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Downlink SDMA with Limited Feedback in
Interference-Limited Wireless Networks

Marios Kountouris and Jeffrey G. Andrews

Abstract

The tremendous capacity gains promised by space division multiple access (SDMA) depend critically on the
accuracy of the transmit channel state information. In the broadcast channel, even without any network interference,
it is known that such gains collapse due to interstream interference if the feedback is delayed or low rate. In this
paper, we investigate SDMA in the presence of interference from many other simultaneously active transmitters
distributed randomly over the network. In particular we consider zero-forcing beamforming in a decentralized (ad
hoc) network where each receiver provides feedback to its respective transmitter. We derive closed-form expressions
for the outage probability, network throughput, transmission capacity, and average achievable rate and go on to
quantify the degradation in network performance due to residual self-interference as a function of key system
parameters. One particular finding is that as in the classical broadcast channel, the per-user feedback rate must
increase linearly with the number of transmit antennas and SINR (in dB) for the full multiplexing gains to be
preserved with limited feedback. We derive the throughput-maximizing number of streams, establishing that single-
stream transmission is optimal in most practically relevant settings. In short, SDMA does not appear to be a prudent
design choice for interference-limited wireless networks.

I. INTRODUCTION

In multiuser MIMO (multiple-input, multiple-output) channels, the spatial multiplexing capability of-
fered by multiple antennas can be advantageously exploitedto significantly increase the achievable
throughput. In single-cell point-to-multipoint channels, the achievable sum rate scales linearly with the
number of transmit antennas, even when the mobile users haveonly a single antenna. By duality, linear
increase with the number of receiver antennas can also be achieved in multipoint-to-point channels, even
with a single-antenna transmitter. Extensive research on MIMO broadcast channels over the last few years
has revealed that the capacity can be boosted by transmitting to multiple users simultaneously, by means
of Space Division Multiple Access (SDMA), rather than trying to maximize the capacity of a single-
user link [1], [2]. Nevertheless, all these promising gainscritically depend on accurate channel state
information (CSI), and in contrast to point-to-point channels, the quality of CSI affects the multiplexing
gain of multiuser MIMO systems. As a result, a considerable amount of effort has been dedicated to
multiuser MIMO systems operating with partial CSI at the transmitter (CSIT) in the absence of out-of-
cell interference [3].

In this paper we are interested in the capacity gains that SDMA may provide in decentralized (ad hoc)
networks with both intra-cell due to imperfect CSIT and other user interference due to uncoordinated
concurrent transmissions. We aim at answering whether and how aggressive use of multiple antennas
through SDMA may increase the network throughput under a broad set of scenarios. Specifically, we
build upon the practically relevant limited feedback model, in which each user is allowed to feed back
B-bit quantized information on its channel direction based on a predetermined codebook known at both
the transmitter and the receivers. Due to the high implementation complexity and sensitivity to channel
errors of the optimal scheme (dirty paper coding [4]), linear precoding based on zero-forcing beamforming
(ZFBF) [5] is employed here. ZFBF has been shown to achieve full multiplexing gain while exhibiting
reduced complexity [6], [7]. ZFBF is also used both for its asymptotic optimality in MIMO point-to-
multipoint channels and its analytical tractability. In short, it is a logical starting point for understanding
the effect of imperfect CSIT in interference-limited networks.
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Texas at Austin, USA, Email:jandrews@ece.utexas.edu. This research has been supported by the DARPA IT-MANET program.
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A. Related Work

Several recent papers have studied MIMO ad hoc networks withPoisson distributed interferers, but the
majority of prior work considers only point-to-point ad hoclinks, in which each transmitter communicates
with only one receiver at a time (TDMA). Several receive antenna processing techniques have been
investigated quantifying the performance gains of antennacombining and interference cancelation [8]–
[11]. Open-loop spatial multiplexing with linear receivers is studied in [12], while [13] studies multi-mode
precoding with receive interference cancelation. Spatialmultiplexing with limited transmit CSIT have
been studied for asymptotically large number of antennas in[14]. Multiuser transmission, in which each
transmitter sends different messages to multiple users, isanalyzed recently for scalar broadcast channels
using superposition coding in [15]. The performance of multiuser MIMO communication in a Poisson
field of interferers is first studied in [16] considering non-linear and linear precoding with perfect CSIT.
Therein the network-wide capacity is shown to increase linearly and sublinearly with the number of
antennas when DPC and ZFBF are employed, respectively, for single-antenna receivers. It is also shown
that it is often throughput maximizing to send fewer streamsthan the number of transmit antennas. Here,
we investigate whether these results derived under the idealized perfect CSI assumption still hold in a
more practical and realistic scenario. Single-user beamforming is compared to SDMA with perfect CSIT
in [17] for two-tier networks with spatial randomness. A keyfinding is that single-stream transmission at
each tier provides significantly superior coverage and spatial reuse relative to multiuser transmission.

B. Main Contributions

In this paper, in contrast to all prior work on multiuser MIMOad hoc networks, we consider SDMA
ad hoc links in which only local, partial CSI is known at the transmitter. We investigate the zero-forcing
transmission technique with quantized CSIT in the context of decentralized interference-limited networks
using a random access medium access control protocol. The spatial distribution of the nodes follows
a homogeneous Poisson point process (PPP), and each transmitter serves multiple receivers (point-to-
multipoint), each located at a certain distance away from it.

First, we investigate the performance of limited feedback SDMA and derive novel closed-form ex-
pressions for the outage probability, network aggregate throughput, transmission capacity [18], and mean
user rate using stochastic geometric tools. These expressions enable us to quantify the capacity gains that
zero-forcing precoding can provide in decentralized networks and the network-wide performance loss due
to residual (uncanceled) multiuser interference caused byquantized channel information. Key findings are
that there is a node density value that maximizes the networkthroughput and that for practically relevant
values of feedback bits, if the number of antennas/streams is increased, the outage constraint for non zero
node density is prohibitively high.

Second, we evaluate the performance degradation as a function of the feedback rate, the number of
antennas, and the outage constraints for fixed feedback levels. A first result is that, similar to the single-cell
case, the throughput of feedback-based zero-forcing is self-interference-limited, i.e. the average throughput
is bounded if the feedback load is kept fixed, even if the transmit power is taken to infinity. We then
provide the scaling of feedback bits in order to guarantee bounded performance offset. A key finding
is that per-user feedback loadB must be increased almost linearly with the number of antennas and
logarithmically with the target signal-to-interference-plus-noise ratio (SINR), i.e. similar to the single-cell
case analyzed by Jindal [19] if the transmit power is replaced with the target SINR constraint.

Finally, we derive the optimal number of streams in order to maximize throughput and transmission
capacity, enabling us to propose transmission schemes thatdynamically adjust the number of streams to
the network operating values. Our results establish that the optimality of single-stream transmission in
most practically relevant settings. The main takeaway of this paper is that limited feedback SDMA may
not be a wise use of an antenna array in ad hoc networks, and in general in network settings where
interferers can be close by as in heterogeneous networks including femtocells, picocells, relays, and WiFi
hotspots.



3

II. SYSTEM MODEL AND PRELIMINARIES

The network model consists of transmitters arranged according to a homogeneous Poisson point process
(PPP)Φ of intensityλ in R2. Each transmitter hasM antennas and communicates with a set of intended
single-antenna receiversK with cardinality |K| = K ≤ M . Every transmitter sendsK streams destined
to a different user each, forming thus aK-user broadcast cluster. Users are distributed according to some
independent stationary point process. Transmissions are uncoordinated (random access MAC protocol)
and the signal is attenuated according to the standard powerlaw, i.e. the received power decays with the
distanced asd−α for path loss exponentα > 2. For the fading model (random channel component), we
assume that all point-to-point channels experience i.i.d.Rayleigh block fading with unit mean.

We investigate multiuser transmission, in which each transmitter sends a different message to its associ-
ated receivers. Due to the stationarity and the rotational invariance of the PPP (Slivnyak’s Theorem [20]), it
is sufficient to analyze the performance of a typical one-to-many communication channel, as the statistics
of the signal reception remain the same for the disjoint set of intended receivers in the broadcast cluster.
Denote the typical transmitter byT0 located at the origin communicating with itsk-th typical user, located
at distancedk, for k ∈ K and denoted asR(k)

0 .
The received signaly0k at typical receiverR(k)

0 , k ∈ K assuming frequency-flat channels is given by

y0k =
√
ρ d

−α
2

k h0kx0 +
√
ρ

∑

i∈Φ(λ)/T0

D
−α

2
i hikxi + n0k (1)

whereρ = P
K

, P is the transmit power,Di ∈ R2 is the distance to thei-th transmitter, andn0k is the
complex additive Gaussian noise with varianceσ2. The vector channel from thei-th transmitter toR(k)

0

is denoted byhik ∈ C
1×M andxi is theM × 1 normalized transmit signal vector of thei-th transmitter.

The vectorsh are assumed to have i.i.d.CN (0, 1) entries, independent across transmitters and of the
random distancesDi. The index ‘0’ is dropped for notation simplification, as allthe subsequent analysis
is performed on a typical broadcast cluster.

A. Finite Rate Feedback Model

We assume that each receiver has perfect knowledge of the channel to its corresponding transmitter.
In each cluster, the transmitter acquires partial CSIT thatonly captures the spatial direction information
of the channel, referred to as channel direction information. For that, a quantization codebookVk =
{vk1,vk2, . . . ,vkN} containingN = 2B unit norm vectors{vki}Ni=1 ∈ CM is employed, assumed to be
known to bothT0 and receiverR(k)

0 . At each feedback reporting slot, each receiverk quantizes its channel
realizationhk to the closest codeword with respect to the chordal distance[21], [22],

ĥk = arg max
vki∈Vk

|h̄kvki|2 = arg max
vki∈Vk

cos2(∠(h̄k,vki)),

whereh̄k = hk/ ‖hk‖ corresponds to the channel direction. Each user sends the corresponding quantization
index back to the transmitter usingB = ⌈log2N⌉ bits through an error and delay-free feedback channel1.
The optimal vector quantization strategy in multiuser downlink channels is not known in general, even
in single-cell systems, and is out of the scope of our work. Weresort hence to a vector quantization
scheme following the quantization cell approximation (QCA) [22], [23]. It has been shown in [23], [24]
that QCA can facilitate the analysis and provide a very accurate performance approximation, with only
small difference from random vector quantization.

1The error-free assumption can be well approximated using sufficiently powerful error-correcting codes over the feedback link, whereas
the zero-delay assumption may be valid when the processing and feedback delays are small relative to the channel coherence time.



4

B. Zero-forcing Beamforming

In this paper, we focus on linear precoding (downlink beamforming), in which the transmit symbol
vectorx is a linear functionx =

∑

k∈Kwksk, wheresk is the data symbol intended for thek-th receiver
and wk ∈ CM×1 is the unit-norm beamforming vector for userk. Specifically, users are served via
zero-forcing for which the beamforming vectors are chosen as ĥkwi = 0, ∀k 6= i, k ∈ K.

Let H(K) =
[

ĥ
T
1 , . . . , ĥ

T
K

]T

denote the concatenation of the quantized channel vectors upon which
zero-forcing is performed. The beamforming vectors are given by the Moore-Penrose pseudoinverse

W(K) = H(K)† = H(K)H(H(K)H(K)H)−1 (2)

with wk obtained by normalizing thek-th column ofW(K). The receive SINR at thek-th typical user,
treating interference as noise and using equal power allocation for each of the data streams, can be
expressed as

SINRk =
ρ |hkwk|2 d−α

k

Ip + Iq + σ2
,

with Ip =
∑

i∈Φ(λ)/T0

ρ ‖hikWi‖2D−α
i (3) and Iq =

∑

j∈K,j 6=k

ρ |hkwj|2 d−α
k (4)

whereIp is the aggregate inter-cluster interference from the Poisson field of interferersΦ/T0 andIq is the
intra-cluster self-interference due to the fact that zero-forcing vectors are calculated based on quantized
CSIT.

C. Performance Metrics

Outage probability.A primary performance measure is the outage probability, which is defined as the
probability that the received SINR falls below a target SINRβ, i.e.

F(β, α) = P (SINR ≤ β) . (5)

It can be thought of equivalently as the probability of no coverage of a user, and is evidently a continuous
increasing function of the intensityλ.2 In multiuser communication, different SINR statistics maybe seen
on different users (streams), resulting in a per-user outage probabilityF (k)(βk, α), ∀k ∈ K, with βk being
the target SINR on streamk.

Network throughput.The network throughput is defined as the product of the unconditioned success
probability and the sum rate per unit area assuming that capacity-achieving codes are used. WhenK
independent data streams are sent on each broadcast clusterthe throughput is given by

T = λ
∑

k∈K

P (SINRk > βk) log2(1 + βk). (6)

Note that the success probabilityP (SINRk > βk) is itself a monotonically decreasing function ofλ. As
the success probability is not constrained to a minimum value, the throughput-maximizing density may
be obtained at the expense of very high outage levels.

Multi-stream transmission capacity.Generalizing [18] for the case whereK streams are sent by each
source node, we define the multi-stream transmission capacity (TC) as the maximum number of concurrent
multi-stream transmissionsλǫ per unit area allowed subject to an outage constraintǫ, i.e.

C = Kλǫ(1− ǫ), (7)

2In an SDMA setting, we can alternatively defineF(β, α) = P (I(x0;y0) ≤ r), whereI(x0;y0) is the mutual information betweenx0

andy0, andr is a certain target information rate. However, a decomposedper-stream/user outage constraint is more meaningful in SDMA
ad hoc networks, in which each stream contains a different message.
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where λǫ = sup {λ : P (SINRk ≤ βk) ≤ ǫk, ∀k ∈ K} (8)

defines the maximum contention density for a per-stream outage constraintǫk ∈ (0, 1). This outage-
based metric quantifies how efficiently the network utilizesspace as resource under a maximum outage
constraint, as opposed to the network throughput that may result in high outage events. In other words, it
calculates the maximum density of transmissions per unit area so that allK users in the broadcast cluster
do not exceed a desired outage levelǫ.

Average ergodic rate.Finally, we define the average data rate (in nats/Hz) achievable by a typical user
assuming Shannon capacity achieving modulation and codingfor the instantaneous SINR to be

R(λ, α) = E {log(1 + SINR)} . (9)

In contrast to the two aforementioned metrics, this averagecapacity measure presumes dynamic rate
adaptation to the instantaneous SINR.

In the remainder, for the sake of exposition simplicity we assume that all streams have identical stream
outage constraintǫ and SINR targetβ, i.e. ǫk = ǫ andβk = β, ∀k ∈ K.

III. ZFBF PERFORMANCE ANALYSIS

In this section, we derive new closed-forms expressions forthe network throughput, transmission
capacity, and average achievable rate of zero-forcing precoding.

A. Outage Probability

Theorem 1: The outage probability for thek-th typical user in a wireless ad hoc network using
multiuser zero-forcing with quantized CSIT is given by

F (k)(βk, α) = 1− e−λIKζ
2/α
k e−σ2ζk/ρ

(1 + βkδ)K−1

whereζk = βkR
α
k , δ = 2−

B
M−1 , andIK = 2π

α

K−1
∑

m=0

(

K

m

)

B

(

m+
2

α
,K −m− 2

α

)

,

with B(a, b) =
∫ 1

0
ta−1(1 − t)b−1dt = Γ(a)Γ(b)

Γ(a+b)
being the Beta function andΓ(x) =

∫∞

0
tx−1e−tdt the

Gamma function.
Proof: See Appendix A.

As expected, the outage probability is a decreasing function with the feedback bit rateB and an
increasing function ofK since ∂F(k)

∂K
> 0. Fig. 1 shows the outage probability vs. the node intensity for

different values of feedback load and antennas. The single-antenna, single-stream (SISO) outage probability
is also plotted for comparison. Numerical evaluations of Theorem 1 confirm the analysis and show that
increasing the number of antennas/streams results in unacceptably high outage probability values even in
sparse networks (λ→ 0).

B. Network Throughput

Based on the above derived outage probability and the throughput definition (cf.(6)), whenK indepen-
dent data streams are sent on each broadcast cluster, the total number of successful bits/s/Hz/unit area
(throughput) is given by

T = λ
∑

k∈K

e−λIKζ
2/α
k e−σ2ζk/ρ

(1 + βkδ)K−1
log2(1 + βk)

(a)

≥ Kλ
e−λIKζ

2/α
maxe−

σ2ζmax
ρ

(1 + βδ)K−1
log2(1 + β). (10)

where (a) results by settingβk = β, ∀k ∈ K, andζmax = βdαmax with dmax = max
k∈K

dk. The approximation is

derived for the sake of exposition simplicity and can be seenas a lower bound on the network throughput
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with equal target SINR for all users. In the sequel, for exposition convenience and unless otherwise stated,
we consider thatK =M users are served on each cluster.

Remark 1:By taking the derivative ofT with respect toλ keeping all other parameters fixed, we see
that throughput decreases with the node density, if

λ ≥ (IMβ
2
αd2max)

−1 = λ∗. (11)

The optimal intensityλ∗ does not depend on the number of feedback bits, which only affects the
amount of inter-cluster interference. However, although throughput can be maximized forλ ≥ λ∗,
the number of outage events can be arbitrarily high due to intra-cluster interference. Forλ = λ∗, the
success probability becomes1

e
e−σ2ζmax/ρ

(1+βδ)M−1 , which means that multiuser zero-forcing beamforming with
finite rate feedback decreases the success probability by a factor of (1 + βδ)M−1 as compared to the
case of point-to-point ad hoc communications. Furthermore, λ∗ is a regularly varying function ofM
with index −2/α and for largeM , the optimal network density scales asλ∗ = O(M− 2

α ), namely

lim
M→∞

λ∗

M− 2
α

=
(

πβ
2
αd2maxΓ(1− 2/α)

)−1

. As expected, the optimal contention density decreases when

M increases since increasing the number of streams sent boostthe inter-cluster interferenceIp. The
optimal density also decreases forβ or dmax increasing as the reliability requirements on the per-user
performance become higher and harder to satisfy.

Remark 2: In terms of feedback rate, the network throughput can be shown to be a monotonically
increasing function withB. Focusing now on the transmit antenna configuration, after some algebraic
manipulations, we can show that throughput is maximized if

M∗ = max (⌊ℓ⌋ , 1)
whereℓ is the nontrivial solution forM of

M

M − 1
· (log 2) · βδ

1 + βδ
B +

σ2ζmax

ρ
+ λMζ2/αmax

∂IM

∂M
= 1.

Although the partial derivative ofIM can be expressed as sum of beta and digamma functionsψ0(x)
since ∂B(y,x)

∂x
= B(y, x)(ψ0(x)− ψ0(x+ y)), a closed-form expression forℓ is hard to obtain.

An analytical expression forM∗ can be found by applying the largeM approximationIM ∼ πΓ(1 −
2/α)M2/α. In that caseM∗ = xα, wherex is the solution of the polynomial equationc3x2α + c2x

α+2 +

(c1 − c3 − 1)xα − c2x
2 + 1 = 0, wherec1 =

Bβδ
1+βδ

log 2, c2 = λπΓ(1 − 2/α)ζ
2/α
max, andc3 =

σ2ζmax

P
. From

Abel’s impossibility theorem [25], a formula solution onlyexists fora ≤ 4, while for a = 3 the solution
can be expressed using Kampé de Fériet functions.

In Fig. 2 we plot the network throughput vs. the intensityλ. We observe that throughput isa decreasing
function of the number of antennasand that the performance degradation from imperfect CSIT ismore
pronounced forM increasing. The SISO and the perfect CSI-based zero-forcing are also plotted for
comparison. We also see that multi-stream transmission is slightly superior in sparse networks (lowλ),
but is generally outperformed by SISO.

C. Multi-stream Transmission Capacity

We turn now our attention to the maximum achievable throughput under bounded outage levels.
Theorem 2: The maximum multi-stream transmission capacity of limited feedback zero-forcing precod-

ing in random access ad hoc networks is given by

C =
K(1− ǫ)

IKζ
2/α
max

(

log
1

1− ǫ
− σ2ζmax

ρ
− log(1 + βδ)K−1

)

. (12)

Proof: The result follows by finding the inverse of the expressionFm(β, α) = P

(

min
k∈K

SINRk ≤ β

)

= ǫ with respect toλ, i.e. F−1
m (β, α), and substituting it in (7).
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The second term in (12) captures the effect of background noise on multi-stream TC, whereas the
third term corresponds to the capacity degradation from quantized CSIT. For largeM with K = M ,
the first term scales asΘ(M1− 2

α ), whereas both second and third terms scale asΘ(M2− 2
α ) (for fixed

feedback quality). This implies that the detrimental effect of residual interference from quantized channel
information is orderwise dominant, becoming the transmission capacity limiting factor.

Interestingly, in contrast to the cases of point-to-point and multiuser ad hoc communication with perfect
CSI, it is not guaranteed that non-zero transmission capacity can be achieved for any feedback rate due
to the self-interference that cannot be completely eliminated with quantized CSIT. After some algebra,
we can show that the amount of feedback resolutionBf defining the multi-stream TC feasibility region,
i.e. the region for which positive maximum contention density λǫ exists, is

Bf >

⌈

(M − 1) log2

(

β

( e
−σ2ζmax/ρ

1−ǫ
)

1
K−1 − 1

)⌉

(13)

provided that(1− ǫ)eσ
2ζmax/ρ < 1. The latter condition is more general and applies even to systems with

perfect CSI as it guarantees that a non negativeλ exists for certainSNR = ρ/σ2 and outage constraints.
In Figs. 3 and 4 we plot the transmission capacity vs. the outage constraint and the number of antennas,

respectively. We observe that positive transmission capacity is achieved for significantly high outage
ǫ, while increasing the number of streams further deteriorates the performance. In practically relevant
scenarios where the outage constraint is kept low, single-stream transmission (TDMA) is optimal, even
in the high resolution regime (B → ∞). Furthermore, we see that multi-stream transmission is beneficial
for low number of antennas/streams and for relatively largenumber of feedback bits.

D. Average Achievable Rate

In this section, we derive the average data rate achievable by a typical receiver assuming Shannon
capacity achieving modulation and coding for the instantaneous SINR. Note that this is not the maximum
achievable Shannon capacity as each transmitter-receiverlink treats interference as noise.

Theorem 3: The ergodic rate in nat/s/Hz of a typical receiver in a broadcast cluster where multipacket
transmission is employed using finite-rate feedback zero-forcing is given by

Rk = E {log(1 + SINR)} =

∫ ∞

0

e−C1xe−C2x
2
α

(1 + x)(1 + δx)M−1
dx. (14)

whereC1 = σ2Rα
k/ρ andC2 = λIMR

2
k.

Proof: See Appendix B.
For general values ofα > 2, the computation of the average user rateRk involves numerical integra-

tion. In the interference-limited regime (σ2 → 0), pseudo-closed-form expressions involving generalized
hypergeometric functions can be found, but these provide little insight on how different system operating
parameters affect the average user rate. Therefore, we consider concise performance bounds.

As the main focus of the paper is to investigate the relationship among feedback bit rateB and both
inter-cluster and intra-cluster interference, we first provide the following result that shows that the average
achievable rate with limited feedback of fixed quality converges to a finite ceiling asSNR → ∞.

Theorem 4: The average user rate of imperfect CSIT-based zero-forcing is upper bounded by

Rk ≤ B log 2

M − 1
+HM−1 − ψ(M) + log



1 + d2αk

(

πλ
⌈

α
2

⌉

− 1

)
α
2

+ δ(M − 1) +
dαkσ

2

ρ



 (15)

whereHn =
∑n

i=1
1
i

is then-th harmonic number andψ(·) is the digamma function.
Proof: See Appendix C.



8

The above result implies that at high SNR (P → ∞), the user rate is bounded and the system becomes
interference-limited no matter how many feedback bits are reported back to the transmitter. The upper
bound in the above theorem is quite loose in general, howeverit was derived for demonstrating the quasi
linear dependence of the average rate and the feedback loadB. We derive now a tighter upper bound
by applying integral inequalities directly to (14) as a means to find closed-form expression for the mean
ergodic rate.

Lemma 1: The average achievable user rate is upper bounded by

Rk ≤ min
u1,v1

(∫ ∞

0

e−u1C1xe−u1C2x
2
α dx

)
1
u1 · (A(v1))

1
v1 (16)

≤ min
u1,v1,u2,v2

(u1u2C1)
− 1

u1u2 (Γ(1 + α/2))
1

u1v2 (u1v2C2)
− α

2u1v2 · [A(v1)]
1
v1 , (17)

with 1 < u1, u2, v1, v2 <∞, 1
u1

+ 1
v1

= 1, 1
u2

+ 1
v2

= 1, and

A(v1) = (δ − 1)1−Mv1δv1−1B(Mv1 − 1, 1− (M − 1)v1) +
2F1(1, v1, 2− (M − 1)v1, 1/δ)

v1(M − 1)δ
(18)

where2F1(a, b, c, z) denotes the2F1 Gauss hypergeometric function, andB(x, y) the Beta function.
Proof: See Appendix D.

For u1 = u2 = v1 = v2 = 2, which provides the tightest upper bound in most cases, significant
simplification is possible for (18) sinceA(2) is given in terms oflog(δ) and a polynomial expression in
δ. In that case, we can easily show that the upper bound on ergodic capacity scales likeΘ(λ−α/8). The
validity of the above bounds is verified in Fig. 5, where the ergodic capacity given by (16) (cf. upper
bound 1) and (17) (cf. upper bound 2) is compared with the exact average user rate for different number
of feedback bits. We observe that the tightness of our boundsis improved when the number of antennas
and feedback bits is increased.

In the no noise case, the above lemma results in

Rk ≤
[

Γ
(

1 + α
2

)]
1
α

dk
√
αλIM

(

∫ ∞

0

[

(1 + δx)1−M

1 + x

]
α

α−1

dx

)1− 1
α

, (19)

which scales asΘ(λ−
1
2 ) and is inversely proportional to the distance between transmitter and thek-th

user. Forλ andB that do not depend onM and for largeM , by calculating the integral, the upper bound
in (19) is shown to be inversely proportional toM . This implies that in order to have per-user mean rate
that does not scale with the number of antennas,λ ∼ M−2. Finally, in the interference-limited regime
and forα = 4, (14) admits a closed-form expression in terms of Meijer-G functions and trigonometric
integrals. The no noise upper bound (19) approximates very well the exact ergodic rate even for moderate
SNR values for increasing number of antennas.

Returning now to the general case, the following easily computable result can be obtained using different
bounding techniques.

Lemma 2: The average user rate with finite rate-based zero-forcingsatisfies

RLB
k ≤ Rk ≤ RUB

k (20)

with

RLB
k = −2 cos(C2)Ci(C2) +

δ(1−M)√
π

G3,1
1,3

(

C2
2

4

∣

∣

∣

∣

−1,

−1, 0, 1
2
,

)

+ sin(C2)(π − 2Si(C2)) (21)

RUB
k =

1

(M − 1)δ − 1
[2 cos(C2)Ci(C2)− 2 cos(C̃2)Ci(C̃2) (22)

− π sin(C2) + π sin(C̃2) + 2 sin(C2)Si(C2)− 2 sin(C̃2)Si(C̃2)] (23)
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whereGm,n
p,q

(

z
∣

∣

∣

a1,...,an,an+1,...,ap
b1,...,bm,bm+1,...,bq

)

is the Meijer-G function,Si(x) =
∫ x

0
sin t
t
dt is the sine integral,Ci(x) =

−
∫∞

x
cos t
t
dt is the cosine integral, and̃C2 =

C2

(M−1)δ
.

Proof: The bounds are obtained by applying Bernoulli’s inequality[26] for the integrand and evalu-
ating the resulting integrals. Specifically, for the lower bound, we apply the inequality(1+ x)r ≥ 1+ rx,
for x > −1, r ≤ 0 or r ≥ 1, to the functiong(x) = (1 + δx)M−1. For the upper bound, we use that
(1 + x)−r ≤ (1 + rx)−1 for r > 0, x ≥ −1.

In Fig. 6, the achievable mean user rate is compared with (23)(cf. upper bound) and (21) (cf. lower
bound) vs. SNR. We observe that the bounds are very tight at low M for all SNR range, while the lower
bound becomes loose at high SNR when the number of antennas isincreased.

IV. EFFECT OFL IMITED FEEDBACK

In this section, we analyze the effect of feedback quality onthe network performance and provide
design guidelines for the system operating points based on our analytical framework. In particular, we
show at which rate feedback has to scale to maintain a certainbounded network capacity gap. We also
derive the optimal number of streams/users to be employed inorder to maximize the network throughput
and the multi-stream transmission capacity.

A. Performance Degradation due to Finite Rate Feedback

We first provide the feedback bit scaling that guarantees constant (bounded) performance loss between
the performance of zero-forcing with perfect CSI and that with partial CSIT.

1) Transmission Capacity:The transmission capacity gap∆C is defined as the difference between the
transmission capacity achieved by perfect CSIT-based and that of limited feedback-based zero-forcing,
i.e. ∆C = (CCSI − C), whereCCSI is the multi-stream transmission capacity given by (12) forB → ∞
(perfect CSI). Thus, the performance degradation is given by

∆C =
K(1− ǫ)

IKζ
2/α
max

log(1 + βδ)K−1.

In order to maintain a transmission capacity offset∆C = log c, after some algebraic manipulations, we
have that the number of feedback bits per user satisfies

B∆C ≥ (M − 1) log2 β − (M − 1) log2

(

c
IKζ

2/α
max

K(K−1)(1−ǫ) − 1

)

bits/user,

with 1 ≤ c ≤ (1 + β)
K(K−1)(1−ǫ)

IKζ
2/α
max for a non trivial result. Therefore, to guarantee a constantperformance

offset in terms of transmission capacity, the number of feedback bits per user must be increased at least
linearly with the number of antennas/streams and approximately logarithmically with the target SINR
constraint. This is basically the same scaling behavior as in [19] for fixed average rate offset if the
target SINR constraint is interchanged with the transmit power. Interestingly, TC for ad hoc networks
appears to capture the performance degradation due to multiuser interference similar to ergodic capacity
for single-cell systems.

2) Network Throughput:Define now the network throughput ratio gapQT to be the ratio of the
throughput achieved by zero-forcing with perfect CSI to thethroughput of finite rate feedback zero-
forcing, which is given byQT = (1+βδ)K−1. The number of feedback bits per user for throughput ratio
offsetQT = r needs to scale according to

BQT ≥ (M − 1) log2 β − (M − 1) log2

(

r
1

K−1 − 1
)

bits/user,

for any r satisfying1 ≤ r ≤ (1 + β)K−1.
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Similarly to the transmission capacity offset, the number of feedback bits has to increase at least linearly
with the number of antennas/streams and logarithmically with the target SINR constraint to maintain
constant throughput loss. For instance, forβ = 3 dB andM = K = 4, at leastB = 9 bits are required for
a 3-dB offset. Furthermore, forr = 2K−1, the resulting feedback scaling takes on the following simple
form

BQT =
M − 1

3
βdB bits/user. (24)

Note that the feedback bit scaling takes on identical form with that in [19] for a 3-dB rate offset substituting
transmit powerP for target SINRβ.

B. Feedback Rate Scaling

In the previous section, we quantified the number of feedbackbits required for a fixed gap degradation
in the throughput and transmission capacity performance ofzero-forcing with imperfect feedback. Here,
we provide design guidelines on the feedback bit scaling forasymptotically vanishing performance loss
due to partial CSIT.

First, similar to MISO broadcast channels without inter-cell interference, both throughput and trans-
mission capacity of zero-forcing with limited feedback arebounded with fixedB even if other system
parameters grow large. Furthermore, if the feedback bits donot scale withM and/orβ, the throughput
ratio and the transmission capacity offset become unbounded for asymptotically large values ofM , β.

In the high antenna/stream regime, it can be shown that if thefeedback loadB is scaled withM at a
rate strictly greater than(M − 1) log2M , i.e., B = (M − 1) log2(M

η) for any η > 1, the transmission

capacity offset converges to zero, i.e.lim
M→∞

∆C = lim
M→∞

(1− ǫ)

IMζ
2/α
max

log(1 + βδ)M−1 = 0, and the throughput

ratio gap converges to one, i.e.lim
M→∞

QT = lim
M→∞

(1 + βδ)M−1 → 1.

The rate of convergence to zero and one respectively dependson η and is faster withη increasing.
The throughput ratio converges to one also in the case whereB scales superlinearly with the number
of antennas, i.e.B = Mη. Based on the above results, we establish that, at asymptotically highM and
under the aforementioned bit scaling, the network throughput and the transmission capacity of finite rate
feedback zero-forcing converges to the perfect CSI throughput. In contrast, if the feedback rate is not
properly adapted, the transmission capacity offset scalesas∆C = O(M1−2/α).

In the high reliability regime (largeβ), if the feedback loadB is scaled withβ at a rate strictly greater
than(M − 1) log2 β, i.e.B = κ log2 β for anyκ > M − 1, the throughput ratio gap converges to one, i.e.
lim
β→∞

QT = lim
β→∞

(1 + βδ)M−1 → 1.

Under the same bit scaling, the transmission capacity offset vanishes (asymptotically inβ), i.e. lim
M→∞

∆C =

0. Thus, at largeβ (high SINR regime) and under the aforementioned bit scaling, the throughput of the
finite rate feedback ZFBF converges weakly to the perfect CSIthroughput.

C. Optimal Number of Streams

In this section, we investigate the optimal number of streams to be used per cluster in order to maximize
the capacity. These results also provide useful insights onthe feasibility and the potential gains of multi-
stream, multiuser beamforming and adaptive beam selectionin wireless ad hoc networks with imperfect
feedback.

For that, we consider again thatK ≤M streams can be sent. We define the per-user throughput as the
normalized network throughput over the number of users, i.e. Tu = 1

K
T . Taking the partial derivative with

respect to the number of streams, we can show thatTu is a decreasing function withK. This confirms
the intuitive argument that, from the user perspective, employing single-stream beamforming (K∗ = 1)
maximizes the per-user throughput.
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However, the optimal number of users to serve may alter if we consider the system (broadcast cluster)
overall throughput. In this case, there is a tradeoff between spatial reuse and feedback quality, i.e. for
certain values ofK and other system parameters, the spatial multiplexing gainmay compensate for the
performance degradation incurred due to finite rate feedback. For the network throughput, the complicated
form of the interference constantIK precludes a simple, closed-form expression for the optimalnumber
of streams. Specifically, we have the following result:

Proposition 1: The number of users to be served per broadcast cluster thatmaximizes the network
throughput is

K∗ = min (max (⌈ω⌉ , 1) ,M)

whereω is the solution forK of

K

(

λζ2/αmax

∂IK

∂K
+
σ2ζmax

P
+ log(1 + βδ)

)

= 1.

Proof: The result following by taking the derivative of (10) with respect toK and finding the optimal
value ofK based on Fermat’s theorem for the stationary points.

Remark 3:Using the largeK approximationIK ∼ πΓ(1 − 2/α)K
2
α , we have thatK∗ = xα, where

x is the solution of the polynomial equationc1xα + c2x
2 − 1 = 0, where c1 = σ2ζmax

P
+ log(1 + βδ)

and c2 = λπΓ(1 − 2/α)ζ
2/α
max. By the Abel-Ruffini theorem, no general algebraic solutionexists for

a ≥ 5, however for this particular form of the polynomial equation, K∗ can be found in closed-form for
α ∈ {2, 3, 4, 5, 6, 8}; solutions forα = 6 andα = 8 will be the squared root of theα = 3 andα = 4
solutions, respectively.

In Fig. 7, we plot the network throughput as a function of the node density for different number of
streams. As indicated by the above analysis, fully loaded SDMA (K =M) is detrimental for throughput
performance, while multi-stream is superior only in sparsenetworks. An adaptive scheme that sets the
number of streams based on the largeK approximation solution is also plotted. Interestingly, the adaptive
scheme results in the optimal multi-stream transmission scheme within almost all range of intensity values
λ. Furthermore, as expected, throughput increases when feedback quality is improved. We also plot the
scheme in which the number of streams are adapted according to the largeK approximate value, which
performs satisfactorily for low densitiesλ.

Regarding the transmission capacity, taking the derivative of (12) with respect toK and finding the
stationary points, we have

Proposition 2: The optimal number of streams that maximizes the multi-stream transmission capacity
is

K∗ = min (max (⌈ν⌉ , 1) ,M)

whereν is the solution of

K
∂IK

∂K
(KC3 − C4) + IK(C4 − 2KC3) = 0,

with C3 =
σ2ζmax

P
+ log(1 + βδ) andC4 = − log(1− ǫ) + log(1 + βδ).

Remark 4:Using the largeK approximation, the optimal number of streams is given by

K∗ =

⌈

(1− 2/α)C4

(2− 2/α)C3

⌉

. (25)

In Fig. 8, we plot the multi-stream transmission capacity vs. outage constraint for different number
of streams employed. For most relevant parameters, single-stream transmission is optimal, even for a
large number of bits. Similarly to the throughput case, the adaptive scheme based on the simple largeK
approximate solution performs satisfactorily in a wide range of ǫ values.
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V. CONCLUSIONS

We investigated the performance of zero-forcing precodingwith limited feedback in single-hop ad hoc
networks under a broad set of metrics and scenarios. The maintakeaway of this paper is that SDMA may
not be a wise use of transmit antennas in decentralized networks with both self and other user interference,
as single-stream transmission maximizes both outage-based and average throughput in most practically
relevant scenarios. In other words, a high density of single-stream communication links may be preferable
than SDMA transmission with quantized channel state information. Our analytical framework enables
us to quantify the effect of the residual multiuser interference due to quantized CSIT on network-wide
performance and to properly adjust the number of streams andthe feedback bit scaling to achieve certain
level of rate performance. A key finding that the per-user feedback load must be increased almost linearly
with the number of antennas and logarithmically with the target SINR. The techniques developed here are
also relevant for the analysis of partial CSIT-based linearprecoding in emerging heterogeneous network
paradigms, including femtocells, relays, picocells, and WiFi hotspots.

Further extensions to this work could include different limited feedback precoding schemes (e.g. MMSE)
or how to exploit multiple receive antennas for interference cancelation. Future work could consider
multi-hop networks with opportunistic routing and investigate potential SDMA gains into end-to-end
performance (e.g. progress-rate-density). It would be also of interest to explore how opportunistic user
selection affects the spatial reuse and rate, as well as how to properly design CSIT in networks with
spatial randomness.

APPENDIX

A. Proof of Theorem 1

Let Lp denote the Laplace transform of the normalized aggregate interference from the Poisson field of

interferers (inter-cluster)Ip =
∑

i∈Φ(λ) Sik|Xi|−α with fading marksSik, defined asLp(s) = EIp

[

e−sIp
]

=
∫∞

0
e−spfIp(p)dp. The Laplace transform of the normalized intra-cluster interferenceIq due to multiuser

transmission with quantized CSIT is denoted byLq(s). Define also the random variableY = Ip + Iq.
The outage probability is given byF (k)(βk, α) = 1− P {SINRk ≥ βk}, which can be rewritten as

F (k)(βk, α) = 1− P

{

ρS0kd
−α
k

Ip + Iq + σ2
≥ βk

}

= 1− P
{

S0k ≥ βkd
α
k (Ip + Iq + σ2/ρ)

}

.

The channel gain is given byS0k = |hkwk|2 = ‖hk‖2
∣

∣hkwk

∣

∣

2
= ‖hk‖2 B(1,M − 1), whereB(1,M − 1)

is a Beta distributed random variable (r.v.) with shape parameters(1,M − 1) and independent of‖hk‖2
[24]. The term‖hk‖2 is distributed as a chi-squared r.v. with2M degrees of freedom denoted asχ2

2M .
Thus,S0k ∼ exp(1) (exponentially distributed with unit mean). Denotingζk = βkd

α
k , we have

F (k)(βk, α)
(a)
= 1− E

[

exp(−ζk(Ip + Iq + σ2/ρ))
] (b)
= 1−Lp(ζk)Lq(ζk)e

−
ζkσ2

ρ (26)

where step (a) is reached by conditioning on the aggregate interferenceIp+Iq and (b) by the independence
of the interference terms.

The interferer marks inIp are chi-squared distributed with degrees of freedomSik = ‖hikWi‖2 ∼ χ2
2K

since it is the sum ofK i.i.d. exponential random variables. Thus, the Laplace transform for a Poisson
shot noise process inR2 with i.i.d. χ2

2K distributed marks is given by [27]

Lp(s) = EΦ

[

e−s
∑

i∈Φ(λ) Si|Xi|
−α)
]

= exp

{

−λ
∫

R2

1− ES

[

e−sS|x|−α
]

dx

}

= e−λs
2
α IK (27)

where

IK =
2π

α

K−1
∑

m=0

(

K

m

)

B

(

m+
2

α
,K −m− 2

α

)

(28)
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with B(a, b) =
∫ 1

0
ta−1(1− t)b−1dt = Γ(a)Γ(b)

Γ(a+b)
being the Beta function.

For the marks in the interference term we have that|hkwj |2 = ‖hk‖2
∣

∣hkwj

∣

∣

2
. Denotingφk the angle

betweenhk andĥk, and decomposing the normalized channel vector ashk = (cosφk)ĥk+(sinφk)vk, we
have that|hkwj |2 = ‖hk‖2 |vkwj|2 sin2 φk. Sincewj is isotropic within the hyperplane and independent
of vk, the quantity|vkwj|2 is beta(1,M−2) distributed, i.e.|vkwj |2 ∼ B(1,M−2) [19] and independent
of the quantization errorsin φk. Thus, the normalized intra-cluster interference can be rewritten as

Iq = d−α
k ‖hk‖2 sin2 φk

∑

j∈K,j 6=k

B(1,M − 2), (29)

where‖hk‖2, φk, andB(1,M − 2) are all independent. For the quantization cell approximation, the term
X = ‖hk‖2 sin2 φk is a gamma distributed r.v. with shapeM−1 and scaleδ, i.e.X ∼ Gamma(M−1, δ).
ThereforeY = XB(1,M − 2) is exponentially distributed with rate1/δ [28]. As Iq = d−α

k Z, whereZ
is the sum of(K − 1) i.i.d exponentially distributed r.v., i.e.Z ∼ Gamma(K − 1, δ), the normalized
aggregate interference becomesIq ∼ Gamma(K − 1, δd−α

k ). The Laplace transform ofIq is given by

Lq(s) =
1

(1 + sd−α
k δ)K−1

. (30)

Substituting (27) and (30) in (26) we obtain the result.

B. Proof of Theorem 3

For a random variableX with probability density functionfX(x) and cumulative distribution function
(cdf) FX(x), we have

E{log(1 +X)} =

∫ ∞

0

log(1 + x)fX(x)dx =

∫ ∞

0

log(1 + x)d [1− FX(x)]
(a)
=

∫ ∞

0

1− FX(x)

1 + x
dx

where step (a) follows from integration by parts. The resultis obtained by

Rk =

∫ ∞

0

1− F (k)
(x,α)

1 + x
dx =

∫ ∞

0

e−
σ2dαk x

ρ e−λIMd2kx

(1 + x)(1 + δx)M−1
dx, with C1 =

σ2dαkx

ρ
andC2 = λIMd

2
k.

C. Proof of Theorem 4

First, we consider the following upper bounds to the averagerate achieved by thek-th user:

Rk = E

{

log

(

1 +
ρ |hkwk|2 d−α

k

Ip + Iq + σ2/ρ

)}

(a)

≤ E

{

log

(

1 +
|hkwk|2 d−α

k

I
l

p + Iq + σ2/ρ

)}

= E

{

log

(

I
l

p + Iq +
σ2

ρ
+ |hkwk|2 d−α

k

)}

− E

{

log

(

I
l

p + Iq +
σ2

ρ

)}

(b)

≤ log

(

E

{

I
l

p + Iq +
σ2

ρ
+ |hkwk|2 d−α

k

})

− E
{

log
(

Iq
)}

(c)

≤ log

(

E

{

I
l

p

}

+ E
{

Iq
}

+
σ2

ρ
+ d−α

k E
{

|hkwk|2
}

)

− E
{

log
(

d−α
k |hkwj|2

)}

(31)

whereIp = Ip/ρ andIq = Iq/ρ are given in (3) and (4), respectively. In (a) we consider a lower bound
to the inter-cluster interference, denoted asI

l

p, and in (b) we apply Jensen’s inequality to the minuend
and neglect the noise and inter-cluster interference termsin the subtrahend. Step (c) follows from the
independence of the interference terms and the received signal and by considering only one of the intra-
cluster interference terms.
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The normalized interferenceIq ∼ Gamma(K − 1, δd−α
k ), thus we haveE

{

Iq
}

= d−α
k δ(M − 1). The

channel gain|hkwk|2 is exponentially distributed with mean one, i.e.E
{

|hkwk|2
}

= 1. In order to derive
a lower bound, we neglect the contribution of the closest interferer to the inter-cluster interference. Using
techniques from [10], the lower bound is given byI

l

p = (πλd2k)
α
2
(⌈

α
2

⌉

− 1
)−α

2 .
For the second term in (31), we need to compute

E
{

log
(

|hkwj |2
)}

= E

{

log
(

‖hk‖2
∣

∣hkwj

∣

∣

2
)}

= E
{

log
(

‖hk‖2
)}

+ E

{

log
(

∣

∣hkwj

∣

∣

2
)}

. (32)

For the channel norm we have‖hk‖2 ∼ χ2
2M , thusE

{

log
(

‖hk‖2
)}

=
∫ +∞

0
log x · xM−1e−x

Γ(M)
dx = ψ(M).

Then,E
{

log
(

∣

∣hkwj

∣

∣

2
)}

= E
{

log
(

sin2 φk

)}

+ E {log (B(1,M − 2))}, with

E
{

log
(

sin2 φk

)}

=

∫ −∞

0

log(x)dFsin2 φk
(x) = 2B(M − 1)

∫ δ

0

log(x)xM−2dx = −1 +B log 2

M − 1

and

E {log (B(1,M − 2))} =

∫ 1

0

log x · (1− x)M−3

B(1,M − 2)
dx = −HM−2

where the cdf of the quantization errorsin2 φk is given in [24]. By substituting the above quantities to
(31) and after some manipulations, we obtain (15).

D. Proof of Lemma 1

The proof of this lemma is based on Hölder’s inequality [26], which states that for two measurable
functionsf andg defined on a Hilbert spaceS and1 < p, q <∞ with 1/p+ 1/q = 1

∫

S
|f(x)g(x)|dx =

(∫

S
|f(x)|p dx

)1/p(∫

S
|g(x)|q dx

)1/q

. (33)

The result is obtained by applying twice (33) for the following decreasing real-valued and bounded
functions: firstf(x) = e−C1xe−C2x

2
α and g(x) = 1

(1+x)(1+δx)M−1 and then forf(x) = e−C1x and g(x) =

e−C2x
2
α . At each step, we optimizep, q in order to obtain the tightest possible upper bound. Using the

following forms

I1 =

∫ ∞

0

e−axdx =
1

a
, I2 =

∫ ∞

0

e−bx2/α

dx = b−α/2Γ(1 + α/2),

I3 =

∫ ∞

0

dx
(1 + x)c(1 + δx)g

=
π csc(gπ)(δ − 1)1−c−gδcB(c, g − 1) +2 F1(1, c, 2− g, 1

δ
)

δg
,

wherecsc(·) denotes the cosecant and2F1(x, y, z, w) the Gauss hypergeometric function, and after some
algebraic manipulations, we obtain (18).
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Fig. 1. Outage probability vs. node density at SNR = 20 dB, forα = 4, d = 1.5, andβ = 1 dB.
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Fig. 2. Throughput vs. node density forα = 4.2, d = 1.5, β = 3 dB, and SNR = 15 dB.
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Fig. 3. Transmission capacity vs. outage constraint forα = 4.5, β = 1 dB, and SNR = 20 dB.
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