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Abstract

Most work on wireless network throughput ignores the terapoorrelation inherent to wireless channels
because it degrades tractability. To better model and fyahe temporal variations of wireless network
throughput, this paper introduces a metric termed ergeditstmission capacity (ETC), which includes spatial
and temporal ergodicity. All transmitters in the networknfiba homogeneous Poisson point process and
all channels are modeled by a finite state Markov chain. Thentd® on outage probability and ETC are
characterized, and their scaling behaviors for a sparsedande network are discussed. From these results,
we show that the ETC can be characterized by the inner pradube channel-state related vector and the
invariant probability vector of the Markov chain. This icdies that channel-aware opportunistic transmission
does not always increase ETC. Finally, we look at outageghitiby with interference management from a
stochastic geometry point of view. The improved bounds aiagel probability and ETC due to interference
management are characterized and they provide some ussfyliis on how to effectively manage interference

in sparse and dense networks.

I. INTRODUCTION

In the past decade, our understanding of large wirelessonktwapacity has increased considerably,
but perhaps still comprises more questions than answepsciedly for realistic models. Gupta and
Kumar’s landmark work [1], for example, introduced the spart capacity metric and derived scaling
laws on it in a size-limited network. Another more recentrapée is transmission capacity proposed
in [2] which is a spatial throughput metric for Poisson-digited transmitters in an infinite network
with outage constraints. Almost all of the studies follogiithe aforementioned approaches did
not consider temporal affections. For a wireless networth wong-term time-varying channels, its

shapshothroughput may not provide a full picture of how the throughpvolves over time.
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In this paper, we introduce a metric capable of charactegizhe network throughput induced
by channels with temporal and spatial ergodicity. This meis called theergodic transmission
capacity(ETC), and it measures the maximum long-term average ratb$/Hz) that can be sent
per unit area in the network with an outage constraint. Wduet@ the ETC under assuming all
transmitters form a homogeneous Poisson point process) (RiPa unique receiver. The channel
models span many blocks of time, and so the throughput w@mgbver time can be characterized
with our framework but not with prior frameworks. Thus, ETCaynbe better able to accurately
suggest how to effectively use transmissions over time pades such as multi-antenna transmission
and opportunistic scheduling, and how much such techniguiésmprove area spectral efficiency

in a long-term sense.

A. Motivation and Related Work

In the literature on wireless network throughput (see [@]-gnd the references therein), a unified
and time-invariant channel model is typically adopted dlierentire network, but channels in a large-
scale wireless network usually are diverse across timeoasgace. Using a channel model without
temporal correlation does not capture how channel statelyeswver time and thus the impact on
network throughput from the temporal (and spatial) vasiagi of channels is ignored, and techniques
which exploit the variations and correlations cannot beprty quantified. For example, we observe
that transmission techniques that increase the snapshwonkethroughput may not increase ETC
or may even degrade it. In particular, we will show that clelraware opportunistic transmission
(CAQT), i.e. transmitting when channels are in good statess not always improve ETC, which is
perhaps surprising.

ETC requires the use of different channel models that irechednporal discrepancies. We propose
a finite-state Markov chain (FSMC) to model the fading chasnie particular am-state Markov
chain that is irreducible and positive recurrent. Each okehnndergoes path loss and fading and has
an ergodic property in that its fading state has an invarisigady-state) probability [8]. This idea
can be traced back to the early work of Gilbert and Ellioit [80] that used a two-state Markov

chain to represergoodandbad channel conditions which was extended to a finite state cafEl].

B. Contributions

The first contribution in this paper is the model for ETC its&é/e then calculate the ETC, which
requires the outage probability for each fading channdkdia be found, for which we find tight
closed-form bounds based on a proposddvel interfering coverage area around a receiver. Any



single transmitter in thé-level region of its unintended receiver will cause an oatdgs interference
power is enlarged by a factar We show that appropriately choosingadmits bounds on outage
probability that are much tighter than those found in prasiavork.

Bounds on ETC and their corresponding scaling laws for squmeeial cases are then found. They

reveal several interesting implications, e.g. the scatih@TC for asparseor densenetwork is
Ce = 0(P7s,), Q)

where Cy denotes ETCs, = [55,55, e ,5;2,3]T in which 5, is the function of thekth states; of

a Markov fading channel withn states,® = [¢; ¢ -+ ¢,,]7 € [0,1]™ is the invariant probability
vectoH of the Markov fading channel model and > 2 is the path loss exponent. From (1), we
notice that a single deep fading state is not necessary ® &aignificant negative effect on ETC if
its invariant probability is very small. This point is notvealed in prior work that neglects temporal
variations. Also, we observe that ETC has a geometric intésion because it can be viewed as an
inner product of two vectors. Thus, ETC is maximized whendinections of®, ands, coincide. In
addition, we show that channel-aware opportunisitc trassion (CAOT), which is a scheme to allow
transmitters to transmit only when their channels are indgstates, does not necessarily provide an
ETC gain. Although CAQT is able to increase the transmissapacity contributed by good channel
states, it loses the transmission capacity contributeddaydhannel states. So CAOT cannot benefit
ETC if the improvement is no larger than the loss from bad nbastates.

Three interference management methods — avoidance, ssppre@nd cancellation — are applied to
the network to reduce outage probability. Bounds on thegaupaobability and ETC with interference
management are found which provide geometric insight inodfficiency of each technique in dif-
ferent scenarios. For example, we show that interferenceetiation is not effective for significantly
increasing ETC in a spare or dense network. Also, we showf@mece management can control the
direction and magnitude of vectsy. Finally, we show that CAOT should not be used if interfeeenc

management can significantly lower interference.

II. NETWORK MODEL AND DEFINITIONS
A. The Network Model

The wireless network considered in this paper is of infinitee sand all nodes in the network

are independently and randomly scattered. Thus, we emplogried homogeneous Poisson point

1The physical meaning ofy, is the fraction of time that channel statg sojourns as time goes to infinity.



process (PPPII on the planeR? to represent the locations of all transmitting nodes in teevork,

which can be written at time a
T2 {(X; € R Hy(1) ERy, (7)) : (1) = 1}, (2)

where X; denotes nodeX; as well as its locationf{;(7) is the fading channel gain between node

X; and its receivery;, ande;(7) € {0,1} represents the transmitting index of nodg ¢;(7) = 1

means nodeX; is transmitting; otherwise, it is idle. The intensity (diéysof II is A for all 7 € N.
Each transmitter has a unique receiver and the distanceebeta TX-RX pair is a constant> 1.

All of the transmitters use the same transmit power and tlfamdl model between each TX-RX

pair is subject to path loss and fading. So the channel gaifi XeRX pair i can be written as
Hi(m)U(|X; = Yi|) = Hi(7)e(d),

where H;(7) is the fading channel gainX; — Y;| denotes the Euclidean distance between nddes
andY; and/(| - |) is the path loss function. In order to avoid the singularityene | X — 0, we will
use

(X)) = X7 1(1X] € [1,00)), X € R?, 3)

wherea > 2 is the path loss expongmnd]l(x € X) denotes théndicator function: 1(z € X') =1
if x € X and 0, otherwise.

Specifically, we use am-state FSMC model to characterize the fading effect of ainctels in the
network. The FSMC is irreducible and positive recurrent] &s m states are ordered. The FSMC
model with transition matriX¥ is denoted byS(P) € R andS is an order set of the: states, i.e.
for any two states;;, s; € S we haves; < s; wherei < j andi,j € M = {1,2,--- ,m}. SinceS
is irreducible and positive recurrent, the fading chanreehdi () for all TX-RX pairs must satisfy

the following conditions|[8]:

nggo_z]l )es,) and u™d = ;gbk—l (4)
where ® £ [¢1, ¢, -, b,,]" is the invariant probability vector oP andu £ [1 1 --- 1] is an

m-tuple vector. Namely, at any time H (7) must belong to one of the states§nand ¢, represents
the probability thatH () visits states, in a long-term sense. We can show thisstate Markov

channel model has a temporal ergodic property as stateceifottowing lemma.

Here it is better to usél(r) instead oflI. However, to simplify notation, we will usél to stand forII(7) throughout this paper

if ignoring time indices does not induce any ambiguity. Tbistom is applied to other set and variable notations.

®In a planar network, we requite > 2 to have bounded interference, i&.< co almost surely ifo > 2 [12], [13].



Lemmal (Temporal Ergodicity of anm-state Markov Chain: SupposeS(P) is an irreducible
and positive recurrent Markov chain with states, and its transition matrix B. Let 7 : S — [0, 1]

be a state measurable function &fand Z(7) is a random variable taking values & Thus, we

have L
1l -

Jim — Z h(Z(r) € 8) = Z O hlsi)| =1, )
where {¢y,k = 1,--- ,m} are the invariant (steady state) distribution®fand s, is the kth state
of S.

Proof: See Appendix_A. [

The definition of ergodic transmission capacity in the failog subsection is built based on the
result in Lemmall. In addition, the following lemma showst ttte fading channel model of a FSMC
also has a spatial ergodic property.

Lemma?2 (Spatial Ergodicity: Consider a marked homogeneous PRRwith an independent
mark H(r) € S, and letg : II — R, be a measurable function di. For any bounded subset
A, C R? andu(A,) — oo asn — oo, we have

1
n,T—00 M(An>

wherell;, £ {(X;, H;) € I : H; € s;} is the PPP with channel statg.

Proof: Sincell is homogeneous, we know

i 1
Blg() = tim s [ Balo(x. H)Juax).

/ 9((X, H € 5))u(dX) = xElg(ID)], as. 6)

n

Since{H,} are independent]; is just the thinning homogeneous PPPIbfand thus we have

1
Blo(l)) = lim s o6 H € sp(ax)
1 *
= Jtim s [ El(Ox )ERH € () © 0,5
where (x) follows from the temporal ergodicity result in Lemrna 1. [ |

Lemma 2 indicates that the spatial average(@f;) is equal tog,E[g(II)]. So we know the intensity
of IT, is Ay = ¢x A provided thatg(-) is an intensity measure.

The interference channel gain from transmitfér to its non-intended receiveyr; is denoted by
Hji(1)€(| X, —Y;|) where H;;(t) € S. The aggregate interference normalized by the transmiepow

at receivery; can thus be expressed as

Ii(t) = Z Hyi(m)e(|X; — Yil), (7)

X, €M\ X;



where [; is also called a spatial shot noise process [12] [14]-[16esit captures the cumulative
effect at locatiory; of a set of random shocks appearing at random locationgnd H,;((| X, — Y;|)
can be viewed as the impulse function that gives the attemuat the transmit power in space. In
order to have a successful transmission for TX-RX pathe following signal-to-interference ratio
(SIR) condition at receiver nodg must hold at timer:

A HZ(T)
da]i(T)
whereg is the SIR threshold for TX-RX pairto successfully decode the received data. The network

SIR@(T, )\)

>, (8)

is assumed to be interference-limited.

Note that according to Slivnyak’s theorem [17] the statstf /; seen by any node in the network
is the same if the nodes form a homogeneous PPP. That meaasdtege outage probability of
each receiver node may be found by evaluating the SIR seenrbgesver located at the origin.
Intuitively, the distribution of the point process is ureaffed by the addition of a receiver at the
origin, and this receiver is calledtgpical receiver. The performance measured at the origin is often
referred to the Palm measure, and in keeping with simplifigtation we will denote the probability
and expectation of functionals of evaluated at the originydPband [E, respectively. Also, Tablg |

summaries the main mathematical notation used in this paper

B. Definitions

Consider the typical TX-RX pair and its steady state outagdability is

lim P[SIR(7, A\) < 5] € {qx(N), k € M}, 9)

7300
wheregq,(\) £ lim,_,, P[SIR(7, \) < B|H(7) = s4] is the outage probability for channel stateas
time 7 goes to infinity. Now we are ready to use (9) to define ergodingmission capacity in this
paper.

Definition 1 (Ergodic Transmission Capacily Suppose transmitting nodes in a wireless ad hoc
network form a homogeneous PPP of intensityFor a givene € (0, 1), the ergodic transmission

capacity (ETC) of a wireless ad hoc network is defined by
Ce = bAg(1—e), (10)

whereb is the supportable transmission ratas the upper bound on the outage probability of each
channel state, and. = sup{\ > 0 : >}, dxqr(\) < €} is called maximum contention intensity

achieved under the outage probability constraint



The definition ofCg in ([L0) originates from the following definition:

:éh%E:PMRTA)>5] (11)
Since all channels are an irreducible and positive currearkidV chain, according to Lemrha 1 they all
have temporal ergodicity. Thus, the definition[in](11) isieglent toCy = b Az >, ¢l — qx(Ae)].
This is the reason why we directly use the invariant prolitgbdf a Markov chain to define ETC
instead of using[(11). For ease of analysis, we need to daawgly define the sparseness and
denseness of a network with Poisson-distributed nodes.

Definition 2 (Spatial Sparseness and Denseness of a Poisson-Distribbtetivork): Suppose the
transmission coverage of a transmitter is the circular afgadiusd. A network whose transmitting
nodes form a homogeneous PPP of intensiig called “dense” (“sparse”) if the average number of

transmitting nodes in the coverage is sufficiently largeai¥mi.e. 7d?\ > 1 (rd? < 1).

Il. GENERAL RESULTS ONERGODIC TRANSMISSION CAPACITY

In this section, we study the general results of ETC. First, lwave to calculate the outage
probability for each channel state; however, only the bguad the outage probability and ETC
can be characterized due to the complicated distributioth@finterference. According to the found

bounds, the scaling behaviors of ETC are characterized laydreveal several observations.

A. Bounds on the Outage Probability

Since a closed-form expression of the outage probabilifinedé in (9) is difficult to finH, we
resort to bounds. The idea of approaching the lower bound f@ceiver with channel statg is to
use aj-level interfering coverag&? for the typical receivelr,, with fading states;, and it is defined

as follows!:

«

d_
gé{XeW:JE—T
S 0(| X)) H

which means any single interferer within it can cause outdgeceiverY, with a SIR threshold 5.

< B}, J € [l,00), (12)

If Z? is not empty, it could contain dominant interferers and dominant interferers. In addition,

I = (IINZY) \ X, is calledd-level interfering point process.

“If all channels are instead Rayleigh fading, the closedhfof the outage probability can be found by the Laplace tamsfof the
aggregate interference contributed by Poisson-distibttansmitters [12] [18]. However, such closed-form oatpgobability cannot

be obtained for the case of channels without fading[[2] [19}vih a single state at any time.

5If § = 1, thenZ; is called the dominant interferer coverage in which a siniglerferer causes outage at recei¥gt



The lower bound on the outage probabiligyf \) can be acquired by considering the outage events
caused byI. The upper bound can be approached by finding the probabiflithe union outage
events separately caused by the interfererljnand IT \ 1. These two bounds found are tighter
than those in the previous works [2] [19], as the followingdhem shows.

Theorem1: The outage probability,(A) in (@) can be bounded as

2 2

[

[

< g\ 1= (1= Ag(V) T e, (13)

1 — e—)\(ys;

where (z)* £ max{x, 0} and A(-) is defined as

a1y 9
M) = 2T (14)
(si /d*6f — An)?
andv, n, 0% are respectively given by
“ 5 2v wd*2e T 1
= 7d? 0Bsp)a. n=— """ 52— 5B)a—1 ol
v=m ;%( Bsk)e, n (a—2)d0‘65’g a_l(ﬁ) kz:;¢k3k

Proof: See AppendixB. [

The physical meanings of, n and o? are the mean area @ with s, = 1, the mean, and the
variance of the interference contributed by the interferef I1 \ 11 for A = s, = 1. When the
channel state, is high, the outage probability is reduced because SIR ¢gelar equivalently the
target SIRS is reduced. Nevertheless, it also can be explained from angeir point of view. In
(@), we can let fading gain;, be incorporated into the path loss model of all interferecitannels,
and according to the conservation property of a homogeneB&s[17], the intensity of the original
PPP is changed from to )\/35. This is why\ in the bounds is scaled bsyj% and thus interference
generated by the PPP with intensitySk% is small whensy, is large. So tightness of the bounds in
(@3) can also be observed.

If (-)* in (I3) is non-zero, the gap between the upper and lower tmist@(A)e‘A(”S;%‘”) which
is a function ofy, A ands;. Sincee"“s?m, 0% andn are all monotonically decreasing functionsiof

_7|—)

and the denominator otk(A)e‘A(”sz:%‘“) is convex ford, it is easy to realize that, (\)e s«
is smaller than that without if 0 is chosen appropriately. Figl 1 shows the simulation redilt
channel fading modeled by a 2-state Markov chain. As exdetke two gaps decrease along with
) so that usingd > 1 can make the bounds (much) tighter. In addition, the gap fgo@d channel
state is much larger than that for a bad channel state. Hameshould choose a sufficiently large
0 in order to have tight bounds when the Markov chain has vendgzhannel states.

The result in[(IB) will become slightly different if a tranitar uses a channel-aware opportunistic

transmission (CAOT) policy. Recall that the states of a Martading channel are ordered so that a



better state has a higher subscript index. Suppose we calhranel state “good” in each FSMC if
its subscript index is greater than or equabtand sy > 1, which means channel gaif is good if

H €S8y = {s,,-,5sm}. Therefore, the PPP with good channel states can be exgrasse

According to Lemmasg]l and 2, its intensity lg = AP[H € Sg] = A\>_/L ¢, as time goes to
infinity. Therefore, the bounds on the outage probabilitthwCAOT can be obtained frond (113) by
replacing\ with Ay, which yields

a

1— 6—)\9(1/8,: C

T < gi(Ag) < 1= (1= Ay(Ag)) T el (16)

Note that the bounds decreasel[in] (13) whettecreases. Thus, the bonds[in](16) decrease compared
with (L3). So CAOT improves the bounds on the outage prolalmf each channel state because
nodes with bad channel states refrain from transmittingentior 1II-C, however, we will point out

that it may not always improve ETC.

B. Ergodic Transmission Capacity

By using the bounds on the outage probability of each chastag¢ in Theoreral1, the ETC in
(@0) has bounds as shown in the following theorem.

Theorem2: Suppose the outage probabiligy(\) in () is upper bounded by < (0, 1). Using the
inequality in [I3), bounds on the maximum contention initgns; which maximize>";" | oxqr(\e)
under the constraint of can be given by

S s <A< —In(1— Y K% (17)

m
k=1 k=1 UV — s,jﬂ

SN

where ), is given by in the following.

;:inf{)\>0:§1n {w} S(VSE%—W)}» (18)

where A, () is defined in[(14).
Proof: See Appendix_C. [
Scaling Laws of Ergodic Transmission Capacity If we considere — 0, the upper bound in
(I7) will reduce toe ;" , s,;%gbk/(u — s,;%w) + O(€?) since—1In(1 — ¢) — €. So we know); < 1
and thus the solution i (18) is; = sée/[(o2d2a5252szfé +v) — s,;%w] + O(€%). We can conclude
that the lower bounds iIH-(17) s>~ , ¢ks§/[(azdzaﬁ2525i+i +v) — séw] + O(e?) ase — 0. So
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the bounds in[(17) are asymptotically tight when the netwisrkparse because= O(¢) ase — 0.
The scaling behavior ok in this case turns out to be
m 2
AE=@<EZ¢’“78’;;>, (19)
Viei 1l —msg v

where the argument i®(-) only keeps the&key parameters of interest. The above result is also the
scaling law for a dense network becauseZ —In(1 — ¢) aswd?\ is sufficiently large. Note that
(19) is only valid for small\ but largerd?) since for small\ we have to keeg small andrd?
sufficiently large in order to maked?)\ large and the outage probability lower thanin addition,

if v — oo (i.e.d and/oré — o0), then [19) further reduces to

= €

which means ETC is not affected by the fading channel statdwireceived signal is very weak.
This makes sense in that channels can be equivalently viawadad state all the time when the
received signal is very weak due to long transmission digtan

ETC with Channel-Aware Opportunistic Transmission (CAOT). The result in Theorern] 2 is
obtained without any transmission scheduling. Suppose thewchannel state information (CSI) is
available at each transmitter. Then transmitters can use @8l to do CAOT and thus we have the
following corollary.

Corollary 1: If all transmitters transmit only when their channel fadgains are inSy, the bounds

on the ergodic transmission capacity are

m
2

1 S N S L
LS sioy <a < TIZI N sidr (21)

g k=g ¥g k=g V — Sg'ﬂ'

where g = 7 6.
Proof: For CAOT, the bounds on the outage probability for chanretlest, is shown in [(16).

a5

Hence, the bounds ih (1) can be acquired by first taking efftéhms with an index lower thang
in (I7) and replacing\z in the bounds withpg\z. Sincev,  ando? do not depend ong, we can
replace)y in (I6) by A\. Then following the same steps in the proof of Theofém 2 taveefL8),
the lower bound in[(21) is completely achieved. [ |

C. Observations and Discussion

In the previous subsection, we have obtained bounds on ETCdatussed the scaling laws
of ETC for a sparse and dense network. From the bounds anthgdals, we have made three

interesting observations.
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ETC implicitly possesses a geometric interpretation The scaling law of ETC in[(19) can be

expressed in a general form by vectdrands, as

Ce =0 (ds,), (22)
where® = [¢y, ¢, - -+, ¢]" ands is defined as
2 2 2 T
Seée il 2 %2 29 " o 2 . (23)
V—TmSsy V— TSy V— TSy

In other words,C; is scaled by the inner product of vectobsands.. So the result in[{22) can
be interpreted from a geometric point of view. Suppose thekblachannel model has two fading
states (i.em = 2, this is so called Gilbert-Elliott channel model [9] [10[fhen C5 in (22) can be
schematically presented in FId. 2. Note thamust be above on th&° line because, is larger than
s1. The inner product of. and® can be written a®'s, = |®||s.| cos§ andd is the angle between
vectorss, and ®. So we will have a larger ETC i has the same direction as. The optimal®,
that maximizes ETC can be given ldy, = —S=. Therefore, if all Markov fading channels have the

u'se”

optimal distribution®,, thenC; in (22) becomes

T

CE:@(SESG), (24)

u's,

and thus it is completely characterized by all channel faditates.

Dominant channel states may not dominate ETCDominant states in a Markov chain means that
their invariant probabilities are much larger than othatest’ invariant probabilities. In other words,
if a channel has dominant states then it is in these states ahdise time. Dominant channel states
may not contribute too much ETC since their state magnitedefd be very small (very bad states).
Thus, dominant channel states which realhminatesETC only when they have a large magnitude.
This point can also be visually explained by Hig. 2. Suppasdominates and it is much larger than
s1. In this case® ands,. will move up and be close to the vertical axis. The projectidrP on s,
will largely increase and it is mostly contributed by thetieal component. Thus, whether a channel
state dominates ETC or not depends on the product of its matgand invariant probability.

CAOT may not benefit ETC. If we compare the results in Theorém 2 and Corolldry 1, we can
find CAOT indeed increases the bounds with good channelsstilieverthelesst may not always
improve ETC since it loses the throughput contributed by tiaahnel statesTo show this, let the
upper bound in[(17) be greater than the upper bounfd ih (21%. [€ads to the following inequality:

mo 2 g-1 2
(i—1>z Sk¢k2<z SOk (25)
k

Y9 =g V—TS;,  k=1V — TS
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The LHS in the above expression is the ETC improved by CAOT thedRHS is the ETC loss
because of bad channel states. If this inequality is valipagently CAOT may not improve ETC
because the ETC increase in the good states could not coaipehge ETC loss in the bad states.
Hence, following from[(2b), the better policy of using CAQOdr fa transmitter is when the following

condition holds , ,
_ iy SE O/ (v — )
Yg = (I)Ts6 :

However, the above condition is not implementable by tratiers in a wireless ad hoc network

(26)

without knowing ® in advance. So CAOT is not always an effective means to e h&TcC in
a real-time situation. A simulation example for ETC with awdhout CAOT is shown in FiglL]3.
Channel fading is modeled by a 2-state Markov chain and tielation condition is set to let the
bad channel state be dominant. Obviously, we can see that \BITCCAQOT is worse than ETC
without CAQT.

V. ERGODIC TRANSMISSION CAPACITY WITH INTERFERENCEMANAGEMENT

In Sectior 1lI-G, we observed that refraining from tranging when channels are in bad states does
not necessarily increase ETC. This is because the CAOT slhmreases the transmission capacity
for good channel states but further lowers the transmissamacity for users in bad channel states.
That is, the throughput increase does not in general compefsr the throughput loss, particularly
when bad channel states are dominant (i.e. channels are badainthe time). Thus, the key to
increasing ETC is to boost every entry of vectorand not to sacrifice transmission opportunities
of users with bad channel states. Two possible approachaaining this goal are through power
control and interference management. In general, powetralomakes the analysis of the outage
probability more intractable due to the complex structur¢he interference. In addition, it is not a

very effective means to increase SIR in a interferencetéichad hoc work/[19]/[20].

A. Interference Management — A Stochastic Geometry Pdigpec

Interference management can be classified into three g&esgaterference avoidance, suppres-
sion and cancellationAvoiding interference in a wireless ad hoc network is tgflicaccomplished
by using space, time or frequency orthogonality to elimentte co-reception of strong interferers.
Frequency-hopping and CSMA are prominent examples of awpidterference in an ad hoc network.
Interference suppression deploys signal processing atrémsmitter and/or receiver to (linearly)

suppress interference without actually cancelling itebirSequence CDMA (DS-CDMA) is a typical
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example of this category. In addition, receivers can tryacel strong interference from their nearby
unintended transmitters (e.g. successive interferenueetiation (SIC)[[21]-28]). Although avoiding
interference and suppressing interference are two diffenethods of reducing interference, we know
there exists a duality property between them in a wirelesworé& with Poisson-distributed nodes.
According to the conservation property of a homogeneous[H?F%, these two methods both reduce
the original intensity of transmitters so that their effeah be demonstrated via another homogeneous
PPP with a new intensity. However, interference avoidara® d better efficiency in reducing the
intensity of interferers than interference suppressigri2@].

The effect of interference cancellation can also be grafpeda geometric perspective. To explain
this, suppose now any receiver in the network is able to cancel some interference from itxine
interferers after the interference is avoided and/or segged. As time goes to infinity, tierference
cancellation coveragef receiverY, with channel state; is defined in the following.

H|X|™ B
Cc={XeR?: > 27

where [, is the interference of receivér, and v, € (0,1) is called interference reduction factor
for channel statesﬂ CoverageC; means that any received interference within this region lwan
decoded by receivey, with channel state;, and all transmitters i@¢; have a larger received power
than transmitterX, if C¢ N (II\ X) is not empty andd > 1. Also, Cf is a random compact set so that
its mean Lebesgue measyr&’y) is finite. If each receiver can perfectly cancel all intefsrin its
cancellation coverage after suppressing and/or avoidingesinterference, then its SIR for channel

states,, is
spd™ @

> xyeme By (M)

2
wherell}e £ 1T\ (Cf NI1U X)) is the noncancelable part &F with intensity Ay . So equation(28)

SIRy =

(28)

essentially suggests that interference management cajubakently reflected by constructing a new
PPP with a reduced intensity. The ab®&, expression will be used in the following subsection
to find the bounds on the outage probability. Those boundsised to characterize the bounds on

ETC with interference management.

®The conservation property of a homogeneous PPP with intyensis that the intensity will change ta/a if all locations of the
nodes in the PPP are scaled by a constgnat

"Reduction factory, can account for the joint effect of interference avoidaned suppression. For example, if there de> 1
available channels for DS-CDMA with spreading g&in> 1, then~, = 1/GM%.
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B. Bounds on Outage Probability with Interference Manageime

Bounds on the outage probability with interference managenare shown in the following
theorem.
Theorem3: If each receiver is able to avoid and/or suppress interéereand cancel interferers

in its cancellation coverage, then bounds on the outageapitity for channel state, are given by
m 7% 2 + m 7%
1= e M5 =m < g () <1 (1 — A, (7,;‘ A)) e Hws; @) (29)

where AP £ yé)\ (1 — '%)jL is the average intensity of the transmittersZifi with interference
management andg is the mean Lebesgue measureCof
Proof: See AppendixD. u

There are a couple of observations that can be drawn from réhe@. First, the upper and
lower bounds in[(29) are smaller than those [in] (13). Cangelitterference can be viewed as
constructing a new PPP with reduced intens’yg/)\(l —vg/v)tin Z9, and it is more efficient
to reduce interference than suppressing interference sirmompletely eliminates transmitters with
strong interference power and thus the- v; /v term does not have an exponent a%fThus, we
can infer that imperfect interference cancellation (irgeiference suppression) is not as efficient as
perfect interference cancellation (i.e. intensity redugtand interference avoidance since it merely
decreases transmitters’ interference and does not diredluce transmitter intensity.

Second, interference cancellation is not equally usefulafbnetworks. For example, in a dense
network, canceling the strong interferences from the nearnsmitters can significantly reduce
outage probability such that network throughput is sulisthy increased. This point can be easily
verified by letting\v be sufficiently large. In this case;()) is close to unity if no interference
is canceled. On the other hand, for sparse networks, inéerde cancellation may merely have
a marginal reduction in outage probability. For sufficignéimall \v and v > v¢, (29) can be
simplified asg;(\) = (Z—Z)E Av —vg) + O((\v)?). So when receivers cancel more interferers, its
outage probability is reduced by amount@f\vg) which is really a small and trivial improvement.
From this observation, we see that canceling strong imedeor each channel state may not be an
effective means to increase transmission capacity forlsnshce the maximum contention intensity

of transmission capacity for each channel state is alreasiyall value in this case.

C. ETC with Interference Management

According to the bounds on the outage probability in ThedBmB&TC with interference manage-

ment is bounded as shown in the following theorem.
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Corollary 2: Suppose interference management is used in the networkaaidreceiver is able
to perfectly cancel all interferers in the interferenceamiation coverage of each channel state. Let
the outage probability be upper boundedeby (0,1). If C¢ C Z7, the maximum contention intensity
for channel state, has the bounds given by

ff(ﬁ)“¢g;ngg_hmy_@ff<ﬁ)‘ e | (30)

=1 \ Tk = N (v —spm)(1—vE/v)

Qv

wherev > v¢ and \{ is given by

)\;:inf{)\>0 L {w} (31)

A 1—¢
However, if Z) C C¢ , then [30) becomes

ez >0 () o, (32)
k

_ 1-2 _2\2 12 45
where \;, = inf {)\ >0: <1/da<5ﬁ — NS, Vg “) < s, v %)\}
Proof: See AppendiXE. u
By comparing [(3D) with[(1I7), we can perceive that the effetctinberference cancellation on

VAN
VR
—
|
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~~
7~
A
|
wn

T o
3
N—
——

ergodic transmission capacity can be interpreted to shribl (1 — v /v)-fold. This is equivalent
to saying channel gais;, increaseq1 — v¢/v)~2-fold. Suppose is small and thus fron((30) and
@1) we know )y ~ gzgzl(%)%m. So interference cancellation in a sparse network
can make the transmission capacity for channel staténcrease(1 — v¢/v)~*-fold. Although
avoiding and suppressing interference can linearly augB& in a sparse network, interference
cancellation could contribute much more ETC than themgifis very close tov. Fig.[4 presents
a simulation example showing how interference managemmptaves ETC. We first notice that
interference management does not provide too much ETC ghenw is extremely small. On
the other hand, if the network is very dense, the efficacy tdrfarence cancellation is seriously
weakened because interference is large. So the solickcucle of ETC looks like a concave function
of e. Therefore, interference management in an extremely sgarsense network can merely have
marginal improvement on outage probability.

How should interference management be used for each chstatelto maximize ETC? In Section
[M-C] we have pointed out that ETC has a geometric integtieh since its bounds can be viewed
as the inner product of two vectors: vectabsand s, should roughly align. Since vectap is a
channel characteristic, it cannot be manipulated to theeateslirection. Therefore, the only option
is to design vectos, such that it is enlarged and rotated to the directio® @s closely as possible.

This can be attained by interference management. To #testhe idea of how to change, the
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2

right part of Fig.[2 is redrawn in Fid.]5. Lef = [éf §§T where s, = sye? (1/ — 7rs,§>_% and
sk = [(Ef)ﬁ (§§)§T represent the optimal vector that can achieve by interference management.
Note thats; = i—’;(l —vg/v)~2, k = 1,2. Therefore, after interference is reduced, verticegéi%, 0)
anda (0, 5;) can be maximally pushed out to vertideg(5;)=,0) andf (0, (55)%). Vertexi is the
point wheres* is projected ond and Vertexd is the point wheres, is projected on®. The distance
from m to e represents the increase of ETC due to interference manageme

Sinces; is the best vectos. can achieve, how can we make vectpmove to vectos*? Namely,
how should we chooseg, andv; for each channel statg such thats. can approack:? The policy
is to reduce interference for each channel state as muchsssbfbecause we can formulate the

following nonlinear programming problem to optimize all:

= qkal;% )5 1
max,, _ . (33)
;(y—wsg e [(1— v /v)]2

subject to v > Vmin,, forall k € M, (34)

wherey,,, is the lower bound ofy, and it can be determined by the system resources or limistio
such as number of available channels and the maximum spgegédin, etc. Note that is a mono-
tonically decreasing and nonlinear functiongfso that1 /~, [(1 — v /)] 2 is also a monotonically
decreasing function of,.. Therefore, the optimal solution of, must happen at; = Vin,, Which
means interference should be avoided, suppressed andllednas much as possible in order to
achieves?. In addition, using interference management could make TpA&form poorly because

it may make most of channel states become “good” so ¢hat 1.

V. CONCLUSIONS

In this paper, we presented a long-term look at the transomissapacity problem, which is
completely different from the previous works on investiggtnetwork throughput at a particular
time point. The motivation of this work is to understand hdw temporal characteristic of a channel
influences the network throughput with an outage probgbiiitnstraint. Therefore, all channels are
modeled by an-state FSMC that has temporal and spatial ergodic progeBieunds the on outage
probability of each channel state and ETC for the case withwaithout interference management
are all found and they show that ETC can be characterizedéjntier product of vector$é ands,.
For a sparse or dense network, the scaling law of ETC thatrigedefrom those bounds provides

some guidelines on when to use CAOT and how to do interferemeagement.
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APPENDIX

A. Proof of Lemma&ll

Proof: We need to show tha} S E U R(Z(7)) converges oy, ¢; hi(s;) as L — oo almost
surely. Suppos€Z(7), T > 0} has an invariant distributiofé;,i = 1,2,--- ,m} and definel/;(L) £
Zf;é 1,,(Z(7)) is the number of visits to state before L. Sincef is a positive function, for any
J C S we have

1 L—1 Vi(L

\z;w Z@ < Z( <L) ‘)h“”
sie€J L¢\7

S LEENIEES> WLL) h<si>22z L ofpie +2 3 e
si€J 58T si€J siJ

where (x) follows from P[lim . V;(L)/L = ¢;) =1 for all i = 1,2, -
For a givens > 0, choose7 with an approprlate size and consideris sufficiently large so that

£ S

Z¢2h(52) < Z and Z 2) —.

2T s, €T 4
Therefore, wherl. is sufficiently large it follows that

) - S o) <=

which establishes the desired convergence. The proof ipleden [ |

Y

B. Proof of Theorerhll

First of all, we have to find the intensitys of I12. According to [24], the Laplace functional of

a homogeneous PPIP for a nonnegative functiom : R? — R, is given by

Lr(w) 2 E | e w(X)H(dX)] = exp (—/ A1 — e_w(x))u(dX)) . (35)
R2

Since the Laplace functional completely characterizeglibibution of a point process, we can find
the intensity oflI¢ by calculatingﬁni (w). For a bounded Borel set C R?, The Laplace functional

of I1¢ with w(X) = w(X)1ps (X) can be written as follows:

Lyg(w) = e Z / / H “HCOPLY; € T+ PLX; ¢ T18]) u(dX) - - p(dXo)

e MIA) Zl { /A (e7™PlY € II)) + 1 — P[Y € I1)) Au(O'Y)}i

- eXp(‘A/A e [Z]l( ) ¢ “(dY’>’

—~
S
N
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where (a) follows from the property of spatial ergodicity. Letting — R? and according to(35),

we know the intensity of1? is

—)\Z@ < { d;; )) r €R,. (36)

SoII¢ is a non-homogeneous PPP sindedepends on.

Sincell(Z?) is a Poisson random variable, its mean can be found as follows

EMY(Z)] = E[ > g6)| @ [ Bl (Olu(ex)

X, €\ Xo

JRICIICSEE Y [Zﬂ( { Tt ))gbi]xdx

m daléési )
- 27T)‘Z¢i/ zdr = s, * <d2 d3)e Zgbl _Sk> = A(s, v — ).
i=1 1

where (b) follows from the Campbell theorem [17]. L&Y(TI3) denote the outage event caused by

any transmitters idl¢ and its probability is

PIE(TY)] =1 — exp (—)\ (VS,;% - 71‘)) < qr(N),
which is a lower bound ofj;(\) because it ignores the interference contributed by thesinéters
that are not inlLe.
Let £°(119) be the complement event f115) and £6(112) means the outage event caused by the

transmitters ofil \ I1. So the upper bound af.()\) is given by

ar(V) < PIETT) U ES(IT)] = 1 — 720 "= 4 PIES(IIY)Je 0" ), (37)
where P[ES(I12)] = P[spd~* < BIf] and I¢ is the interference contributed by the transmitters of
IT\ I12. Unfortunately, it is impossible to explicitly calculai®&(Z¢)] and thus we resort to find
its upper bound by Chebyshev’s inequality. Using Campbdheorem, the mean and variance of

interferencel; can be calculated as follows:

ElIf] =E | > H(| X)) I (X)

X;ell

= B{A] [ 01X A= A () = st

Var[I{] = E[(I})’] - E[[f]* = E[f’] / XD = As(IXD] (dX) = Mgy o2

whereo? is bounded is due to boundedsince[((x)]? < ¢(x). The upper bound oP[£¢(I1)] can
be obtained by
31

_2 _2
=" — s, “08M _ OBlIE—s, “M| | © s Ao

1-2 — 1—2 — 2_1 )
|d=@ — s, “6BAn|  |d=* —s, “6BAn| (sp " /d*op — An)?

P[£(IL))] = Pld~ < §BI{] < P [
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where(c) follows from Chebyshev’s inequality. Substituting the ebaesult into[(3]7), the proof is

complete.

C. Proof of Theorerhl2

SinceY ", drar(N) < ¢, the lower bound in[{13) with\z can be rewritten as

2

Z¢keXP< e(vsy _W)>21_Z¢kQR<5‘E)21_67

k=1 k=1
which gives us

s Z pre

_ 2 2
where\{ = arg maxy \e % “ =™ Hence,e "% “~™ > 1 — ¢ so that we have

2 m m
W > N = 3 Reoe R T > 3 g1 ),
k=1

k=1

- —In(1 —¢ - — ln 1—¢)
coilzd 5 iz Z by (38)
S, v —T sk I/-ﬂ'kl
So the upper bound ok is acquired.
Similarly, we knowl — 37" | éxqx(Ae) > 1 — € and [IB) with)g can give us another lower bound

onl1—>"", #rqr(Ng). Combining these two lower bounds, it yields the followiregult:

1‘2@% Ae) >max{1—e Zcbk 1— Ag (Ag))Fe el '/Skg_”)}. (39)

2

Since (1 — Ax(Ag))Te s =™ is a monotonically decreasing function af, the lower bound

on Az must happen whefil — A, (\g))*e @5 "~ is equal tol — ¢, which means\ = inf{\ :
_2 _2

(1—=Ax(\))Fe s “ =™ < 1—¢}. We can explicitly write the relationshid — A (\)) e s =™ <

1 — € in the following. .
(1 - A(V)
A TRV L o
In { i—o < A(vs, ),
which implies

Zzinf{A>01%1n [%] = <VS’;%_W)}'

— 2 _ .
Thus, the lower bound oi; can be written a$ ;" | ¢xs2 A, The proof is complete.
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D. Proof of Theorem]3
Since the interference generatedlIbys scaled byy,, it is equivalent to the interference generated
2
by a homogeneous PPP with intensity\. The intensity of[I}° at locationX can be shown to be
HiX|™ _ 8
Spd— 4 I() 1+ B

2
A (X)) = i AP

The average number of nodesdf is fo‘x’[vé/\ — (| X)) ]p(dX) = VEAV;;. The lower bound on

the outage probability can be characterized by the averag#er of noncancelable nodes within

77, that means we have to fimf Au(CE NZY) which is the average number of nodeslip® N Z7.
Transmitters irZ) andC¢ must satisfy the following in two equalities, respectively

~ 1/a
H;(B+1)
d (for X; € C7).
B(dyelo + si) ( ! 2

~ /o
1X;| < <5iﬂj> d (for X; € 7)) and|X;| <
k

So for anyX; € Z? N C¢, we must have

~ 1/a
OBH; . 145
X5 < d( S mln{l, 0 +da%10/sk)}> . (40)

If C¢ C Z) a.s., then we must have

1+ 1+8
o> ., a.s. = 0> )
~ B2(1+ dwdo/si) 32

In this case, the average number of noncanceléidel interferers |s>\7k (W(Z?) — p(Cg)) which

is equal to)\y,gu(l — v¢/v). On the other hand, if} c Cf a.s.,d < 1;25 and thusv¢ > v in this
case and thus all interferes #ij are cancelable. Combining these two cases, the averageenwhb
noncancelablé-level interferers should be written a37. Using A} to replace) of the lower bound
in (13), we can have the lower bound on the outage probability

The (-)* term of the upper bound is due to the outage caused by thertitsis out ofZ) so
that the intensity oflI \ II} is 7,3/ “) because no interferers are canceledlify IT2. So we can just
replace\ in the (1) term of (13) by72/a)\ and also replace in the exponential term with}. Then

the upper bound is obtained.

E. Proof of Corollary( 2

By considering the given conditiol;" | ¢xqr(Ae) < €, the success probability for channel state

s;, obtained from[(29) is bounded as follows.

1—Z¢k€<1—z¢k% (Ae) SZ eV N
k=1
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If C¢ c Z?, then using the above inequality and following the samesstéfinding the upper and
lower bounds in the proof of Theorelh 2, we can show the regul80) and [(31). IfZ} C C¢, then
the upper bound on success probability is no longer availgibice alb-level interferers are canceled
and thus(v — vg)*™ = 0. As shown in the proof of Theorefd 2, there are two lower bourshe
success probability: one is— ¢, the other is) ;" | ¢y <1 — Ay (Ak7§>)+. ConsideringA.(+) < 1,
the lower bound on the success probability can be expressed a

1— Z¢qu(5\E) >1—minX e, Zcbk/\k <5\k7]§> ;
k=1

k=1
which yields the following inequality

3_1 9 2
Se A/

s 7 i dess )

- 19 _2 —2 _2\2
This leads to the following conditiork;, = inf {)\ >0:sp 1% - (1/d0‘55 - )\ns,lC Zyk 2) < )\”—},

which renders us the lower bou@kmzl(sk/%)ﬁqwz. This completes the proof.
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TABLE |
SUMMARY OF MAIN MATHEMATICAL NOTATION

Symbol Definition
I Homogeneous PPP of transmitters
A Intensity (density) offl
Ce Ergodic transmission capacity
s Maximum Contention Intensity
€ Upper bound of outage probability
d Transmission distance of a TX-RX pair
S eRY m-state Markov chain for modeling fading
Sk kth state of Markov chairf
bk Invariant (steady state) probability of channel state
H(T) Fading channel gain at time, H(r) € S
a>2 Path loss exponent
B SIR threshold for successful decoding
s o-level interfering coverage for channel state
§>1 Parameter of defining?
v Mean area off} for s, = 1
Cs Interference cancellation coverage for channel state
vk € (0,1) Interference reduction factor for channel state
(- 1) Path loss function
ar(+) Outage probability for channel statg
n(A) Lebesgue measure of sdt
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Fig. 1. The gap between the upper and lower boundg;g¢n). Channel fading is modeled by a Markov chain with 2 stateg Th
network parameters for simulation aé= 5m, A = 0.01, « =3, 8 =2, s1 = 0.5, s =2 and¢1 = ¢2 = 0.5.
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Fig. 2. The Gilbert-Elliott channel model and its corresgiog geometric presentation 6fz, where{p;;} are the state transition
2 o
probabilities for the FSMC model ar&};, = s /(v — wsg ) 2.
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Fig. 3. Numerical results for ETC with and without CAOT. Thetwork parameters for simulation arel .= 10m, 8 = 2, a = 3,
§=1.5,5 =05 80=2, ¢ = 0.8, p = 0.2 and X = 0.01.
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B ETC without Interference Management |
—e— ETC with Interference Management
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Fig. 4. Numerical results for ETC with and without interfece management. The network parameters for simulationdre 10m,
522,0423, 0=2,5=0.5, s0 =2, ¢1 :(]52:0.5, Y1 :72:0.6 and )\ = 0.02.
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°l  |®||sc|cosd

|®||s?| cos 0"

Fig. 5. The geometric representation of the ETC for an FSM@ i statess; is the optimal vector thas. can achieve by
interference management. By using interference managemwenicesa and ¢ can be optimally moved tb andh, respectively. The

projection points of verticeb andg on ® ared andi, respectively.
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