decision variables and the

rounding of the optimalNR,k’s to the nearest integers; the accuracy of the exact

analytical curves can be arbitrarily improved by increasing N. Importantly, we

observe that very good performance can be achieved using energy detection, espe-

cially using OR-rule, even though the sensing channels haveγS,k ≤−7dB,∀k.
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Figure 5.4: Effect of sensing channels onPf FC with 4 sensors using OR-rule
andPmFCTAR = 0.005. Reporting channel SNRs areγR = [−6,0,−4,−2]dB.
For NR,k = 10 andNR,k = 1500, only the thresholdsτk,∀k, are optimized.

5.2.2 Sensitivity to Channel Quality with OR-Rule

We next study the sensitivity ofPf FC to the quality of the sensing and reporting

channels when using OR-rule. At the same time, we consider the benefits of opti-

mizing NR,k versus holdingNR,k constant, since the current literature has not opti-

mizedNR,k. When we keepNR,k constant, we only optimize the thresholdsτk,∀k.

We note that attempting to optimizeNR,k while keepingτk constant significantly

restricts performance so we do not consider it in this thesis.

Figs. 5.4 and 5.5 show the sensitivity ofPf FC using OR-rule to the quality of

the sensing and reporting channels, respectively, forPmFCTAR = 0.005. We note

that, because of the upper-bounding, theexactmissed detection probabilities are

PmFC< 0.005. Both figures show that a wide operating range exists where the false

alarm probability can be guaranteed to be below 1% whenN = 5000. Comparative

curves show results forNR,k = 10 andNR,k = 1500,∀k. For Fig. 5.4, we also have

curves optimizingNR,k for different interval lengthN where we setNRmax = 0.3N
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Figure 5.5: Effect of reporting channels onPf FC with 4 sensors andN =
5000, using OR-rule, andPmFCTAR = 0.005. Sensing channel SNRs are
γS = [−7,−8,−9,−7]dB. For NR,k = 10 andNR,k = 1500, only the thresh-
oldsτk,∀k, are optimized.

andNSmax = N−1.

In Fig. 5.4, we decrease the sensing SNRs from base valuesγS = [0,−1,−2,0]

dB. Allowing NR,k to be optimized whenN = 5000 permits significantly lower false

alarm probabilities than when usingNR,k = 10 orNR,k = 1500 for the majority of

the considered range of sensing SNRs. When the sensing channels are particularly

weak, i.e.,γS < [−9,−10,−11,−9]dB, we see that usingNR,k = 10 is comparable

to using the optimalNR,k. Thus, as sensing channels weaken, it is beneficial to

sacrifice reporting time slots to allow more time slots for sensing. UsingNR,k =

1500 is not advised for the range of sensing channel SNRs considered in Fig. 5.4,

since the reporting channels are relatively strong. When the sensing channels are

relatively strong, havingNR,k = 1500 does outperformNR,k = 10, so we see that

the bottleneck in performance shifts from the sensing to thereporting channels.

Still, significantly improvedPmFC andPf FC are possible by optimizingNR,k. For

example, we can achievePf FC ≈ 1.5×10−6 whenγS = [−5,−6,−7,−5]dB, which
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is almost two orders of magnitude lower than if we setNR,k = 1500 for the same

sensing channels. Finally, the size ofN is also a major factor when optimizing

NR,k; significantly lower false alarm probabilities are achievable whenN = 15000,

whereas performance whenN = 1000 is poor for the considered range of sensing

SNRs due to the aggressivePmFCTAR.

In Fig. 5.5, we vary the reporting channels from base valuesγR = [−6,0,−4,

−2]dB. OptimizingNR,k allows lowerPf FC than when settingNR,k = 10 orNR,k =

1500. WhenNR,k = 10, we see a sharp performance deterioration as the report-

ing channels weaken; the effective reporting SNR is too low for the reports of

the sensors to reach the FC. Furthermore, whenγR < [−29,−23,−27,−26]dB,

NR,k = 1500 becomes the optimal value for all sensors. However, as reporting

channels improve, the excessive reporting withNR,k = 1500 creates a bottleneck

in performance that limitsPf FC to almost an order of magnitude lower than when

using the optimalNR,k.

Figs. 5.4 and 5.5 both show that optimizingτk andNR,k enable a reasonable

operating range with an aggressive missed detection targetprobability. Poor sens-

ing or reporting channels can be mitigated to maintain network performance. The

benefits of optimizingNR,k versus holdingNR,k constant are substantial.

5.2.3 Sensitivity to Channel Quality with Other Rules

We now briefly study the sensitivity ofPf FC to the quality of the sensing and re-

porting channels when not using OR-rule. Specifically, we consider the case of

M = 2.

Figs. 5.6 and 5.7 show the sensitivity ofPf FC usingM = 2 to the quality of

the sensing and reporting channels, respectively, forPmFCTAR = 0.005. The setup is

identical to that used for Figs. 5.4 and 5.5 with OR-rule, respectively, except that in

Fig. 5.7 the sensing channel SNRs areγS = [−5,−6,−7,−5]dB in order to enable

false alarm probabilities that are comparable to those in Fig. 5.5.

In Fig. 5.6, we decrease the sensing SNRs from base valuesγS = [0,−1,−2,0]

dB. As when using OR-rule, allowingNR,k to be optimized whenN = 5000 per-

mits significantly lower false alarm probabilities than when usingNR,k = 10 or

NR,k = 1500 for the majority of the considered range of sensing SNRs. Overall, we
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Figure 5.6: Effect of sensing channels onPf FC with 4 sensors usingM = 2
andPmFCTAR = 0.005. Reporting channel SNRs areγR = [−6,0,−4,−2]dB.
For NR,k = 10 andNR,k = 1500, only the thresholdsτk,∀k, are optimized.

observe the same general trends for usingM = 2 as we did withM = 1; we can

mitigate the effects of weaker sensing channels by dedicating more time to sens-

ing, we can take advantage of stronger sensing channels by dedicating more time

to reporting, and increasing the total number of time slotsN enables an overall

performance improvement. By comparing Fig. 5.6 with Fig. 5.4, we observe that a

weak sensing channel obstructs performance more easily when M = 2 than when

M = 1. This is as expected from the results in Fig. 5.3, where OR-rule is shown to

be generally superior to the other rules.

In Fig. 5.7, we vary the reporting channels from base valuesγR = [−6,0,−4,

−2]dB. Once again, the general result trends are the same as those shown in

Fig. 5.5; optimizingNR,k allows lowerPf FC than when settingNR,k = 10 orNR,k =

1500. WhenNR,k = 10, we see a sharp performance deterioration as the reporting

channels weaken, so the number of reporting time slots has become a major perfor-

mance bottleneck. As noted previously, we used stronger sensing channel SNRs in

order to observe false alarm probabilities comparable to those in Fig. 5.5; OR-rule
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Figure 5.7: Effect of reporting channels onPf FC with 4 sensors andN =
5000, usingM = 2, andPmFCTAR = 0.005. Sensing channel SNRs areγS =
[−5,−6,−7,−5]dB. For NR,k = 10 andNR,k = 1500, only the thresholds
τk,∀k, are optimized.

has once again shown to be superior in this framework.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we considered the problem of cooperative spectrum sensing for cog-

nitive radio. The secondary network optimized the decisionthresholds at the SUs

and the division between time slots used for sensing the PU and time slots used

for reporting the sensing results to the FC. We selected the network probabilities

of false alarm and missed detection as our performance metrics. We derived these

probabilities for a single-sensor network and then found bounds to facilitate con-

vex optimization techniques. The analysis was extended to multi-sensor networks

usingM-out-of-K rules. Using OR-rule, we represented the multi-sensor network

optimization problem as a generalized convex multiplicative problem. We then re-

laxed the problem to formulate a convex suboptimal problem that usually yields the

same results. The relaxation was then generalized to maintain convexity for any

M-out-of-K rule. Furthermore, we showed that we could optimize for the average

reporting channel gains instead of the instantaneous ones if we were willing to ac-

cept a decrease in sensing performance. Simulation resultsshowed that our convex

upper bounds were close to the exact analytical performance, and that joint opti-

mization of thresholds and sensing/reporting time slots enables very good sensing

performance.
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6.2 Future Work

The following areas are identified as potential interestingextensions for the work

in this thesis:

• Investigate scenarios with larger numbers of SUs where somemay have sens-

ing or reporting channel gains that are so weak that they should be explicitly

omitted from optimization.

• Account for primary networks that have more than one transmitting PU.

Even if only one PU transmits at a time, the SUs would have different chan-

nels to each PU, likely with different channel gains.

• Extend our approach to the case of imperfect channel estimation by account-

ing for additional performance loss due to the imperfect estimation of both

the sensing channel variances and the instantaneous reporting channels.

• Seek improved codes for the reporting channel. Our implementation applied

a basic repetition code. The sensing reports could be quantized at the cost

of reporting SNR. It is unknown whether convexity would be maintained,

especially since the FC would then need to implement soft decision combin-

ing.
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Appendix A

Proof of Theorem 1

To upper-bound (3.3), we first convert (3.4) to an equivalentform using the relation

erf(x) = 1−2Q(
√

2x) to obtain

S=−2+2Q(
√

2a)+4Q(
√

2b), (A.1)

where

a =

√

NS,k

2

(

τk

σ2
n,k

−1

)

1
sinθ

−
sinθσ2

n,k
√

2NS,kPtσ2
h,k

, (A.2)

b =
sinθσ2

n,k
√

2NS,kPtσ2
h,k

. (A.3)

We observe that an upper bound on (A.1) results in an upper bound on (3.3).

Considering tractability of the integral in (3.3), we propose the use of the recently-

developed “supertight bound” on theQ-function [21], defined as

Q(c)≤ 1
50

exp(−c2)+
1

2(c+1)
exp

(−c2

2

)

. (A.4)
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Eq. (A.4) is tight for all values ofc, and allows us to write

S ≤ −2+
1
25

exp(−2a2)+
1√

a+1
exp(−a2)

2
25

exp(−2b2)

+
2√

b+1
exp(−b2). (A.5)

Before pluggingS back intoI , we further upper-bound some of its terms, as

follows:

−2a2 ≤
σ2

n,k

Ptσ2
h,k

(

τk

σ2
n,k

−1

)

− sin2 θ
NS,k

σ4
n,k

P2
t σ4

h,k

−NS,k

(

τk

σ2
n,k

−1

)2

, (A.6)

1√
a+1

≤
√

NS,kPtσ2
h,k

NS,kPtσ2
h,k

(

τk
σ2

n,k
−1

)

−σ2
n,k+

√
NS,kPtσ2

h,k

, (A.7)

1√
b+1

≤ 1+sinθ

( √
NS,kPtσ2

h,k

σ2
n,k+

√
NS,kPtσ2

h,k

−1

)

, (A.8)

where for (A.6) we used the fact that 1≥ sin2θ , for (A.8) we used a linear approx-

imation with respect to sinθ (which is an upper bound since 1/(
√

b+1) is convex

with respect to sinθ ), and for (A.7) to be satisfied we impose the constraint

σ2
n,k

N−NR,k
−Ptσ2

h,k

(

τk

σ2
n,k

−1

)

< 0. (A.9)

This constraint is convex with respect to bothNR,k andτk. I is now bounded by

I ≤ 1
√

2πNS,k
exp

(

−
τk−σ2

n,k

Ptσ2
h,k

)
∫ π

2

0
S1dθ , (A.10)
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where

S1 =−2β1+2

( √
NS,kPtσ2

h,k

σ2
n +

√
NS,kPtσ2

h,k

−1

)

β 2
2

+
2β3

25
+

β3

25
exp




σ2

n,k

Ptσ2
h,k

(

τk

σ2
n,k

−1

)

−NS,k

(

τk

σ2
n,k

−1

)2




+

[

2+

√
NS,kPtσ2

h,k

NS,kPtσ2
h,k

(

τk
σ2

n,k
−1

)

−σ2
n +
√

NS,kPtσ2
h,k

×exp

(

1
2

σ2
n,k

Ptσ2
h,k

(

τk

σ2
n,k

−1

)

−NS,k

2

(

τk

σ2
n,k

−1

)2)]

β2, (A.11)

β1 = sinθ exp

(

sin2 θ
2NS,k

σ4
n,k

P2
t σ4

h,k

)

, (A.12)

β2 = sinθ , (A.13)

β3 = sinθ exp

(

−sin2θ
2NS,k

σ4
n,k

P2
t σ4

h,k

)

. (A.14)

The integral overS1 can be computed in closed form. The integration ofβ 2
2

and β2 from 0 to π
2 yields π

4 and 1, respectively. The integration ofβ1 and β3

can be solved by exploiting the identity sin2 θ = 1− cos2 θ and the substitution

t = pcosθ , wherep is the magnitude of the exponential term that is independent

of θ . This leads to

∫ π
2

0
sinθ exp(p2 sin2 θ)dθ = exp(a2)

√
π

2a
erf(p), (A.15)

∫ π
2

0
sinθ exp(−p2sin2 θ)dθ = exp(−a2)

√
π

2a
erfi(p), (A.16)

where [20]

erf(p) =
2√
π

∫ p

0
exp(−t2)dt, (A.17)

erfi(p) =
2√
π

∫ p

0
exp(t2)dt. (A.18)
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Thus,I is bounded in closed form by

I ≤ 1
√

2πNS,k

σ2
n,k

Ptσ2
h,k

exp

(

−
τk−σ2

n,k

Ptσ2
h,k

)[

2

−
√

2πNS,kPtσ2
h,k

σ2
n,k

exp

(

1
2NS,k

σ4
n,k

P2
t σ4

h,k

)

erf

(

1
√

2NS,k

σ2
n,k

Ptσ2
h,k

)

+
1
25



2+exp




σ2

n,k

Ptσ2
h,k

(

τk

σ2
n,k

−1

)

−NS,k

(

τk

σ2
n,k

−1

)2








×
√

πNS,kPtσ2
h,k√

2σ2
n,k

exp

(

− 1
2NS,k

σ4
n,k

P2
t σ4

h,k

)

erfi

(

1
√

2NS,k

σ2
n,k

Ptσ2
h,k

)

+

√
NS,kPtσ2

h,k

NS,kPtσ2
h,k

(

τk
σ2

n,k
−1

)

−σ2
n,k+

√
NS,kPtσ2

h,k

×exp




1
2

σ2
n,k

Ptσ2
h,k

(

τk

σ2
n,k

−1

)

− NS,k

2

(

τk

σ2
n,k

−1

)2




+
π
2

( √
NS,kPtσ2

h,k

σ2
n,k+

√
NS,kPtσ2

h,k

−1

)]

. (A.19)

Eq. (A.19) can be evaluated quickly. However, it is not necessarily jointly

convex with respect toτk andNR,k; additional bounding is required.

First, the placements ofNS,k in (A.19) (especially inside of the exponentials

and square roots) make analysis of convexity with respect toNR,k cumbersome, if

not impossible. To address this issue, we bound most of theNS,k terms to either

NSmin or NSmax (whichever is appropriate to upper bound).

Second, the summation term with the error function, once multiplied by the

outside exponential, results in a term that isconcavewith respect toτk. We lin-

earize and upper-bound this term using the first degree Taylor series approximation

at τk = σ2
n,k.
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Performing these approximations leads to

I ≤ β5+
1
25

erfi

(

1
√

2NSmin

σ2
n,k

Ptσ2
h,k

)

exp

(

− 1
2NSmax

σ4
n,k

P2
t σ4

h,k

)[

2exp

(

−
τk−σ2

n,k

Ptσ2
h,k

)

+exp



−NSmin

(

τk

σ2
n,k

−1

)2




]

+

1√
2π

σ2
n,k

NSminPtσ2
h,k

(

τk
σ2

n,k
−1

)

−σ2
n,k+

√
NSminPtσ2

h,k

×exp



−1
2

τk−σ2
n,k

Ptσ2
h,k

− NSmin

2

(

τk

σ2
n,k

−1

)2




+
1

√
2πNS,k

σ2
n,k

Ptσ2
h,k

exp

(

−
τk−σ2

n,k

Ptσ2
h,k

)(

2+
π
2

( √
NSmaxPtσ2

h,k

σ2
n,k+

√
NSmaxPtσ2

h,k

−1

))

,

(A.20)

where

β5 =

(

τk−σ2
n,k

Ptσ2
h,k

−1

)

exp

(

1
2NSmax

σ4
n,k

P2
t σ4

h,k

)

erf

(

1
√

2NS,k

σ2
n,k

Ptσ2
h,k

)

. (A.21)

Observe that the only values ofNS,k that are not bounded in (A.20) and (A.21)

are the one inside the error function and the one in the denominator of the last

summation term.β5 in (A.21) is concave with respect toNR,k for NR,k > 0. We lin-

earize and upper-bound this term using the first degree Taylor series approximation

at NR,k = 0. The final result is (3.12), which upper-boundsI .
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Appendix B

Proof of Convexity of Bound on

(3.16)

The convexity ofPf FC,k as given in (3.16) can be proven by showing that its Hessian

is positive semi-definite (PSD) [22]. The Hessian of (3.16) is not always PSD, but

we will show that it is PSD over a convex region once we impose aset of additional

constraints.

From [23], a matrix is PSD if and only if all of its principal minors are non-

negative. The minorRαβ of matrix R is the determinant of the matrix formed by

removing the rows ofR defined by the setα and the columns ofR defined by the

setβ . Rαβ is aprincipal minor if R is a square matrix andα = β . In other words,

we prove joint convexity ofPf FC,k with respect toτk andNR,k by proving that

∂ 2Pf FC,k

∂τ2
k

≥ 0, (B.1)

∂ 2Pf FC,k

∂N2
R,k

≥ 0, (B.2)

∂ 2Pf FC

∂τ2
k

∂ 2Pf FC,k

∂N2
R,k

−
(

∂ 2Pf FC,k

∂τk∂NR,k

)2

≥ 0. (B.3)
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The individual second derivatives are

∂ 2Pf FC,k

∂τ2
k

=
(N−NR,k)

3/2

σ4
z,k

√
2π

xk exp

(

−x2
k
N−NR,k

2

)

, (B.4)

∂ 2Pf FC,k

∂N2
R,k

=
1

4
√

2π(N−NR,k)
xk exp

(

−x2
k
N−NR,k

2

)[
1

N−NR,k
+x2

k

]

+
1

2
√

NR,kπσ2
z,k

|gk|exp

(

−|gk|2
NR,k

σ2
z,k

)[

1
2NR,k

+
|gk|2
σ2

z,k

]

, (B.5)

∂ 2Pf FC,k

∂τk∂NR,k
=

1

σ2
n,k

√
2π

exp

(

−x2
k
N−NR,k

2

)[

1

2
√

N−NR,k
−
√

N−NR,k

2
x2

k

]

,

(B.6)

where we useddQ(w)/dw= −exp(−w2/2)/
√

2π andxk as defined in (3.13). To

satisfy (B.1) and (B.2), we immediately obtain the following convex constraints by

inspection:

σ2
n,k− τk ≤ 0, (B.7)

1≤ NR,k ≤ N. (B.8)

Since we have previously definedNSmin, we haveNRmax = N−NSmin. Therefore,

(B.8) must be more tightly bound as

1≤ NR,k ≤ NRmax. (B.9)

We observe that (B.5) has a positive term with an exponentialthat is different

from those in (B.4) and (B.6). Therefore, we will ignore the unique term in (B.5)

50



to satisfy (B.3). Thus, it is straightforward to show that

∂ 2Pf FC,k

∂τ2
k

∂ 2Pf FC,k

∂N2
R,k

−
(

∂ 2Pf FC,k

∂τk∂NR,k

)2

≥ 1
2πσ4

n
exp



−
(

τk

σ2
n,k

−1

)2

(N−NR,k)





×




3
4

(

τk

σ2
n,k

−1

)2

− 1
4(N−NR,k)





︸ ︷︷ ︸

β6

.

(B.10)

Non-negativity can then be guaranteed by makingβ6 non-negative, or in other

words imposing the convex constraint

(

τk

σ2
n,k

−1

)−2

+3NR,k−3N ≤ 0. (B.11)

Thus, by imposing contraints to satisfy (B.1) to (B.3), we have defined a convex

region where (3.16) is convex.
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Appendix C

Proof of Convexity of Bound on

(3.15)

Analogously to thePf FC,k case in Appendix B, for the convexity ofPmFC,k as given

in (3.15) we must prove that

∂ 2PmFC,k

∂τ2
k

≥ 0, (C.1)

∂ 2PmFC,k

∂N2
R,k

≥ 0, (C.2)

∂ 2PmFC,k

∂τ2
k

∂ 2PmFC,k

∂N2
R,k

−
(

∂ 2PmFC,k

∂τk∂NR,k

)2

≥ 0. (C.3)

The individual second derivatives of (3.15) are

∂ 2PmFC,k

∂τ2
k

=
∂ 2Ibound

∂τ2
k

, (C.4)

∂ 2PmFC,k

∂N2
R,k

=
|gk|

4
√

πσ2
nNR,k

exp

(

−|gk|2
NR,k

σ2
z,k

)[

1
NR,k

+
2|gk|2
σ2

z,k

]

+
∂ 2Ibound

∂N2
R,k

, (C.5)

∂ 2PmFC,k

∂τk∂NR,k
=

∂ 2Ibound

∂τk∂NR,k
, (C.6)
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whereIbound is from (3.12). It can be shown that

∂ 2Ibound

∂τ2
k

=
Ck

σ4
n

[

A2
k exp(−Akxk)+NSmin exp

(
−NSminx

2
k

)(
2NSminx

2
k −1

)

]

+
A2

kDk

σ4
n

√
N−NR,k

exp(−Akxk)+
A√

2πσ4
n

exp

(

−1
2

Akxk−
NSmin

2
x2

k

)

×
[

2N2
Smin

(
NSminxk−Ak+

√
NSmin

)3 +
2AkNSmin+N2

Smin
xk−N3/2

Smin
(
NSminxk−Ak+

√
NSmin

)2

+
A2

k/4+AkNSminxk+N2
Smin

x2
k

(
NSminxk−Ak+

√
NSmin

)

]

, (C.7)

∂ 2Ibound

∂N2
R,k

=
3Dk

4(N−NR,k)5/2
exp(−Akxk) , (C.8)

∂ 2Ibound

∂τk∂NR,k
=

A2
k

σ2
n,k

√
2πN3/2

Smax

− AkDk

2σ2
n,k(N−NR,k)3/2

exp(−Akxk) . (C.9)

Eq. (C.5) combined with (B.9) and (C.8) satisfies (C.2). Eq. (C.7) is still

cumbersome to work with, but we can ignore a number of its components. To start,

consider the terms

2AkNSmin+N2
Smin

xk−N3/2
Smin

(
NSminxk−Ak+

√
NSmin

)2 +
A2

k/4+AkNSminxk+N2
Smin

x2
k

(
NSminxk−Ak+

√
NSmin

) , (C.10)

which include the only term of (C.7) that could be negative. By recalling constraint

(A.9), we can show that (C.10) is non-negative if we also add the convex constraint

x−2
k − (1+

√
2)NSmin ≤ 0, (C.11)

which is more restrictive than (B.11), so we ignore (B.11). Thus, we ignore the

term (C.10) in (C.7), and we have satisfied (C.1).

Finally, we show how (C.3) is satisfied. Again, by ignoring terms known to be
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non-negative, we write

∂ 2PmFC,k

∂τ2
k

∂ 2PmFC,k

∂N2
R,k

−
(

∂ 2PmFC,k

∂τk∂NR,k

)2

≥ A2
kDk

σ4
n

√
N−NR,k

exp(−Akxk)

︸ ︷︷ ︸

(C.7)

× 3Dk

4
√

2π(N−NR,k)5/2
exp(−Akxk)

︸ ︷︷ ︸

(C.8)

−




A2

k

σ2
n,k

√
2πN3/2

Smax

− AkDk

2σ2
n,k(N−NR,k)3/2

exp(−Akxk)





2

︸ ︷︷ ︸

(C.9)

=
A2

kD2
k

4πσ4
n (N−NR,k)3 exp(−2Akxk)

+
A3

kDk

2πσ4
n(N−NR,k)3/2N3/2

Smax

exp(−Akxk)−
A4

k

2πσ4
n N3

Smax

. (C.12)

We re-arrange (C.12) to obtain

2A2
k(N−NR,k)

3

N3
Smax

exp(2Akxk)−
2AkDk(N−NR,k)

3/2

N3/2
Smax

exp(Akxk)−D2
k ≤ 0. (C.13)

Unfortunately, (C.13) is a non-convex constraint. However, we can split it and

bound each component to derive convex constraints. First, we upper-bound the

positive term. Since(N−NR,k)≤ NSmax, we can bound

2A2
k(N−NR,k)

3

N3
Smax

exp(2Akxk)≤ A2
k exp(2Akxk)+

A2
k(N−NR,k)

3

N3
Smax

exp(E) , (C.14)

where

2Akxk−E ≤ 0, (C.15)

is a convex constraint andE is a tunable parameter that limits the maximum value

of τk. In practice, we chooseE = 1. Note that this form of bound enables a larger

convex region than by simply using(N−NR,k)/NSmax ≤ 1.
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Next, we upper-bound the negative fraction in (C.13). SinceAkxk > 0, we

bound

− 2AkDk(N−NR,k)
3/2

N3/2
Smax

exp(Akxk)≤−
2AkDkN

3/2
Smin

N3/2
Smax

. (C.16)

Thus, we bound (C.13) with the convex bound

A2
k exp(2Akxk)+

A2
k(N−NR,k)

3

N3
Smax

exp(E)−
2AkDkN

3/2
Smin

N3/2
Smax

−D2
k ≤ 0, (C.17)

and by satisfying (C.17) and (C.15), we satisfy (C.3). Thus,under these additional

constraints, (3.15) is convex.
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Appendix D

Proof of Theorem 3

PR,k can be defined as

PR,k = E|gk|{PR,k}, (D.1)

whereEx{·} is the expected value with respect to variablex. Since|gk| is Rayleigh-

distributed,|gk|2 has exponential probability distribution [28, App. A]

p(r) = 2r exp(−r2/σ2
g,k)/σ2

g,k. (D.2)

By performing the transformation of variables

λ = |gk|
√

2NR,k/σ2
z,k, (D.3)

we can write

PR,k =

∫ ∞

0
λwexp(−λ 2w/2)Q(λ )dλ , (D.4)

wherew = σ2
z,k/(NR,kσ2

g,k). We apply the Craig representation of theQ-function

(as in [18]),

Q(x) =
∫ π

2

0
exp(−x2/sin2θ)dθ , (D.5)

and a variable substitution to obtain

PR,k =
w
π

∫ π
2

0

dθ
w+1/sin2 θ

. (D.6)
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We know that 1≤ 1/sin2θ ≤ ∞ and we can expectw to be small, likely less

than 1, due toNR,k. Therefore, we can approximatew in the integral of (D.6) as 0

and upper-boundPR,k by

PR,k ≤
w
π

∫ π
2

0
sin2θdθ . (D.7)

Eq. (D.7) is easily solved to give the upper bound in(3.24).
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Appendix E

Proof of Theorem 4

The (−1)i−M term with the binomial coefficient in (4.1) is 1 fori = M and the

sign changes asi increases. ForM ≥ K − 1, the proof of (4.5) is trivial and no

constraints are required. ForM < K −1, if we can show how the combinations of

products ofM+2b−1 terms (i.e., those with negative magnitude) cancel out the

combinations of products ofM + 2b terms (i.e., those with positive magnitude),

for b∈ {1,2, . . . ,
⌊

K−M
2

⌋
}, then (4.5) is an upper bound. Thus, from (4.1) we must

show when

(
M+2b−2

2b−1

)

∑
SK,M+2b−1, j∈SK,M+2b−1

M+2b−1

∏
k=1

Pf FC,k

≥
(

M+2b−1
2b

)

∑
SK,M+2b, j∈SK,M+2b

M+2b

∏
k=1

Pf FC,k. (E.1)

The left-hand side of (E.1) includes
( K

M+2b−1

)
combinations of products ofM+

2b−1 probability terms, while the right-hand side includes
( K

M+2b

)
combinations

of products ofM+2b terms. It is straightforward to show that

(
K

M+2b

)

=

(
K

M+2b−1

)
K−M−2b+1

M+2b
, (E.2)

so the right-hand side will haveK−M−2b+1
M+2b more products than the left-hand side.
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Comparing the coefficients, it is straightforward to show that

(
M+2b−1

2b

)

=

(
M+2b−2

2b−1

)
M+2b−1

2b
, (E.3)

so, by combining (E.2) and (E.3), we claim that the righthandside is effectively
K−M−2b+1

M+2b · M+2b−1
2b times greater than the lefthand side, but with an additional

probability for every combination. We wish to guarantee that the “extra” probabil-

ity is small enough to satisfy (E.1).

As a related aside, consider the problem

maximize
K

∏
i

pi (E.4)

subject to
K

∑
i

pi = T,

where we assume that 0≤ pi ≤ 1, ∀i. Problem (E.4) has a quasiconcave objective

function [22] and the optimal solution isp1 = p2 = ...= pK = T/K.

The result of this aside is that a constraint on the mean valueof a set of prob-

ability terms is an upper bound on the product of those probability terms. Thus,

from (E.2) and (E.3), we satisfy (E.1) if

∑K
k=1Pf FC,k

K
≤ 2bM+4b2

K(M−1)−M2+2M−1+2b(K−2M+2)−4b2 , (E.5)

which is an increasing function ofb. Thus, the constraint is tighest whenb = 1,

which gives (4.7) to prove (4.5).

The proof of (4.6) is analogous to that of (4.5) and results inconstraint (4.8).
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