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Abstract

A constantK-user interference channel in which the users are not symbol-synchronous is considered. It is

shown that the asynchronism among the users facilitates aligning interfering signals at each receiver node while

it does not affect the total number of degrees of freedom (DoF) of the channel. To achieve the totalK/2 DoF

of the channel when single antenna nodes are used, a novel practical interference alignment scheme is proposed

wherein the alignment task is performed with the help of asynchronous delays which inherently exist among the

received signals at each receiver node. When each node is equipped withM > 1 antennas, it is argued that the same

alignment scheme is sufficient to achieve the totalMK/2 DoF of the medium when all links between collocated

antennas experience the same asynchronous delay.

I. INTRODUCTION

Asynchronism inherently exists in many communication systems mainly due to the effect of multi-path and

propagation delay. As a fundamental issue in design of communication systems, the asynchronism can detrimen-

tally affect the system performance if it is ignored or not dealt with properly. Although in most cases, it is

presumed that terminals are synchronized by an infrastructure service provider, this assumption cannot be held

in many communication scenarios such as the interference channel in which multiple independent receivers are

randomly distributed over a geometrical area. In such scenarios, only one of the receivers can possibly receive a

synchronized version of the transmitted signals (if an infrastructure synchronizing center exists) and the rest receive

random asynchronous combinations of them. Contrary to intuition, some exceptions have been reported wherein

the asynchronism has helped to improve the system performance [1]–[3]. For example, it is shown in [3] that in

contrast to the synchronous pulse amplitude modulation (PAM), asynchronous PAM can exploit the total existing

degrees of freedom of a multiple-input multiple output (MIMO) channel which communicates over a spectral mask

with infinite support. In this work, we investigate the effect of the asynchronism naturally existing among the users

on the total number of DoF of theK-user symbol-asynchronous interference channel.

A. Prior Works

Despite many efforts during the last thirty years [4]–[8], the capacity region of the Gaussian interference channel

is not known yet. To approximate the capacity at least for large values of signal to noise ratio (SNR,ρ), the region

of DoF and the total number of DoF of the channel are studied. The DoF region, which roughly determines the

shape of the capacity region at high values of SNR, is defined as the ratio of the capacity region andlog ρ when

ρ → ∞. Similarly, the total DoF is defined as the ratio of the sum-capacity andlog ρ when ρ → ∞. In [9], it
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is shown that the total DoF of theK-user synchronous interference channel isK/2 when fading coefficients are

time-varying, that is, each pair can benefit from half of its original degree of freedom with no interference from

other pairs. This upper-bound is achieved by a technique called Interference Alignment. The key idea of interference

alignment is to design signals such that they overlap at non-intended receivers while remaining distinct from the

interferences at desired receivers [10]. It is shown in [11]that in ergodic scenarios, a simple paring scheme of

particular channel matrices is adequate to achieve the total K/2 DoF of the channel.

In practice, however, the transmission rate is usually muchfaster than the rate of the channel variation resulting

in quasi-static (constant) or block fading channel models.For such channels where the link coefficients are fixed for

a long period of time, it is shown in [12] that the total multiplexing gain is upper bounded byK/2. Inspired by the

idea of interference alignment for varying fading channels, many efforts have been made to generalize the idea to

constant interference channels. In [13], it is shown that ina quasi-staticK-user interference channel with real fading

coefficients, there areK/2 degrees of freedom if the direct fading coefficients are irrational and the crossing gains

are rational numbers, while it is strictly less thanK/2 when all the coefficients are rational numbers. In [14], using

asymmetric complex signaling over constant interference channel, it is shown that a minimum total DoF equal to

1.2 is achievable for almost all values of channel coefficients (outside a subset of measure zero) of an interference

channel with three or more users. Inspired by [13], the authors in [15] take advantage of the properties of the rational

and the irrational numbers to align the users’ interferences in the constantK-user interference channel to achieve

the totalK/2 DoF of this channel. While the proposed scheme, which is known as real-interference-alignment,

performs the alignment task almost surely at infinite SNR with infinite quantization precision, it does not offer a

feasible solution for practical ranges of SNR.

A common unrealistic assumption in all of the aforementioned schemes is that the users are fully synchronous

and the received signal at each receiver node is a synchronized linear combination of the transmitted signals. In [16]

interference alignment based on propagation delays of signals is proposed via an example of proper node placement

in a wireless network containing four nodes. In [17], a fullyconnectedK-user interference channel is modeled by

a time indexed interference graph and the alignment task is associated with finding the maximal independent set

of the graph via a dynamic programming algorithm. As a simplifying assumption, asynchronous delays among the

received signals at each receiver are assumed to be integer multiples of the symbol interval.

B. System Description

In this paper1, we consider a symbol-asynchronousK-user interference channel and investigate the effect of the

asynchronism on the total DoF of this channel. It is argued that the asynchronism facilitates aligning interfering

signals at each receiver node while it does not affect the total DoF of the channel. Each node is equipped with a

single antenna. The channel coefficient between thej-th transmitter and thei-th receiver is denoted byhi,j, i, j ∈
{1, . . . ,K}. We assume that the fading coefficients are constant non-zero random variables drawn from a probability

distribution. The nodes are assumed to be frame-synchronous, however, not symbol-synchronous, i.e., the beginning

and the end of each frame align up to a delay of length less thana symbol interval,Ts. Let τi,j denote the relative

delay of the received signal from thej-th transmitter to thei-th receiver. We assumeτi,j ’s are i.i.d random variables

drawn from a continuous probability distribution and0 ≤ τi,j < Ts, ∀ i, j ∈ {1, 2, . . . ,K}. They are constant during

1This work has partly been published in [18].
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transmission of a frame. Let

τ
[i]
m,j , τi,m − τi,j, ∀ i, j,m ∈ {1, 2, . . . ,K}, (1)

be the relative delay between the transmitted signals from them-th and thej-th transmitters measured at thei-th

receiver node. Sinceτi,j ’s are continuous independent random variables over a symbol interval, τ [i]m,j ’s are distinct

with probability one∀ i, j,m ∈ {1, 2, . . . ,K} (m 6= j) and−Ts < τ
[i]
m,j < Ts.

Each transmitter uses a unit energy shaping waveformψj(t), j ∈ {1, . . . ,K}, to linearly modulate its information

symbols in a PAM like signal. The transmitted signal of thej-th transmitter is given by

xj(t) =
∑

k

xj(k)ψj(t− kTs), (2)

wherexj(k) is the transmitted symbol by thej-th transmitter at thek-th symbol interval. The received signal at

the i-th receiver is given by [1]

yi(t) =

K
∑

j=1

hi,jxj(t− τi,j) + zi(t), i ∈ {1, . . . ,K}, (3)

wherezi(t) is an additive white Gaussian noise process with zero mean and power spectral densityσ2.

C. Main Result

Theorem 1:The total number of DoF of the underlying constantK-user symbol-asynchronous interference

channel with single antenna nodes is upper bounded byK/2. This upper-bound is achieved for almost all values

of the fading coefficients and propagation delays.

We first argue that the total DoF of the underlying channel is upper bounded byK/2. Then, a novel interference

alignment scheme, which deploys the asynchronous delays among the users, is proposed to achieve the totalK/2

DoF of the channel almost surely. The asynchronism causes inter-symbol-interference (ISI) among transmitted

symbols by different transmitters. Therefore, the underlying quasi-static links are converted to ISI and accordingly

to time-varying channels providing the required channel variation for the interference alignment. Our scheme is

similar to the vector alignment scheme invented in [9] for varying fading channels; however, it is proposed for the

constant symbol-asynchronous interference channels. When each node is equipped withM antennas, we argue that

the same scheme achieves the totalMK/2 DoF of the medium provided that all links between collocatedantennas

experience the same asynchronous delay. This results in performing the alignment task in a smaller number of

channel uses.

The rest of the paper is organized as follows. In Sections II,the system model and the signaling schemes are

discussed. The proof of Theorem 1 is given in Section III. Theasynchronous interference channel with multiple

antenna nodes is considered in Section IV. The paper is concluded in Section V.

Notations: In this work, letters with underlinex,X denote vectors, and boldface uppercase lettersX denote

matrices. The superscripts[·]⊺, [·]† denote the transpose and the conjugate transpose of the corresponding vector or

matrix, respectively.In is the identity matrix of dimensionn.

II. SYSTEM MODEL AND SIGNALING SCHEME

We assume that all shaping waveforms are the same, i.e.,ψj(t) = ψ(t), ∀j. In theory,ψ(t) is a band-limited

waveform with bandwidthW , e.g., the sinc waveform,sinc(x) = sinπx
πx . In practice, however, using band-limited



4

waveforms with infinite time support is not feasible. Hence,a truncated version of common waveforms is used.

We consider both cases of using band-limited and time-limited waveforms and present a unified channel model for

both cases.

A. Whenψ(t) Is a Band-Limited Waveform

In this case, for codewords of lengthN , the received signal at thei-th receiver sampled att = kTs + τi,i, k =

0, 1, . . . , N − 1, is given by

yi(k) =

K
∑

j=1

hi,j

N−1
∑

q=0

γi,j(k − q)xj(q) + zi(k), (4)

whereγi,j(k) , ψ
(

kTs + τ
[i]
i,j

)

, zi(k) is the sample of the noise att = kTs + τi,i. The received samples can be

written in a vector form as follows,

y
i
=

K
∑

j=1

hi,jΓ̂i,jxj + zi, (5)

wherexj = [xj(0), xj(1), . . . , xj(N − 1)]⊺, y
i
= [yi(0), yi(1), . . . , yi(N − 1)]⊺, zi = [zi(0), zi(1), . . . , zi(N − 1)]⊺,

and

Γ̂i,j =



















γi,j(0) γi,j(−1) γi,j(−2) · · · γi,j(−N + 1)

γi,j(1) γi,j(0) γi,j(−1) · · · γi,j(−N + 2)

γi,j(2) γi,j(1) γi,j(0) · · · γi,j(−N + 3)
...

...
... · · · ...

γi,j(N − 1) γi,j(N − 2) γi,j(N − 3) · · · γi,j(0)



















. (6)

As can be seen, the asynchronism among the users causes ISI among the transmitted symbols by different users

which is represented by matrix̂Γi,j. We approximate this matrix with its asymptotically equivalent circulant matrix

and show that the approximation error is negligible for large codeword length.

Definition 1: Two matrix sequences{AN} and{BN}, N = 1, 2, . . . , are said to be asymptotically equivalent,

and denoted by{AN} ∼ {BN}, if the following conditions are satisfied [19]:

1) ∃Q <∞ such that∀N, ‖AN‖ < Q and‖BN‖ < Q,

2) lim
N→∞

|AN −BN | = 0,

where‖A‖ and |A| denote the strong norm and the weak norm ofA given by [20]

‖A‖ = max
x

[

(x†A†
Ax)/(x†x)

]1/2
,

|A| =
[

N−1
trace(A†

A)
]1/2

.

It is shown in [19] that for all absolutely summable infinite complex sequences{γi,j(k), k ∈ Z} with 2π-periodic

discrete time Fourier transform (DTFT),Γi,j(ω), given as

Γi,j(ω) =
∑

k

γi,j(k)e
−ξωk, (7)

with ξ =
√
−1, {(Γ̂i,j)N} is asymptotically equivalent to the circulant matrix{(Γi,j)N} defined as

(Γi,j)N , U
†
N (Λi,j)NUN , (8)
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whereUN is the unitary discrete Fourier transform (DFT) matrix of dimensionN given by

UN (q, s) =
1√
N
e−ξ 2π(q−1)(s−1)

N , q, s = 1, 2, . . . , N, (9)

and (Λi,j)N is a diagonal matrix with theq-th diagonal entry given by

(Λi,j)N (q, q) = Γi,j

(

2π(q − 1)

N

)

, q = 1, 2 . . . , N. (10)

Clearly, for a band-limited waveform with non-zero spectrum over its bandwidth, if the Nyquist sampling frequency

fs = 2W is chosen, there is no deterministic zero in the spectrum of the sequence{γi,j(k), k ∈ Z} and the diagonal

entries of(Λi,j)N are all non-zero bounded values. For large codeword length,we can approximate(Γ̂i,j)N by

(Γi,j)N . In the sequel, we may omit the superscript(·)N for simplicity.

Lemma 1: If the shaping waveform has a sub-linear decaying rate in time, (i.e,|ψ(t)| ≤ a/|t/Ts|η, a is a constant

andη > 1), Γ̂i,j can be approximated byΓi,j with a negligible approximation error asN → ∞.

The proof is given in Appendix B. Since the communication in this case is carried out over a strictly limited

bandwidthW , according to the shift property of the DTFT, we get

Λi,j = Λ0E
(

τ̂
[i]
i,j

)

, (11)

whereτ̂ [i]i,j ,
τ
[i]
i,j

Ts
, Λ0 is defined similar toΛi,j when τ̂ [i]i,j = 0, and

E(τ̂
[i]
i,j) = diag

{

1, e−ξ 2π

N
τ̂ [i]
i,j , e−ξ 4π

N
τ̂ [i]
i,j , . . . , e−ξ 2(N−1)π

N
τ̂ [i]
i,j

}

. (12)

For sufficiently large values of N, by approximatinĝΓi,j and byΓi,j and substituting (11) to (8), we get

y′
i
= Λ0

K
∑

j=1

hi,jE
(

τ̂
[i]
i,j

)

x′j + z′i, (13)

wherey′
i
, x′j , z

′
i are respectively the linear transformations ofy

i
, xj, zi by the DFT matrix,U.

B. Whenψ(t) Is a Time-Limited Waveform

Assume thatψ(t) has a time support equal touTs, i.e., ψ(t) = 0,∀ t 6∈ [0, uTs]. At the j-th transmitter, a

codeword of lengthN , xj = [xj(0), xj(1), . . . , xj(N −1)]⊺, is supported by cyclic prefix and cyclic suffix symbols

(CPS) each of lengthu + 1 such that the first and the lastu + 1 symbols ofxj are respectively repeated at the

end and at the beginning of this vector. The resulted vector,xcpsj = [xj(N − u − 1), xj(N − u), . . . , xj(N −
1), xj(0), xj(1), . . . , xj(N − 1), xj(0), xj(1), . . . , xj(u)]

⊺, of length ℓ = N + 2(u + 1) is transmitted over the

channel. The received signal at thei-th receiver node is given by

yi(t) =

K
∑

j=1

hi,j

ℓ−1
∑

k=0

xcpsj (k)ψ(t − kTs − τi,j) + zi(t), (14)

wherexcpsj (k) is the k-th entry of xcpsj . This signal is passed through a filter matched to the desiredlink. The

output of the matched filter sampled att = (k + 1)Ts + τi,i, k = 0, . . . , ℓ− 1, is given by

yi(k) =

∫ (k+u)Ts+τi,i

kTs+τi,i

yi(t)ψ
∗(t− kTs − τi,i)dt

=

K
∑

j=1

hi,j

u
∑

q=−u

γi,j(q)x
cps
j (k + q) + zi(k), (15)
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wherexcpsj (q) = 0, ∀q < 0, and

γi,j(q) =

∫ uTs

0
ψ(t− qTs + τ

[i]
i,j)ψ

∗(t)dt, (16)

zi(k) =

∫ (k+u)Ts+τi,i

kTs+τi,i

zi(t)ψ
∗(t− kTs − τi,i)dt. (17)

Each transmitted symbol of a stream is interfered by(u− 1) previous and(u− 1) future symbols (if not zero)

of the same stream. It is also interfered by2u− 1 symbols (if not zero) of each of the other transmitted streams. If

the interfering stream is ahead of the desired stream,u− 1 previous andu future symbols of that stream interfere

with the current symbol of the desired stream. However, if the interfering stream is behind the desired stream,u

previous andu − 1 future symbols of that stream interfere with the current symbol of the desired stream. These

can be verified by checking thatγi,i(u) = γi,i(−u) = 0 and for i 6= j, γi,j(u) = 0 if τ [i]i,j < 0, andγi,j(−u) = 0 if

τ
[i]
i,j > 0.

By discarding CPS symbols at the output of the matched filter,we obtain

y
i
=

K
∑

j=1

hi,jΓi,jxj + zi, (18)

wherexj = [xj(0), xj(1), . . . , xj(N − 1)]⊺, y
i
= [yi(u + 1), yi(u + 2), . . . , yi(u + N)]⊺, zi = [zi(u + 1), zi(u +

2), . . . , zi(u+N)]⊺, andΓi,j is the circulant convolution matrix of the generator sequence γ̂
i,j

= [γi,j(0), γi,j(1)

, . . . , γi,j(u), 0, . . . , 0, γi,j(−u), . . . , γi,j(−1)]⊺ of lengthN . AssumingN ≥ 2u, Γi,j in general is given in equation

(19) for all i, j. However, depending on the values of the relative asynchronous delays,γi,j(−u) or γi,j(u) might

be zero.

Γi,j =



























γi,j(0) · · · γi,j(−u) 0 0 . . . 0 γi,j(u) γi,j(u − 1) . . . γi,j(1)

γi,j(1) · · · γi,j(−u+ 1) γi,j(−u) 0 . . . 0 0 γi,j(u) . . . γi,j(2)

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

0 · · · 0 · · · 0 γi,j(u) · · · γi,j(1) γi,j(0) γi,j(−1) · · · γi,j(−u)
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

γi,j(−1) · · · γi,j(−u) 0 · · · · · · 0 γi,j(u) · · · γi,j(1) γi,j(0)



























.

(19)

zi is the colored noise vector at thei-th receiver with the covariance matrixΦi = σ2i Γ̃0, whereσ2i is the variance

of the samples of the additive white Gaussian noise at thei-th receiver and̃Γ0 is given in (20).

Γ̃0 =



























γi,i(0) γi,i(−1) · · · γi,i(−u+ 1) 0 0 . . . 0 . . . 0

γi,i(1) · · · γi,i(−u+ 2) γi,i(−u+ 1) 0 . . . 0 . . . 0

. . .
. . .

. . .
.. .

. . .
. . .

. . .
. . .

. . .

0 . . . 0 0 γi,i(u − 1) · · · γi,i(0) · · · γi,i(−u+ 1)

. . .
. . .

. . .
.. .

. . .
. . .

. . .
. . .

. . .

0 0 · · · 0 · · · 0 γi,i(u− 1) · · · γi,i(0)



























. (20)

Γ̃0 is a Hermitian banded Toeplitz matrix of orderu. This matrix is shown to be asymptotically equivalent toΓi,i

given in (19) [19]. Since these matrices are Hermitian, their eigenvalues are all non-negative real numbers. Using

properties of asymptotically equivalent Hermitian matrices in [19], it can be shown that the eigenvalues ofΓ̃0 are

all bounded2.
2The correlated noise vector can be whitened by passing the received signal vector through a whitening filter. However, itis not necessary

to do so here, because the bounded eigenvalues ofΓ̃i do not affect the total number of degrees of freedom of the underlying channel.
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As can be seen from (18), due to the effect of the asynchronismamong the users, the original quasi-static links

with constant coefficients over a block ashi,jIN , i, j ∈ {1, 2, . . . ,K}, are converted to frequency-selective links

with correlated coefficients and with gains over a block given by hi,jΓi,j .

Remark 1:Because both the previous and the future transmitted symbols of all the streams affect the current

transmitted symbol of every single stream, it is necessary to add both the cyclic prefix and the cyclic suffix symbols

to every transmitted frame in order to have circulantΓi,j matrices.

Remark 2:SinceΓi,j is a circulant matrix, its eigenvalue decomposition is given by [19]

Γi,j = U
†
Λi,jU, (21)

whereU is the DFT matrix given in (9) andΛi,j is a diagonal matrix containing the elements of the DFT of the

generator sequence ofΓi,j , i.e.,Λi,j = diag{λi,j(0), λi,j(1), . . . , λi,j(N − 1)}, where

λi,j(k) =

N−1
∑

q=0

γ̂i,j(q)e
−ξ 2π

N
qk, k = 0. . . . , N − 1, (22)

and γ̂i,j(q) is theq-th element of̂γ
i,j

.

Proposition 1: For a waveform with non-zero spectrum over its bandwidth,Γi,j is a full rank matrix∀ i, j ∈
{1, 2, . . . ,K}. In addition, its eigenvalues (the diagonal entries ofΛi,j) are bounded.

The proof is given in Appendix A. MatrixΛi,j contains the elements of the DFT ofγ̂
i,j

or equivalently the samples

of the DTFT of the sequence{γi,j(k),∀k ∈ Z} given in (7) on its main diagonal. Whenu→ ∞ (N ≥ 2u), γi,j(k)’s

are the samples of a strictly limited bandwidth process of bandwidthW = 1/2Ts (see the proof of Proposition 1).

In this case, the shift property of the DTFT yields

Λi,j = Λ0E
(

τ̂
[i]
i,j

)

, (23)

whereτ̂ [i]i,j =
τ
[i]
i,j

Ts
, Λ0 is defined similar toΛi,j when τ̂ [i]i,j = 0, andE(τ̂

[i]
i,j) is given in (12).

Lemma 2: If the shaping waveform has a sub-linear decaying rate in time, for a finite value ofu, the equality

(23) still holds with a bounded approximation error which goes to zero asu increases.

The proof is given in Appendix C. According to Lemma 2, for sufficiently large values of u, by decomposing

the circulant matricesΓi,j on the DFT basis, we get

y′
i
=

K
∑

j=1

hi,jΛi,jx
′
j + z′i

≃ Λ0

K
∑

j=1

hi,jE
(

τ̂
[i]
i,j

)

x′j + z′i, (24)

wherey′
i
, x′j , z

′
i are respectively the linear transformations ofy

i
, xj, zi by the DFT matrix,U.

C. The Shaping Waveform

It was argued in the previous subsections that having a sub-linear decaying rate in time for the shaping waveform

is a necessary and a sufficient condition to obtain the systemmodels presented in (13) and (24) for band-limited

and for time-limited waveforms, respectively. Hence, the raised-cosine waveform with a non-zero excess bandwidth,

which has a decaying rate proportional to1/|t/Ts|3 for large enough values oft, is a good candidate to be used in

the structure of the proposed scheme (i.e., using the root-raised cosine waveform as the transmitter and the receiver
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filters). As can be seen, waveforms with faster decaying ratein time are more appealing to have a faster decaying

approximation error withu.

Remark 3:According to the Paley-Wiener Theorem, the spectrum of a signal cannot be both time-limited and

band-limited. Hence, using a truncated version of a waveform results in an unlimited support in the frequency

domain [21]. For practical values of SNR (ρ < ∞), if a well-designed waveform with vanishing spectrums outof

bandwidthW is used, depending on the level of the noise at the receivers,one may chooseu sufficiently large

such that the tails of the spectrum of the transmitted signals lie below the noise level. In this case, the system can

be approximated with a bandlimited one. In theory, whenρ→ ∞, it is not possible to avoid bandwidth expansion

when a finite support shaping waveform is used.

III. PROOF OFTHEOREM 1

A. Proof of the First Part

Assumeψ(t) with bandwidthW = 1
2Ts

is used as the shaping waveform. Since the transmitted sequences are

independent, the bandwidth of the received signal at each receiver node is alsoW . By taking the Fourier Transform

of both sides of equation (3), we obtain

Yi(f) =

∫ ∞

−∞





K
∑

j=1

hi,jxj(t− τi,j) + zi(t)



 e−ξ2πftdt

=

K
∑

j=1

hi,je
−ξ2πfτi,j

∫ ∞

−∞

∑

k

xj(k)ψ(t − kTs)e
−ξ2πftdt+ Zi(f)

=

K
∑

j=1

hi,jΨ(f)e−ξ2πfτi,j
∑

k

xj(k)e
−ξ2πfkTs + Zi(f)

=

K
∑

j=1

hi,jΨ(f)e−ξ2πfτi,jXj(f) + Zi(f)

=

K
∑

j=1

h′i,j(f)Xj(f) + Zi(f), (25)

whereZi(f) is the Fourier Transform ofzi(t), h′i,j(f) = hi,jΨ(f)e−ξ2πfτi,j , andXj(f) is the2π-periodic DTFT

given in (7) of the transmitted sequence by thej-th transmitter. Equation (25) represents the mathematical model

of a synchronousK-user interference channel with varying fading coefficients in the frequency domain. Sinceψ(t)

has bandwidthW , Ψ(f) = 0, ∀ |f | > W . For each specific value off ∈ [−W,W ], the system is modeled as a

constant synchronous interference channel which according to [12] has at mostK/2 spatial DoF. Hence, the total

number of complex DoF of the underlying channel is at mostW ×K/2 per second which is tantamount to have

at mostK/2 spatial DoF per second per hertz. �

B. Achieving Scheme, Asynchronous Interference Alignment

We propose an interference alignment algorithm which achieves the totalK/2 DoF over the underlying quasi-

staticK-user asynchronous interference channel. Our scheme is similar to the vector interference alignment scheme

proposed in [9] for time-varying channels wherein the fading coefficients of a link are independently chosen from

a continuous probability distribution at the beginning of each symbol interval. In contrast, in our scenario, the
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communication links are quasi-static. As it was observed inprevious sections, using the proposed signaling scheme,

they are converted to ISI links and accordingly to time-varying channels. Hence, the proposed scheme provides the

required channel variation for the interference alignmentin quasi static scenarios. However, the channel coefficients

of the links are not independently chosen from a distribution; rather, they are correlated in time. We show that even

under channel correlation, the alignment task can almost surely be performed.

Whenψ(t) is a band-limited waveform, the signaling scheme proposed in Section II-A is used. In this case, the

channel matrices,̂Γi,j ’s, are approximated by their asymptotically equivalent matrices,Γi,j ’s, given in (8). However,

when a time-limited waveform is used, the practical signaling scheme proposed in Section II-B is deployed. Having

the same channel model with the same notation for both cases facilitates pursuing a single procedure for both

scenarios. In the sequel, to avoid confusion, we detail the scheme for the case that a time-limited waveform is used

and elaborate it for the other case when it is necessary.

Consider a scenario wherein the first user sends(n + 1)κ streams of symbols to the first receiver via(n + 1)κ

distinct direction vectors each of lengthN = (n + 1)κ + nκ, whereκ = (K − 1)(K − 2) − 1. Each of the other

transmitters sendsnκ streams of symbols to the intended receiver vianκ distinct direction vectors of the same

lengthN . The precoding matrixVj at thej-th transmitter contains all the corresponding direction vectors as its

columns. Each transmitted frame is supported by enough number of CPS symbols. The received signal vector at

the i-th receiver node after discarding the CPS symbols is given by

y
i
=

K
∑

j=1

hi,jΓi,jVjxj + zi. (26)

To perform the alignment task, the precoding matrices should be designed such that the transmitted signals cast

overlapping shadows at non-intended receivers while remaining distinct from the interference signals at the desired

receivers. Thus, at thei-th receiver, the following condition should be satisfied.

span h1,2Γ1,2V2 = span h1,3Γ1,3V3 = · · · = span h1,KΓ1,KVK , i = 1,

span hi,jΓi,jVj ⊂ span hi,1Γi,1V1, ∀ i, j 6= 1, i 6= j,

wherespan X denotes the vector space spanned by matrixX.

Remark 4:Since a vector space is closed under the scalar multiplication, it remains the same if the generator

matrix is scaled by a constant value. Therefore, the fading coefficients do not play any role in aligning interference

signals and can be neglected as long as they are non-zero.

For simplicity, we restrict ourself to the case that

Γ1,2V2 = Γ1,3V3 = · · · = Γ1,KVK , i = 1, (27)

Γ
−1
i,1Γi,jVj ≺ V1, ∀ i, j 6= 1, i 6= j, (28)

where≺ indicates that the columns of the left hand side matrix are chosen from the columns of the right-hand side

one. Equations (27) and (28) can respectively be simplified as follows.

Vj = SjB, ∀j ∈ {2, 3, . . . ,K}, (29)

Ti,jB ≺ A, ∀i, j ∈ {2, 3, . . . ,K}, i 6= j, (30)

whereA = V1, B = Γ
−1
2,1Γ2,3V3, Sj = Γ

−1
1,jΓ1,3Γ

−1
2,3Γ2,1, ∀j ∈ {2, 3, . . . K}, andTi,j = Γ

−1
i,1Γi,jSj , ∀i, j ∈

{2, 3, . . . K}, i 6= j. Equation (30) characterizes(K − 1)(K − 2) relations. To complete the alignment task, the
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union of the images of the precoding matrices at each receiver should span the whole vector space of dimension

N , i.e., at thei-th receiver

span [V1,Γ
−1
1,1Γ1,3V3] = C

N , i = 1, (31)

span [V1,Γ
−1
i,1Γi,iVi] = C

N , i 6= 1. (32)

In this case, each receiver can decode its desired data interference free by zer-forcing the interferences.

Let w be an arbitrary vector of lengthN such thatw′ , Uw contains only non-zero entries, whereU is the

DFT matrix of dimensionN given in (9). Let

Vs ,











K
∏

i,j=2,i 6=j,(i,j)6=(2,3)

T
βi,j

i,j



w, βi,j ∈ {0, 1, . . . , s}







. (33)

A is chosen as a matrix which contains all vectors inVn. B is chosen as a matrix which contains all vectors in

Vn−1. Clearly, this choice ofA andB satisfies (30). SinceB is known, the precoding matrices,Vj , j = 2, 3, . . . ,K,

are obtained from (29).

Proposition 2: Matrix Vj, j = 1, 2, . . . ,K, is a full column rank matrix almost surely. Moreover, the union of

the images of the precoding matrices at each receiver node spans the whole vector space,CN , with probability one.

Proof: The proof is given for the first user. We show that the union of the images of the precoding matrices at

the first receiver node spans the whole vector space. This a priori proves thatV1 is a full column rank matrix. At

receiver one,[V1,Γ
−1
1,1Γ1,3V3] and equivalently[A,FB] should be full rank matrices, whereF = Γ

−1
1,1Γ1,3Γ

−1
2,3Γ2,1

which is simplified toF = U
†
E(τ̂

[1]
1,3 + τ̂

[2]
3,1)U according to Remark 2 and Lemma 2. LetF̂ = E(τ̂f ), where

τ̂f = τ̂
[1]
1,3 + τ̂

[2]
3,1. Â , UA andB̂ , UB, respectively, contain all vectors of̂Vn and V̂n−1, whereV̂s is defined as

follows,

V̂s ,







E





K
∑

i,j=2,i 6=j,(i,j)6=(2,3)

βi,j τ̂ti,j



w′, βi,j ∈ {0, 1, . . . , s}







,

with τ̂ti,j = τ̂
[i]
1,j + τ̂

[1]
j,3 + τ̂

[2]
3,1. Since the relative delays are independent and distinct continuous random variables,

τ̂ti,j ’s are independent and distinct random variables for alli and j. Moreover, since the asynchronous delays are

random variables of length less than a symbol interval, then−3 < τ̂ti,j < 3, ∀ i, j. Note thatτ̂f is independent of

τ̂ti,j for all i, j ∈ {2, 3, . . . ,K}. Similarly, τ̂f is a continuous random variable over[−2, 2]. It is seen that

[A,FB] = U
†[Â, F̂B̂] = U

†
WŤ,

whereW is a diagonal matrix with entries ofw′ on its main diagonal anďT = [Ã, F̂B̃]. Ã and B̃ are defined

similar to Â andB̂ whenw′ is a vector with all entries equal to one. Clearly,[A,FB] andŤ have the same rank

order. Letφi,j , e−ξ 2π

N
τ̂ti,j and θ , e−ξ 2π

N
τ̂f . For ease of understanding, we give matrixŤ for K = 3 in (34) in

which φ = φ3,2.

Ť |K=3=

















1 1 1 · · · 1 1 1 1 · · · 1

1 φ φ2 · · · φn θ θφ θφ2 · · · θφ(n−1)

1 φ2 φ4 · · · φ2n θ2 θ2φ2 θ2φ4 · · · θ2φ2(n−1)

...
...

... · · ·
...

...
...

... · · ·
...

1 φN−1 φ2(N−1) · · · φn(N−1) θN−1 θN−1φN−1 θN−1φ2(N−1) · · · θN−1φ(N−1)(n−1)

















.

(34)
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In general, thek-th row of Ť has entries of the following forms.
K
∏

i,j=2,i 6=j,(i,j)6=(2,3)

φ
(k−1)βi,j

i,j , βi,j ∈ {0, 1, . . . , n}, or





K
∏

i,j=2,i 6=j,(i,j)6=(2,3)

φ
(k−1)βi,j

i,j



 θk−1, βi,j ∈ {0, 1, . . . , n− 1}.

One can see thaťT is a Vandermonde matrix of dimensionN with the generator vectořt containing all the above

entries fork = 2. The determinant of̌T is given by the multiplication of all the elements of a set containing the

difference of every two non-trivial entries ofť. Hence, if the entries of̌t are all distinct,Ť and accordingly[A,FB]

are full rank matrices. The entries of vectorť have the following form.

θα





K
∏

i,j=2,i 6=j,(i,j)6=(2,3)

φ
βi,j

i,j



 , βi,j ∈ {0, 1, . . . , s}. (35)

whereα ∈ {0, 1} and (α, s) ∈ {(0, n), (1, n − 1)}. If two non-trivial elements of̌t are the same, we obtain

θα
K
∏

i,j=2,i 6=j,(i,j)6=(2,3)

φ
βi,j

i,j = θα
′

K
∏

i,j=2,i 6=j,(i,j)6=(2,3)

φ
β′

i,j

i,j ,

⇒ (α− α′)τ̂f +
∑

i,j=2,i 6=j,(i,j)6=(2,3)

(βi,j − β′i,j)τ̂ti,j = kN, k ∈ Z. (36)

Note that each entry of̌t contains at least one parameter (θ or φi,j) with different exponent (α or βi,j) from that

of the corresponding parameter in other entries. Therefore, the above equation does not trivially hold fork = 0.

Moreover, sincêτf and τ̂ti,j ’s are continuous independent random variables respectively over [−2, 2] and [−3, 3]

intevals, they do not satisfy equation (36) with probability one. Therefore, the determinant ofŤ and accordingly

the determinant of[A,FB] are non-zero almost surely.

Corollary 1: The proposed interference alignment scheme achieves the total DoF equal toK/2 over the constant

K-user symbol-asynchronous interference channel almost surely.

Proof: According to Propositions 2,(n + 1)κ + (K − 1)nκ independent information symbols are transmitted

interference free over(n + 1)κ + nκ + 2(u + 1) symbol intervals (the extra2(u + 1) symbol intervals are due to

the transmission of CPS symbols). Hence, the efficiency factor of the transmission scheme is(n+1)κ+(K−1)nκ

(n+1)κ+nκ+2(u+1)

regardless of the type of the shaping waveform used by transmitters. For a finite value ofu, this factor becomes

arbitrary close toK/2 for a large value ofn. Hence, if a truncated version of the root-square raised cosine filters

with a non-zero small excess bandwidth and sufficiently large time support is used, the total DoF arbitrary close

to K/2 is achieved. Note that when a band-limited waveform is used,no CPS symbols are used and the efficiency

factor is (n+1)κ+(K−1)nκ

(n+1)κ+nκ which approaches toK/2 for a largen. In this case, the the root-square raised cosine

filters with a non-zero small excess bandwidth provide the total DoF arbitrary close toK/2.

Remark 5: It is obvious that the proposed scheme does not apply to the case when all the users are fully

synchronous, i.e.,τi,j = 0, ∀i, j. One can check that inserting artificial delays at the transmitters or sampling the

received signals with random delays at the receivers do not help and the scheme applies only to random independent

delays. According to the definition of̂τf , if τ̂ [1]1,3 = τ̂
[2]
1,3, then τ̂f = 0 and thusF̂ = E(0) = IN resulting inŤ to be

a rank deficient matrix. Clearly, when the users are synchronous,τ̂ [1]1,3 = τ̂
[2]
1,3 even if artificial delays are inserted at

the transmitters or the received signals are sampled with random delays.
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IV. A SYNCHRONOUSINTERFERENCECHANNEL WITH MULTIPLE ANTENNA NODES

In a K-user interference channel with multiple antenna nodes, say M antennas at each node, it is shown in [9]

that the total DoF is upper bounded byMK/2. When the channel coefficients are time-varying, the underlying

channel is converted to a single antenna nodes’ interference channel withMK independent users. In this case, the

vector alignment scheme proposed in [9] is sufficient to achieve the total DoF of the channel. For the three-user

constant interference channel this upper-bound is achieved by a vector alignment scheme proposed in [9] in a finite

number of the channel uses. However, it is not known if in general forK > 3 the same scheme can achieve the total

DoF of the channel under quasi-static assumption. For the constant channel scenario, the upper-bound is achievable

using the real-interference-alignment technique proposed in [15] at infinite SNR and with infinite quantization’s

precision.

Similar to the single antenna nodes’ interference channel,the asynchronism among the users can be deployed

to perform the alignment task under the quasi-static assumption. In theory, the medium can be considered as an

asynchronous interference channel withMK independent single antenna users. In this case, by applyingthe same

alignment scheme proposed in Section III-B, the totalMK/2 DoF is achieved. However, since the antennas of

each node are collocated, it is more practical to consider the same asynchronous delay for all links between each

pair of transmitter-receiver nodes.

For such a scenario, assume that at thej-th transmitter node,M independent streams of information symbols,

x
[p]
j , p = 1, 2, . . . ,M, each of lengthsj, are independently precoded by a matrixVj of sizeN × sj and each of

them is transmitted by one of the antennas. All the nodes use the same shaping waveform. LetHi,j of dimension

M be the channel matrix between thej-th transmitter and thei-th receiver nodes. By deploying the proposed

signaling scheme in sections II-A or II-B, the received signal model at theq-th antenna of thei-th receiver node

is given by

y[q]
i

=

K
∑

j=1

Γi,jVjX
[q]
i,j + z

[q]
i , q = 1, 2, . . . ,M, (37)

whereX [q]
i,j =

∑M
p=1 hi,j(q, p)x

[p]
j . y[q]i and z[q]i are respectively the received signal and the noise vectors at the

output of theq-th antenna of thei-th receiver node. MatrixΓi,j represents the effect of the shaping waveform

and the asynchronous delays between thej-th transmitter and thei-th receiver.hi,j(q, p) is the (q, p)-th entry of

Hi,j (the entry at theq-th row and thep-th column).X [q]
i,j is the image of the transmitted vectors from thej-th

transmitter node at theq-th antenna of thei-th receiver node.

Since all links between collocated antennas experience thesame asynchronous delay, matrixΓi,j is the same for

all links between thej-th transmitter and thei-th receiver. Therefore, if the alignment task is performedat one

of the received antennas, it is automatically performed at the other collocated antennas. Thus, the same precoding

matrices as those designed in Section III-B for the single antenna nodes’ scenario is sufficient to do the alignment

task in the underlying multiple antenna nodes’ scenario. Hence,s1 = (n+1)κ andsj = nκ, j = 2, 3, . . . ,K, where

κ = (K− 1)(K− 2)− 1. N is chosen asN = nκ+(n+1)κ. In this case, each user can achieve the total1/2 DoF

in time for large codeword length. By applying the zero-forcing filter at the output of each receive antenna, the

interferences from other users are discarded. However, thetransmitted signals from collocated antennas are aligned

at each receiver antenna and they lie in the desired subspacefor all collocated receiver antennas. The equivalent

channel model in this case is the same as that of anM ×M MIMO channel with totalM spatial DoF. Hence,
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each user can achieve the totalM/2 DoF which is tantamount to achievingMK/2 DoF for the entire network. It

is worth noting that, using the same alignment scheme proposed for the signal antenna nodes interference channel

for the underlying multiple antenna nodes scenario causes the alignment task to be performed faster (i.e., in less

number of channel uses) specially for large values ofM .

V. CONCLUSION

A symbol-asynchronousK-user interference channel with quasi-static fading coefficients was considered. It was

argued that the total DoF of this channel is the same as that ofthe corresponding synchronous channel. We proposed

an interference alignment scheme for the underlying constant interference channel by deploying the asynchronous

delays among the received signals at each receiver node to achieve the totalMK/2 DoF of this channel (M is

the number of antennas at each node) in the limit of the codeword’s length. In the proposed scheme, there is no

need to have the channel state information of the links at thetransmitter side. Instead, the full state information

of the asynchronous delays is required at all nodes. Although the asynchronous delays are assumed to be less

than a symbol interval, the generalization to larger valuesof symbol-asynchronous delays is straightforward. If the

maximum possible asynchronous delay among the users is lessthan b symbol intervals, it is sufficient to support

each transmitted frame byu+ b cyclic prefix andu+ b cyclic suffix symbols.

APPENDIX A

PROOF OFPROPOSITION1

Defineγ(τ) ,
∫∞
−∞ ψ(t−τ)ψ∗(t)dt as the auto-correlation function of the shaping waveformψ(t). One can check

that Γ(f) = |Ψ(−f)|2, whereΓ(f),Ψ(f) are the Fourier Transforms ofγ(τ), ψ(t), respectively. Thereforeγ(τ)

has the same bandwidth as that of the shaping waveform and it has also a non-zero spectrum over its bandwidth.

Let W0 be the frequency bandwidth ofψ(t) whenu→ ∞. For a finite value ofu, let γp(τ) =
∑∞

k=−∞ γ(τ + kT )

be a periodic expansion ofγ(τ) with period T = NTs. We assume thatN ≥ 2u. Since the shaping waveform

has a time support equal touTs, the auto correlation function has a time support smaller than or equal to2uTs.

γ̂
i,j

= [γi,j(0), γi,j(1), . . . , γi,j(u), 0, . . . , 0, γi,j(−u), γi,j(−u + 1), . . . , γi,j(−1)], which is the generator sequence

of the matrixΓi,j, represents the samples ofγp(τ) in one period atτ = qTs − τ
[i]
i,j, q = 0, . . . , N − 1, and with

sampling frequencyfs = 2W0. Sinceγ(τ) has a non-zero spectrum over its bandwidth, the DFT coefficients of the

samples ofγp(τ) over one period do not contain any deterministic zero. Thesecoefficients appear as the diagonal

entries ofΛi,j. HenceΛi,j and equivalentlyΓi,j are full rank matrices. In addition, since the sequenceγ̂
i,j

is

absolutely summable, the diagonal entries ofΛi,j are bounded. �

APPENDIX B

PROOF OFLEMMA 1

AssumeΓ̂i,j in (6) is approximated byΓi,j in (8). The approximation error matrixΥ is defined as

Υ = Λi,j −UΓ̂i,jU
†. (38)
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The (q, s)-th entries ofΛi,j andUΓ̂i,jU
† are respectively given by

Λi,j(q, s) =

{

∑

k γke
−ξ 2π

N
(q−1)k, q = s

0, q 6= s,

UΓ̂i,jU
†(q, s) =

1

N

N
∑

j=1

N
∑

i=1

γi−je
−ξ 2π

N
[(q−1)(i−1)−(s−1)(j−1)].

If q = s, we get

Υ(q, q) =
∑

k

γke
−ξ 2π

N
(q−1)k − 1

N

N
∑

j=1

N
∑

i=1

γi−je
−ξ 2π

N
(q−1)(i−j)

=

N−1
∑

k=−N+1

|k|
N
γke

−ξ 2π

N
k(q−1) +

∑

|k|≥N

γke
−ξ 2π

N
k(q−1).

Assuming that the shaping waveform is such thatψ(t) ≤ a/|t/Ts|η, wherea is a constant, we get

|Υ(q, q)| ≤
N−1
∑

k=−N+1

|k|
N

|γk|+
∑

|k|≥N

|γk|

≤ 2a

N

N−1
∑

k=1

1

kη−1
+ 2a

∞
∑

k=N

1

kη
(39)

One can check that forη > 1, limN→∞
1
N

∑N
k=1

1
kη−1 = 0, because for allN andη > 0,

0 = lim
N→∞

1

N

∫ N

1

1

xη
dx < lim

N→∞

1

N

N
∑

k=1

1

kη
< lim

N→∞

1

N

∫ N

1

1

(x− 1)η
dx = 0.

Hence, the first term on the right hand side of (39) goes to zerofor large values ofN . It is also known that the

η-series
∑∞

k=1 1/k
η is convergent for allη > 1. Hence, the second term is also bounded forη > 1 and vanishes

to zero for large values ofN . Therefore, for large codeword length,|Υ(q, q)| is bounded and vanishes to zero if

η > 1. Whenq 6= s, we get

Υ(q, s) = −UΓ̂i,jU
†(q, s)

= − 1

N

N
∑

j=1

N
∑

i=1

γi−je
−ξ 2π

N
[(q−1)(i−1)−(s−1)(j−1)]

= − 1

N

N−1
∑

k=1

γke
−ξ 2π

N
(q−1)k

N−1
∑

j=k

e−ξ 2π

N
(q−s)(j−k)

− 1

N

−1
∑

k=−N+1

γke
ξ 2π

N
(s−1)k

N−1
∑

j=−k

e−ξ 2π

N
(q−s)(j+k)

=
1

N

N−1
∑

k=1

γke
−ξ 2π

N
(s−1)k

N−1
∑

j=N−k

e−ξ 2π

N
(q−s)j

+
1

N

−1
∑

k=−N+1

γke
−ξ 2π

N
(q−1)k

N−1
∑

j=N+k

e−ξ 2π

N
(q−s)j .
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Assuming that the shaping waveform is such thatψ(t) ≤ a/|t/Ts|η, wherea is a constant, then we get

|Υ(q, s)| ≤ 1

N

−1
∑

k=−N+1

|k||γk|+
1

N

N−1
∑

k=1

|k||γk|

≤ 2a

N

N−1
∑

k=1

1

kη−1

Similarly for η > 1, |Υ(q, s)| is bounded and vanishes to zero for large values ofN . �

APPENDIX C

PROOF OFLEMMA 2

Let x(t) be a signal with bandwidthW . We assume thatx(t) is a decaying function of|t/Ts| such that|x(t)| ≤
a

|t/Ts|η
for large enough values oft and η > 0. Let {x̂(k), k ∈ Z} be the sequence of samples of this signal at

t = kTs, whereTs ≤ 1
2W . Let {x(k), k ∈ Z} be the sequence of samples ofx(t) at t = kTs − τ , 0 < τ < Ts.

According to the shift property of the DTFT, we get

X(ω) = X̂(ω)e−ξωτ , (40)

where X̂(ω) =
∑

k x̂(k)e
−ξωk andX(ω) =

∑

k x(k)e
−ξωk are the DTFT of the sequences{x̂(k), k ∈ Z} and

{x(k), k ∈ Z}, respectively. DefineAk , x(k)e−ξωk, Bk , x̂(k)e−ξω(k+τ), and ǫ =
∑−u−1

k=−∞(Bk − Ak) +
∑∞

k=u+1(Bk −Ak). From (40), we get
u

∑

k=−u

Ak =

u
∑

k=−u

Bk + ǫ

|ǫ| is upper bounded as follows.

|ǫ| = |
−u−1
∑

k=−∞

(Bk −Ak) +

∞
∑

k=u+1

(Bk −Ak)|

≤
−u−1
∑

k=−∞

(|Bk|+ |Ak|) +
∞
∑

k=u+1

(|Bk|+ |Ak|)

=

−u−1
∑

k=−∞

(|x̂k|+ |xk|) +
∞
∑

k=u+1

(|x̂|+ |xk|)

≤
∞
∑

k=u+1

2a

kη
+

a

(k − τ̂)η
+

a

(k + τ̂)η

≤ 4a

∞
∑

k=u

1

kη
,

whereτ̂ = τ/Ts. One can see that ifη > 1, |ǫ| is bounded and vanishes to zero when asu increases. �
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