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Abstract

The dramatic increase of network infrastructure comes at the cost of rapidly increasing energy consumption,

which makes optimization of energy efficiency (EE) an important topic. Since EE is often modeled as the ratio of

rate to power, we present a mathematical framework called fractional programming that provides insight into this

class of optimization problems, as well as algorithms for computing the solution. The main idea is that the objective

function is transformed to a weighted sum of rate and power. Ageneric problem formulation for systems dissipating

transmit-independent circuit power in addition to transmit-dependent power is presented. We show that a broad class

of EE maximization problems can be solved efficiently, provided the rate is a concave function of the transmit power.

We elaborate examples of various system models including time-varying parallel channels. Rate functions with an

arbitrary discrete modulation scheme are also treated. Theexamples considered lead to water-filling solutions, but

these are different from the dual problems of power minimization under rate constraints and rate maximization under

power constraints, respectively, because the constraintsneed not be active. We also demonstrate that if the solution

to a rate maximization problem is known, it can be utilized toreduce the EE problem into a one-dimensional convex

problem.

I. I NTRODUCTION

Exponentially increasing data traffic and demand for ubiquitous access have triggered a dramatic expansion

of network infrastructure, which comes at the cost of rapidly increasing energy consumption and a considerable

carbon footprint of the mobile communications industry. Therefore, increasing the energy efficiency (EE) in cellular

networks has become an important and urgent task. Apart fromthis, EE plays an important role in other areas of

wireless communications as well. For example, in multihop networks, EE is critical for prolonging the lifetime

of the network [1]. EE is also becoming increasingly important in mobile communication devices since battery

capacity is unable to keep pace with increasing power dissipation of signal processing circuits [2].

A comprehensive survey of joint PHY and MAC layer techniquesfor improving wireless EE can be found in [3].

In an effort to integrate the fundamental issues related to EE in wireless networks, [4] presents four fundamental
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EE trade-offs in detail. The paper at hand is concerned with the trade-off between spectral efficiency (SE) and EE.

In particular, we look at practical transmission systems dissipating transmit-independent circuit power in addition

to the transmit-dependent power. As described in [5], the link-level EE optimization problem in the active mode is

closely related to two classical problems, one being rate maximization subject to a maximum power constraint and

the other one being power minimization subject to a minimum rate constraint. Both problems lead to water-filling

solutions, with the water level determined by the respective constraint. In comparison, EE optimization involves

maximizing the amount of transmitted data per unit energy, or equivalently minimizing the energy consumption

per bit. It turns out that the EE optimization problem also results in water-filling solutions, with a water level

that depends on the transmit-independent power. Results onenergy-efficient link adaptation for frequency-selective

channels are presented in [6]. A related efficiency objective function, which involves the packet success rate, has

been treated in a game-theoretic setting utilizing pricingto achieve EE in [7].

The contribution of this paper is a framework for solving EE maximization problems, which are different from

the related problems of power minimization under rate constraints and rate maximization under power constraints,

respectively. EE maximization belongs to a class of optimization problems called fractional programs. Since the

fractional programming theory is not well-known in the wireless communications community, results that are

presently scattered in the operations research literatureare summarized in a coherent manner. With this, we also

show that the various approaches to the problem are mathematically connected through a scalarized bi-criterion

optimization problem and provide an efficient solution algorithm. These results can be used to solve a large

class of EE problems based on various system models. A seriesof applications ranging from time-invariant, flat-

fading parallel channels to time-varying, flat-fading (single and parallel) channels illustrates the applicability of the

developed framework. Results are shown to be applicable even for discrete modulation schemes. The algorithmic

solutions have very low complexity because they are based onwater-filling power allocation. In contrast to sum

rate maximization or sum power minimization, however, the water level is not adjusted iteratively to satisfy the

constraint with equality. Instead, the water level is used as a parameter that is adjusted until a certain criterion

corresponding to the maximum EE is fulfilled. Finally, a direct reuse of standard rate maximization algorithms in

a nested programming procedure, which is made possible using the framework, is discussed.

The outline is as follows. A motivating example including the channel and power model is given in Section II.

Section III lays out the mathematical framework for the paper. Both the maximization case (for maximizing the

bit/J metric), and the minimization case (for minimizing the J/bit) are discussed. Incorporation of various empirical

power dissipation models into a generic EE problem formulation is demonstrated in Section IV. Based on this

generic problem, results for different fading models (static and time-varying channels) and for practical modulation

schemes are presented in Section V. We further discuss how known rate maximization algorithms from the literature

can be adopted to EE optimization. Simulation results basedon the models discussed are presented in Section VI.

The paper is wrapped up with a discussion about the water-filling solutions in Section VII, followed by some

conclusions in Section VIII.

Our notation is as follows. Column vectors are denoted by bold lowercase letters,e.g. x, with the ith com-
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ponent denoted byxi. Sets are denoted by calligraphic letters such asS. [x]+ denotesmax {0, x}. [x]yz denotes

min {y,max {z, x}}. A column vector of all ones is denoted by1, and the component-wise sum of a vectorx is

denoted by1T
x.

II. M OTIVATING EXAMPLE

In order to motivate the development of a general framework,we provide an anecdotal example of EE maxi-

mization. Consider a time-invariant Gaussian channel withK parallel quasi-static block flat-fading channels with

coherence timeTc and gainsγ1, ..., γK . Perfect channel state information (CSI) is available at the transmitter as

well as at the receiver. Each parallel channel occupies a bandwidth of Wc and elastic data is to be transmitted.

Assuming Gaussian codebooks at the transmit side, the achievable data rate on channelk in bits per complex

dimension isrk(pk) = log2(1 + γkpk) with transmit power allocation per unit bandwidthpk ≥ 0. The amount of

information transmitted during a time-frequency chunkTcWc is given by

TcWc

K
∑

k=1

log2(1 + γkpk) [bits] (1)

In [8], a power model for the nodes in a wireless network is proposed. The total power consumption in the

active mode at the transmitter is modeled asPont = PPA + Pct, wherePPA is the power dissipated in the power

amplifier andPct is the power dissipated in all other circuit blocks. The power dissipated in the power amplifier

is given by PPA = ξ
ηPt, where ξ and η are the power amplifier output backoff (OBO) and drain efficiency,

respectively, andPt = Wc

∑K
k=1 pk is the transmit power. The OBO is needed to avoid the nonlinear region of the

power amplifier and is determined by the peak-to-average power ratio (PAPR). The circuit powerPct is given by

Pct = Pmix + Psyn+ Pfilt + PDAC, where the terms correspond to the power dissipation of the mixer, the frequency

synthesizer, the active filters, and the digital-to-analogconverter, respectively. The amount of energy consumed

during one time-frequency chunk is

Tc · (Pct + PPA) = TcWc
ξ

η

(

µ+

K
∑

k=1

pk

)

[Joule], (2)

whereµ = η
ξ

Pct
Wc

[W/Hz].

In a general sense, efficiency can be seen as the extent to which a resource, such as electricity, is used for the

intended purpose. Efficiency is a measurable concept, quantitatively determined by the ratio of output to input. In

the physical and medium access control layers, the output isthe effective amount of data transmitted (measured in

bits or nats) and the input is the total energy consumed for transmitting the data (in Joule). This results in theEE,

defined as the amount of data transmitted (1) divided by the amount of energy consumed (2) as

EE = log2 e ·
η

ξ

∑K
k=1 log(1 + γkpk)

µ+
∑K

k=1 pk
= log2 e ·

η

ξ

f1(p)

f2(p)
[bits/Joule]. (3)

The EE in (3) is usually maximized subject to constraints on the transmit powersp1, ..., pK and the sum rate.

Spectral mask constraints0 ≤ pk ≤ pmax are required by regulatory bodies. Sum power constraints are required
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in order to limit interference in neighboring sectors. An additional sum rate constraintR0 can model the quality

of service requirement of the traffic in the next block. Basedon (3), the resulting optimization problem is

maximize
p∈S

f1(p)

f2(p)
with S = {p ∈ R

K
+ :

∑

pk ≤ P, pk ≤ pmax, f1(p) ≥ R0}, (4)

whereP is the maximum sum power. Problem (4) belongs to a class of optimization problems called fractional pro-

grams. As we will see later, many more examples of EE maximization problems in different wireless communication

scenarios lead to fractional programs. Therefore, we studythis class in more detail in the next section.

III. F RACTIONAL PROGRAMMING

Fractional programs are nonlinear programs where the objective function is a ratio of two real-valued functions.

For simplicity, only differentiable fractional programs,i.e. where both the numerator and the denominator are

differentiable, are considered in this section. A general nonlinear fractional program has the form

maximize
x∈S

q(x) = f1(x)
f2(x)

, (5)

whereS ⊆ R
n, f1, f2 : S → R andf2(x) > 0. Problem (5) is called a concave-convex fractional programif f1

is concave,f2 is convex, andS is a convex set; additionallyf1(x) ≥ 0 is required, unlessf2 is affine. Whenf1

andf2 are differentiable, the objective function in (5) is pseudoconcave [9], implying that any stationary point is a

global maximum and that the Karush-Kuhn-Tucker (KKT) conditions are sufficient if a constraint qualification is

fulfilled. Because of this, (5) can be solved directly by various convex programming algorithms [9]. However, when

f1 is concave andf2 is convex, the fractional program can be transformed to an equivalent convex program, which

may be solved more efficiently in certain cases. In the literature, two different convex formulations and an approach

based on duality have been suggested [10]. In the following,we will discuss each approach in some detail. As we

will see, however, they are very closely related since they all lead to the same optimality condition.

A. Parametric convex program

Consider the following equivalent form [11, p. 134] of the fractional program (5):

maximize
x∈S,λ∈R

λ

subject to f1(x)
f2(x)

− λ ≥ 0

Rearranging the constraint, we obtain

maximize
x∈S,λ∈R

λ

subject to f1(x)− λf2(x) ≥ 0.

This formulation is not jointly convex inx andλ, but for a fixed value ofλ we have a feasibility problem inx,

which is convex iff1 is concave andf2 is convex. The problem is feasible if

max
x∈S

f1(x)− λf2(x) ≥ 0.
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One can use bisection to find the optimal value of the parameter λ, solving the feasibility problem at each step of

the algorithm, as described in more detail in [11, pp. 145-146].

Consider the function

F (λ) = max
x∈S

f1(x)− λf2(x). (6)

It can be shown thatF (λ) is convex, continuous and strictly decreasing inλ [12]. The right hand side of (6) can

be viewed as a scalarized bi-criterion optimization problem in which f1(x) is to be maximized whereasf2(x)

is to be minimized. The parameterλ determines the relative weight of the denominator. Ifx
∗ is optimal for the

scalar problem, then it is Pareto-optimal for the bi-criterion optimization problem [11, pp. 178-184]. The set of

Pareto optimal values for a bi-criterion problem is called the optimal trade-off curve. By varying the value ofλ,

we explore the optimal trade-off curve between the objectives, as illustrated in Figure 1. The slope of the optimal

trade-off curve at any point represents the local optimal trade-off between the two objectives. Where the slope is

steep, small changes inf2 result in large changes inf1. The intersection of the curve with a vertical linef2 = α

gives the maximum value off1 that achievesf2 ≤ α. Similarly, the intersection with a horizontal linef1 = β gives

the minimum value off2 that achievesf1 ≥ β.

Let q∗ be the optimum value of the objective function in (5). The following statements are equivalent1 [10]:

F (λ) > 0 ⇔ λ < q∗

F (λ) = 0 ⇔ λ = q∗

F (λ) < 0 ⇔ λ > q∗

Thus, solving problem (5) is equivalent to finding the root ofthe nonlinear functionF (λ), so the condition for

optimality is

F (λ∗) = max
x∈S

f1(x)− λ∗f2(x) = 0. (7)

Various iterative algorithms are available for finding the root of F (λ) [13]. For example, the Dinkelbach method

[12] in Algorithm 1 is based on the application of Newton’s method. To see this, note that the update in Newton’s

method is calculated as

λn+1 = λn − F (λn)

F ′(λn)
= λn − f1(x

∗
n)− λnf2(x

∗
n)

−f2(x∗
n)

=
f1(x

∗
n)

f2(x∗
n)

.

Therefore, the sequence converges to the optimal point witha superlinear convergence rate. A detailed convergence

analysis can be found in [14]. The initial point can be anyλ0 that satisfiesF (λ0) ≥ 0. It is also straightforward to

include box constraints forf1(x) or f2(x). Referring to Figure 1, a lower bound onf1 or f2 corresponds to an upper

bound onλ, sayλmax, whereas an upper bound onf1 or f2 corresponds to a lower boundλmin. Therefore, solving

an optimization problem with this kind of inequality constraints reduces to solving the unconstrained problem and

1In fact, these properties ofF (λ) are true for more general nonlinear fractional programs [12].
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determining whetherλ∗ falls within the interval[λmin, λmax]. If not, λ∗ is replaced by the respective endpoint.

B. Parameter-free convex program

Let S0 ∈ R
n be a nonempty, convex, and open subset of the domain of the objective functionq(x) that satisfies

f2(x) > 0. Let S = {x ∈ S0|g(x) ≤ 0} be the feasible subset ofS0 with all convex inequality constraints

g(x) ≤ 0 taken into account.

The transformation

y =
1

f2(x)
x, t =

1

f2(x)
, x ∈ S0 (8)

yields the equivalent parameter-free problem [15]

maximize
y/t∈S0

tf1 (y/t)

subject to tf2 (y/t) ≤ 1

tg (y/t) ≤ 0,

(9)

which is convex in(y, t) since taking the perspective of a function preserves convexity. The inequality in the first

constraint can be changed to an equality iff2(x) is affine. Problem (5) has an optimal solution if and only if

problem (9) has one, and the solutions are related by (8).

Let the dual variables associated with the constraintstf2 (y/t)− 1 ≤ 0 and tg (y/t) ≤ 0 be denoted byλ and

u, respectively. The Lagrangian is

L(y, t, λ,u) = −tf1 (y/t) + λ (tf2 (y/t)− 1) + (tg (y/t))
T
u

and the resulting stationarity conditions are






−∇f1(y
∗/t∗) + λ∗∇f2(y

∗/t∗) + (∇g(y∗/t∗))Tu∗ = 0

−f1(y
∗/t∗) + λ∗f2(y∗/t∗) + (g (y∗/t∗))T u

∗ = 0.

Due to complementary slackness, the last term in the second row is zero. The first row is the condition for the

maximum off1(y/t)− λ∗f2(y/t) subject toy/t ∈ S with λ∗ as parameter. Thus, the condition for the optimum

is

F (λ∗) = max
y/t∈S

f1(y/t)− λ∗f2(y/t) = 0. (10)

Comparing this to (7), we see that the resulting optimality condition is equivalent to the one in the parametric

approach.

May 23, 2018 DRAFT
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C. Dual program

The Wolfe dual of the equivalent convex program (9) is (aftersubstitutingx for y/t) [16]

minimize λ

subject to −∇f1(x) + λ∇f2(x) + (∇g(x))Tu = 0

−f1(x) + λf2(x) + (g(x))Tu ≥ 0

x ∈ S0,u ∈ R
m
+ , λ ≥ 0,

(11)

which coincides [15] with the dual of the parametric convex program

maximize
x∈S

f1(x)− λf2(x), (12)

whereλ ∈ R is treated as a parameter. Thus, (11) is the dual of both convex programs. Note that the dual problem

is not convex in general, since the equality constraint is typically not affine.

Based on Wolfe’s direct duality theorem we have the following result [15]: Ifx∗ is an optimal solution to problem

(5) andS is nonempty, then there areu∗ andλ∗ such that(x∗,u∗, λ∗) is an optimal solution to the dual problem

(11) andq(x∗) = λ∗.

At the optimum, the inequality in the dual problem is satisfied with equality, i.e. −f1(x
∗) + λ∗f2(x∗) +

(g(x∗))Tu∗ = 0. Sinceλ∗ = f1(x
∗)/f2(x∗), due to complementary slackness we have(g(x∗))Tu∗ = 0. Thus,

problem (11) reduces to findingx∗ and the optimal Lagrange multiplierλ∗ such that






−∇f1(x
∗) + λ∗∇f2(x

∗) + (∇g(x∗))Tu = 0

−f1(x
∗) + λ∗f2(x∗) = 0.

The first equation is the condition for the maximum off1(x) − λ∗f2(x) over x ∈ S, with λ∗ as parameter.

Summarizing, the condition for the optimum is

F (λ∗) = max
x∈S

f1(x)− λ∗f2(x) = 0.

Again, this is equivalent to (7).

D. Convex fractional program

Here we consider the equivalent convex-concave minimization problem with convex inequality constraints. In

this case, we have

minimize
x∈S

f2(x)
f1(x)

,

whereS = {x ∈ S0|g(x) ≤ 0} is bounded, and wheregi(x) is convex and differentiable,f1(x) is nonnegative,

concave, andf2(x) is positive, convex onS.
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Consider the epigraph form of the convex fractional program:

minimize
x∈S,λ̃∈R

λ̃

subject to f2(x)
f1(x)

− λ̃ ≤ 0

Rearranging the constraint, we obtain

minimize
x∈S,λ̃∈R

λ̃

subject to f2(x)− λ̃f1(x) ≤ 0.

This formulation is not jointly convex, but for a given valueof λ̃ we have a convex feasibility problem inx. The

feasibility problem is solved by minimizingf2(x) − λ̃f1(x) and determining if the result is less than or equal to

zero. Note further that the constraint must be active at the optimum, so we have

min
x∈S

f2(x)− λ̃∗f1(x) = 0.

The dual problem is given by [17]

maximize λ̃

subject to ∇f2(x)− λ̃∇f1(x) + (∇g(x))Tu = 0

f2(x)− λ̃f1(x) + (g(x))Tu ≥ 0

x ∈ S,u ∈ R
m
+ , λ̃ ≥ 0,

which is analogous to (11).

IV. POWER MODELS FOR BASE STATIONS

As described in Section II, we are interested in maximizing the ratio of achievable rate to dissipated power,

where the power consists of a transmit-independent part in addition to the total transmit power. We will concentrate

on the generic optimization problem

maximize
p∈S

q(p) = r(p)

µ+
∑

K

i=1
pi

, (13)

wherep is the transmit power spectral density,r(p) is a general concave rate (spectral efficiency in nat/s) function,

andµ > 0 is a constant offset, corresponding to the relative weight of the transmit-independent power. The optimal

value of the objective function decreases whenµ increases, becauseµ corresponds to a shift to the right of the

curve in Fig. 1. In this section, it will be demonstrated thatvarious EE maximization problems resulting from power

models in the literature can be transformed to the generic problem form (13). While these power models are all

linear, the framework in this paper allows for arbitrary convex functions of transmit power.

A. Generic base station power model

In [18], a generic model for the total power consumption of a base stationPtot is suggested, based on the

assumptions
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1) the total transmit powerPt is equally allocated to thena antennas at the transmitter,

2) each antenna is associated with an RF chain, including a power amplifier,PPA, and other RF hardware,Pc,

3) the power dissipation of each PA is considered proportional to the output power,PPA = Pt/na/ηPA.

The model is

Ptot =

Pt

ηPA
+ naPc + Psta

ηPS (1− ηC)
,

wherePsta is the static power consumption from baseband processing and battery unit,ηPS is the efficiency of the

power supply, andηC is the efficiency loss in the cooling system.

The EE metric [in bit/J] can be written as

EE =
B · r(p)

C · ηPA ·B(µ+ p)
=

q(p)

C · ηPA
,

whereB is the system bandwidth,p = Pt/B, µ = ηPA (naPc + Psta) /B, andC = ηPS (1− ηC) .

B. Macro base station power model

In [19], the following power model for macro and micro base stations is presented:

PBS = NSector·NPApSec·
(

PTX

µPA
+ PSP

)

· (1 + CC) · (1 + CPSBB)

The main parameters in the model for a macro basestation are summarized in Table I.

With p = PTX/B, µ = PSP · µPA/B, andC = NSector·NPApSec· (1 + CC) · (1 + CPSBB) , the EE metric is

EE =
B · r(p)

C · µPA · B(µ+ p)
=

1

C · µPA
· q(p).

V. A PPLICATIONS

In this section, we shall demonstrate how various channel models (flat fading and frequency-selective fading,

static and time-variant), antenna configurations (including SISO and MIMO), and input constellations (Gaussian

and quadratic M-QAM) result in concave rate functions that can all be treated within the mathematical framework

developed thus far.

A. Time-invariant parallel subchannels

From Section II, the problem to be solved is

maximize
p∈S

q(p) = 1
T r(p)

µ+1Tp
, (14)

whereri(pi) = log (1 + γipi). Here,γi =
|hi|2
N0

is the channel-to-noise ratio (CNR) of subchanneli. Furthermore,

we have box constraints for the individual powers,0 ≤ pi ≤ pmax, i = 1, . . . ,K. Thus, the feasible setS is compact

(closed and bounded) and convex. In order to illustrate the fractional programming theory, we shall solve problem

(14) using both the parametric and the parameter-free approach.
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1) Parametric convex problem:The functionF (λ) is given by

F (λ) = max
p∈S

1
T
r(p)− λ(µ+ 1

T
p). (15)

The stationarity condition is
dri
dpi

∣

∣

∣

∣

pi=p∗

i

− λ = 0, i = 1, . . . ,K.

Thus, we have

λ =
γi

1 + γip∗i
.

Taking the box constraints into account, the optimal power allocation is

p∗i (λ) =

[

1

λ
− 1

γi

]pmax

0

. (16)

The parameterλ corresponds to a cutoff CNR. A subcarrier is not used if its CNR falls below the cutoff value

(γi < λ). The optimal power is therefore given by water-filling.

The explicit solution in (16) is used in every iteration of any method that finds the root ofF (λ). One way of

finding the root is to use the Dinkelbach method, as shown in Algorithm 2.

Referring to Fig. 1, the vertical axis corresponds to the sumrate, whereas the horizontal axis corresponds to sum

power plus an offsetµ. A point on the trade-off curve corresponds to water-fillingwith a given water level1/λ. A

point below the curve corresponds to a sub-optimal power distribution. The curve crosses the horizontal axis atµ

and the optimal EE occurs where the tangent goes through the origin. When the offset increases, the optimal EE

decreases, and it occurs for a higher sum power.

2) Parameter-free convex problem:Remember thatS = {x ∈ S0|g(x) ≤ 0}, whereS0 is the part of the

domain of the objective function whose denominator is positive. In our case, the domain can be characterized as

follows: The logarithmic function is only defined for the positive real domain, which impliespi > −1/γi, and the

denominator cannot be zero, so1T
p 6= −µ. The requirement that the denominator be positive excludesall vectors

with a sum less than or equal to−µ.

By the transformation

y =
1

µ+ 1
T
p
p; t =

1

µ+ 1
T
p
; p ∈ S0,

we obtain the convex problem

maximize
y/t∈S0

t1T
r(y/t)

subject to tµ+ 1
T
y = 1

tg (y/t) ≤ 0,

whereri(yi/t) = log (1 + γi · yi/t) and g is a vector of box constraints0 ≤ yi/t ≤ pmax. Here, the variablet

corresponds to the inverse of the total power dissipation.
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After introduction of a Lagrange multiplierλ ∈ R for the equality constraint, the Lagrangian is

L(y, t, λ,u) = −t1T
r(y/t) + λ(tµ+ 1

T
y − 1) + (tg (y/t))

T
u.

As the reader can verify, the KKT conditions yield

y∗i
t∗

=

[

1

λ∗ − 1

γi

]pmax

0

, i = 1, . . . ,K,

andλ∗ = t∗1T
r(y∗/t∗).

3) Adding constraints:As discussed previously, a maximum power constraint1
T
p ≤ P corresponds to a lower

boundλmin for λ. Similarly, a minimum rate constraint1T
r ≥ R corresponds to an upper boundλmax. As illustrated

in Figure 2, these additional constraints lead to a penalty in EE.

4) Flat fading channel:For the flat fading channel, the optimal power allocation reduces to

p∗(λ) =

[

1

λ
− 1

γ

]pmax

0

. (17)

For this simple channel model, it is in fact possible to derive the optimal valueλ∗ in closed form. Assume first

that γ ≥ λ∗, so thatp∗ ≥ 0. Again, we wish to find the solution to the nonlinear equationF (λ∗) = 0, i.e.

log
1

λ∗ − log
1

γ
− λ∗

(

µ+

(

1

λ∗ − 1

γ

))

= 0.

After introduction ofs = γ
λ∗

, this can be transformed to

(log s− 1) · s = µγ − 1.

The solution to this equation is

log s = 1 +W (e−1(µγ − 1)),

whereW is the Lambert W function [20]. Note that the conditionp∗ ≥ 0 corresponds tos ≥ 1, which implies

W (e−1(µγ − 1)) ≥ −1, i.e. the principal branchW0 is selected. Thus,

λ∗ =
γ

s
=

γ

exp(1 +W0(e−1(µγ − 1)))
.

When there are no constraints on rate and power, there is always a feasible solution.

Although the solution can be derived analytically for the flat-fading channel, it may still be attractive to use

the Dinkelbach method for numerical evaluation, since evaluation of the Lambert W function also relies on a

root-finding algorithm.

B. Time-varying, flat-fading channel

Here, we wish to maximize the average number of bits transmitted per unit energy consumed, calculated as the

ergodic capacity divided by the average dissipated power. We assume causal CSI at the transmitter in an ideal case
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with zero-delay feedback which requires no additional power. The EE maximization problem can be stated as

maximize
p(γ)≥0

q[p(γ)] =

∫∞
0

log(1 + γp(γ))f(γ)dγ

µ+
∫∞
0

p(γ)f(γ)dγ
, (18)

wheref(γ) is the probability density function (PDF) of the fading distribution. Note that optimization problem

(18) is concerned with finding an optimal function rather than a finite-dimensional vector as assumed in Section

III. However, the extension to optimization over functionsis straightforward. The parametric convex optimization

problem is

maximize
p(γ)≥0

∫ ∞

0

log(1 + γp(γ))f(γ)dγ − λ

(

µ+

∫ ∞

0

p(γ)f(γ)dγ

)

, (19)

whereλ > 0 is treated as a parameter.

Problem (19) needs to be solved in each step of the Dinkelbachmethod. The stationarity condition (obtained by

setting the functional derivative with respect top equal to zero) is

γ

1 + γp∗(γ)
− λ = 0.

Solving this equation forp∗, we get

p∗ =
1

λ
− 1

γ
.

The transmit power must be nonnegative, so the solution is

p∗(λ) =

[

1

λ
− 1

γ

]+

andλ corresponds to a cutoff CNR. Thus, we have

F (λ) =

∫ ∞

λ

log
(γ

λ

)

f(γ)dγ − λ

(

µ+

∫ ∞

λ

(

1

λ
− 1

γ

)

f(γ)dγ

)

. (20)

The solution toF (λ) = 0 must be found numerically because no closed-form solutionsexist for typical continuous

distributions. However, evaluatingF (λ) numerically for any givenλ is straightforward. Therefore, the optimal value

λ∗ can be found iteratively.

If the instantaneous CNR is below the cutoff level, the optimal strategy at the transmitter is to be idle. The idle

probability is calculated as

P(γ < λ∗) = 1−
∫ ∞

λ∗

f(γ)dγ. (21)

1) Adding constraints:A maximum power constraint̄p ≤ p̄max is equivalent toλ ≥ λmin, whereλmin satisfies

∫ ∞

λmin

(

1

λmin
− 1

γ

)

f(γ)dγ = p̄max.

Similarly, a minimum rate constraint̄r∗ ≥ r̄min is equivalent toλ ≤ λmax, whereλmax satisfies

∫ ∞

λmax

log

(

γ

λmax

)

f(γ)dγ = r̄min.

May 23, 2018 DRAFT



13

2) Example: Rayleigh fading:In Rayleigh fading, the PDFf(γ) is [21]

f(γ) =
e−γ/γ̄

γ̄
. (22)

The average CNR̄γ is given byγ̄ = G · σ2

N0
, whereG is the path gain from the transmitter to the receiver andσ

is the mean of the Rayleigh distributed variable. Substituting (22) into (20) yields

F (λ) =

∫ ∞

λ

log
(γ

λ

) e−γ/γ̄

γ̄
dγ − λ

(

µ+

∫ ∞

λ

(

1

λ
− 1

γ

)

e−γ/γ̄

γ̄
dγ

)

.

After the variable transformationx = λ
γ̄ ; t = γ

λ we obtain

F (λ) =

∫ ∞

1

log t · xe−xtdt− λ

(

µ+
1

γ̄

∫ ∞

1

(

1− t−1
)

e−xtdt

)

,

wherex and t are functions ofλ. Through integration by parts, we have

∫ ∞

1

log t · xe−xtdt =
[

log t ·
(

−e−xt
)]∞

1
−
∫ ∞

1

1

t

(

−e−xt
)

dt =

∫ ∞

1

1

t
· e−xtdt = E1(x),

where the generalized exponential integralEn(x) is defined by

En(x) =

∫ ∞

1

t−ne−xtdt, x ≥ 0.

Thus,

F (λ) = E1

(

λ

γ̄

)

− λ

(

µ+
1

γ̄

(

E0

(

λ

γ̄

)

− E1

(

λ

γ̄

)))

,

whereE0(x) =
∫∞
1 e−xtdt = e−x

x .

The idle probability for Rayleigh fading is given by

P(γ < λ∗) = 1−
∫ ∞

λ∗

e−γ/γ̄

γ̄
dγ = 1− λ∗

γ̄
· E0

(

λ∗

γ̄

)

= 1− exp

(

−λ∗

γ̄

)

.

C. Time-varying, parallel subchannels

Suppose we haveK parallel channels, as in the case of frequency-selective multicarrier systems. Additionally,

the channels vary with time and the power allocation can be selected independently for every channel realization

γ = (γ1, ..., γK). We can characterize the power allocation as the vector function of the channel realizationp(γ).

As previously discussed, we want to maximize the EEq, which is quantified here as the ratio of the ergodic capacity

to the average dissipated power, over vector functionp(γ). The maximization problem is then given as

maximize
p(γ)≥0

q [p (γ)] =

∫

γ∈R
K

+

K
∑

i=1

log (1 + γipi (γ)) f(γ)dγ

µ+
∫

γ∈R
K

+

∑K
i=1 pi (γ) f(γ)dγ

, (23)
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wheref(γ) = f(γ1, ..., γK) is the joint PDF of theK subchannel CNRs. The corresponding parametric concave

optimization problem with parameterλ is

maximize
p(γ)≥0

∫

γ∈R
K

+

K
∑

i=1

log (1 + γipi (γ)) f(γ)dγ − λ

(

µ+

∫

γ∈R
K

+

K
∑

i=1

pi (γ) f(γ)dγ

)

, (24)

which has to be solved at each step of the Dinkelbach method. Since the maximand of (24) is a concave functional

of p (γ), the KKT conditions are sufficient for optimality. These conditions yield the optimal function

p∗i (λ,γ) =

[

1

λ
− 1

γi

]+

, i = 1, . . . ,K. (25)

Note thatp∗i is an explicit expression of the componentγi only and not of the vectorγ.

We now obtain the solution to (23) by findingλ∗ using (25). This is done by computing the root of the function

F (λ) =

∫

γ∈R
K

+

K
∑

i=1

log (1 + γip
∗
i (λ, γi)) f(γ)dγ − λ

(

µ+

∫

γ∈R
K

+

K
∑

i=1

p∗i (λ, γi) f(γ)dγ

)

(26)

using the Dinkelbach method. The computation of the integrals may be demanding, especially forK > 3. However,

the computation time can be reduced by exploiting the structure of f(γ), e.g. if the parallel subchannels are

independent,f(γ) can be written as a product of the PDFs of its componentsγi.

Analogously to Section V-B1, average sum power and sum rate constraints can be easily imposed here as well.

Moreover, this method can be applied to MIMO channels, whichare decomposed into parallel channels using

singular-value decomposition [22]. The case of Rayleigh fading channels has been treated in [23].

D. Gap to capacity

The Shannon capacity models the theoretically achievable rate for an ideal Gaussian input. In a real system,

the achievable rate is often modeled using a gap depending onthe modulation and coding schemes being used. In

addition, a gap can be used to model the uncertainty in the received SNR.

1) Constant gap to capacity:The simplest variation of the rate function is to introduce aconstant gap to capacity,

as suggested in [6]. The rate function then becomes

ri(pi) = log
(

1 +
γi
Γ

· pi
)

,

whereΓ is the gap to capacity. Note thatΓ is independent of the subcarrier CNR. The simplest way of including

such a gap is to exchangeγi for γi

Γ in the water-filling solution.

2) Subchannel-dependent gaps (mercury/water-filling):For an arbitrary modulation scheme, the rate function is

described by the mutual information expression. In the following, the approach is described for parallel channels

following [24]. It can be generalized to multiple antenna systems [25].

The input signals on thei-th channelsi (normalized with unit power) are from some modulation setMi, which

can be discrete as well as continuous. The rate function is defined as the mutual information between input and
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output of the channel,

ri(pi) = I(si;
√
γipisi + ni), [nats/channel use] (27)

whereγi = |hi|2/σ2, ni is a zero-mean unit-variance proper complex Gaussian random variable andpi is the power

allocated to thei-th channel. The mutual information in (27) is strictly concave inp [24, Appendix A]. In general,

it is difficult to obtain a closed form expression for the mutual information. However, all optimization problems in

the last section can be generalized by the following observation [26]: If the signal-to-noise ratio on theith channel

is denoted byρi = γipi, then
d

dρi
ri(ρi) = MMSEi(ρi), (28)

where MMSEi(ρi) = Esi [|si − ŝi|2] with MMSE estimateŝi = Esi [si|
√
ρisi + ni = yi]. The MMSE is known

in closed form for many important discrete and continuous constellations [24, Section IV] and these expressions

can be inserted into the KKT optimality conditions. In orderto solve for the optimal power allocation, the inverse

MMSE function MMSE−1
i (ρi) is used.

The parametric convex program is

F (λ) = max
p∈S

1
T
r(p)− λ(µ+ 1

T
p),

whereri = ri(pi) according to (27) andλ ∈ R is treated as parameter. The stationarity condition is

dri
dpi

∣

∣

∣

∣

pi=p∗

i

− λ = 0, i = 1, . . . ,K.

Inserting (28), we have

γiMMSEi(γip
∗
i ) = λ, i = 1, . . . ,K,

i.e. the MMSE of subchanneli at the optimum powerp∗i is given by

MMSEi(γip
∗
i ) =

λ

γi
.

Considering the constraintspi ≥ 0, the optimum powers are given explicitly by

p∗i =







1
γi

MMSE−1
i (ζi) ζi < 1

0 ζi ≥ 1

whereζi = λ/γi. This solution has a graphical interpretation analogous toconventional water-filling [24] with1
γi

exchanged forΓi(ζi)
γi

, where

Γi(ζi) =







1/ζi − MMSE−1
i (ζi) ζi < 1

1 ζi ≥ 1

is the gap with respect to an ideal Gaussian signal. For Gaussian inputs,Γi = 1.

Theλ that maximizes the EE is obtained by finding the root ofF (λ). The rate functionsri are computed through
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integration of the MMSE overρ [26],

ri(ρi) =

∫ ρi

0

MMSEi(ρ)dρ.

As already mentioned, the MMSE can be evaluated for discreteconstellations in a semi-analytical form involving

some simple integrals. For a real-time implementation the values of MMSE−1
i (·) andri(·) can be tabulated for the

constellations of interest. The functionF (λ) is then evaluated as follows:

1) Calculateζi for all subcarriers

2) Use the table of MMSE−1(·) to find p∗i for all subcarriers

3) Use the table ofri(·) to find ri(γip
∗
i ) for all subcarriers

4) Useri(γip∗i ) andp∗i to calculateF (λ)

E. Nested convex problem

Many solutions (whether closed-form or algorithmic) to maximization of rate functions given a sum power

constraint in various scenarios are available in the literature. A well-known example of this is rate maximization

over parallel channels. The solution is water-filling, where the water level is a function of the dual variable, which

can be computed using known algorithms [27]. An EE optimization problem can be reduced to a one-dimensional

convex problem using transformation (8), which allows the known results to be utilized. We will illustrate this using

the example of mercury/water-filling.

For any optimization problem, we can first optimize over someof the variables and then over the remaining ones

[11, Sec. 4.1.3, p. 133]. Thus, (9) can be reformulated as

maximize
t>0

tf1(y
∗(t)/t), (29)

where

y
∗(t) = argmax

y
{f1(y/t) : tf2(y/t) ≤ 1,y/t ∈ S} = tx∗(t)

= t argmax
x

{f1(x) : f2(x) ≤ 1/t,x ∈ S} . (30)

Since the original problem is convex, the new problem is convex as well.

As shown in [24], the optimal power allocation for the maximization of the sum rate (or mutual information)

over parallel channels for an arbitrary modulation scheme,i.e.

p
∗ = argmax

p≥0∑
K

i=1
pi≤P

K
∑

i=1

ri(pi),

whereri(pi) is given by (27), is

p∗i =
1

γi
MMSE−1

i

(

min

{

1,
η

γi

})

, i = 1, . . . ,K,
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whereη is the unique solution to the equation

K
∑

i=1,γi>η

1

γi
MMSE−1

i

(

η

γi

)

= P. (31)

Let us denote the maximum rate function by
∑K

i=1 ri(p
∗
i (P )), which is evaluated algorithmically for any given

sum powerP ≥ 0. Now we want to solve the problem

maximize
p≥0

∑K
i=1 ri(pi)

µ+
∑K

i=1 pi
,

with µ > 0. Applying (29) and the known solutionp∗i , we obtain

maximize
0<t≤1/µ

t ·
K
∑

i=1

ri(p
∗
i (1/t− µ)), (32)

wheret = (µ+ P )−1.

Note that the optimal power allocation for EE maximization is functionally identical to that of rate maximization.

The difference between them is thatη is chosen to fulfill the sum power constraint in the former, whereasη is

chosen to achieve the highest EE in the latter.

A similar nesting approach was proposed in [28], where the EEproblem with any concave rate function is

reduced to a one-dimensional quasiconvex problem. Here it is formulated as a one-dimensional convex problem.

This approach has the advantage that known rate maximization results can be easily implemented with almost no

analysis required for maximizing the EE. However, doing some pre-analysis of the original EE optimization problem

enables it to be solved with less computational cost. In solving (32), every iteration for finding the optimalt requires

solving (31) to obtainp∗i (1/t− µ). In the approach presented in Section V-D2, however, no inner optimization is

required becausep∗i is derived explicitly as a function ofλ. Thus, the optimization can be carried out directly over

the dual variableλ and the maximum EE is obtained more efficiently. On the other hand, if such a pre-analysis

cannot be done, or if the computation time is not an essentialcriterion, the nesting method may be attractive.

VI. SIMULATION

A. Time-varying channel with varying number of antennas

Let us consider a time-varying frequency-flat MIMO link withnT and nR transmit and receive antennas,

respectively, where the link between each transmitter and receiver antenna is subject to Rayleigh fading. We assume

that perfect causal channel information is available at both ends. As previously mentioned, this can be transformed

to parallel channels using singular-value decomposition.Using the result from Section V-C and the generic base

station power model in Section IV-A, we optimize the EE over the transmit power for various antenna configurations

and observe how the optimal EE changes with the circuit powerPc. The bandwidth is set atB = 200 kHz, and

the noise power density atN0 = −104.5 dBm/Hz. We assume the power amplifier efficiency to beηPA = 0.35.

The other constants in the power model are chosen according to values presented in [18]:ηC = 0.95, ηPS = 0.9,

Psta= 20 W.
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In Fig. 3 we observe that for an equal number of antennas (nT = nR = n) on both ends, it is more efficient to

employ more antennas in this setting. Notice also thatEE∗ decreases monotonically withPc. This is in agreement

with results in [29], although there the antenna configuration is considered to be energy-efficient if it yields a

small energy-per-goodbit given a maximum tolerated outageprobability. It is shown there that for Rayleigh fading,

selecting the balanced MIMO configuration with the highestn gives the best EE, but this is not the case for Rician

fading. Due to higher correlation between the transmit and receive antennas in Rician fading, lower rates are achieved

and therefore the employment of more antennas (which incur higher circuit power consumption) deteriorates the

EE.

It is also interesting to note that ifPc = 0, i.e. if the circuit power does not depend on the number of antennas,

EE∗ increases linearly withn.

In Fig. 4, we simulate the case where the receiver has only oneantenna. Again,EE∗ decreases withPc. However,

it is not always best to choose the largest number of transmitantennas. As can be seen in the inset, employing

the highestnT is efficient only if Pc is small. This is intuitive since whenPc is small, it does not cost much

more power to employ more antennas. AsPc increases, the loss in EE by employing more antennas increases as

well. The reason for this is that whennR = 1 andPc is nonzero, the transmission rate scales sublinearly withnT ,

whereas the power consumption scales linearly with it. AsPc becomes larger, the difference between the gain in

EE (through the increase of the transmission rate by increasing nT ) and the loss caused by the more rapid increase

in power consumption becomes larger as well.

The overall conclusion from the assessment in Figures 3 and 4is that one should carefully consider whether or

not to activate each antenna with the required RF chain. As a rule of thumb it holds: activate additional antennas

at the transmitter and receiver side only if it is worth it. Contrary to the traditional point of view, having more

antennas is not always better. An additional diversity gain(Fig. 4) does not always justify the additional energy

consumption; it depends on the operating point. In contrastthe additional degree of freedom or multiplexing gain

in Fig. 3 motivates the activation of more antennas.

B. Quadraticm-QAM

In the presence of Gaussian noise, the MMSE for anm-ary discrete constellation is

MMSE(ρ) = 1− 1

π

∫

∣

∣

∣

∑m
l=1 qlsle

−|y−√
ρsl|2

∣

∣

∣

2

∑m
l=1 qle

−|y−√
ρsl|2

dy,

whereql are probabilities and the integral is over the complex field.

For m-PAM, we haveql = 1/m and

sl ∈
{

(2l− 1−m)

√

3

m2 − 1

}

.

For evenm, the correspondingm-QAM consists of twom/2-PAM constellations in quadrature, each with half the

power. Writingy asyI + jyQ, it can be shown that integration over the quadrature componentyQ yields
√
π. Thus,
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for m-PAM we have

MMSE(ρ) = 1− 1√
π

∫ ∞

−∞

(

∑m
l=1 qlsle

−(yI−
√
ρsl)

2
)2

∑m
l=1 qle

−(yI−
√
ρsl)2

dyI .

The values of MMSE(ρ) are evaluated numerically for variousm-QAM constellations. Using this result, MMSE−1(·)
and ri(·) are tabulated. The EE of a flat fading channel is optimized according to the method detailed in Section

V-D2. The resulting trade-off curve withµ = 1 is shown in Figure 5. Ifµ is independent of the modulation scheme,

it is always beneficial to use a higher modulation order sincethere is no cost associated with using a higher order

modulation scheme. For small values ofµ, the curves start at a point close to the origin and the optimal EE is

approximately equal for the different schemes, whereas thedifference increases for larger values ofµ. The value

of p∗ is also higher for higher-order modulation schemes.

However, a higher modulation scheme may increase the necessary offset power. In this case, a lower modulation

order might be optimal in certain cases.

VII. D ISCUSSION

The variableλ is found throughout the solutions in the application examples. We would like to point out its

significance by recapitulating its various interpretations. In Section III-A we showed thatλ represents the relative

weight of the denominator in the scalarized bi-criterion optimization problem. It can also be interpreted as the slope

of the trade-off curve between two objectives. In EE optimization, these two objectives are the sum rate and the

sum power. At the optimum,λ∗ is identical to the maximum EE adjusted with an appropriate system-dependent

scaling factor.

All the examples we considered resulted in water-filling solutions. It is noteworthy thatλ in these cases represents

a cut-off value,i.e. power is allocated for transmission through a channel only if the SNR valueγ is larger thanλ.

VIII. C ONCLUSIONS

There exist many results on EE optimization in wireless communications systems. Most papers formulate a novel

objective function and solve the corresponding optimization problem under certain constraints and assumptions for

a specific scenario. We feel that it is time to unify the various approaches and understand the core of this class of

problems. In this paper, motivated by a typical anecdotal scenario we arrive at a non-convex optimization problem

of maximizing the ratio of achieved rate to dissipated power. It belongs to a class of problems called fractional

programs, for which a rich but scattered mathematical literature has evolved over the years. Therefore, we collect

and coherently present the results and offer a set of solution methods. The power models are carefully described in

order to motivate the problem formulation. Applications invarious settings include time-invariant parallel channels,

time-varying flat-fading channels, and time-varying parallel channels, illustrating the usefulness of the framework.

As an extension to this framework, one could study the case where more general function classes, e.g. non-concave

functions, are used in the numerator of the EE metric. A framework that accommodates discrete optimization

variables would also be interesting for systems with on-offpower modes, in which parts of a base station may be
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turned off during off-peak hours. For these problems, otheroptimization methods will be needed in addition to

concave fractional programming.
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Fig. 1. Illustration of the trade-off curve betweenf1(x∗) andf2(x∗), wherex∗ is optimal for a given value ofλ. The parameterλ is the
slope of the tangent, whereasF (λ) is given by the intersection with the vertical axis. The corresponding value of the objective function in (5)
is given bytan θ. The maximum occurs whereF (λ) = 0.
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Algorithm 1: The Dinkelbach method.

Data: λ0 satisfyingF (λ0) ≥ 0, tolerance∆
n = 0 ;
while |F (λn)| ≥ ∆ do

Useλ = λn in (6) to obtainx∗
n;

λn+1 =
f1(x

∗

n
)

f2(x∗

n
) ;

n++;
end
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Algorithm 2: The Dinkelbach method for energy-efficient link adaptationon a block fading, frequency-selective
channel as modeled by optimization problem (14).

Data: λ0 satisfyingF (λ0) ≥ 0, tolerance∆
n = 0;
while |F (λn)| ≥ ∆ do

Calculatep∗
n from (16);

λn+1 =
1
T r(p∗

n
)

µ+1Tp∗

n

;

n++;
end
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Fig. 2. Plot of the optimal EE as a function ofµ for a frequency-selective channel. Whenµ is small,λ = λmax due to the sum rate constraint
and the problem reduces to pure power minimization. Similarly, whenµ is large,λ = λmin due to the maximum sum power constraint and the
problem reduces to pure rate maximization. In both cases, there is a penalty in EE outside the interval.
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Fig. 3. The maximum EE in time-varying MIMO channels with Rayleigh fading versus circuit power. The number of transmit and receive
antennas are identical.
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Fig. 4. The maximum EE in time-varying MIMO channels with Rayleigh fading versus circuit power. The number of receive antennas is one.
The inset shows the enlarged region wherePc ∈ [0, 1.5].
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Fig. 5. Trade-off curve between transmit power and mutual information for Gaussian signals andm-QAM, respectively, in a single-carrier
system withµ = 1. The dotted lines indicate the maximum EE.
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TABLE I
L INEAR POWER MODEL PARAMETERS

Parameter Description

NSector # sectors

PTX Tx power

PSP Signal processing overhead

CPSBB Battery backup and power supply loss

NPApSec # PAs per sector

µPA PA efficiency

CC Cooling loss
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