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Abstract

In this thesis, we consider the cooperative spectrum sgrmioblem in cogni-
tive radio with energy detection. Secondary users with identical, independent
sensing channels make 1-bit sensing decisions and remrtdécisions to the
secondary base station over orthogonal noisy fading clenfée base station
has knowledge of the reporting channel coefficients andasctsfusion center by
combining the decisions with av-out-of-K rule. We allow the secondary users
to trade sensing time slots for additional reporting tinéssto increase the signal-
to-noise ratios of the reporting channels. We derive theesponding false alarm
and missed detection probabilities, which are functionshefsecondary sensor
decision thresholds and the durations for sensing andtiego-urthermore, we
bound these probabilities and impose a practical conveameg enable the appli-
cation of convex optimization for minimization of the falatarm probability for
a target missed detection probability. We consider the tg®s where the instan-
taneous and the average reporting channels are known fianipgtion. Allowing
secondary users to trade sensing time slots for additi@parting time slots is
shown to significantly improve sensing performance in baises, even with poor
sensing channels and a small number of secondary users.
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Chapter 1

| ntroduction

1.1 Background

1.1.1 Cognitive Radio

The introduction of cognitive radio in [1] set the foundatifmr what has become a
very active research area for wireless communicationsaiteist decade. Cognitive
radio envisions the deployment of wireless devices thasaffeciently intelligent
to operate autonomously and adaptively.

In [2], two primary objectives for cognitive radio were iddéied: reliable com-
munication and efficient use of wireless spectrum. Therlatbgective is often
regarded as requiring modifications to the traditional l@sgs spectrum licensing
model to enable implementation. The traditional licensimgdel is an approach
where specific companies or applications are given exausgjhts to a particular
frequency band. In practice, many licensed bands are §ctuabccupied in ei-
ther time or space or both. However, it is unreasonable te@xjrense holders
to sacrifice their exclusivity to a band to permit gains inekg@ss efficiency. If un-
licensed wireless users could access spectrum when it icup@d by licensed
users, i.e., by taking advantage of spectral holes, thegnéisant increase in wire-
less spectral efficiency could result while protecting titeriests of those who hold
licenses. Unlicensed access would require not only maghmiadogical advances,
but also regulatory approval to condone its use. Reguldtodjes are interested in



modifying the traditional spectrum access modzal [3], thgmmotivating research
to guide these changes.

One standard has already been written to implement aspiembgoitive radio
technology in real environments. The Institute of Eleetriand Electronics En-
gineers (IEEE) Standard 802.22 was recently published tv@ghaim of enabling
wireless internet access for sparsely populated rurabarsiag frequency bands
licensed to television broadcasters [4]. Publication efstandard means that com-
panies can now build and sell devices that meet the speificatdf the standard.

In a cognitive radio context, licensed users (such as wtavitransmitters or
cellphones) are called Primary Users (PUs) while unlicénseers are called Sec-
ondary Users (SUs) [5]. This naming convention is more ganasecause some
applications with rights to a particular frequency band mayhold an actual li-
cense, e.g., wireless microphones are also considerethbents for IEEE Stan-
dard 802.22 [4]. Referring to unlicensed users as secorataphasizes that their
access to spectrum is contingent on the existent of a sphotea

1.1.2 Spectrum Sensing

The monitoring of frequency bands in order to identify thegaemce of an active
transmitter is known as spectrum sensing, and is one of tisafuental problems
in cognitive radio [5]. It is particularly critical for scemios where primary and
secondary networks do not communicate directly, and isdias one of the cogni-
tive radio capabilities required for IEEE Standard 802.2%icks [4]. The correct
identification of spectral holes is then dependent on thahidity of the secondary
network’s spectrum sensing.
There are three main categories of spectrum sensing [6]:

1. Coherent detection with a matched filter can be deployeehwihe channel
realization between the PU and the SU is known. This is notsearily a
realistic assumption because direct communication is atlymequired in
order to learn the instantaneous channel.

2. Cyclostationary feature detectors can identify PUs taheing the spectral
correlation of the frequency band. Modulated signal energybe differen-
tiated from uncorrelated noise because of the cyclostatigpnembedded in
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the transmitted signal. While accurate, these detecters@nputationally
complex.

3. Energy detection measures the energy of the receivedlsigithe sensor
and makes a decision based on a sensing threshold. Thisdristhieferred
when the information known about the PU is limited; the powkthe PU
signal is sufficient, though this information must be actria order for
energy detection to be reliable. Nevertheless, energyctileteis the most
popular method for spectrum sensing due to its low compldgit10], and
we adopt it for the analysis in this thesis.

Cooperative spectrum sensing, where multiple SUs shagngedata to im-
prove performance in detecting the status of a PU, was fifgdieabto cognitive
radio in 5] and has seen significant research interest ip#ése few years. A re-
cent survey that summarizes the many challenges in apptgiogerative spectrum
sensing to cognitive radio is found in [6]. SUs act as localsses that indepen-
dently assess whether the PU is active or idle. Most litegatuthis area considers
the presence of a secondary base station that receiveageesilts reported from
the SUs, cf. e.g. [7—16]. The base station then acts as ar-CGsater (FC) by
fusing the individual reporting results to obtain a globatidion. Detecting the
PU as idle indicates the ability to use the PU’s frequencydtfansecondary data
transmission, thereby increasing wireless efficiency.

The feasibility of SU operation depends on the false alarthraissed detec-
tion probabilities of cooperative spectrum sensing. Falaem occurs when the
secondary network declares that the PU is active and itimHgtdle. When there
is a false alarm, the secondary network is not taking adgentd a legitimate
opportunity to transmit. Missed detection occurs when gwadary network de-
clares that the PU is idle and it is actually active. Whendhgsmissed detection,
the secondary network may attempt transmission and theyebgrate undesired
interference to the PU. Furthermore, its own transmissiag be unsuccessful due
to the PU’s activity. There is typically a tradeoff betwedege two probabilities,
and while the PU would prefer a low missed detection proiigpbthe secondary
network would prefer a low false alarm probability.



1.1.3 Decision Fusion

As noted, the FC is used to combine information received bystnsors to obtain
a global decision. There are two main categories of fusiepedding on what is
transmitted by the sensors. If the sensors transmit theilsesnsing data or statis-
tics, i.e., the power of the received signal, then the FC @gtay soft combining.
If the sensors make a local decision based on their sengieghibids and transmit
their decisions to the FC, then the FC deploys hard combiairgdgecision fusion
[6].

Decision fusion is advantageous in a cognitive radio cdntdrere we cannot
assume that sensors have large reporting bandwidth aegilery sensor must
report no more than 1 bit of information, so a narrow dedidateannel is sufficient
for the secondary network’s reporting requirements. Sofhlgining, however,
requires much more bandwidth to sufficiently quantize thesisey results.

Decision fusion can be optimally implemented by the Chairstiney rule,
which requires previous knowledge of the false alarm andadigletection proba-
bilities associated with each sensor [17]. Simpler methioclsde counting rules,
such that sensors effectively vote with their sensing dmtésand the FC uses a
vote threshold to make a global decision. The most commontomirules are
the OR-rule, where one sensor detecting the PU as activéfisesat for the FC to
declare the same, and the AND-rule, where all sensors maktrdehat the PU is
active [17].

1.2 Reated Work

The derivation of false alarm and missed detection probigsiwhere the SUs use
an Lp-norm detector and perfect reporting has been recentlyopaed in [13],
for which the energy detector is a special case (pes 1). The missed detec-
tion probability was averaged over the Rayleigh-faded isgnshannels, since it
was assumed that the instantaneous sensing channels vka@wmto the SUs.
Furthermore, in [7], these probabilities have been deriveidg energy detectors
where band-limited reporting channels are impaired byenaidd fading.

In practice, it is of interest to optimize performance by mmizing the false
alarm probability given a target missed detection prolighjor vice versa). Op-



timization has previously been performed for cooperatpecsum sensing with
perfect reporting, cf. e.g. [3, 9, 11--13].

In [8], network throughput is maximized by optimizing thesidion of time
slots between sensing the PU and performing secondary rdatsntission. Both
soft and hard combining are considered.

In [9], the number of SUs and the SU sensing thresholds ammized to min-
imize the total error probability (false alarm plus missededtion), under the as-
sumption that all SUs have identical sensing channels. malysis determines the
optimal counting rule, the optimal local sensing threshaftt the optimal number
of users to select for sensing when the number of sensorsrescarge.

In [11], throughput is maximized by optimizing the SU segsihresholds and
decision fusion weights. Convexity of the sensing errobptilities is shown with
respect to the SU thresholds but the results are for a seasamnel that is known
at the base station.

In both [12] and [13], one error probability is minimized titespect to a target
for the other. In[12], the decision threshold is optimizedd model where the FC
knows the distances between the PU and the SUs. Small-sachigfis ignored,
so the analysis is relatively simplified. The FC applies ANIE and OR-rule. In
[1Z], the number of local sensing operations is optimizégergthat each operation
has known false alarm and missed detection probabilitiée HC uses OR-rule,
and multiple antennas at the SUs enable simultaneous gearsihreporting.

The optimization of spectrum sensing with imperfect repgrichannels has
usually been performed with the assumption that the ragphannel has unlim-
ited bandwidth, cf. e.g. [14—16]. Furthermore, optimiaativith limited reporting
bandwidth has focussed primarily on OR-rule and AND-rufe écg. [8, 12, 13]),
whereas optimization generalizedNbout-of-K rules has assumed that all sensors
have identical sensing performance, as in [9]. A realishiggical environment
is inhomogeneous, so we can expect that the strength of tisingeand reporting
channels vary among the SUs. For example, the relativeidocat the SUs to both
the PU and base station, and the placement of obstaclespotibate to channel
strength. Thus, it is of interest to optimize scenarios wHs report over fad-
ing channels, and where the inhomogeneity of the physicat@ment results in
some SUs having stronger reporting channels than others.
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1.3 Scope and Contributions

This thesis considers SUs that sense a single PU using edetggtion. The
Rayleigh fading sensing channels are modelled as indepeadenon-identical
We also assume that we have limited reporting bandwidth. sThfter sensing,
each SU makes a local decision (“active” or “idle”) about Blé that is reported
to the base station over a Rayleigh fading channel. All riapgpichannels are also
modelled as independent and non-identical. The baserstatis as a FC by infer-
ring the decision of each SU before combining the decisioitis &an M-out-of-K
rule to reach a global decisioM-out-of-K rules facilitate closed-form expressions
for the network false alarm and missed detection probadsilit

The contributions of this thesis are as follows:

1. In constrast to existing work, we allow the SUs to incredmenumber of
reporting time slots by sacrificing sensing time slots. Tikimotivated by
[1C], which showed notable performance gain by perfecthoréng 2 bits
instead of 1. However, in contrast to [10], our design repdiae¢ binary
decisions of the SUs to increase the Signal-to-Noise R&BbERs) of the
faded and noisy reporting channels.

2. We derive expressions for the false alarm and missedtaetgarobabilities
of the network, as functions of the SU decision threshold$the number
of reporting time slots for each SU. Our analysis assumesgaeh SU
senses long enough such that its energy detection deciartables can be
modelled as Gaussian distributed via the central limit tbeo We derive
these probabilities for instantaneous reporting chaneaizations as well
as for average reporting channels. We begin with the siStlenetwork
case as a foundation to extend to the general, multi-SU mktvase.

3. We apply upper bounds and impose convex constraints thlae ihe false
alarm and missed detection probabilities jointly convethwespect to the
SU decision thresholds and the number of reporting times $toteach SU.
This enables the application of convex optimization teghas to quickly
and efficiently minimize the secondary network’s false mlarobability un-
der a target missed detection probability (or vice versap dbdhsider the
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two cases where the instantaneous and average reportingetlgains are
known for optimization to investigate the tradeoffs of aptiing less fre-
quently.

4. Simulation results show that our proposed upper bouredseasonably tight
while enabling very good performance with only a small nuniddesensors.
We also show that the secondary network sensing perforntaerfits sub-
stantially from the ability to optimize the number of repiogt time slots over
optimization of the local decision thresholds alone.

1.4 Organization

The rest of this thesis is organized as follows. In Chaptew@ introduce the
cognitive radio network model with the notation used for tbst of the work. In
Chapter 3, we derive the sensing error probabilities of thgles-SU network and
formulate convex upper bounds. In Chapter 4, we extend thé& imoChapter 3
to the general, multi-SU network. In Chapter 5, we presendtdiacuss detailed
simulation results for a secondary network in both the si®U and multi-SU
cases. In Chapter 6, we present conclusions and possibildr future work.



Chapter 2

Network M odel

This chapter introduces the network model studied and ttegtinoo used through-
out the rest of this thesis.

In Section 2.1, we describe the topology of the primary arabiseéary net-
works. We present our assumptions regarding the operatitmeawo networks,
and we briefly motivate the need for spectrum sensing in this@ment.

In Sections 2.2 and 2.3, we describe the secondary netwsek'sing and re-
porting channels, respectively. We also define how much ¢cerslary network
knows about these channels.

In Section 2.4, we formally define the secondary networktsbpbilities of
false alarm and missed detection, which are the core pesftcenmetrics for our
spectrum sensing analysis. We include notation for refgrio specific subsets of
SUs in the network.

2.1 Network Topology

There is a single transmitting PU, as in Fig. 2.1. The PU cdgdserving, for
example, as the broadcast tower for a licensed network. Thtealsmits with av-
erage transmission powEgr over the frequency band monitored by the secondary
network. For convenience of the analysis, we do not cons$idebroadcasting car-
rier frequency by representing all signals with their coexgbaseband equivalents.
The secondary network has SUs in addition to its own base station. The
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Figure 2.1: Secondary network near a primary transmitter.

network intends to utilize the PU’s frequency band only whtdselieves that the

PU is idle. Thus, we do not need to consider the PU’s intendedivers in our

analysis. We assume that the secondary network is not intdicenmunication

with the PU, so the secondary network must perform spectremsisgg to assess
the current activity of the PU. The spectrum sensing is cripe in the sense that
the SUs make local sensing decisions that are reported toathe station, which
fuses the results to obtain a global sensing decision. Weisiereafter refer refer
to the SUs as (local) sensors and the base station as thenFlesier (FC).

2.2 Sensing Channels

The channel between the PU and #tle sensorhy, is Rayleigh fading with vari-
anceah%k, ke {1,2,...,K}. The PU-SU channels are modelled as independent and
non-identically distributed. The signal received by ktle sensor is impaired by
complex Additive White Gaussian Noise (AWGN) with variamq%k. Thus, the
kth sensor’s sensing SNRyg = Ro?, /02, and we lef/s = [Vs1. Vs, - -, Vs )-

Each sensor has a fixed intervaldfiime slots during which it has to perform
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Figure 2.2: Division of sensing and reporting time slots for tkta sensor.

sensing and reporting with a single antenna, as in Fig. 212 time slots are
assumed to all be of the same length, whether for sensingortieg. The sensing
channel is assumed to have a coherence time sufficientlyftory to be assumed
constant for the entire interval. We also assume that thesPéither active or
idle for the entire interval, i.e., it does not cease or resuransmission within
the interval. This is not a particularly strong assumptii§;] shows only a minor
improvement for energy detectors that take into account tRbksarrive or depart
randomly. Furthermore, we assume that each sensor has amt@cestimate of
Haﬁk, but does not know the instantaneous fading dminTherefore, the sensors
use yenergy detection by sensing iy time slots and applying decision threshold
Tk to decide whether the PU is active or idle.

2.3 Reporting Channels

The remainingNrx = N — Ngi time slots are used by the local sensor to report
its binary decision to the Fusion Center (FC). Each sensmsinits+1 if the
PU is deemed active, andl otherwise. The reporting channel between ktie
sensor and the F@, is Rayleigh fading with varianceék. The channels between
the SUs and the FC are modelled as orthogonal, independehtiam-identically
distributed. The instantaneous reporting channel gaidsvariances are assumed
to be known at the fusion center.

The repeated reports are impaired by complex AWGN with vaga aék.
Thus, thekth sensor’s instantaneous reporting SNRHg = \gk\z/aZZ_k, and we
let yr = [\R1,)R2;---;YRk]- Thekth sensor's average reporting SNRYg, =
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05k/ 0%k and we lefyg = [Vr1,Yr2: - Yrk]- We assume thak is constant for
the interval ofN time slots, whileys andyg are constant for multiple intervals.

2.4 Sensing Performance Metrics

Our goal is to detect when the PU is idle, so we are interestetiaracterizing the

false alarm and missed detection probabilities. HLetefine the current state of the
PU, whereH = 1 means that the PU is active aHd= 0 means that it is idle. The

FC makes global decisiod, defined analogously td. The network false alarm

probability Psrc and missed detection probabiliByrc are defined as

Piec =Pr{H =1|H =0}, (2.1)
Prrc=Pr{H =0|H =1}. (2.2)

If the FC is basing its decision on only the inferred decigiom thekth sensor,
using the instantaneous reporting channel realizatiohaif¢ensor, then we define
these single-sensor probabilitiesRgcx andPrgc k.

For fusion rule analysis, we must be able to refer to subdeatseosensors in
the network. LetSk; be the union of all sets that combin@ut of a total ofK
sensors, i.e.S contains('f) sets ofi sensors. Furthermore, I8 j be thejth
set inSg ;. The ordering of these sets is arbitrary but constant.

11



Chapter 3

Single-Sensor Network

In this chapter, we derive and analyRgrck andPrrc k at the fusion center for a
given reporting channel. We present a set of constraintsetieble upper bounds
on Pyrck andPsrc « to be convex with respect to the sensor’s local decisiorstiire
old and the number of reporting time sloB,rck andPirc k are also averaged over
the Rayleigh-faded reporting channel (then writterPagck andPtrck, respec-
tively), for which the same constraints ensure convexitye bounds enable us to
optimize Pnrck andPsrck, and in Chapter 4 they facilitate the relaxation of the
generalK-sensor problem to a convex optimization problem. Detagilambfs of
some of the results in this chapter are omitted for narrati@ety and are deferred
to the appendices.

In Section 3.1, we derive the analytical forms Bfrck and Ptrck, assum-
ing that the sensor’s sensing decision variables can belleddes Gaussian dis-
tributed. We also assume that the FC uses a coherent detectaceiving the
sensor’s reporting signal. The sensor is able to sacrificsirsg time slots for more
reporting time slots in order to increase the reporting SNR.

In Section 3.2, we derive closed-form upper boundsPaack and Prrc k.
These bounds are shown to be jointly convex with respectetdoital sensor deci-
sion threshold and the number of reporting time slots withithposition of a set
of convex constraints.

In Section 3.3, we derivBmrck andPec k by averagindPmeck andPsgc k over
the Rayleigh-faded reporting channel, respectively, evkilll assuming coherent

12



detection at the FC. The intent is to save on computation anchanication
time by optimizing less often, i.e., only when the variantéhe reporting channel
changes. The constraints imposed in Section 3.2 still dpgig for convexity.

In Section 3.4, we formulate the single-sensor optimiragooblem where
we minimize the false alarm probability while satisying &gt for the missed
detection probability.

3.1 FC Performance

3.1.1 Local Sensing

For our analysis, as in [18], we assume th&f is large enough such that the
energy detection decision variables at the local sensobeamodelled as Gaussian
distributed via the central limit theorem. We favor the Gaais approximation
approach to facilitate tractability, unlike the analysis|[¥], which relies on the
moment generating functions of the received signals. Tiitlse PU is idle, then
the variance of the signal received at the sensar?is/Nsk, and we obtain the
probability of false alarm at the local sensBy, k, as [13, Eq. 16]

PiLk = Q (/0 — 1)/N—Ngry) , (3.1)

whereQ(+) is the Gaussia®-function. We immediately see thatiif < ar%k, then
the argument of)(-) would be negative anB_x > 0.5. Furthermore, an active
PU would only add to the energy of the signal received at thallsensor. Thus,
we will subsequently assume thmt> aﬁk, and the corresponding expression for
the probability of missed detection at the local sen&hi.x, averaged over the
Rayleigh-faded sensing channel, is [18, Eq. 26]

Pk = 1—exp(—&/(Rofy)) +1, (3.2)

13



where

1 —& 3 si’ @
| = ——— exp| = sin@ ex S, 3.3
V2rAGE, p(ac,ﬁ)/o p(z#o;‘.k) o

B sin@ B é B sin@
S= 1+erf<\/§§0ﬁk \/Esin6> 2erf<7\/§§aﬁk>], (3.4)
& = (Te/02k— 1)y/Nsk, (3.5)
R = R/Nsk/ 02y (3.6)

and erf.) is the error function [20, p. 406]. Egs. (3.1) and (3.2) (igno | in the
latter) show that increasing causes an increase ik and a decrease |,
and vice versa.

3.1.2 Sensor Reporting

We next derive an expression fBrrck. The sensor makes 1-bit decisibhk and
transmits it to the FC with a repetition code as

+1 ifHox=1 Ng+1<n<N,
mmzmz{ H Sk (3.7)

~1 ifHk=0, Nsk+1<n<N.

We note that, for a single reporting intervaI,I-AiLk =1, thenby = —1 with
probability Py_x andby = +1 with probability (1 — Py_k). The FC receives

k[N = gkbk[n] +z[n], Nsk+1<n<N, (3.8)

wherezn| is complex AWGN. The fusion center forms

1 N
Y= Noo ’; k[N = gk + z, (3.9)
RK n= sk+1

wherez is complex AWGN with variancefgk/NR,k. Thus, we see how increas-
ing the number of reporting time slots corresponds to arees® in the effective
reporting SNR. We construct a coherent detector where wéptyuyi by g /|ok|
and take the real componerit)¢ denotes complex conjugation). Thus, we obtain
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PmFck as

Pmrck =Pr{|gk/bx + O {giz/|ok|} <O|H =1}
=Pr{0{gz/|o|} < |9/} (1—Pmrk) +Pr{O{gz/|g|} < —|0k|} PmLk

=Q (|9k| ZNR,k/GZ%k) (1—Pnk) +Q (—|9k| ZNR,k/GZ%k) Pk,
(3.10)

whereJ{-} denotes the real component of a complex number. From théiffiest
of (3.10), we see that the FC uses 0 as a decision thresholdn @iat one of our
two design parameters is the local sensor decision thr@gpbne may validly
guestion whether the network could benefit by making the F&tiold variable. In
fact, this threshold was initially incorporated as a vagab our analysis. However,
it was found to complicate the convexity conditions whileyding negligible
performance improvement. Thus, we set it to 0.
Analogously,Prec k is obtained as

Pirck= Q (-!gk\ 2NR7k/022.k) PrLx+Q (!gk\ 2NR7k/022.k) (1-PrLk). (3.11)

3.2 Closed-Form, Convex Bounds on Perfor mance

3.2.1 Upper Bounds on Performance

Unfortunately, we cannot obtain (3.10) in closed form duéhwintegral in (3.3).
We will, however, require a closed-form expression in oredefine tractable
optimization problems. Therefore, we derive a closed-fopper bound on (3.3)
that leads to a closed-form upper bound on (3.10).

Theorem 1 (Upper bound on (3'3))Eq. (3.3) can be upper-bounded in closed
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form by

NSnax B (N B NR7k)

Ibound = AkXk | Bk — Ax +Cx (2 exp(—AwXq) + eXp(_NSminXI%))

V2N 2
Dk
+ ————exp(—AxX)
(N—Ngry)
Ay Ok (—Akxk—Nsn- xﬁ)
+ : exp| —— ik ) (3.12)
v anSnlnXk _Ak+v NSnin 2
where
X = Tk/ 02 — 1, (3.13)

positive constants;ABy,Ck, and Dy are given by

1 T NS, 0%
NITYAPT=.” SRR

anderfi(-) is the imaginary error function [20, p. 427]. 4\, and N, are bounds
on Nsi that are introduced to simplify convexity analysis with imial impact on
the value of doung

Proof: Refer to Appendix A. The proof converts the error functiomg3.2) into
equivalentQ-functions, and then applies the “supertight bound” on@rinction
given in [21] in addition to two Taylor series approximatson O

If the argument of)(-) is negative, then.8 < Q(-) < 1. We also aim to achieve
low Pk (i.€., PmLk < 1). Therefore, we upper-bound (3.10) by

Prck < Q (Il /2Nrk/ 0% ) + A+ bouna (3.15)
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where we used a first degree Taylor series approximationeafidm-integral com-
ponents oy i, i.e., 1— exp(—f/(ﬁaﬁ@), at T = 02, as otherwisdn,k (ig-
noring thel term) is concave with respect 1.

Eq. (3.11) is already in closed form. However, to define &llet optimization
problems, we upper-bound it by

Prrci < Q (oKl y/2Nri/ 0% ) +Q (/N =N (3.16)

where we used again thats0< Q(-) < 1 when the argument @(-) is negative,
andPr x < 1.

3.2.2 Convexity of Upper Bounds

We relaxNgrk to be a real number for optimzation (though in simulationd sn
practice we round it to the nearest natural number), andeptéke following the-
orem:

Theorem 2 (Convexity of (3.15) anc (3.1.6))Egs. (3.15) and (3.1.6) can be shown
to be jointly convex with respect @ and Nk, if we impose the following convex
constraints:

02— <0, (3.17)
1<Nrk<NR,, (3.18)
% 2= (1+V2)Ns,, <0, (3.19)
2

n,k
: — 0 3.20
N Ne AXi <0, (3.20)
2A— E <0, (3.21)

2(N — Nry)? 2ADNG
AZexp(2mc) + A“NT’ exp(E) - — 5= -Di<0.  (322)
ax Sax

where M., =N—Ns,., X is as in (3.13), and E is a tunable parameter, defined
in (3.21), that limits the maximum value nf

Proof: We prove the convexity of (3.16) and (3.15) in Appendices B @nre-
spectively, by showing that the Hessians of (3.15) and jafénon-negative once
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(3.17) to (3.22) are imposed [22, 23]. As discussed ealBel7) is imposed so
that we are able to use (3.2). The local sensor must be al#pdotifor at least one
time slot, soNrk > 1. EqQ. (3.19) couples, with Ngx to makelpoung cOnvex with
respect tark. EqQ. (3.20) is used with the “supertight bound” [21] to ea&u(3.3)
in closed form. EQ. (3.22) is less intuitive, but it ensures joint convexity ofty
andNgk in lpoung EQ. (3.21) is imposed to improve the tightness of (3.22)avhi
maintaining convexity. O

We observe that there are both upper and lower bounds andNgy. This
means that there are both upper and lower limits on the valu@s-cx andPsrc k,
i.e., we cannot achieve arbitrarily small or laf§grck or Psrc k While maintain-
ing convexity. This phenomenon will become evident whenyaaireg Receiver
Operating Characteristics (ROCSs).

3.3 Performance Averaged Over Reporting Channels

The sensing error performance as given by (3.15) and (3.16) be re-evaluated
every time the reporting channel changes. Thus, the cobetane of the reporting
channel influences the optimization frequency. Significetivork resources (both
time and energy) could be consumed performing computadinds€ommunicating
both environment parameters and optimal results. It mag thes beneficial to
optimize less frequently, which we may do if we average pertmce over the
Rayleigh-faded reporting channel.

Egs. (3.15) anc (3.1.6) share a common reporting componanivéndefine as

Prk=Q (\gk\ 2Nrk/ Gz"jk) : (3.23)

We can save on computation time and the corresponding coimatioms over-
head by averaging (3.23) over the Rayleigh-faded repodirannel, sincgg is
constant for longer thapkrk. This probability,Pr, is defined and upper-bounded
in the following theorem:
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Theorem 3 (Upper bound orPrk): Pry is defined and then upper-bounded by

P %k /g dé < % (3.24)

I:’Rk: 2 2
HNR’ngJ( 0 w 02 +1/S|n 0 4NR’kO-g7k

Proof: Refer to Appendix [D. The proof of the definition is found usthg Craig
representation of th®-function (as in [18]) and a variable substitution. The uppe
bound is derived by assuming thaf; /(Nrkdg,) is relatively small (though we
are not required to impose another constraint). O

The exact form in (3.24) allows us to average (3.10) and j3ok&r g« and
write

Pmrck = Prk(1— Pnik) + (1 — Pri)PmLk, (3.25)
Ptrck = Pri(1—PrLk) 4+ (1 — Pri)Pri k- (3.26)

The upper bound in (3.24) is trivially convex with respeciNgx. Egs. (3.15)
and (3.16) become

2

o.
Prrck < | __zk 3.27
mFCk < AXk + lbound+ 4NRkO-2k7 ( )
02
Ptrck < Q (Xy/N—Nrk) + Ny k02 ; (3.28)

respectively. Note that, since (3.17) to (3.22) are deriveth the sensing com-
ponent of (3.15) and (3.16), (3.27) and (3.28) are jointlgvex with respect tay
andNgrk under the same set of constraints.

3.4 Single-Sensor Optimization Problem

Our goal is to optimize performance by minimizing one praligbwhile satisfy-
ing a target for the other probability. Since we would likegt@arantee a ceiling on
interference to the PU, we choose a target missed deteatbalplity, Pnrc, \nr @S
in [13]. Thus, when the instantaneous reporting channeiasvk, the optimization
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problem for the single-sensor network can be formulated as

minimize Prrck
subject to Pyrck < PnFcas
(3.17) to (3.22) (3.29)

Analogously, when only the average reporting channel iskndhe optimiza-
tion problem for the single-sensor network can be formdlaie

minimize Ptrck
subject to Pmrck < PmFcaq
(3.17) t0(3.22) (3.30)

Due to the convexity of the objective function and all of tlwmstraints, prob-
lems (3.29) and (3.30) can both be solved by efficient algorit such as the
interior-point method [22].

We emphasize that the frequency for solving (3.29) dependsaply on the
reporting channel coherence time (though also on the spiebiannel coherence
time). Solving (3.29) offers improved spectrum sensingqguarance while using
(3.30) is less demanding on network resources.
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Chapter 4

Multi-Sensor Networ k

In this chapter, we derive and analyBgrc and Psc for the K-sensor network
using Pmeck andPreck. We can analogously deriienec and Pgc (averaging
probabilities over reporting channels) usiRgrck andPtec if only the average
reporting channels are known. We upper-boBqgc andPsgc to obtain a general-
ized convex multiplicative problem [24] for OR-rule. Subgaently, we relax this
problem to arrive at a convex optimization problem and extive analysis to any
M-out-of-K rule. Detailed proofs of some of the results in this chaptercanitted
for narrative clarity and are deferred to the appendicesiolddhout this chapter
we assume th& > 2.

In Section 4.1, we present the analytical form$gfc andPsec as functions
of the individual Pnrck and Pseck. These expressions apply to allrout-of-K
rule. We derive upper bounds on bd&irc andPsec. For OR-rule, we show that
the upper bounds lead to a generalized convex multiplieatioblem for network
optimization.

In Sectior: 4.2, we relax the optimization problem for ORertd arrive at a set
of independent convex optimization subproblems. We aehikis by uncoupling
the missed detection target probability, resulting in oosvex optimization sub-
problem corresponding to each sensor. We briefly discussabeoffs of solving
the problems at the FC versus at the sensors.

In Section 4.3, we show that the approach used to formulatt afconvex
optimization subproblems when using OR-rule can be geimethto anyM-out-
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of-K rule.

4.1 Optimization Problem

The fusion center combines thé inferred local sensor decisions into a global
decision using aiM-out-of-K rule. We focus attention on analysis for OR-rule (i.e.,
M = 1) for three reasons: 1) simplicity, 2) the analysis willdga optimization of
anyM-out-of-Krule as a convex problem, and 3) we will suggest in Sectiothatl
optimized network performance will favor a rule that muigg missed detection
probabilities, i.e., OR-rule.

4.1.1 Exact Expressionsfor Decision Fusion

Conveniently, Phec and Psec can be writen as functions of the corresponding
single-sensor probabilitiesPsrc for any M-out-of-K rule, using our notation, is
[25, Eq. 10]

O] o

In other words, we sum every combination of product#ldfalse alarm prob-
abilities, M + 1 false alarm probabilities, ..., amdfalse alarm probabilities, and
every combination has a coefficient calculated by [26, p] 165

ii(_l)p@) =)™ (:&) 4.2)

Similarly, |25] provides an expression for the probabilitf/detection. How-
ever,Pnec is more relevant here, which we write as

. K i+M—K 1 of] o 43
ch_i_K;wﬂ{( 3 <p)><&zw|;| mmk>}, “.3)
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where [26, p. 165]

i+MzK1(_l)p<:)> ~ (_l)i+MKl<i +|vi|:1K—1>' (4.4)

4.1.2 Exact Expressionsand Bounds for Decision Fusion

Our goal is to upper bouni;rc andPyrc by only considering the products of the
fewest probabilities, i.e. by only considering= M in (4.1) andi =K —-M+1in
(4.3). Products of more probabilities should be smallesesthey are the product of
more positive terms less than or equal to one. However, thismot be the case if
the coefficients become large. We impose a constraint orvdrage sensing error
probability that guarantees an upper bound, as given inollewing theorem:

Theorem 4 (Upper Bound orPsrc andRyre): Prrc and Ryrc are upper-bounded
by

Pre< ) D Ptrck, (4.5)
ScM,jESKMKESK M j

I:)mFC < z I_l PmFCk> (4-6)
SCK-M11jESKK-M+1KESK KM+,

if we impose the following constraints:

Sk 1 Prrck 2M +4
< 4.7
K “KM+K-M2—-2M -1’ (“.7)
K —
szlmeQkS 2K —2M + 6 7 (48)
K KM—2K —M2+4M — 4

which are convex with respect tp and Ngy, VK.

Proof: Referto Appendix [=. We compare binomial coefficients to stiwat, when
applying (4.7) and (4.8), the negative terms in (4.2) and)(dre greater than the
positive terms in (4.2) and (4.3) that are ignored in (4.5 @6). O
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4.1.3 BoundsApplied to OR-Rule

For OR-rule M = 1), the upper bound (4.6) fé*rc is equivalent to (4.3), so we
can ignore (4.8). The upper bound Byic is

K
Pirc < ) Prrck, (4.9)

K=1
which is tight when the individuaPsrc  terms are small. The upper bound (4.9)
is convex since it is a sum of convex functions. Furtherm(@g,) becomes

K
6K
P < —. 4.10
k; fFCk < 57 (4.10)

Assuming physically reasonabi@rc (i.e., Pifrck < 1), (4.10) can also be ig-
nored. Our optimization problem becomes

K
minimize z Preck
K=1

K
subject to I_l Prrck < PmFCTAR
k=1

(3.17) to (3.22) ¥k, (4.11)
where we use upper bounds frck andPsrck (from (3.15) and (3.16)).

4.1.4 Generalized Convex Multiplicative Programming

Since Pykec is the product of convex functions, (4.11) is not convex imegal.
Problem (4.11) is an example of generalized convex muitiglie programming,
where a problem that is otherwise convex has either an dlagetetrm or one con-
straint that is a product of convex functions. This is a reddy new field of opti-
mization [24], though it has been shown that such a problembeatransformed
into a series of convex problems.

Problem ((4.11) can be globally solved by the simplicial lstaand-reduce
method described in [27]. Simplicial branch-and-redugaregents the problem
in an equivalent form wherg-simplices K-dimensional shapes with certain prop-

24



erties) are used to represent the individual convex funstia the multiplicative
constraint. In each iteration of the method, one of the ditaplis removed and
replaced witiK moreK-simplices, and a corresponding convex problem is solved.
With each iteration, the convex problem complexity gronanfrthe net gain of

(K — 1) K-simplices. However, the algorithm will eventually conyerto the op-
timal solution. In practice, the execution time of the biaand-reduce algorithm

in [27] grows prohibitively large a¥ increases. Thus, it is of interest to find a
simpler method for solving (4.11).

4.2 Suboptimal Convex Problem for OR-Rule

For OR-rule, we observe thBf,rc is a product of independently convex functions,
since eactPnrck is only a function of its corresponding andNgy. Therefore,
dividing the missed detection target in (4.11) iktdargets Pnrc; 4,k (One for each
sensor), will creat& independent convex subproblems.

A simple way to derivéPnrc; .k Would be to take th&th root ofPyrg e, @S in
[1Z2]. However, this ignores that some sensors can achidier lperformance than
others due to stronger sensing or reporting channels. AsdnatSection 3.2.2,
there is a lower limit on every achievatfrck, which will vary from sensor to
sensor. Therefore, we propose scaling the target protyabflieach sensor based
on the best achievabR,rck of that sensor. So, we first solve

minimize Pneck
subjectto (3.17) tc (3.22) (4.12)

for all k sensors, which are convex optimization problems, and défire,, «
as the solution to (4.12). The network’s minimum missed cl&r probability,
PmEGy,» USINg OR-rule is then

K
PmFCmin = I_l PmFCmin,k- (413)
k=1

Obviously, ifPnrcar = PmFG,i,, then we requir@nrc sk = PmFcyin k, 7K. Oth-
erwise, at least one sensor will have an unachievable 1a®ePHrFc prk <
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PmFGonk for somek. WhenPyrc; .z > Pmrcy,s it IS reasonable to assign relatively
lower Pnrg Ak tO sensors that have lowBfrc,,, k- We propose achieving this by
scaling each sensor’s target relative to its minimum as

Prcrae ) 7
PmFCTARk - PmFCmin,k <ﬂ> 9 (414)

where it is then straightforward to verify that

K
PmFCTAR - |_| PmFCTAR,k- (415)
k=1

Thus, we relax (4.11) to arrive at the new problem

K
minimize z Pteck
K=1

subject to Pnrck < Pnecarks VK
(3.17) to (3.22) Vk. (4.16)

Problem (4.16) readily decomposes irikoconvex subproblems that can be
efficiently solved [22] either at the FC or at the sensors. F@eknowsgy and
02, Vk, but in order for it to solve all subproblems, it also needéetrn Ro?,
and ar%k, vk, via a feedback channel. However, tkié sensor knowf’taﬁk and
02,. so in order for it to solve thith subproblem it only needs to leajgy| and
ogk via a feedback channel. Either method requires feedbadieadptimalry and
Nrk, VK, between the sensors and the FC. For this thesis, we do nsileomvhere
(4.16) is solved.

Relaxed problem (4.16) does not in general yield the optsohltion. Recall
from Section 3.2.2 that there is also an upper limit on evetyevablePyrck. In
the event that our scaling assighsec; sk < PmFGhack fOr SOmek, wherePmrc, ..k
is the sensor's maximum missed detection probability, thelming (4.16) will
yield Pnrc < Pmrcae- There is generally a tradeoff between false alarm and ohisse
detection, so having a missed detection probability bef@warget means that we
are probably not minimizing the false alarm probability. vidgheless, as will be
shown in Section 5.2 of this thesis, the target scaling apgrasually yield®nrc
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andPsgc that are very close to the optimal solution of (4.11).

4.3 Suboptimal Convex Problem for Generalized
Counting Rule

We can generalize the formulation of (4.16) from (4.11) tg Brout-of-K rule.
Again, we use upper bounds fBhrck andPrec ik (from (3.15) and (3.16)). We
keep the same obijective function as'in (4.16), even thouighib longer represen-
tative of the actuaP;gc, in order to enable decomposition into convex subprob-
lems.

Pmrcark requires scaling to achieve the upper bound definec by (4A8).
a generalization ol (4.1.4), we propose scaling each sentanget relative to its
minimum as

P.rc 1/(K=M+1)
m
PmFCTAR.k - PmFCmin,k <P7TAR> 5 (417)
MFGnin
where it is then straightforward to verify that
PmFCTAR = |_| PmFCTAR.k- (418)

SCK-M+1,j €ESK K-M+1 KESC K-M+1,]

As an example, we will verify (4.18) for the caself= 3, M = 2, as follows:

PmFCTARvk
SKK-M+1,j ESK K-M+1KESKK-M+1,]

= F’mFCTARJF’f’ﬂFCTAR2 + PmFCTARJF’f’ﬂFCTAR3 + PmFCTAszmeCTARs

PrnFc
= 5 (PnFGun 1PFGri 2 + PP Goin 1PF Grin 3 1 P Grin 2P G )
MFGnin
Pk
= PPmFCmin = PrnFGrar (4.19)
MFGnin

Thus, for anyM-out-of-K rule, we can solve (4.16) usif@hrc .k, VK, found
by (4.17). Of course, we must also consider constrainty éhd (4.8), which we
were able to ignore for OR-rule.
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Chapter 5

Numerical Results and Discussion

In this Chapter, we present and discuss simulation resakedon the analytical
results in Chapter 3 and Chapter 4.

In Section 5.1, we present Receiver Operating CharactsriROCS) for a
single-sensor optimization problem. We show the loss imgay and achievable
sensing performance due to bounding, and the performaasearourred when op-
timizing less often (by optimizing based on the reportingratel variance instead
of the instantaneous reporting channel). We show that sitionls are consistent
with the exact performance of the optimized network. We atsusider the effects
of using different interval lengti.

In Section 5.2, we present ROCs for multi-sensor optinizafgiroblems. We
compare the application of differeM-out-of-K rules, showing that OR-rule en-
ables the best performance. We also consider the sensiiv®;rc to the qual-
ity of the sensing and reporting channels using two diffefasion rules while
showing the benefits of optimizing the number of reportingetislots over only
optimizing the local decision thresholds.

Unless otherwise noted, results in this Chapter are for alaied secondary
network with N = 5000 time slots. We let?, =1, 02 =1, andR = 1 (the
power units are arbitrary). For optimizatioh, we $&¢ . = N—Ng,, = 1500,

Ns,..,= N—1, andE = 1. We assume that the PU is transmitting a Binary Phase-

Shift Keying (BPSK) signal.
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5.1 Single-Sensor Results

Chapter 3 presented numerous bounds to formulate!(3.29kasvax optimiza-
tion problem. Before considering the overdil;sensor network, we consider an
example to show the loss in accuracy and achievable seneifigrmance due to
the approximations and bounds of the single-sensor netv@woksider théth sen-
sor in a simulated secondary network where, unless othemadged, the average
sensing SNR i¥g, = —5dB.

Figs. 5.1 and 5.2 show the Receiver Operating Characte(iRDC) when solv-
ing (3.29) foryrk = —6dB and solving (3.30) fopg, = —6dB, respectively. In
Fig. 5.1, we use different interval lengthsand for each we sédr,. = 0.3N and
Ns,..,= N—1. In Fig. 5.2, solving (3.30) once via (3.28) and (3.27) iatcasted
with solving (3.29) 16 times via (3.16) anc (3.15), each time Wikl generated
based oryg, to show the loss due to optimizing less often and only usimgg t
average reporting channels instead of the instantane@ss dfissed detection is
represented bPmec, .k, defined analogously e k- [N both figures, the up-
per bound curves were obtained from the solutions of (3.86)(8.30). To assess
bounding losses, curves are shown that were obtained usrgptutions of (3.29)
in the exact expressions (3.10) and (3.11) and the solutd(3.30) in the exact
expressions and (3.25) and (3.26). We also show curvesebltdy using the so-
lutions of (3.29) and (3.30) in the simulation of®loise and channel realizations.

In Fig. 5.1, the looseness of the upper bound curves is pilinteorizontal; the
upper bounds oRwrck are looser than those dtrc k due to the upper bound on
(3.3) and the Taylor series upper bound of the non-integraiponents 0Py k.
The looseness means that the actual performance would tee thetn that given
by the optimal solution of (3.29). For larg&t, the upper bound is tighter and
lower sensing error probabilities are achievable. ArhigrancreasingN is con-
strained by the coherence time of the sensing channel armetat of time to use
the frequency band for data transmission in the event thalde@les that the PU
is absent.

The smallest false alarm probability plotted fée= 1000 in Fig. 5.1 is approx-
imately Q002 and constitutes the smallest possible within the cofwasibility
region due to the constraints epandNgr k. While it is possible to obtain a smaller
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N = 15000 \

—O— Upper Bound (Convex Optimization)
—HB— Simulation (Using Con. Opt. Solution)
—&— Exact (Using Con. Opt. Solution)
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Figure5.1: ROC for gk = —6dB with 1 sensor and three different values of
N. The convex optimal curves were obtained using the solsitidni3.29) via
(3.16) and (3.15). The exact and simulation curves werdrmdavith the so-
lutions of (3.29) in exact expressions (3.10) end (3.11g,fanthe simulation

of 10° realizations of noises and sensing channels, respectively

false alarm probability, convex optimization methods vaonb longer apply and
we would have to rely on less efficient and more time-consgmiethods, such as
exhaustive search.

In Fig. 5.2, we see a decrease in performance when we optiomze based
on the variance of the reporting channel, as expected. Tdsei®wss of the upper
bound when optimizing once is comparable to the upper boawgkhess when op-
timizing for the instantaneous reporting channel and ajirgaover many channel
realizations. If we can accept the computational and conications overhead of
optimizing more often, then we can achieve a measureabiteiggierformance.
However, if the overhead becomes cumbersome, then optignieiss often be-
comes a viable alternative.

In both Figs. 5.1 and 5.2, we see a small difference betweeuhve(s) ob-
tained from the exact expressions and the simulation csiyvé(e to the Gaussian
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—©— Upper Bound (Convex Optimized)
—H8— Exact (Using Con. Opt. Solution)
—&O— Simulation (Using Con. Opt. Solution)
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Figure5.2: ROC foryg, = —6dB with 1 sensor an8ll = 5000. One set of
curves was obtained by optimizing once, basedygp, by solving (3.30)
via (3.28) and|(3.27), then using the solutions of (3.30)xace expressions
(3.25) and(3.26), and finally the simulation of®l@alizations of noise and
sensing channels. The second set was obatined by optinicinig’ report-
ing channel realizations by solving (3.29) via (3.16) end %3, then using the
solutions of (3.29) in exact expressions (3.10) and (3414, finally the sim-
ulation of 100 realizations of noise and sensing channelgdch reporting
channel realization.

approximation of the local energy detector decision véesland the rounding of
the optimalNg k to the nearest integer for simulation. Fig. 5.1 shows thatdH-
ference shrinks with increasinyg, as expected from the central limit theorem. We
also see that loviP;gc i is more readily achievable than lodMheck, as the lower
bounds ory (i.e., (3.17) and (3.19)) are tighter constraints than theen bound
(i.e., (3.21)). This implies that the design of a multi-sansetwork will favor a
rule that multiplies missed detection probabilities anchsdalse alarm probabili-
ties (i.e., OR-rule).
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5.2 Multi-Sensor Results and Discussion

Unless otherwise noted, results in this section are for alsited secondary net-
work with K = 4 sensors. For this value &, it is easy to show that constraints
(4.7) and (4.8) can be ignored for all rules. For all senso,ﬁ,: 1 andaz%k =1,
and we defing/g = [-7,—8,—9,—7]dB andyr = [-6,0,—4,—2]dB, so that the
sensors have unique pairs of sensing and reporting SNRs. tDsimilarity of
the results, we do not include optimizing for the averagel®glp-faded reporting
channelsyg. Such results would only serve to further illustrate theefodue to
optimizing with less information.

All figures in this section show upper bounds obtained udigsblutions of
the convex problem (4.16), where the upper boBng’s are calculated from (4.5).
Curves are also shown that were obtained using the solutio(@s1€) in the exact
expressions (3.2.0) and (3.11), and then combining theesisghsor probabilities
with (4.1).

5.21 Comparison of Fusion Rules

Fig. 5.3 shows the ROCs for the secondary network using aBipteM-out-of-K
rules wherK = 4. In addition to the aforementioned curves, it shows cunkes
tained by using the solutions of (4/16) in the simulation@¥ealizations of noises
and sensing channels. Furthermore, for OR-rivle< 1) it shows a curve obtained
by solving (4.11) with the branch-and-reduce method asexctidomparison to the
suboptimal convex approach.

In Fig. 5.3, we see that OR-rule is generally superior to #ikeo rules and
that solving (4.16) yields performance identical to salvid.11) for OR-rule, i.e.
our suboptimal convex problem yields the same solutiongpplyiag the branch-
and-reduce method. The overall performance for AND-ruleaaker due to high
missed detection probabilities; we can only achiBygeg, . > 0.3 since the missed
detection performance of AND-ruléX = K = 4) is derived from the addition of
the single-sensdRnrck’s, which in turn are constrained by the lower bounds on
T (i.e., via (3.17) and (3.19)). The performance of ruds=2 andM = 3 lie
in between that of OR-rule and AND-rule, as expected. Thesujmounds on
all rules, which formed the basis of the optimization, a@smnably close to the
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Figure 5.3: Secondary network ROC with 4 sensors &hek 5000, usingvi-
out-of-K rules. The convex optimal and branch-and-reduce curves aler
tained using the solutions of (4.16) and (4.11), respdgtivehere the latter
was only solved for OR-rule. The exact and simulation cuwege obtained
with the solutions of (4.16) in exact expressions (3.10L18 and (4.1), and

for the simulation of 18 realizations of noises and sensing channels, respec-
tively.

exact performance. The looseness of the upper bounds hpagated from the
looseness of the upper bounds of the single-sensor false atad missed detection
probabilities.

As observed in the single-sensor case, there is a smaliatiffe between the
curves obtained from the exact expressions and the sionlatirves, again due
to the Gaussian approximation of the energy detector decigriables and the
rounding of the optimaNgr’s to the nearest integers; the accuracy of the exact
analytical curves can be arbitrarily improved by incregdi Importantly, we
observe that very good performance can be achieved usimgyetietection, espe-
cially using OR-rule, even though the sensing channels higyec —7dB, Vk.
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Figure 5.4. Effect of sensing channels détrc with 4 sensors using OR-rule
andPyec ., = 0.005. Reporting channel SNRs apig = [—6,0, —4, —2]|dB.
ForNrk = 10 andNgrk = 1500, only the thresholds, Vk, are optimized.

5.2.2 Sensitivity to Channel Quality with OR-Rule

We next study the sensitivity d?;gc to the quality of the sensing and reporting
channels when using OR-rule. At the same time, we consi@ebehefits of opti-
mizing Nrk versus holding\rx constant, since the current literature has not opti-
mizedNgrx. When we keefNrx constant, we only optimize the thresholtsvk.
We note that attempting to optimi2ds x while keepingty, constant significantly
restricts performance so we do not consider it in this thesis

Figs. 5.4 and 5.5 show the sensitivity Bf-c using OR-rule to the quality of
the sensing and reporting channels, respectivelyPfgic, ., = 0.005. We note
that, because of the upper-bounding, #xactmissed detection probabilities are
Pmrc < 0.005. Both figures show that a wide operating range existsevherfalse
alarm probability can be guaranteed to be below 1% wthen5000. Comparative
curves show results fddrx = 10 andNgrx = 150Q vk. For Fig. 5.4, we also have
curves optimizing\Nr for different interval lengtiN where we seNg_,,, = 0.3N
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Figure 5.5: Effect of reporting channels oRsrc with 4 sensors andN =
5000, using OR-rule, an®nrc,, = 0.005. Sensing channel SNRs are
Ys = [—7,—8,—9,—7]dB. ForNrk = 10 andNrk = 1500, only the thresh-
olds 1y, vk, are optimized.

andNs,,, =N—1.

In Fig. 5.4, we decrease the sensing SNRs from base vidues0, —1, —2,0]
dB. Allowing Nr to be optimized wheiN = 5000 permits significantly lower false
alarm probabilities than when usimdg xk = 10 or Nrx = 1500 for the majority of
the considered range of sensing SNRs. When the sensingethama particularly
weak, i.e.)ys < [-9,—10,—11 —9]|dB, we see that usinrx = 10 is comparable
to using the optimaNrk. Thus, as sensing channels weaken, it is beneficial to
sacrifice reporting time slots to allow more time slots fonsrg. UsingNrk =
1500 is not advised for the range of sensing channel SNRsdawed in Fig 5.4,
since the reporting channels are relatively strong. Whersémnsing channels are
relatively strong, havindNrk = 1500 does outperformirx = 10, so we see that
the bottleneck in performance shifts from the sensing torém®rting channels.
Still, significantly improvedPnrc and Psrc are possible by optimizindlrx. For
example, we can achieWrc ~ 1.5 x 10-® whenyg = [-5, -6, —7, —5]dB, which
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is almost two orders of magnitude lower than if we Sigk = 1500 for the same
sensing channels. Finally, the size Mfis also a major factor when optimizing
Nrk; significantly lower false alarm probabilities are achialeawhenN = 15000,
whereas performance whé&h= 1000 is poor for the considered range of sensing
SNRs due to the aggressifRrc, o

In Fig. 5.5, we vary the reporting channels from base vajges [—6,0,—4,
—2]dB. OptimizingNr allows lowerPsgc than when settingNrx = 10 orNgx =
1500. WhenNrk = 10, we see a sharp performance deterioration as the report-
ing channels weaken; the effective reporting SNR is too lowthe reports of
the sensors to reach the FC. Furthermore, witer: [—29, —23 —27,—26]dB,
Nrk = 1500 becomes the optimal value for all sensors. Howevergpsrting
channels improve, the excessive reporting wWithk = 1500 creates a bottleneck
in performance that limit®;rc to almost an order of magnitude lower than when
using the optimaNg k.

Figs. 5.4 and 5.5 both show that optimizimgandNrk enable a reasonable
operating range with an aggressive missed detection targbability. Poor sens-
ing or reporting channels can be mitigated to maintain nekwerformance. The
benefits of optimizind\rk versus holdindNr constant are substantial.

5.2.3 Senditivity to Channel Quality with Other Rules

We now briefly study the sensitivity &% gc to the quality of the sensing and re-
porting channels when not using OR-rule. Specifically, wesater the case of
M=2.

Figs. 5.6 and 5.7 show the sensitivity Bfrc usingM = 2 to the quality of
the sensing and reporting channels, respectivelyRf@e; ., = 0.005. The setup is
identical to that used for Figs. 5.4 and 5.5 with OR-rulepessively, except that in
Fig. 5.7 the sensing channel SNRs fige= [—5, —6,—7,—5|dB in order to enable
false alarm probabilities that are comparable to thosegn%-b.

In Fig. 5.6, we decrease the sensing SNRs from base vgdues0, —1, —2,0]
dB. As when using OR-rule, allowinir to be optimized whemN = 5000 per-
mits significantly lower false alarm probabilities than whesingNgrx = 10 or
Nrk = 1500 for the majority of the considered range of sensing SKIRgrall, we
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Figure 5.6: Effect of sensing channels d?rc with 4 sensors usiniyl = 2
andPyec ., = 0.005. Reporting channel SNRs apig = [—6,0, —4, —2]|dB.
ForNrk = 10 andNgrk = 1500, only the thresholds, Vk, are optimized.

observe the same general trends for usihg- 2 as we did withM = 1; we can
mitigate the effects of weaker sensing channels by dedgatiore time to sens-
ing, we can take advantage of stronger sensing channelsdigatiag more time
to reporting, and increasing the total number of time shdtenables an overall
performance improvement. By comparing Fig. 5.6 with =id, Bue observe that a
weak sensing channel obstructs performance more easily Mhe 2 than when
M = 1. This is as expected from the results in IFig. 5.3, where @Ris shown to
be generally superior to the other rules.

In Fig. 5.7, we vary the reporting channels from base vajges [—6,0,—4,
—2]dB. Once again, the general result trends are the same as shosn in
Fig.'5.5; optimizingNgr k allows lowerPsec than when settinggrx = 10 orNgrx =
1500. Wherm\rk = 10, we see a sharp performance deterioration as the regortin
channels weaken, so the number of reporting time slots ras1eea major perfor-
mance bottleneck. As noted previously, we used strongetrsgchannel SNRs in
order to observe false alarm probabilities comparabledsdtin Fig. 5.5; OR-rule
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Figure5.7: Effect of reporting channels oR;ec with 4 sensors andN =
5000, usingM = 2, andPyeg , = 0.005. Sensing channel SNRs gre=
[-5,—6,—7,—5]dB. For Nrx = 10 andNgrx = 1500, only the thresholds
Tk, VK, are optimized.

has once again shown to be superior in this framework.
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Chapter 6

Conclusions and Future Wor k

6.1 Conclusions

In this thesis, we considered the problem of cooperativetsp® sensing for cog-
nitive radio. The secondary network optimized the decisioesholds at the SUs
and the division between time slots used for sensing the RlUdiare slots used
for reporting the sensing results to the FC. We selected éhwark probabilities
of false alarm and missed detection as our performancegseiiVe derived these
probabilities for a single-sensor network and then foundnids to facilitate con-
vex optimization techniques. The analysis was extendedulti-sensor networks
usingM-out-of-K rules. Using OR-rule, we represented the multi-sensor orétw
optimization problem as a generalized convex multiphi@problem. We then re-
laxed the problem to formulate a convex suboptimal problemhusually yields the
same results. The relaxation was then generalized to nraicbavexity for any
M-out-of-K rule. Furthermore, we showed that we could optimize for trexage
reporting channel gains instead of the instantaneous baaswere willing to ac-
cept a decrease in sensing performance. Simulation refudiged that our convex
upper bounds were close to the exact analytical performark that joint opti-
mization of thresholds and sensing/reporting time slo&btas very good sensing
performance.
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6.2 FutureWork

The following areas are identified as potential interesérgensions for the work
in this thesis:

e Investigate scenarios with larger numbers of SUs where soayehave sens-
ing or reporting channel gains that are so weak that theyldhmuexplicitly
omitted from optimization.

e Account for primary networks that have more than one tratismgi PU.
Even if only one PU transmits at a time, the SUs would havedfit chan-
nels to each PU, likely with different channel gains.

e Extend our approach to the case of imperfect channel esimiay account-
ing for additional performance loss due to the imperfednestion of both
the sensing channel variances and the instantaneousingpcannels.

e Seek improved codes for the reporting channel. Our impleatien applied
a basic repetition code. The sensing reports could be quahtt the cost
of reporting SNR. It is unknown whether convexity would beimt@ined,
especially since the FC would then need to implement sofsidgccombin-

ing.
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Appendix A

Proof of Theorem 1

To upper-bound (3.3), we first convert (3.4) to an equivalerrh using the relation
erf(x) = 1— 2Q(v/2x) to obtain

S= —2+2Q(V2a) +4Q(V2b), (A.1)
where

N sinfg?

a = (T 4) 1 nk__ (A.2)
2 Ok sin@ «/ZNSthUnk
sin6g?

= (A3)

v/ NskR o

We observe that an upper bound on (A.1) results in an upperdon (3.3).
Considering tractability of the integral in (3.3), we prepahe use of the recently-
developed “supertight bound” on tiggfunction [21], defined as

1 —c?
2+ D) exp( > > (A.4)

Q) < gy exp(—) +

44



Eqg. (A.4) is tight for all values of, and allows us to write

1 2 1 2 2 2
< J— - I . - —
S 2+ —exp(—2a%) + 7 exp(—a‘) — exp(—2b%)
2
—|—7EXQ—b2 . A.5

Before pluggingS back intol, we further upper-bound some of its terms, as
follows:

o2 T sig o T ?
Rofk \ Ok Nsk R0y Onk
1 /NskR o2
NS E o , (A7)
Nsthoﬁk <% —1> — Gr?,k"’_ \/ NSthth,k
1 _ /NskRog
<1+sinf | — S Tk =1/, (A.8)
vb+1 an7k+ Vi NSthO'hJ(

where for (A.6) we used the fact that:lsir? 8, for (A.8) we used a linear approx-
imation with respect to si@ (which is an upper bound sincg (/b + 1) is convex
with respect to sif), and for (A.7) to be satisfied we impose the constraint

2
Gn k

, 2 [ Tk
— —— -1 0. A.9
N~ Neok Ropx (O_z ) < (A.9)

n,k

This constraint is convex with respect to bdthk andty. | is now bounded by

Tk — 02 u
<L exp[ X0k ) [*sde, (A.10)
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where

V NSkptahzk 2
— 2B 42 hk g
Sl B1+ (Oﬁ—i— NsthGﬁk BZ

2
263 B3 o [ T Tk
P38 kR ) S Ne [
25 " 25" Rog, | o2, S\ o2,
V/NskRog

5 2
1 ank Tk ~ Nsk
h k n,k n,k

+ 2+

. sin’ 6 04k
= sinfex A.12
By p<2N3k = ohk> (A12)
B> = sin@, (A.13)
. Sife o, nk
= sinBexp| — . A.14
Ps p( Mo Hzank) (A14)

The integral ovelS; can be computed in closed form. The integratiorﬁ@f
and 3, from O to 7 yields 7 and 1, respectively. The integration Bf and 33
can be solved by exploiting the identity 8= 1 — co€ 6 and the substitution
t = pcosf, wherep is the magnitude of the exponential term that is independent
of 8. This leads to

/Ogsine exp(p?sir? 6)d6 = exp(az)\z/—:erf( p), (A.15)
/Ogsine exp(—p?sir? 6)d6 = exp(—az)gerfi(p), (A.16)
where [20]
erf(p \/_/ exp(—t?) (A.17)
erfi(p \/_ / exp(t?)d (A.18)
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Thus,l is bounded in closed form by

1 o2 Tk— O,
| < ”"2( exp|— K zn’k 2
21nNskR 0?2 o’ o2
\/2TiNskR oy exp( 1 Oy )erf( 1 nk )

2Nsk Rzaﬁk +/2Nsk PtOﬁk

5 2
1 ank Tk Tk
(24 expl = [ 2K a1} Ny =X 1
25 Ptaﬁk (aék > : (a&k )
/TiNsKR 02 1 o? _ 1 o2
5 VY ITSK Thk exp k) erfi nk
V207,

_l’_

NSth%z,k (% - > - ar?,k"’_ V/NskRog,

2
102 (1 N T
2R0fy \ Ty 2 \ 05k
m \/NSkHGﬁk 1
2 a§k+,/N3kRa§k

Eq. (A.19) can be evaluated quickly. However, it is not neadfy jointly
convex with respect tox andNg; additional bounding is required.

First, the placements dfisi in (A.19) (especially inside of the exponentials
and square roots) make analysis of convexity with respelikiocumbersome, if
not impossible. To address this issue, we bound most oNgeterms to either
Ns.,., or Ns,,, (Whichever is appropriate to upper bound).

Second, the summation term with the error function, oncetiptigld by the
outside exponential, results in a term that@cavewith respect tory. We lin-
earize and upper-bound this term using the first degree Tagtes approximation
at T = 07y

(A.19)
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Performing these approximations leads to
1 o? 1 o Tk — o2
| < Bs + 55 erfl "k ) exp( — 2”"2 2exp| — 2”’k
V 2N Shin Pto-h k ZNSnax Pt Gh.k I:{O-h.k

2
Tk
(a__)
n,k

1 O-r%k
V2
NSninPtoﬁ.k (% _1> - Oﬁ.k—i_ V NSninPtoﬁ.k

2
1%—02 Ne. [ 1
>< exp _ n'k _ ST]II"I ( k _ )

2 Ptaﬁk 2 \o2,
1 oy Tk— O3y T VN, R 02,
expl — 2 2+5 | 3 > 1]/
\/ iNsk ROy Ry Okt /NP Ok
(A.20)
where

2 4
Tk — an k 1 O-n k n k
Bs=| —=+——-1]|exp| =—— =" . (A.21)
Ptoﬁ.k ZNSmax Ptzoﬁk vV 2NSk F’tah K
Observe that the only values By that are not bounded in (A.20) and (A.21)
are the one inside the error function and the one in the deraioni of the last
summation termps in (A.21) is concave with respect dr k for Nrx > 0. We lin-

earize and upper-bound this term using the first degree Tagttes approximation
atNrk = 0. The final result is (3.12), which upper-bourids
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Appendix B

Proof of Convexity of Bound on
(3.16)

The convexity oPsec k as given in/(3.16) can be proven by showing that its Hessian
is positive semi-definite (PSD) [22]. The Hessian of (3.53)at always PSD, but
we will show that it is PSD over a convex region once we imposetaf additional
constraints.

From 23], a matrix is PSD if and only if all of its principal mors are non-
negative. The minoR,g of matrix R is the determinant of the matrix formed by
removing the rows oR defined by the satr and the columns oR defined by the
setB. Ryp is aprincipal minor if Ris a square matrix and = 3. In other words,
we prove joint convexity oPsrc k With respect tary andNg by proving that

9°Preck
: B.1
oz 20 ©.1)
9?P
f:C.k >0, (B.2)
N3,
9%Pyrc 9%P 9%Prrck \°
szc sz,k_ tFCk o, (B.3)
atg  INZy OTkINRK
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The individual second derivatives are

%Prrck (N—Ngy)®/? ( oN— NRk>
2 = i eX - : ) B4
ot? ogk\/ﬁ e e (B.4)
0°Prrck 1 < 2N_NRk> [ 1 2}
X = exp( — ’ +
INZ, 42NNy O\ N—Nex | K

1 New) | 1 Jof?

+——————o exp| —|ok*—= + ,  (B.5)
2, /Nrkmo?2, ( 0Z ) | 2Nrk  0Fy

OTdNrk  of, V21 2 2,/N—Ngk 2 ’

(B.6)

where we usedQ(w)/dw = — exp(—w?/2) /v/2m andx, as defined in (3.13). To
satisfy (B.1) and (B.2), we immediately obtain the follogsiconvex constraints by
inspection:

02— T < 0, (B.7)

1<Nrk<N. (B.8)

Since we have previously definé, ,,, we haveNg . = N —Ns,,.. Therefore,
(B.8) must be more tightly bound as

1< Nrk < Ng,. (B.9)

We observe tha: (B.5) has a positive term with an exponetttélis different
from those in(B.4) and (B.6). Therefore, we will ignore th@que term in(B.5)
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to satisfy (B.3). Thus, it is straightforward to show that
0%Precx 0%Preck 0%Preck\° 1 Tk ’
> > — : > exp| — [ = —1| (N—Nrg)
ote  ONg, OTkONRK 2nof o '

2
ST 4) 1
4\ a2, 4(N = Nry)

Bs

(B.10)
Non-negativity can then be guaranteed by makBggon-negative, or in other

words imposing the convex constraint

2
(T—'z‘ —1> +3Nrk—3N <0, (B.11)
Gn7k

Thus, by imposing contraints to satisfy (13.1) to (B.3), wedndefined a convex
region where (3.16) is convex.
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Appendix C

Proof of Convexity of Bound on
(3.15)

Analogously to théPtgc x case in Appendix B, for the convexity &rck as given
in (3.15) we must prove that

aZPmFC;k
>0 Cl1
oz 20 (1)
0°P,
k>0, (C.2)
A\
2
ﬁZPmZQk ﬁZPmZFQk - <62PmFC;k> >0, (C.3)
atg  INZ OTkONR
The individual second derivatives of (3.15) are
dszFC,k _ dzlbound (C.4)
o1 ot '
dszFCk |0k | 2> NRrK 1 2|gk|2 52|bound
== expl — : + + , (C5
ONZ, 4,/noENRk o 07 ) [Nrk  0F 0 NFZe,k (€5
aZPmFCk _ dzlbound (C.6)

O0TkONRK N O0TkONRK ’
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wherelpoungis from (3.12). It can be shown that

52|bound o Ck 2 N N 2 2N 2 1
3 = o AZ exp(—A) + Ny, €XPp(—Ns, ) (2N — 1)
2Dy A ( 1, Ny )
+—————6eXp(— + exp| —= _—
X
(NSninXk - Ak + V NSmin)3 (NSnlnXk - Ak + V NSmin) ?
AZ/4-+ AN X+ N§ X
o1, (C.7)
(NSninXk - Ak + V NS’nin)
52|bound 3Dk
= — C.8
9lbound Al% AcDy
— — exp(—AiXk) - (C.9

Eg. (C.5) combined with (B!9) and (C.8) satisfies (C.2). EQ.7] is still
cumbersome to work with, but we can ignore a number of its a@omapts. To start,

consider the terms
2ANg NG X NG AR/A+ ANs, e+ NE (C.10)
(N — At y/Ngy)® (NsuaXe = At /Neya) -

which include the only term of (C.7) that could be negativg.r&alling constraint
(A.9), we can show that (C.10) is non-negative if we also &gocbnvex constraint

X2 — (1+V2)Ns,, <0, (C.11)

which is more restrictive than (B.11), so we ignore (B.11hug, we ignore the
term (C.10) in (C.7), and we have satisfiad (C.1).

Finally, we show how (C.3) is satisfied. Again, by ignoringts known to be
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non-negative, we write

aszFQk aZPmFQk _ <62PmFQk>2 > A;%Dk exp(—Akxk)
o1 0N§7k O0TkONRK ot/N—Nrk
(C.7
3Dy
X exp(—
4/21(N — Ng)®/2 P(=A)
(C.§
, 2
AL AcDy
- - exp(—Ak)
(oskrznws;; 202, (N N2
(C.9
2D2
ADi < exp(—2AX)

~ 4107 (N— Nry)

3 4
ADC exp(Ax) % (C12)

2104 (N — Nry) 32N> 2roiNg
We re-arrange (C.12) to obtain
2(N — Ngy)® 2AD(N — Nr)%/?
w exp(2A) — k(Ng = RK™ p(Ao) —DE< 0. (C.13)
Smax Smax

Unfortunately, (C.13) is a non-convex constraint. Howewear can split it and
bound each component to derive convex constraints. Fisstupper-bound the
positive term. SincéN — Nrk) < Ns, ., we can bound

exp(2Ax) < AZexp(2aoy) + XN N ey 1)

3
NS ..

2AZ(N — Ngy)®
3
NS ..
where

2Ax—E <0, (C.15)

is a convex constraint artel is a tunable parameter that limits the maximum value
of 1¢. In practice, we choosE = 1. Note that this form of bound enables a larger
convex region than by simply usifN — Nrk)/Ns,., < 1.
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Next, we upper-bound the negative fraction in (C.13). SiAge > 0, we
bound

3/2

2ADi(N — NRy) %2 2ADNg

N N
Shmax Shax
Thus, we bound (C.1.3) with the convex bound

2 AEN —Ney)? ADNSS

AL exp(2Aixi) + N exp(E) — Nng -Di <0, (C.17)
Sax Smax

and by satisfying (C.17) and (C.15), we satisfv (C.3). Thuler these additional
constraints, (3.15) is convex.
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Appendix D

Proof of Theorem 3

Prk can be defined as
Pri = Ejg {Pr}, (D.1)

whereEy{-} is the expected value with respect to variabl&ince|gx| is Rayleigh-
distributed,|gx|? has exponential probability distribution [28, App. A]

p(r) = 2rexp(—r?/ay)/ oG- (D.2)
By performing the transformation of variables
A =|gkl\/2Nrk/ 0%, (D.3)

we can write .
Pry — / Awexp(—A2w/2)Q(A)dA, (D.4)
0

wherew = ofk/(NR7k0§k). We apply the Craig representation of tQefunction
(asin [18]),

Q) = / * exp(—x2/si?6)de, (D.5)
0
and a variable substitution to obtain
ﬁRk = V_V 2 die (DG)

mJo w+1/sirf@’
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We know that 1< 1/ Sif@ < o and we can expeat to be small, likely less
than 1, due tdNrk. Therefore, we can approximatein the integral of (D.5) as 0
and upper-boun@®g by

Pk < V—V/ﬁsinzede. (D.7)
TJo

Eq. (D.7) is easily solved to give the upper bound in(3.24).
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Appendix E

Proof of Theorem 4

The (—1)'""M term with the binomial coefficient in (4.1) is 1 for= M and the
sign changes asincreases. FoM > K — 1, the proof of [(4.5) is trivial and no
constraints are required. Fbt < K — 1, if we can show how the combinations of
products ofM + 2b— 1 terms (i.e., those with negative magnitude) cancel out the
combinations of products d¥l + 2b terms (i.e., those with positive magnitude),
forbe {1,2,...,| 55" |}, then (4.5) is an upper bound. Thus, fram (4.1) we must
show when

M+2b—1

M+2b—-2
< Ptrck

2b-1 > S Me2b-1,]ESK Mezp-1  K=1

M—|—2b—l M+2b
( b > [1 Prrck- (E.D)

SMi2b, €S M2 k=1

>

The left-hand side of (E.1) include@;;b_l) combinations of products &fl +
2b— 1 probability terms, while the right-hand side includgs.,,,) combinations
of products oM + 2b terms. It is straightforward to show that

K K K—M-2b+1
<M +2b> B <M+2b—1> M+2b ' E2)

so the right-hand side will hav=—221 more products than the left-hand side.
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Comparing the coefficients, it is straightforward to shoatth

<M+2b—1> B <M+2b—2>M+2b—1

2b 2b—-1 2 E3)

so, by combining (E.2) and (E.3), we claim that the righthaiat is effectively
Kool . Megb-1 times greater than the lefthand side, but with an additional
probability for every combination. We wish to guaranted tha “extra” probabil-

ity is small enough to satisfy (E.1).

As a related aside, consider the problem

K
maximize [ pi (E.4)
i

K
subject to Z pi=T,
|

where we assume thatOp; <1, Vi. Problem (E.4) has a quasiconcave objective
function [22] and the optimal solution g = p2=... = px = T/K.

The result of this aside is that a constraint on the mean \@laeset of prob-
ability terms is an upper bound on the product of those prtibaterms. Thus,
from (E.Z) and (E.3), we satisfy (E.1) if

YK 1 Prrck _ 2bM + 407

K ~K(M—1)-M2+4+2M — 1+ 2b(K — 2M + 2) — 4b?’ (E5)

which is an increasing function df Thus, the constraint is tighest when= 1,
which gives (4.7) to prove (4.5).
The proof of (4.6) is analogous to that of (4.5) and resultsoinstraint (4.8).
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