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Ergodic Transmission Capacity of Wireless Ad
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Abstract

Most work on wireless network throughput ignores the temporal correlation inherent to wireless channels

because it degrades tractability. To better model and quantify the temporal variations of wireless network

throughput, this paper introduces a metric termed ergodic transmission capacity (ETC), which includes spatial

and temporal ergodicity. All transmitters in the network form a homogeneous Poisson point process and

all channels are modeled by a finite state Markov chain. The bounds on outage probability and ETC are

characterized, and their scaling behaviors for a sparse anddense network are discussed. From these results,

we show that the ETC can be characterized by the inner productof the channel-state related vector and the

invariant probability vector of the Markov chain. This indicates that channel-aware opportunistic transmission

does not always increase ETC. Finally, we look at outage probability with interference management from a

stochastic geometry point of view. The improved bounds on outage probability and ETC due to interference

management are characterized and they provide some useful insights on how to effectively manage interference

in sparse and dense networks.

I. INTRODUCTION

In the past decade, our understanding of large wireless network capacity has increased considerably,

but perhaps still comprises more questions than answers, especially for realistic models. Gupta and

Kumar’s landmark work [1], for example, introduced the transport capacity metric and derived scaling

laws on it in a size-limited network. Another more recent example is transmission capacity proposed

in [2] which is a spatial throughput metric for Poisson-distributed transmitters in an infinite network

with outage constraints. Almost all of the studies following the aforementioned approaches did

not consider temporal affections. For a wireless network with long-term time-varying channels, its

snapshotthroughput may not provide a full picture of how the throughput evolves over time.
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In this paper, we introduce a metric capable of characterizing the network throughput induced

by channels with temporal and spatial ergodicity. This metric is called theergodic transmission

capacity(ETC), and it measures the maximum long-term average rate (in bps/Hz) that can be sent

per unit area in the network with an outage constraint. We evaluate the ETC under assuming all

transmitters form a homogeneous Poisson point process (PPP) with a unique receiver. The channel

models span many blocks of time, and so the throughput variations over time can be characterized

with our framework but not with prior frameworks. Thus, ETC may be better able to accurately

suggest how to effectively use transmissions over time and space, such as multi-antenna transmission

and opportunistic scheduling, and how much such techniqueswill improve area spectral efficiency

in a long-term sense.

A. Motivation and Related Work

In the literature on wireless network throughput (see [1]–[7] and the references therein), a unified

and time-invariant channel model is typically adopted overthe entire network, but channels in a large-

scale wireless network usually are diverse across time and/or space. Using a channel model without

temporal correlation does not capture how channel states evolve over time and thus the impact on

network throughput from the temporal (and spatial) variations of channels is ignored, and techniques

which exploit the variations and correlations cannot be properly quantified. For example, we observe

that transmission techniques that increase the snapshot network throughput may not increase ETC

or may even degrade it. In particular, we will show that channel-aware opportunistic transmission

(CAOT), i.e. transmitting when channels are in good states,does not always improve ETC, which is

perhaps surprising.

ETC requires the use of different channel models that include temporal discrepancies. We propose

a finite-state Markov chain (FSMC) to model the fading channels, in particular am-state Markov

chain that is irreducible and positive recurrent. Each channel undergoes path loss and fading and has

an ergodic property in that its fading state has an invariant(steady-state) probability [8]. This idea

can be traced back to the early work of Gilbert and Elliott [9][10] that used a two-state Markov

chain to representgoodandbad channel conditions which was extended to a finite state case in [11].

B. Contributions

The first contribution in this paper is the model for ETC itself. We then calculate the ETC, which

requires the outage probability for each fading channel state to be found, for which we find tight

closed-form bounds based on a proposedδ-level interfering coverage area around a receiver. Any
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single transmitter in theδ-level region of its unintended receiver will cause an outage if its interference

power is enlarged by a factorδ. We show that appropriately choosingδ admits bounds on outage

probability that are much tighter than those found in previous work.

Bounds on ETC and their corresponding scaling laws for some special cases are then found. They

reveal several interesting implications, e.g. the scalingof ETC for asparseor densenetwork is

CE = Θ(ΦT
sǫ), (1)

whereCE denotes ETC,sǫ =
[

s̃
2

α
1 , s̃

2

α
2 , · · · , s̃

2

α
m

]T
in which s̃k is the function of thekth statesk of

a Markov fading channel withm states,Φ = [φ1 φ2 · · · φm]
T ∈ [0, 1]m is the invariant probability

vector1 of the Markov fading channel model andα > 2 is the path loss exponent. From (1), we

notice that a single deep fading state is not necessary to have a significant negative effect on ETC if

its invariant probability is very small. This point is not revealed in prior work that neglects temporal

variations. Also, we observe that ETC has a geometric interpretation because it can be viewed as an

inner product of two vectors. Thus, ETC is maximized when thedirections ofΦk andsǫ coincide. In

addition, we show that channel-aware opportunisitc transmission (CAOT), which is a scheme to allow

transmitters to transmit only when their channels are in good states, does not necessarily provide an

ETC gain. Although CAOT is able to increase the transmissioncapacity contributed by good channel

states, it loses the transmission capacity contributed by bad channel states. So CAOT cannot benefit

ETC if the improvement is no larger than the loss from bad channel states.

Three interference management methods – avoidance, suppression and cancellation – are applied to

the network to reduce outage probability. Bounds on the outage probability and ETC with interference

management are found which provide geometric insight into the efficiency of each technique in dif-

ferent scenarios. For example, we show that interference cancellation is not effective for significantly

increasing ETC in a spare or dense network. Also, we show interference management can control the

direction and magnitude of vectorsǫ. Finally, we show that CAOT should not be used if interference

management can significantly lower interference.

II. NETWORK MODEL AND DEFINITIONS

A. The Network Model

The wireless network considered in this paper is of infinite size and all nodes in the network

are independently and randomly scattered. Thus, we employ amarked homogeneous Poisson point

1The physical meaning ofφk is the fraction of time that channel statesk sojourns as time goes to infinity.
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process (PPP)Π on the planeR2 to represent the locations of all transmitting nodes in the network,

which can be written at timeτ as2

Π ,
{

(Xi ∈ R
2, Hi(τ) ∈ R+, ei(τ)) : ei(τ) = 1

}

, (2)

whereXi denotes nodeXi as well as its location,Hi(τ) is the fading channel gain between node

Xi and its receiverYi, and ei(τ) ∈ {0, 1} represents the transmitting index of nodeXi: ei(τ) = 1

means nodeXi is transmitting; otherwise, it is idle. The intensity (density) of Π is λ for all τ ∈ N.

Each transmitter has a unique receiver and the distance between a TX-RX pair is a constantd > 1.

All of the transmitters use the same transmit power and the channel model between each TX-RX

pair is subject to path loss and fading. So the channel gain for TX-RX pair i can be written as

Hi(τ)ℓ(|Xi − Yi|) = Hi(τ)ℓ(d),

whereHi(τ) is the fading channel gain,|Xi − Yi| denotes the Euclidean distance between nodesXi

andYi andℓ(| · |) is the path loss function. In order to avoid the singularity where|X → 0, we will

use

ℓ(|X|) = |X|−α
1(|X| ∈ [1,∞)), X ∈ R

2, (3)

whereα > 2 is the path loss exponent3 and1(x ∈ X ) denotes theindicator function:1(x ∈ X ) = 1

if x ∈ X and 0, otherwise.

Specifically, we use anm-state FSMC model to characterize the fading effect of all channels in the

network. The FSMC is irreducible and positive recurrent, and its m states are ordered. The FSMC

model with transition matrixP is denoted byS(P) ∈ R
m
+ andS is an order set of them states, i.e.

for any two statessi, sj ∈ S we havesi < sj wherei < j and i, j ∈ M , {1, 2, · · · , m}. SinceS

is irreducible and positive recurrent, the fading channel gain H(τ) for all TX-RX pairs must satisfy

the following conditions [8]:

φk , lim
L→∞

1

L

L−1
∑

τ=0

1(H(τ) ∈ sk) and u
⊺Φ =

m
∑

k=1

φk = 1, (4)

whereΦ , [φ1, φ2, · · · , φm]
T is the invariant probability vector ofP and u , [1 1 · · · 1]T is an

m-tuple vector. Namely, at any timeτ , H(τ) must belong to one of the states inS andφk represents

the probability thatH(τ) visits statesk in a long-term sense. We can show thism-state Markov

channel model has a temporal ergodic property as stated in the following lemma.

2Here it is better to useΠ(τ ) instead ofΠ. However, to simplify notation, we will useΠ to stand forΠ(τ ) throughout this paper

if ignoring time indices does not induce any ambiguity. Thiscustom is applied to other set and variable notations.

3In a planar network, we requireα > 2 to have bounded interference, i.e.It < ∞ almost surely ifα > 2 [12], [13].
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Lemma1 (Temporal Ergodicity of anm-state Markov Chain): SupposeS(P) is an irreducible

and positive recurrent Markov chain withm states, and its transition matrix isP. Let ~ : S → [0, 1]

be a state measurable function ofS andZ(τ) is a random variable taking values inS. Thus, we

have

P

[

lim
L→∞

1

L

L−1
∑

τ=0

~(Z(τ) ∈ S) =

m
∑

i=1

φk ~(sk)

]

= 1, (5)

where{φk, k = 1, · · · , m} are the invariant (steady state) distribution ofP and sk is the kth state

of S.

Proof: See Appendix A.

The definition of ergodic transmission capacity in the following subsection is built based on the

result in Lemma 1. In addition, the following lemma shows that the fading channel model of a FSMC

also has a spatial ergodic property.

Lemma2 (Spatial Ergodicity): Consider a marked homogeneous PPPΠ with an independent

mark H(τ) ∈ S, and letg : Π → R+ be a measurable function onΠ. For any bounded subset

An ⊂ R
2 andµ(An) → ∞ asn → ∞, we have

E[g(Πk)] , lim
n,τ→∞

1

µ(An)

∫

An

g((X,H ∈ sk))µ(dX) = φkE[g(Π)], a.s., (6)

whereΠk , {(Xi, Hi) ∈ Π : Hi ∈ sk} is the PPP with channel statesk.

Proof: SinceΠ is homogeneous, we know

E[g(Π)] = lim
n,τ→∞

1

µ(An)

∫

An

EH [g((X,H))]µ(dX).

Since{Hi} are independent,Πk is just the thinning homogeneous PPP ofΠ and thus we have

E[g(Πk)] = lim
n,τ→∞

1

µ(An)

∫

An

g((X,H ∈ sk))µ(dX)

= lim
n,τ→∞

1

µ(An)

∫

An

E[g((X,H))]E[1(H ∈ sk)]µ(dX)
(⋆)
= φkE[g(Π)],

where(⋆) follows from the temporal ergodicity result in Lemma 1.

Lemma 2 indicates that the spatial average ofg(Πk) is equal toφkE[g(Π)]. So we know the intensity

of Πk is λk = φkλ provided thatg(·) is an intensity measure.

The interference channel gain from transmitterXj to its non-intended receiverYi is denoted by

H̃ji(τ) ℓ(|Xj −Yi|) whereH̃ji(τ) ∈ S. The aggregate interference normalized by the transmit power

at receiverYi can thus be expressed as

Ii(τ) =
∑

Xj∈Π\Xi

H̃ji(τ)ℓ(|Xj − Yi|), (7)
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whereIi is also called a spatial shot noise process [12], [14]–[16] since it captures the cumulative

effect at locationYi of a set of random shocks appearing at random locationsXj, andH̃jiℓ(|Xj−Yi|)

can be viewed as the impulse function that gives the attenuation of the transmit power in space. In

order to have a successful transmission for TX-RX pairi, the following signal-to-interference ratio

(SIR) condition at receiver nodeYi must hold at timeτ :

SIRi(τ, λ) ,
Hi(τ)

dαIi(τ)
≥ β, (8)

whereβ is the SIR threshold for TX-RX pairi to successfully decode the received data. The network

is assumed to be interference-limited.

Note that according to Slivnyak’s theorem [17] the statistics ofIi seen by any node in the network

is the same if the nodes form a homogeneous PPP. That means theaverage outage probability of

each receiver node may be found by evaluating the SIR seen by areceiver located at the origin.

Intuitively, the distribution of the point process is unaffected by the addition of a receiver at the

origin, and this receiver is called atypical receiver. The performance measured at the origin is often

referred to the Palm measure, and in keeping with simplified notation we will denote the probability

and expectation of functionals of evaluated at the origin o by P andE, respectively. Also, Table I

summaries the main mathematical notation used in this paper.

B. Definitions

Consider the typical TX-RX pair and its steady state outage probability is

lim
τ→∞

P[SIR(τ, λ) < β] ∈ {qk(λ), k ∈ M}, (9)

whereqk(λ) , limτ→∞ P[SIR(τ, λ) < β|H(τ) = sk] is the outage probability for channel statesk as

time τ goes to infinity. Now we are ready to use (9) to define ergodic transmission capacity in this

paper.

Definition 1 (Ergodic Transmission Capacity): Suppose transmitting nodes in a wireless ad hoc

network form a homogeneous PPP of intensityλ. For a givenǫ ∈ (0, 1), the ergodic transmission

capacity (ETC) of a wireless ad hoc network is defined by

CE , b λ̄E(1− ǫ), (10)

whereb is the supportable transmission rate,ǫ is the upper bound on the outage probability of each

channel state, and̄λǫ = sup{λ > 0 :
∑m

k=1 φkqk(λ) ≤ ǫ} is called maximum contention intensity

achieved under the outage probability constraintǫ.
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The definition ofCE in (10) originates from the following definition:

CE ,
b λ̄E
L

L−1
∑

τ=0

P[SIR(τ, λ̄ǫ) ≥ β]. (11)

Since all channels are an irreducible and positive current Markov chain, according to Lemma 1 they all

have temporal ergodicity. Thus, the definition in (11) is equivalent toCE = b λ̄E
∑m

k=1 φk[1−qk(λ̄E)].

This is the reason why we directly use the invariant probability of a Markov chain to define ETC

instead of using (11). For ease of analysis, we need to quantitatively define the sparseness and

denseness of a network with Poisson-distributed nodes.

Definition 2 (Spatial Sparseness and Denseness of a Poisson-DistributedNetwork): Suppose the

transmission coverage of a transmitter is the circular areaof radiusd. A network whose transmitting

nodes form a homogeneous PPP of intensityλ is called “dense” (“sparse”) if the average number of

transmitting nodes in the coverage is sufficiently large (small), i.e. πd2λ ≫ 1 (πd2 ≪ 1).

III. GENERAL RESULTS ONERGODIC TRANSMISSION CAPACITY

In this section, we study the general results of ETC. First, we have to calculate the outage

probability for each channel state; however, only the bounds on the outage probability and ETC

can be characterized due to the complicated distribution ofthe interference. According to the found

bounds, the scaling behaviors of ETC are characterized and they reveal several observations.

A. Bounds on the Outage Probability

Since a closed-form expression of the outage probability defined in (9) is difficult to find4, we

resort to bounds. The idea of approaching the lower bound fora receiver with channel statesk is to

use aδ-level interfering coverageIδ
k for the typical receiverY0 with fading statesk, and it is defined

as follows5:

Iδ
k ,

{

X ∈ R
2 :

skd
−α

δ ℓ(|X|)H̃
< β

}

, δ ∈ [1,∞), (12)

which means any single interferer within it can cause outageat receiverY0 with a SIR thresholdδβ.

If Iδ
k is not empty, it could contain dominant interferers and non-dominant interferers. In addition,

Πδ
k , (Π ∩ Iδ

k) \X0 is calledδ-level interfering point process.

4If all channels are instead Rayleigh fading, the closed-form of the outage probability can be found by the Laplace transform of the

aggregate interference contributed by Poisson-distributed transmitters [12] [18]. However, such closed-form outage probability cannot

be obtained for the case of channels without fading [2] [19] or with a single state at any time.

5If δ = 1, thenIδ
k is called the dominant interferer coverage in which a singleinterferer causes outage at receiverY0.
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The lower bound on the outage probabilityqk(λ) can be acquired by considering the outage events

caused byΠδ
k. The upper bound can be approached by finding the probabilityof the union outage

events separately caused by the interferers inΠδ
k andΠ \ Πδ

k. These two bounds found are tighter

than those in the previous works [2] [19], as the following theorem shows.

Theorem1: The outage probabilityqk(λ) in (9) can be bounded as

1− e−λ(νs
−

2
α

k −π) ≤ qk(λ) ≤ 1− (1− Λk(λ))
+ e−λ(νs

−
2
α

k −π), (13)

where(x)+ , max{x, 0} andΛk(·) is defined as

Λk(λ) =
s

3

α
−1

k λσ2

(s
2

α
−1

k /dαδβ − λη)2
, (14)

andν, η, σ2 are respectively given by

ν = πd2
m
∑

k=1

φk(δβsk)
2

α , η =
2ν

(α− 2)dαδβ
, σ2 =

πd2−2α

α− 1
(δβ)

1

α
−1

m
∑

k=1

φks
1

α
+1

k .

Proof: See Appendix B.

The physical meanings ofν, η and σ2 are the mean area ofIδ
k with sk = 1, the mean, and the

variance of the interference contributed by the interferers of Π \ Πδ
k for λ = sk = 1. When the

channel statesk is high, the outage probability is reduced because SIR is large or equivalently the

target SIRβ is reduced. Nevertheless, it also can be explained from a geometric point of view. In

(8), we can let fading gainsk be incorporated into the path loss model of all interferencechannels,

and according to the conservation property of a homogeneousPPP [17], the intensity of the original

PPP is changed fromλ to λ/s
2

α
k . This is whyλ in the bounds is scaled bys

− 2

α
k and thus interference

generated by the PPP with intensityλ/s
2

α
k is small whensk is large. So tightness of the bounds in

(13) can also be observed.

If (·)+ in (13) is non-zero, the gap between the upper and lower bounds isΛk(λ)e
−λ(νs

−
2
α

k −π) which

is a function ofδ, λ andsk. Sincee−νλs
−2/α
k , σ2 andη are all monotonically decreasing functions ofδ,

and the denominator ofΛk(λ)e
−λ(νs

−
2
α

k −π) is convex forδ, it is easy to realize thatΛk(λ)e
−λ(νs

−
2
α

k −π)

is smaller than that withoutδ if δ is chosen appropriately. Fig. 1 shows the simulation results for

channel fading modeled by a 2-state Markov chain. As expected, the two gaps decrease along with

δ so that usingδ > 1 can make the bounds (much) tighter. In addition, the gap for agood channel

state is much larger than that for a bad channel state. Hence,we should choose a sufficiently large

δ in order to have tight bounds when the Markov chain has very good channel states.

The result in (13) will become slightly different if a transmitter uses a channel-aware opportunistic

transmission (CAOT) policy. Recall that the states of a Markov fading channel are ordered so that a
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better state has a higher subscript index. Suppose we call a channel state “good” in each FSMC if

its subscript index is greater than or equal tog andsg > 1, which means channel gainH is good if

H ∈ Sg , {sg, · · · , sm}. Therefore, the PPP with good channel states can be expressed as

Πg = {(Xi, Hi(τ)) ∈ Π : Hi(τ) ∈ Sg}. (15)

According to Lemmas 1 and 2, its intensity isλg = λP[H ∈ Sg] = λ
∑m

k=g φk as time goes to

infinity. Therefore, the bounds on the outage probability with CAOT can be obtained from (13) by

replacingλ with λg, which yields

1− e−λg(νs
−

2
α

k −π) ≤ qk(λg) ≤ 1− (1− Λk(λg))
+ e−λg(νs

−
2
α

k −π). (16)

Note that the bounds decrease in (13) whenλ decreases. Thus, the bonds in (16) decrease compared

with (13). So CAOT improves the bounds on the outage probability of each channel state because

nodes with bad channel states refrain from transmitting. InSection III-C, however, we will point out

that it may not always improve ETC.

B. Ergodic Transmission Capacity

By using the bounds on the outage probability of each channelstate in Theorem 1, the ETC in

(10) has bounds as shown in the following theorem.

Theorem2: Suppose the outage probabilityqk(λ) in (9) is upper bounded byǫ ∈ (0, 1). Using the

inequality in (13), bounds on the maximum contention intensity λ̄E which maximize
∑m

k=1 φkqk(λ̄E)

under the constraint ofǫ can be given by

m
∑

k=1

s
2

α
k φkλ̄

ǫ
k ≤ λ̄E ≤ − ln(1− ǫ)

m
∑

k=1

s
2

α
k φk

ν − s
2

α
k π

, (17)

whereλ̄ǫ
k is given by in the following.

λ̄ǫ
k = inf

{

λ > 0 :
1

λ
ln

[

(1− Λk(λ))
+

1− ǫ

]

≤
(

νs
− 2

α
k − π

)

}

, (18)

whereΛk(λ) is defined in (14).

Proof: See Appendix C.

Scaling Laws of Ergodic Transmission Capacity. If we considerǫ → 0, the upper bound in

(17) will reduce toǫ
∑m

k=1 s
2

α
k φk/(ν − s

2

α
k π) + Θ(ǫ2) since− ln(1 − ǫ) → ǫ. So we knowλ̄ǫ

k ≪ 1

and thus the solution in (18) is̄λǫ
k = s

2

α
k ǫ/[(σ

2d2αβ2δ2s
1+ 1

α
k + ν)− s

2

α
k π] + Θ(ǫ2). We can conclude

that the lower bounds in (17) isǫ
∑m

k=1 φks
2

α
k /[(σ

2d2αβ2δ2s
1+ 1

α
k + ν) − s

2

α
k π] + Θ(ǫ2) as ǫ → 0. So
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the bounds in (17) are asymptotically tight when the networkis sparse becauseλ = Θ(ǫ) as ǫ → 0.

The scaling behavior of̄λE in this case turns out to be

λ̄E = Θ

(

ǫ

ν

m
∑

k=1

φks
2

α
k

1− πs
2

α
k /ν

)

, (19)

where the argument inΘ(·) only keeps thekey parameters of interest. The above result is also the

scaling law for a dense network becauseνλ ' − ln(1 − ǫ) as πd2λ is sufficiently large. Note that

(19) is only valid for smallλ but largeπd2λ since for smallλ we have to keepǫ small andπd2

sufficiently large in order to makeπd2λ large and the outage probability lower thanǫ. In addition,

if ν → ∞ (i.e. d and/orδ → ∞), then (19) further reduces to

λ̄E = Θ

(

ǫ

πd2(δβ)
2

α

)

, (20)

which means ETC is not affected by the fading channel states if the received signal is very weak.

This makes sense in that channels can be equivalently viewedin a bad state all the time when the

received signal is very weak due to long transmission distance.

ETC with Channel-Aware Opportunistic Transmission (CAOT) . The result in Theorem 2 is

obtained without any transmission scheduling. Suppose nowthe channel state information (CSI) is

available at each transmitter. Then transmitters can use their CSI to do CAOT and thus we have the

following corollary.

Corollary 1: If all transmitters transmit only when their channel fadinggains are inSg, the bounds

on the ergodic transmission capacity are

1

ϕg

m
∑

k=g

s
2

α
k φkλ̄

ǫ
k ≤ λ̄E ≤

− ln(1− ǫ)

ϕg

m
∑

k=g

s
2

α
k φk

ν − s
2

α
k π

, (21)

whereϕg =
∑m

k=g φk.

Proof: For CAOT, the bounds on the outage probability for channel state sk is shown in (16).

Hence, the bounds in (21) can be acquired by first taking off the terms with an indexi lower thang

in (17) and replacinḡλE in the bounds withϕgλ̄E. Sinceν, η andσ2 do not depend onλg, we can

replaceλg in (16) by λ̄. Then following the same steps in the proof of Theorem 2 to derive (18),

the lower bound in (21) is completely achieved.

C. Observations and Discussion

In the previous subsection, we have obtained bounds on ETC and discussed the scaling laws

of ETC for a sparse and dense network. From the bounds and scaling laws, we have made three

interesting observations.
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ETC implicitly possesses a geometric interpretation. The scaling law of ETC in (19) can be

expressed in a general form by vectorsΦ andsǫ as

CE = Θ
(

ΦT
sǫ

)

, (22)

whereΦ = [φ1, φ2, · · · , φm]
T ands is defined as

sǫ , ǫ

[

s
2

α
1

ν − πs
2

α
1

,
s

2

α
2

ν − πs
2

α
2

, · · · ,
s

2

α
m

ν − πs
2

α
m

]T

. (23)

In other words,CE is scaled by the inner product of vectorsΦ and sǫ. So the result in (22) can

be interpreted from a geometric point of view. Suppose the Markov channel model has two fading

states (i.e.m = 2, this is so called Gilbert-Elliott channel model [9] [10]).ThenCE in (22) can be

schematically presented in Fig. 2. Note thatsǫ must be above on the45◦ line becauses2 is larger than

s1. The inner product ofsǫ andΦ can be written asΦT
sǫ = |Φ||sǫ| cos θ andθ is the angle between

vectorssǫ andΦ. So we will have a larger ETC ifΦ has the same direction assǫ. The optimalΦ∗

that maximizes ETC can be given byΦ∗ =
sǫ

u
T
sǫ

. Therefore, if all Markov fading channels have the

optimal distributionΦ∗, thenCE in (22) becomes

CE = Θ

(

s
T
ǫ sǫ

uTsǫ

)

, (24)

and thus it is completely characterized by all channel fading states.

Dominant channel states may not dominate ETC. Dominant states in a Markov chain means that

their invariant probabilities are much larger than other states’ invariant probabilities. In other words,

if a channel has dominant states then it is in these states most of the time. Dominant channel states

may not contribute too much ETC since their state magnitudescould be very small (very bad states).

Thus, dominant channel states which reallydominatesETC only when they have a large magnitude.

This point can also be visually explained by Fig. 2. Supposes2 dominates and it is much larger than

s1. In this case,Φ andsǫ will move up and be close to the vertical axis. The projectionof Φ on sǫ

will largely increase and it is mostly contributed by the vertical component. Thus, whether a channel

state dominates ETC or not depends on the product of its magnitude and invariant probability.

CAOT may not benefit ETC. If we compare the results in Theorem 2 and Corollary 1, we can

find CAOT indeed increases the bounds with good channel states. Nevertheless,it may not always

improve ETC since it loses the throughput contributed by badchannel states. To show this, let the

upper bound in (17) be greater than the upper bound in (21). This leads to the following inequality:
(

1

ϕg
− 1

) m
∑

k=g

s
2

α
k φk

ν − πs
2

α
k

<

g−1
∑

k=1

s
2

α
k φk

ν − πs
2

α
k

. (25)
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The LHS in the above expression is the ETC improved by CAOT andthe RHS is the ETC loss

because of bad channel states. If this inequality is valid, apparently CAOT may not improve ETC

because the ETC increase in the good states could not compensate the ETC loss in the bad states.

Hence, following from (25), the better policy of using CAOT for a transmitter is when the following

condition holds

ϕg ≤
ǫ
∑m

k=g s
2

α
k φk/(ν − πs

2

α
k )

ΦTsǫ
. (26)

However, the above condition is not implementable by transmitters in a wireless ad hoc network

without knowingΦ in advance. So CAOT is not always an effective means to enhance ETC in

a real-time situation. A simulation example for ETC with andwithout CAOT is shown in Fig. 3.

Channel fading is modeled by a 2-state Markov chain and the simulation condition is set to let the

bad channel state be dominant. Obviously, we can see that ETCwith CAOT is worse than ETC

without CAOT.

IV. ERGODIC TRANSMISSION CAPACITY WITH INTERFERENCEMANAGEMENT

In Section III-C, we observed that refraining from transmitting when channels are in bad states does

not necessarily increase ETC. This is because the CAOT scheme increases the transmission capacity

for good channel states but further lowers the transmissioncapacity for users in bad channel states.

That is, the throughput increase does not in general compensate for the throughput loss, particularly

when bad channel states are dominant (i.e. channels are bad most of the time). Thus, the key to

increasing ETC is to boost every entry of vectorsǫ and not to sacrifice transmission opportunities

of users with bad channel states. Two possible approaches toattaining this goal are through power

control and interference management. In general, power control makes the analysis of the outage

probability more intractable due to the complex structure of the interference. In addition, it is not a

very effective means to increase SIR in a interference-limited ad hoc work [19] [20].

A. Interference Management – A Stochastic Geometry Perspective

Interference management can be classified into three categories: interference avoidance, suppres-

sion and cancellation. Avoiding interference in a wireless ad hoc network is typically accomplished

by using space, time or frequency orthogonality to eliminate the co-reception of strong interferers.

Frequency-hopping and CSMA are prominent examples of avoiding interference in an ad hoc network.

Interference suppression deploys signal processing at thetransmitter and/or receiver to (linearly)

suppress interference without actually cancelling it. Direct-Sequence CDMA (DS-CDMA) is a typical
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example of this category. In addition, receivers can try to cancel strong interference from their nearby

unintended transmitters (e.g. successive interference cancellation (SIC) [21]–[23]). Although avoiding

interference and suppressing interference are two different methods of reducing interference, we know

there exists a duality property between them in a wireless network with Poisson-distributed nodes.

According to the conservation property of a homogeneous PPP[17]6, these two methods both reduce

the original intensity of transmitters so that their effectcan be demonstrated via another homogeneous

PPP with a new intensity. However, interference avoidance has a better efficiency in reducing the

intensity of interferers than interference suppression [2] [20].

The effect of interference cancellation can also be graspedfrom a geometric perspective. To explain

this, suppose now any receiverYi in the network is able to cancel some interference from its nearby

interferers after the interference is avoided and/or suppressed. As time goes to infinity, theinterference

cancellation coverageof receiverY0 with channel statesk is defined in the following.

Cck =

{

X ∈ R
2 :

H̃|X|−α

skd−α + γkI0
≥

β

β + 1

}

, (27)

where I0 is the interference of receiverY0 and γk ∈ (0, 1) is called interference reduction factor

for channel statesk7. CoverageCck means that any received interference within this region canbe

decoded by receiverY0 with channel statesk, and all transmitters inCck have a larger received power

than transmitterX0 if Cck ∩(Π\X0) is not empty andβ > 1. Also, Cck is a random compact set so that

its mean Lebesgue measureµ(Cck ) is finite. If each receiver can perfectly cancel all interferers in its

cancellation coverage after suppressing and/or avoiding some interference, then its SIR for channel

statesk is

SIRk =
skd

−α

∑

Xj∈Π
nc

k
H̃j(τ)|Xj|−α

, (28)

whereΠnc

k , Π \ (Cck ∩Π∪X0) is the noncancelable part ofΠ with intensityλγ
2

α
k . So equation (28)

essentially suggests that interference management can be equivalently reflected by constructing a new

PPP with a reduced intensity. The aboveSIRk expression will be used in the following subsection

to find the bounds on the outage probability. Those bounds areused to characterize the bounds on

ETC with interference management.

6The conservation property of a homogeneous PPP with intensity λ is that the intensity will change toλ/a if all locations of the

nodes in the PPP are scaled by a constant
√
a.

7Reduction factorγk can account for the joint effect of interference avoidance and suppression. For example, if there areM > 1

available channels for DS-CDMA with spreading gainG > 1, thenγk = 1/GM
α

2 .
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B. Bounds on Outage Probability with Interference Management

Bounds on the outage probability with interference management are shown in the following

theorem.

Theorem3: If each receiver is able to avoid and/or suppress interference, and cancel interferers

in its cancellation coverage, then bounds on the outage probability for channel statesk are given by

1− e−λmk(νs
−

2
α

k −π) ≤ qk(λ) ≤ 1−
(

1− Λk

(

γ
2

α
k λ
))+

e−λmk(νs
−

2
α

k −π), (29)

where λmk , γ
2

α
k λ
(

1−
νck
ν

)+

is the average intensity of the transmitters inIδ
k with interference

management andνck is the mean Lebesgue measure ofCck .

Proof: See Appendix D.

There are a couple of observations that can be drawn from Theorem 3. First, the upper and

lower bounds in (29) are smaller than those in (13). Canceling interference can be viewed as

constructing a new PPP with reduced intensityγ
2

α
k λ(1 − νck/ν)

+ in Iδ
k , and it is more efficient

to reduce interference than suppressing interference since it completely eliminates transmitters with

strong interference power and thus the1 − νck/ν term does not have an exponent of2
α

. Thus, we

can infer that imperfect interference cancellation (i.e. interference suppression) is not as efficient as

perfect interference cancellation (i.e. intensity reduction) and interference avoidance since it merely

decreases transmitters’ interference and does not directly reduce transmitter intensity.

Second, interference cancellation is not equally useful for all networks. For example, in a dense

network, canceling the strong interferences from the nearby transmitters can significantly reduce

outage probability such that network throughput is substantially increased. This point can be easily

verified by lettingλν be sufficiently large. In this case,qk(λ) is close to unity if no interference

is canceled. On the other hand, for sparse networks, interference cancellation may merely have

a marginal reduction in outage probability. For sufficiently small λν and ν > νck , (29) can be

simplified asqk(λ) =
(

γk
sk

)
2

α
λ(ν − νck ) + O((λν)2). So when receivers cancel more interferers, its

outage probability is reduced by amount ofO(λνck ) which is really a small and trivial improvement.

From this observation, we see that canceling strong interferers for each channel state may not be an

effective means to increase transmission capacity for small ǫ since the maximum contention intensity

of transmission capacity for each channel state is already asmall value in this case.

C. ETC with Interference Management

According to the bounds on the outage probability in Theorem3, ETC with interference manage-

ment is bounded as shown in the following theorem.
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Corollary 2: Suppose interference management is used in the network and each receiver is able

to perfectly cancel all interferers in the interference cancellation coverage of each channel state. Let

the outage probability be upper bounded byǫ ∈ (0, 1). If Cck ⊂ Iδ
k , the maximum contention intensity

for channel statesk has the bounds given by
m
∑

k=1

(

sk
γk

)
2

α

φkλ̄
ǫ
k ≤ λ̄E ≤ − ln(1− ǫ)

m
∑

k=1

(

sk
γk

)
2

α φk

(ν − s
2

α
k π)(1− νck/ν)

, (30)

whereν > νck and λ̄ǫ
k is given by

λ̄ǫ
k = inf

{

λ > 0 :
1

λ
ln

[

(1− Λk(λ))
+

1− ǫ

]

≤

(

1−
νck
ν

)

(

ν − s
2

α
k π
)

}

. (31)

However, ifIδ
k ⊆ Cck , then (30) becomes

λE ≥

m
∑

k=1

(

sk
γk

)
2

α

φkλ̄
ǫ
k, (32)

whereλ̄ǫ
k = inf

{

λ > 0 :
(

1/dαδβ − ληs
1− 2

α
k γ

− 2

α
k

)2

≤ s
1− 1

α
k γ

2

α
k

σ2

ǫ
λ

}

.

Proof: See Appendix E.

By comparing (30) with (17), we can perceive that the effect of interference cancellation on

ergodic transmission capacity can be interpreted to shrinkν by (1 − νck/ν)-fold. This is equivalent

to saying channel gainsk increases(1 − νck/ν)
−α

2 -fold. Supposeǫ is small and thus from (30) and

(31) we knowλ̄E ≈ ǫ
∑m

k=1(
sk
γk
)

2

α
φk

(ν−πs
2
α
k )(1−νck/ν)

. So interference cancellation in a sparse network

can make the transmission capacity for channel statesk increase(1 − νck/ν)
−1-fold. Although

avoiding and suppressing interference can linearly augment ETC in a sparse network, interference

cancellation could contribute much more ETC than them ifνck is very close toν. Fig. 4 presents

a simulation example showing how interference management improves ETC. We first notice that

interference management does not provide too much ETC gain when ǫ is extremely small. On

the other hand, if the network is very dense, the efficacy of interference cancellation is seriously

weakened because interference is large. So the solid-circle curve of ETC looks like a concave function

of ǫ. Therefore, interference management in an extremely sparse or dense network can merely have

marginal improvement on outage probability.

How should interference management be used for each channelstate to maximize ETC? In Section

III-C, we have pointed out that ETC has a geometric interpretation since its bounds can be viewed

as the inner product of two vectors: vectorsΦ and sǫ should roughly align. Since vectorΦ is a

channel characteristic, it cannot be manipulated to the desired direction. Therefore, the only option

is to design vectorsǫ such that it is enlarged and rotated to the direction ofΦ as closely as possible.

This can be attained by interference management. To illustrate the idea of how to changesǫ, the
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right part of Fig. 2 is redrawn in Fig. 5. Letsǫ =
[

s̃
2

α
1 s̃

2

α
2

]⊺
where s̃k = skǫ

α
2

(

ν − πs
2

α
k

)−α
2

and

s
∗
ǫ =

[

(s̃∗1)
2

α (s̃∗2)
2

α

]⊺
represent the optimal vector thatsǫ can achieve by interference management.

Note thats̃∗k = s̃k
γk
(1− νck/ν)

−α
2 , k = 1, 2. Therefore, after interference is reduced, verticesc (s̃

2

α
1 , 0)

anda (0, s̃
2

α
2 ) can be maximally pushed out to verticesh ((s̃∗1)

2

α , 0) and f (0, (s̃∗2)
2

α ). Vertex i is the

point wheres∗ǫ is projected onΦ and Vertexd is the point wheresǫ is projected onΦ. The distance

from m to e represents the increase of ETC due to interference management.

Sinces∗ǫ is the best vectorsǫ can achieve, how can we make vectorsǫ move to vectors∗ǫ? Namely,

how should we chooseγk andνck for each channel statesk such thatsǫ can approachs∗ǫ? The policy

is to reduce interference for each channel state as much as possible because we can formulate the

following nonlinear programming problem to optimize allγk:

maxγk

m
∑

k=1

(

φks
2

α

k

ν − πs
2

α

k

)

α
2

1

γk [(1− νck/ν)]
α
2

(33)

subject to γk ≥ γmink , for all k ∈ M, (34)

whereγmink is the lower bound ofγk and it can be determined by the system resources or limitations

such as number of available channels and the maximum spreading gain, etc. Note thatνck is a mono-

tonically decreasing and nonlinear function ofγk so that1/γk [(1− νck/ν)]
α
2 is also a monotonically

decreasing function ofγk. Therefore, the optimal solution ofγk must happen atγk = γmink , which

means interference should be avoided, suppressed and cancelled as much as possible in order to

achieves∗ǫ . In addition, using interference management could make CAOT perform poorly because

it may make most of channel states become “good” so thatϕg ≈ 1.

V. CONCLUSIONS

In this paper, we presented a long-term look at the transmission capacity problem, which is

completely different from the previous works on investigating network throughput at a particular

time point. The motivation of this work is to understand how the temporal characteristic of a channel

influences the network throughput with an outage probability constraint. Therefore, all channels are

modeled by am-state FSMC that has temporal and spatial ergodic properties. Bounds the on outage

probability of each channel state and ETC for the case with and without interference management

are all found and they show that ETC can be characterized by the inner product of vectorsΦ andsǫ.

For a sparse or dense network, the scaling law of ETC that is derived from those bounds provides

some guidelines on when to use CAOT and how to do interferencemanagement.
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APPENDIX

A. Proof of Lemma 1

Proof: We need to show that1
L

∑L−1
τ=0 ~(Z(τ)) converges to

∑m
i=1 φi ~(si) asL → ∞ almost

surely. Suppose{Z(τ), τ ≥ 0} has an invariant distribution{φi, i = 1, 2, · · · , m} and defineVi(L) ,
∑L−1

τ=0 1si(Z(τ)) is the number of visits to statesi beforeL. Since~ is a positive function, for any

J ⊆ S we have
∣

∣

∣

∣

1

L

L−1
∑

τ=0

~(Z(τ))−

m
∑

i=1

φi~(si)

∣

∣

∣

∣

≤

∣

∣

∣

∣

∑

si∈S

(

Vi(L)

L
− φi

)

~(si)

∣

∣

∣

∣

≤
∑

si∈J

∣

∣

∣

∣

Vi(L)

L
− φi

∣

∣

∣

∣

~(si) +
∑

si /∈J

∣

∣

∣

∣

Vi(L)

L
− φi

∣

∣

∣

∣

~(si)

≤
∑

si∈J

∣

∣

∣

∣

Vi(L)

L
− φi

∣

∣

∣

∣

~(si) +
∑

si /∈J

∣

∣

∣

∣

Vi(L)

L
+ φi

∣

∣

∣

∣

~(si)
(⋆)

≤ 2
∑

si∈J

∣

∣

∣

∣

Vi(L)

L
− φi

∣

∣

∣

∣

~(si) + 2
∑

si /∈J

φi~(si).

where(⋆) follows from P[limL→∞ Vi(L)/L = φi] = 1 for all i = 1, 2, · · · , m.

For a givenε > 0, chooseJ with an appropriate size and considerL is sufficiently large so that
∑

i/∈J

φi~(si) <
ε

4
and

∑

si∈J

∣

∣

∣

∣

Vi(L)

L
− φi

∣

∣

∣

∣

~(si) <
ε

4
.

Therefore, whenL is sufficiently large it follows that
∣

∣

∣

∣

1

L

L−1
∑

τ=0

~(Z(τ))−

m
∑

i=1

φj~(si)

∣

∣

∣

∣

< ε,

which establishes the desired convergence. The proof is complete.

B. Proof of Theorem 1

First of all, we have to find the intensityλδ of Πδ
k. According to [24], the Laplace functional of

a homogeneous PPPΠ for a nonnegative functionw : R2 → R+ is given by

LΠ(w) , E

[

e−
∫

R2
w(X)Π(dX)

]

= exp

(

−

∫

R2

λ(1− e−w(X))µ(dX)

)

. (35)

Since the Laplace functional completely characterizes thedistribution of a point process, we can find

the intensity ofΠδ
k by calculatingLΠδ

k
(w). For a bounded Borel setA ⊂ R

2, The Laplace functional

of Πδ
k with w(X) = w̃(X)1Πδ

k
(X) can be written as follows:

LΠδ
k
(w) = e−λµ(A)

∞
∑

i=0

λi

i!

∫

A

· · ·

∫

A

i
∏

j=1

(

e−w(Xj)P[Xj ∈ Πδ
k] + P[Xj /∈ Πδ

k]
)

µ(dX1) · · ·µ(dXi)

= e−λµ(A)
∞
∑

i=0

1

i!

{
∫

A

(

e−g(Y )
P[Y ∈ Πδ

k] + 1− P[Y ∈ Πδ
k]
)

λµ(dY )

}i

(a)
= exp

(

−λ

∫

A

(

1− e−g(Y )
)

[

m
∑

i=1

1

(

si ∈

[

skd
−α

ℓ(|Y |)δβ
,∞

))

φi

]

µ(dY )

)

,
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where(a) follows from the property of spatial ergodicity. LettingA → R
2 and according to (35),

we know the intensity ofΠδ
k is

λδ
k(x) = λ

m
∑

i=1

φi1

(

si ∈

[

skd
−α

ℓ(x)δβ
,∞

))

, x ∈ R+. (36)

SoΠδ
k is a non-homogeneous PPP sinceλδ

k depends onx.

SinceΠδ
k(I

δ
k) is a Poisson random variable, its mean can be found as follows:

E[Πδ
k(I

δ
k)] = E





∑

Xj∈Π\X0

1Πδ
k
(Xj)





(b)
=

∫

R2

E[1Πδ
k
(X)]µ(dX)

=

∫

R2

λδ(|X|)µ(dX) = 2πλ

∫ ∞

0

[

m
∑

i=1

1

(

si ∈

[

skd
−α

ℓ(x)δβ
,∞

))

φi

]

xdx

= 2πλ

m
∑

i=1

φi

∫ d α

√

δβsi
sk

1

xdx = πλs
− 2

α
k

(

d2(δβ)
2

α

m
∑

i=1

φis
2

α
i − s

2

α
k

)

= λ(s
− 2

α
k ν − π).

where(b) follows from the Campbell theorem [17]. LetE(Πδ
k) denote the outage event caused by

any transmitters inΠδ
k and its probability is

P[E(Πδ
k)] = 1− exp

(

−λ
(

νs
− 2

α
k − π

))

≤ qk(λ),

which is a lower bound ofqk(λ) because it ignores the interference contributed by the transmitters

that are not inΠδ
k.

Let Ec(Πδ
k) be the complement event ofE(Πδ

k) andEc(Πδ
k) means the outage event caused by the

transmitters ofΠ \ Πδ
k. So the upper bound ofqk(λ) is given by

qk(λ) ≤ P[E(Πδ
k) ∪ Ec(Πδ

k)] = 1− e−λ(νs
−

2
α

k −π) + P[Ec(Πδ
k)]e

−λ(νs
−

2
α

k −π), (37)

whereP[Ec(Πδ
k)] = P[skd

−α < βIc
k] and Ic

k is the interference contributed by the transmitters of

Π \ Πδ
k. Unfortunately, it is impossible to explicitly calculateP[E(Ic

k)] and thus we resort to find

its upper bound by Chebyshev’s inequality. Using Campbell’s theorem, the mean and variance of

interferenceIc
k can be calculated as follows:

E[Ic
k ] = E

[

∑

Xl∈Π

H̃lℓ(|Xl|)1Π\Πδ
k
(Xl)

]

= E[H̃ ]

∫

R2

ℓ(|X|) [λ− λδ(|X|)]µ(dX) = λs
1− 2

α
k η,

Var[Ic
k ] = E

[

(Ic
k)

2
]

− E[Ic
k ]

2 = E[H̃2]

∫

R2

[ℓ(|X|)]2 [λ− λδ(|X|)]µ(dX) = λs
1− 1

α
k σ2,

whereσ2 is bounded is due to boundedη since [ℓ(x)]2 ≤ ℓ(x). The upper bound ofP[Ec(Πδ
k)] can

be obtained by

P[Ec(Πδ
k)] = P[d−α < δβIc

k ] ≤ P

[

d−α − s
1− 2

α
k δβλη

|d−α − s
1− 2

α
k δβλη|

≤
δβ|Ic

k − s
1− 2

α
k λη|

|d−α − s
1− 2

α
k δβλη|

]

(c)

≤
s

3

α
−1

k λσ2

(s
2

α
−1

k /dαδβ − λη)2
,
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where(c) follows from Chebyshev’s inequality. Substituting the above result into (37), the proof is

complete.

C. Proof of Theorem 2

Since
∑m

k=1 φkqk(λ) ≤ ǫ, the lower bound in (13) with̄λE can be rewritten as
m
∑

k=1

φk exp
(

−λ̄E(νs
− 2

α
k − π)

)

≥ 1−

m
∑

k=1

φkqk(λ̄E) ≥ 1− ǫ,

which gives us

λ̄E

m
∑

k=1

φke
−λ̄E(νs

−
2
α

k −π) ≥ λ̄E ⇒

m
∑

k=1

λ̄ǫ
kφke

−λ̄ǫ
k(νs

−
2
α

k −π) ≥

m
∑

k=1

φkλ̄
ǫ
k(1− ǫ),

whereλ̄ǫ
k = argmaxλ λe

−λ(νs
−

2
α

k −π). Hence,e−λ̄ǫ
k(νs

−
2
α

k −π) ≥ 1− ǫ so that we have

λ̄ǫ
k ≤

− ln(1− ǫ)

s
− 2

α
k ν − π

⇒ λ̄E ≤
− ln(1− ǫ)

s
− 2

α
k ν − π

m
∑

k=1

φks
2

α
k . (38)

So the upper bound on̄λE is acquired.

Similarly, we know1−
∑m

k=1 φkqk(λ̄E) ≥ 1− ǫ and (13) withλ̄E can give us another lower bound

on 1−
∑m

k=1 φkqk(λ̄E). Combining these two lower bounds, it yields the following result:

1−
m
∑

k=1

φiqi(λ̄E) ≥ max

{

1− ǫ,
m
∑

k=1

φk(1− Λk

(

λ̄E
)

)+e−λ̄E(νs
−

2
α

k −π)

}

. (39)

Since (1 − Λk(λ̄E))
+e−λ̄E(νs

−
2
α

k −π) is a monotonically decreasing function ofλ̄E, the lower bound

on λ̄E must happen when(1 − Λk(λ̄E))
+e−λ̄E(νs

−
2
α

k −π) is equal to1 − ǫ, which means̄λǫ
k = inf{λ :

(1−Λk(λ))
+e−λ(νs

−
2
α

k −π) ≤ 1−ǫ}. We can explicitly write the relationship(1−Λk(λ))
+e−λ(νs

−
2
α

k −π) ≤

1− ǫ in the following.

ln

[

(1− Λk(λ))
+

(1− ǫ)

]

≤ λ(νs
− 2

α
k − π),

which implies

λ̄ǫ
k = inf

{

λ > 0 :
1

λ
ln

[

(1− Λk(λ))
+

1− ǫ

]

≤
(

νs
− 2

α
k − π

)

}

.

Thus, the lower bound on̄λE can be written as
∑m

k=1 φks
2

α
k λ̄

ǫ
k. The proof is complete.
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D. Proof of Theorem 3

Since the interference generated byΠ is scaled byγk, it is equivalent to the interference generated

by a homogeneous PPP with intensityγ
2

α
k λ. The intensity ofΠnc

k at locationX can be shown to be

λnck (|X|) = γ
2

α
k λP

[

H̃|X|−α

skd−α + I0
<

β

1 + β

]

.

The average number of nodes inCck is
∫∞

0
[γ

2

α
k λ − λnck (|X|)]µ(dX) = γ

2

α
k λν

c

k . The lower bound on

the outage probability can be characterized by the average number of noncancelable nodes within

Iδ
k, that means we have to findγ

2

α
k λµ(C

c

k ∩ Iδ
k) which is the average number of nodes inΠnc

k ∩ Iδ
k.

Transmitters inIδ
k andCck must satisfy the following in two equalities, respectively:

|Xj| ≤

(

δβH̃j

sk

)1/α

d (for Xj ∈ Iδ
k) and |Xj| ≤

[

H̃j(β + 1)

β(dαγkI0 + sk)

]1/α

d (for Xj ∈ Cck ).

So for anyXj ∈ Iδ
k ∩ Cck , we must have

|Xj| ≤ d

(

δβH̃j

sk
min

{

1,
1 + β

δβ2(1 + dαγkI0/sk)

}

)1/α

. (40)

If Cck ⊆ Iδ
k a.s., then we must have

δ ≥
1 + β

β2(1 + dαγkI0/sk)
, a.s. ⇒ δ ≥

1 + β

β2
.

In this case, the average number of noncancelableδ-level interferers isλγ
2

α
k (µ(I

δ
k)− µ(Cck )) which

is equal toλγ
2

α
k ν(1 − νck/ν). On the other hand, ifIδ

k ⊂ Cck a.s.,δ < 1+β
β2 and thusνck > ν in this

case and thus all interferes inIδ
k are cancelable. Combining these two cases, the average number of

noncancelableδ-level interferers should be written asνλmk. Usingλmk to replaceλ of the lower bound

in (13), we can have the lower bound on the outage probability.

The (·)+ term of the upper bound is due to the outage caused by the transmitters out ofIδ
k so

that the intensity ofΠ \ Πδ
k is γ

2/α
k λ because no interferers are canceled inΠ \ Πδ

k. So we can just

replaceλ in the (·)+ term of (13) byγ2/α
k λ and also replaceλ in the exponential term withλmk. Then

the upper bound is obtained.

E. Proof of Corollary 2

By considering the given condition
∑m

k=1 φkqk(λ̄E) ≤ ǫ, the success probability for channel state

sk obtained from (29) is bounded as follows.

1−

m
∑

k=1

φkǫ ≤ 1−

m
∑

k=1

φkqk(λ̄E) ≤

m
∑

k=1

φke
−νδs

−2/α
k λmk .
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If Cck ⊂ Iδ
k , then using the above inequality and following the same steps of finding the upper and

lower bounds in the proof of Theorem 2, we can show the resultsin (30) and (31). IfIδ
k ⊆ Cck , then

the upper bound on success probability is no longer available since allδ-level interferers are canceled

and thus(ν − νck )
+ = 0. As shown in the proof of Theorem 2, there are two lower boundson the

success probability: one is1− ǫ, the other is
∑m

k=1 φk

(

1− Λk

(

λ̄kγ
2

α
k

))+

. ConsideringΛk(·) < 1,

the lower bound on the success probability can be expressed as

1−

m
∑

k=1

φkqk(λ̄E) ≥ 1−min

{

ǫ,

m
∑

k=1

φkΛk

(

λ̄kγ
2

α
k

)

}

,

which yields the following inequality

s
3

α
−1

k λσ2/γ
2

α
k

[

s
2

α
−1

k /γ
2

α
k d

αδβ − λη
]2 ≥ ǫ.

This leads to the following condition:̄λǫ
k = inf

{

λ > 0 : s
1

α
−1

k γ
− 2

α
k

(

1/dαδβ − ληs
1− 2

α
k γ

− 2

α
k

)2

≤ λσ2

ǫ

}

,

which renders us the lower bound
∑m

k=1(sk/γk)
2

αφkλ̄
ǫ
k. This completes the proof.
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TABLE I

SUMMARY OF MAIN MATHEMATICAL NOTATION

Symbol Definition

Π Homogeneous PPP of transmitters

λ Intensity (density) ofΠ

CE Ergodic transmission capacity

λ̄E Maximum Contention Intensity

ǫ Upper bound of outage probability

d Transmission distance of a TX-RX pair

S ∈ R
m
+ m-state Markov chain for modeling fading

sk kth state of Markov chainS
φk Invariant (steady state) probability of channel statesk

H(τ ) Fading channel gain at timeτ ,H(τ ) ∈ S
α > 2 Path loss exponent

β SIR threshold for successful decoding

Iδ
k δ-level interfering coverage for channel statesk

δ ≥ 1 Parameter of definingIδ
k

ν Mean area ofIδ
k for sk = 1

Cck Interference cancellation coverage for channel statesk

γk ∈ (0, 1) Interference reduction factor for channel statesk

ℓ(| · |) Path loss function

qk(·) Outage probability for channel statesk

µ(A) Lebesgue measure of setA
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Fig. 1. The gap between the upper and lower bounds onqk(λ). Channel fading is modeled by a Markov chain with 2 states. The

network parameters for simulation are:d = 5m, λ = 0.01, α = 3, β = 2, s1 = 0.5, s2 = 2 andφ1 = φ2 = 0.5.
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Fig. 3. Numerical results for ETC with and without CAOT. The network parameters for simulation are :d = 10m, β = 2, α = 3,

δ = 1.5, s1 = 0.5, s2 = 2, φ1 = 0.8, φ2 = 0.2 andλ = 0.01.
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Fig. 4. Numerical results for ETC with and without interference management. The network parameters for simulation are :d = 10m,

β = 2, α = 3, δ = 2, s1 = 0.5, s2 = 2, φ1 = φ2 = 0.5, γ1 = γ2 = 0.6 andλ = 0.02.
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Fig. 5. The geometric representation of the ETC for an FSMC with 2 states.s∗ǫ is the optimal vector thatsǫ can achieve by

interference management. By using interference management, verticesa and c can be optimally moved tof andh, respectively. The

projection points of verticesb and g on Φ ared and i, respectively.
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