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Compute-and-Forward Network Coding Design

over Multi-Source Multi-Relay Channels

Lili Wei and WenChen

Abstract

Network coding is a new and promising paradigm for modern communication networks by allowing intermediate

nodes to mix messages received from multiple sources. Compute-and-forward strategy is one category of network

coding in which a relay will decode and forward a linear combination of source messages according to the observed

channel coefficients, based on the algebraic structure of lattice codes. The destination will recover all transmitted

messages if enough linear equations are received. In this work, we design in a system level, the compute-and-forward

network coding coefficients by Fincke-Pohst based candidate set searching algorithm and network coding system

matrix constructing algorithm, such that by those proposed algorithms, the transmission rate of the multi-source

multi-relay system is maximized. Numerical results demonstrate the effectiveness of our proposed algorithms.

Index Terms

Compute-and-forward, network coding, linear network coding, lattice codes, cooperative, relay channel.

I. INTRODUCTION

Since the pioneering research work of Ahlswede et al. in 2000 [1], network coding (NC) has rapidly emerged

as a major research area in electrical engineering and computer science. NC is a generalized routing approach that

breaks the traditional assumption of simply forwarding data, and allows intermediate nodes to send out functions

of their received packets, by which the multicast capacity can be achieved. Subsequent works of [2]-[4] made the

important observation that, for multicasting, intermediate nodes can simply send out a linear combination of their

received packets. Linear network coding with random coefficients is considered in [5]. Physical layer network coding

is presented in [6]. Complex field network coding is proposed in [7]. Several other network coding realizations in

wireless networks are discussed in [8]-[12].
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There is also a large body of works on lattice codes [13]-[14] and their applications in communications. For

many AWGN networks of interest, lattice codes with linear structure can approach the performance of standard

random coding arguments. It has been shown that nested lattice codes (combined with lattice decoding) can achieve

the capacity of the point-to-point AWGN channel [15]-[16]. Also, another appealing aspect of linear lattice codes

lies in their lower decoding complexity by a class of efficient decoders [17]-[20]. In the two-way relay networks, a

nested lattice based strategy has been developed that the achievable rate is near the optimal upper bound [21]-[23].

Recently, a new strategy of compute-and-forward (CPF) [24]-[25], beneficial from both network coding and lattice

codes, attracts great attention. The main idea is that a relay will decode a linear function of transmitted messages

according to the observed channel coefficients rather than ignoring the interference as noise. Upon utilizing the

algebraic structure of lattice codes, i.e. the integer combination of lattice codewords is still a codeword as well,

the intermediate relay node decodes and forwards an integer combination of original messages. With enough linear

independent equations, the destination can recover the original messages respectively. Subsequent works for design

and analysis of the CPF strategy have been given in [26]-[29]. The idea of MIMO compute-and-forward is presented

in [30].

Those previous works in CPF only consider the integer network coding coefficients optimization of each relay

locally/separately. However, for a multi-source multi-relay system with L sources, the previous separate optimiza-

tions cannot guarantee the network coding system matrix, which is constructed by all the integer network coding

coefficient vectors, is of rank L such that the destination can decode all messages. In this work, the compute-and-

forward network coding strategy is considered in a system level. First, by our proposed Fincke-Pohst [17] based

candidate set searching algorithm, instead of one optimal network coding coefficient vector, for each relay we will

provide a network coding vector candidate set with corresponding computation rate in descending order. Then, by

our proposed network coding system matrix constructing algorithm, we will try to choose network coding vectors

from those candidate sets to construct network coding system matrix with rank L, while in the meantime the

transmission rate of the multi-source multi-relay system is maximized. The underlying codes are based on lattice

codes whose algebraic structure ensures that integer combinations of messages can be decoded reliably.

The notations used in this work are as follows. {·}T denotes the transpose operation, | · | represents the cardinality

of a set, Zn denotes the n dimensional integer ring, Rn denotes the n dimensional real field, Fp denotes a finite

field of size p. In denotes the identity matrix of size n × n, and 0 denotes the vectors with all zeros elements.

Assume that the log operation is with respect to base 2. We use boldface lowercase letters to denote column vectors

and boldface uppercase letters to denote matrices.

II. MULTI-SOURCE MULTI-RELAY CHANNEL

A. System Model

We consider the multi-source multi-relay (MSMR) system model as shown in Fig. 1, where L sources S1, S2,

· · · , SL are communicating to one destination D through L relays R1, R2, · · · , RL. Each node is equipped with

a single antenna and works in half-duplex mode. There are no direct links from sources to the destination.
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Fig. 1. System model of a MSMR network

The information transmission, which we call one transmission realization, is performed in two phases. The first

phase is for the transmissions from all sources S1, S2, · · · , SL to the relays R1, R2, · · · , RL. Each relay will receive

signals from all sources due to the wireless medium. In the second phase, assume each relay has a point-to-point

AWGN channel or orthogonal access to the destination, for example, in different time slots as shown in Fig. 2.

Every relay will obtain a linear combination of original messages and forward towards the destination by orthogonal

channels. With enough linear combinations, the destination is able to recover the desired original messages from

all sources.

Fig. 2. Time division allocation for one transmission realization

Without loss of generality, in one transmission realization, each source has a length-k message vector that is

drawn independently and uniformly over a prime size finite field,

wl ∈ F
k
p, l = 1, 2, · · · , L, (1)

where Fp denotes the finite field with a set of p elements. Each source is equipped with an encoder Ψl : F
k
p → R

n

that maps the length-k message wl into a length-n real valued lattice codeword xl = Ψl(wl). The lattice codeword

xl must satisfy the power constraint, 1
n
||xl||2 ≤ P for P ≥ 0 and l = 1, 2, · · · , L. The message rate, defined as the

length of the message measured in bits normalized by the number of channel uses R = k
n
log p [24], is the same

for all sources.

After mapping its message wl ∈ F
k
p into a lattice codeword xl ∈ R

n, the source Sl will send the codeword xl

across the channel. Due to the broadcast nature of wireless medium, the m-th relay will observe a noisy combination
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of the transmitted signals at the end of the first phase,

ym =
L∑

l=1

hmlxl + zm, m = 1, 2, · · · , L, (2)

where hml ∈ R denotes real valued fading channel coefficient from Sl to relay Rm, generated i.i.d. according to a

normal distribution N (0, 1); zm ∈ R
n denotes additive Gaussian noise vector, zm ∼ N (0, In). Let

hm = [hm1, · · · , hmL]
T (3)

denote the vector of channel coefficients from all sources to the m-th relay. We assume this channel state information

hm is available at relay m.

B. Compute-and-Forward Scheme

In a recent work, Nazer and Gastpar propose the compute-and-forward approach [24] which exploits the property

that any integer combination of lattice points is again a lattice point. After receiving the noisy vector ym of

(2), the m-th relay will first select a scalar βm ∈ R and an integer network coding coefficient vector am =

[am1, am2, · · · , amL]
T ∈ Z

L, then attempt to decode the lattice point
∑L

l=1 amlxl from

βmym =

L∑

l=1

βmhmlxl + βmzm (4)

=
L∑

l=1

amlxl +
L∑

l=1

(βmhml − aml)xl + βmzm

︸ ︷︷ ︸

Effective Noise

. (5)

Note that we do not need to conduct joint maximum likelihood (ML) decoding to get (x̂1, x̂2, · · · , x̂L) for network

coding. Instead we decode
∑L

l=1 amlxl as one regular codeword due to the lattice algebraic structure. In other

words, the network coded codeword is still in the same field as original source codeword.

In the finite field, it is equivalent that each relay is desired to reliably recover a linear combination of the messages,

um =

L⊕

l=1

qmlwl =

[
L∑

l=1

amlwl

]

mod p, (6)

where
⊕

denotes summation over the finite field, qml is a coefficient taking values in Fp and qml = aml mod p.

Each relay is equipped with a decoder, Πm : Rn → F
k
p , that maps the observed channel output ym ∈ R

n to an

estimate ûm = Πm(ym) ∈ F
k
p of the message combination um. The diagram of compute-and-forward scheme is

given in Fig. 3.

We are interested in the rate of
∑L

l=1 amlxl as a whole and will capture the performance of the computation

scheme by what we refer to as the computation rate, namely, the number of bits of the linear function successfully

recovered per channel use. The work of [24] shows that a relay can often recover an equation of messages at a

higher rate than any individual message (or subset of message). The rate is highest when the equation coefficients

closely approximate the effective channel coefficients. The formal statements are given in the following theorems
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Fig. 3. Compute-and-Forward Diagram

[24]-[26]. Let log+(x)
△
= max(log(x), 0).

Theorem 2.1: For real-valued AWGN networks with channel coefficient vector hm ∈ R
L and desired network

coding coefficient vector am ∈ Z
L, the following computation rate is achievable

Rm(am) = max
βm∈R

1

2
log+

(
P

β2
m + P ||βmhm − am||2

)

. (7)

Theorem 2.2: The computation rate given in Theorem 2.1 is uniquely maximized by choosing βm to be the

MMSE coefficient

βMMSE =
P hT

mam

1 + P ||hm||2 , (8)

which results in a computation rate of

Rm(am) =
1

2
log+

(

||am||2 − P (hT
mam)2

1 + P ||hm||2
)−1

. (9)

Theorem 2.3: For a given channel coefficient vector hm = [hm1, hm2, · · · , hmL]
T ∈ R

L, Rm(am) is maximized

by choosing the integer network coding coefficient vector am ∈ Z
L as

am = arg min
am∈ZL,am 6=0

(
aTmGmam

)
, (10)

where

Gm
△
= I− P

1 + P ||hm||2Hm, (11)

and Hm = [H
(m)
ij ], H

(m)
ij = hmihmj , 1 ≤ i, j ≤ L.

C. Problem Statement

Theorems 2.1-2.3 only give the optimal network coding integer coefficient vector am and achievable computation

rate Rm for each relay locally/separately and do not take consideration of the overall system constraints. For the

multi-source multi-relay system, at the destination, enough linear combinations of the original messages need to
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be collected. Let a1, a2, · · · , aL be the integer network coding coefficients vector for each relay, then the network

coding system matrix A at the destination can be denoted as

A = [a1, a2, · · · , aL]T . (12)

Hence, the destination can solve for the original packets if the network coding system matrix A has full rank L,

i.e. |A| 6= 0. In which case, as the same rate of source-relay channels in phase I is available for relay-destination

channels in phase II, the transmission rate at the destination is dominated/bottlenecked by

RD = min {R1,R2, · · · ,RL} . (13)

We can easily understand that after calculating the integer network coding coefficient vector am for each relay

by theorems 2.1-2.3 to maximize its own computation rate, the network coding system matrix A constructed by

those integer vectors may not have full rank L, in which case the destination cannot decode the original messages

by those linear equations. In other words, we cannot fix the optimal integer network coding vector am for each

relay separately, since it cannot guarantee that the system constraint of full rank A.

Therefore, we need to optimize the integer network coding vectors for L relays in a overall system level. Instead of

distributed calculations, to construct the full rank network coding system matrix that maximize the overall message

rate at destination, A will be designed according to the following criteria

A = arg max
|A|6=0

RD

= arg max
|A|6=0

(min {R1,R2, · · · ,RL})

= arg max
|A|6=0

min
m=1,···L

(

1

2
log+

(

||am||2 − P (hT
mam)2

1 + P ||hm||2
)−1

)

.

(14)

In other words, we need to find the integer network coding vectors a1, a2, · · · , aL, under the system level constraint

of full rank A, to maximize the computation rate of each relay R1, R2, · · · , RL jointly, such that the minimum

value of R1, R2, · · · , RL is maximized.

Equivalently, the optimum network coding system matrix A should be

A = arg min
|A|6=0

max
m=1,···L

aTmGmam, (15)

where Gm is defined in (11).

III. PROPOSED STRATEGY

In this work, to approach the overall system optimization of (14)-(15), we propose the following novel strategy

which includes two steps. In the first step, for relay m, instead of finding one optimal network coding coefficient

vector am to maximize its own computation rate, we are trying to find a candidate set

ΩTmax

m = {a(1)m , a(2)m , · · · , a(Tmax)
m }, (16)
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with |ΩTmax

m | = Tmax. The network coding coefficient vectors with the top Tmax maximum computation rates for

relay m are within the candidate set ΩTmax

m . Note that Tmax is a parameter to control the candidate set length for

each relay and currently set by experience/simulation. We will propose an algorithm based on Fincke-Pohst Method

[17] to find the network coding coefficient vector candidate set for each relay.

After we get all the candidate vector sets ΩTmax

1 , ΩTmax

2 , · · · , ΩTmax

L , in the second step, we will try to pick

up a1 ∈ ΩTmax

1 , a2 ∈ ΩTmax

2 , · · · , aL ∈ ΩTmax

L , to construct the full rank network coding coefficient matrix

A = [a1, a2, · · · , aL]T , while in the meantime, the minimum value of corresponding R1(a1), R2(a2), · · · , RL(aL)

is maximized.

A. Searching Candidate Set ΩTmax

m for Each Relay

For relay m, we are trying to find the candidate set ΩTmax

m = {a(1)m , a
(2)
m , · · · , a(Tmax)

m } with |ΩTmax

m | = Tmax,

such that the network coding coefficient vectors with the top Tmax maximum computation rate for relay m are

within. According to Theorem 2.3, it is equivalent to find the set ΩTmax

m with Tmax vectors, such that those vectors

give the bottom Tmax minimum aTmGmam values, where Gm is defined in (11).

The searching of candidate set Ωmax
m with fixed length Tmax can be decomposed into following steps.

(1) Enumerate all vectors t ∈ Z
L (t 6= 0) in Ωm, such that tTGmt ≤ C for a given positive constant C, i.e.,

Ωm =
{
t : tTGmt ≤ C, t 6= 0, t ∈ Z

L
}
. (17)

(2) Adjust the constant C to guarantee that |Ωm| ≥ Tmax.

(3) Sort all the vectors t1, t2, · · · , t|Ωm| in Ωm in descending order corresponding to the computation rate value

Rm in (9), such that

Rm(t1) ≥ Rm(t2) ≥ · · · ≥ Rm(t|Ωm|). (18)

(4) Pick the first Tmax vectors of Ωm to form the set ΩTmax

m .

The procedure of enumerating all vectors t ∈ Z
L (t 6= 0) in Ωm, such that tTGmt ≤ C for a given positive

constant C is based on the Fincke-Pohst Method and derived as follows.

We operate Cholesky’s factorization of matrix Gm, Gm = UTU, where U is an upper triangular matrix. Denote

|| · ||F for the Frobenius norm. Let uij , i, j = 1, 2, · · · , L, be the entries of the upper triangular matrix U and

t = [t1, t2, · · · , tL]T . Then, the searching vector t that makes tTGmt ≤ C can be expressed as

tTGmt = ||U t||2F =
L∑

i=1



uiiti +
L∑

j=i+1

uijtj





2

=

L∑

i=1

gii



ti +

L∑

j=i+1

gijtj





2

=

L∑

i=k

gii



ti +

L∑

j=i+1

gijtj





2

+

k−1∑

i=1

gii



ti +

L∑

j=i+1

gijtj





2

≤ C (19)
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where gii = u2
ii and gij = uij/uii for i = 1, 2, · · · , L, j = i + 1, · · · , L. Obviously the second term of (19) is

non-negative, hence, to satisfy (19), it is equivalent to consider for every k = L,L− 1, · · · , 1,

L∑

i=k

gii



ti +

L∑

j=i+1

gijtj





2

≤ C. (20)

Then, we can start work backwards to find the bounds for vector entries tL, tL−1, · · · , t1 one by one.

We begin to evaluate the last element tL of the searching vector t. Referring to (20) and let k = L, we have

gLLt
2
L ≤ C. (21)

Set ∆L = 0, CL = C, and we will get

LBL ≤ tL ≤ UBL, (22)

with

UBL =

⌊ √

CL

gLL

−∆L

⌋

, LBL =

⌈

−
√

CL

gLL

−∆L

⌉

, (23)

where ⌈x⌉ is the smallest integer no less than x and ⌊x⌋ is the greatest integer no bigger than x.

Next, we evaluate the element tL−1 of the searching vector t. Referring to (20) and let k = L− 1, we have

gLLt
2
L + gL−1,L−1 (tL−1 + gL−1,LtL)

2 ≤ C, (24)

which leads to
⌈

−
√

C − gLLt2L
gL−1,L−1

− gL−1,LtL

⌉

≤ tL−1 ≤
⌊ √

C − gLLt2L
gL−1,L−1

− gL−1,LtL

⌋

.

(25)

If we denote ∆L−1 = gL−1,LtL, CL−1 = C − gLLt
2
L, the bounds for sL−1 can be expressed as

LBL−1 ≤ tL−1 ≤ UBL−1, (26)

where

UBL−1 =

⌊√

CL−1

gL−1,L−1
−∆L−1

⌋

, LBL−1 =

⌈

−
√

CL−1

gL−1,L−1
−∆L−1

⌉

. (27)

We can see that given radius
√
C and matrix U, the bounds for tL−1 only depends on the previous evaluated tL,

and not correlated with tL−2, tL−3, · · · , t1.

In a similar fashion, we can proceed for tL−2 evaluation, and so on.

To evaluate the element tk of the searching vector t, referring to (20) we will have

L∑

i=k

gii



ti +

L∑

j=i+1

gijtj





2

≤ C, (28)

which leads to
⌈

−
√

1
gkk

(

C −∑L

i=k+1 gii

(

ti +
∑L

j=i+1 gijtj

)2
)

−∑L

j=k+1 gkjtj

⌉

≤ tk ≤
⌊ √

1
gkk

(

C −∑L

i=k+1 gii

(

ti +
∑L

j=i+1 gijtj

)2
)

−∑L

j=k+1 gkjtj

⌋

.

March 6, 2020 DRAFT



IEEE TRANSACTIONS 2012 9

If we denote

∆k =

L∑

j=k+1

gkjtj ,

Ck = C −
L∑

i=k+1

gii



ti +

L∑

j=i+1

gijtj





2

, (29)

the bounds for sk can be expressed as

LBk ≤ tk ≤ UBk, (30)

where

UBk =

⌊ √

Ck

gkk
−∆k

⌋

, LBk =

⌈

−
√

Ck

gkk
−∆k

⌉

. (31)

Note that for given radius
√
C and matrix U, the bounds for tk only depends on the previous evaluated tk+1, tk+2, · · · , tL.

Finally, we evaluate the element t1 of the searching vector t. Referring to (20) and let k = 1, we will have

L∑

i=1

gii



ti +

L∑

j=i+1

gijtj





2

≤ C, (32)

which leads to
⌈

−
√

1
g11

(

C −∑L
i=2 gii

(

ti +
∑L

j=i+1 gijtj

)2
)

−∑L
j=2 g1jtj

⌉

≤ t1 ≤
⌊ √

1
g11

(

C −∑L

i=2 gii

(

ti +
∑L

j=i+1 gijtj

)2
)

−∑L

j=2 g1jtj

⌋

.(33)

If we denote

∆1 =

L∑

j=2

g1jtj ,

C1 = C −
L∑

i=2

gii



ti +

L∑

j=i+1

gijtj





2

, (34)

the bounds for t1 can be expressed as

LB1 ≤ t1 ≤ UB1, (35)

where

UB1 =

⌊ √

C1

g11
−∆1

⌋

, LB1 =

⌈

−
√

C1

g11
−∆1

⌉

. (36)

In practice, CL, CL−1, · · · , C1 can be updated recursively by the following equations

∆k =

L∑

j=k+1

gkjtj , (37)

Ck = C −
L∑

i=k+1

gii



ti +

L∑

j=i+1

gijtj





2

= Ck+1 − gk+1,k+1 (∆k+1 + tk+1)
2
, (38)
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Fig. 4. Candidate sets and rate tables for all relays

for k = L− 1, L− 2, · · · , 1 and ∆L = 0, CL = C.

The entries tL, tL−1, · · · , t1 are chosen as follows: for a chosen candidate of tL satisfying the bounds (22)-(23),

we can choose a candidate for tL−1 satisfying the bounds (26)-(27). If a candidate value for tL−1 does not exist,

we go back to (22)-(23) and choose other candidate value tL. Then search for tL−1 that meets the bounds (26)-(27)

for the given tL. If tL and tL−1 are chosen as candidates, we follow the same procedure to choose tL−2, and so

on. When a set of tL, tL−1, · · · , t1 is chosen and satisfies all corresponding bounds requirements, one candidate

vector t = [t1, t2, · · · , tL]T is obtained. We record all the candidate vectors satisfying their bounds requirements,

such that all vectors meet tTGmt ≤ C will be in Ωm.

Regarding the setting of positive constant C, we will set it based on the binary vector obtained by applying the

direct sign operator of the real minimum-eigenvalue eigenvector of Gm, denoted as tquant, such that

C = tTquantGm tquant. (39)

By setting the searching sphere radius this way, it is big enough to have at least one searching vector tquant falls

inside, while in the meantime small enough to have not too many searching vectors within.

Note that this searching procedure will return all candidates that satisfy tTGmt ≤ C. There is at least one

candidate vector tquant such that its entries satisfy all the bounds requirements. On the other hand, the maximum

likelihood (ML) exhaustive search among all t ∈ Z
L, with optimal result tML that returns the minimum metric

tTGmt, or equivalently maximum the computation rate for one relay, will also fall inside the search bounds, since

tTMLGmtML ≤ tTquantGm tquant = C. (40)

Hence, we are guaranteed to include the local optimal network coding coefficient vector, which maximizes the

computation rate for one relay m, in ΩTmax

m .

We summarize our proposed algorithm for the searching candidate set ΩTmax

m for relay m based on Fincke-Pohst

method as follows.
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Algorithm 1 FP Based Candidate Set Searching Algorithm

Input: Matrix Gm, Tmax = |ΩTmax

m |.
Output: The candidate vector set ΩTmax

m and corresponding computation rate set ΓTmax

m .

Step 1: Calculate the binary quantized vector obtained by applying the direct sign operator of the real minimum-

eigenvalue eigenvector of Gm, denoted as tquant, and set C as

C = tTquantGm tquant. (41)

Step 2: Operate Cholesky’s factorization of matrix Gm, Gm = UTU, where U is an upper triangular matrix. Let

uij , i, j = 1, 2, · · · , L denote the entries of matrix U. Set

gii = u2
ii, gij = uij/uii,

for i = 1, 2, · · · , L, j = i+ 1, · · · , L.

Step 3: Search set Ωm =
{
t : tTGmt ≤ C, t 6= 0, t ∈ Z

L
}

according to the following Fincke-Pohst procedure.

(i) Start from ∆L = 0, CL = C, k = L and Ωm = ∅.

(ii) Set the upper bound UBk and the lower bound LBk as follows

UBk =

⌊ √

Ck

gkk
−∆k

⌋

, LBk =

⌈

−
√

Ck

gkk
−∆k

⌉

,

and tk = LBk − 1.

(iii) Set tk = tk + 1. For tk ≤ UBk, go to (v); else go to (iv).

(iv) If k = L, terminate and output Ωm; else set k = k + 1 and go to (iii).

(v) For k = 1, go to (vi); else set k = k − 1, and

∆k =

L∑

j=k+1

gkjtj ,

Ck = Ck+1 − gk+1,k+1 (∆k+1 + tk+1)
2
,

then go to (ii).

(vi) If t = 0 terminate, else we get a candidate vector t 6= 0 that satisfies all the bounds requirements and put it

inside Ωm, i.e. Ωm = {Ωm, t}. Go to (iii).

Step 4: If |Ωm| < Tmax, set C = 2C and repeat Step 3.

Step 5: Sort all the vectors t1, t2, · · · , t|Ωm| in Ωm in descending order corresponding to the computation rate

value Rm in (9), such that

Rm(t1) ≥ Rm(t2) ≥ · · · ≥ Rm(t|Ωm|). (42)
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Pick the first Tmax vectors of Ωm to form the set ΩTmax

m and construct the corresponding computation rate ΓTmax

m

as






ΩTmax

m = {t1, t2, · · · , tTmax
},

ΓTmax

m = {Rm(t1),Rm(t2), · · · ,Rm(tTmax
)}.

(43)

B. Constructing Network Coding Matrix A

According to our proposed FP Based Candidate Set ΩTmax

m Searching Algorithm 1, for relay m, we get the

candidate set ΩTmax

m for integer network coding coefficient vector am. The set ΩTmax

m consists Tmax candidates

vectors ΩTmax

m = {a(1)m , a
(2)
m , · · · , a(Tmax)

m }, in which a
(1)
m , a

(2)
m , · · · , a(Tmax)

m have been sorted such that Rm(a
(1)
m ) ≥

Rm(a
(2)
m ) ≥ · · · ≥ Rm(a

(Tmax)
m ). Denote R

(i)
m = Rm(a

(i)
m ), i = 1, 2, · · · , Tmax. Then for each relay we can have

two length-Tmax tables as shown in Fig. 4,

Table 1: ΓTmax

m = {R(1)
m ,R(2)

m , · · · ,R(Tmax)
m }, (44)

Table 2: ΩTmax

m = {a(1)m , a(2)m , · · · , a(Tmax)
m }. (45)

The second table consists the sorted candidate vector set ΩTmax

m , while the first one consists the corresponding

computation rate set ΓTmax

m with elements R
(1)
m ≥ R

(2)
m ≥ · · · ≥ R

(Tmax)
m .

After we get all the candidate vector sets ΩTmax

1 , ΩTmax

2 , · · · , ΩTmax

L and computation rate sets ΓTmax

1 , ΓTmax

2 ,

· · · , ΓTmax

L , we will try to pick up a1 ∈ ΩTmax

1 , a2 ∈ ΩTmax

2 , · · · , aL ∈ ΩTmax

L , to construct the network coding

system matrix A = [a1, a2, · · · , aL]T with full rank, while at the same time, the minimum corresponding rate

R1(a1), R2(a2), · · · , RL(aL) is maximized.

Regarding this problem, first, we will sort the overall computation rate set for all relays {ΓTmax

1 ,ΓTmax

2 , · · · ,ΓTmax

L }
in a descending order into {γ1, γ2, · · · , γL×Tmax

}, such that γ1 ≥ γ2 ≥ · · · ≥ γL×Tmax
. Then, starting from the

largest possible achievable rate γindex with index = L (the first L − 1 rates are obviously not achievable), we

will check one by one whether the rate γindex is achievable, which means we can find L vectors a1 ∈ ΩTmax

1 ,

a2 ∈ ΩTmax

2 , · · · , aL ∈ ΩTmax

L , such that the following two constraints are satisfied:

(i) The system network coding coefficient matrix A is of full rank;

(ii) R1(a1), R2(a2), · · · , RL(aL) all greater or equal to γindex.

If not, we move to the next largest possible achievable rate γindex+1 and check in the same way, until the first

achievable rate is found.

When we are checking one possible achievable rate γindex, we will reduce/cut the network coding candidate set

ΩTmax

m into Ωcut
m such that any am ∈ Ωcut

m will satisfy that Rm(am) greater or equal to γindex. In other words, the

sets of Ωcut
1 , Ωcut

2 , · · · , Ωcut
L are constructed such that the constraint (ii) will definitely be satisfied if a1 ∈ Ωcut

1 ,

a2 ∈ Ωcut
2 , · · · , aL ∈ Ωcut

L .

Suppose γindex = R
(n)
m ∈ ΓTmax

m , i.e. γindex is taken from Table 1 of relay m with table index n, then the network

coding vector a
(n)
m is taken from Table 2 with the same index n, i.e. a

(n)
m ∈ Ωmax

m is fixed for that relay and
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Fig. 5. Constructing network coding system matrix A

Ωcut
m = {a(n)m }. For other relays i 6= m, the candidate set will reduce/cut to length T cut

i such that R
(1)
i , R

(2)
i , · · · ,

R
(T cut

i
)

i all greater or equal to γindex.

Denote Ωcut
i = {a(1)i , a

(2)
i , · · · , a(T

cut

i
)

i }. We can start to check the constraint (i) of the system network coding

matrix A constructed by any a1 ∈ Ωcut
1 , a2 ∈ Ωcut

2 , · · · , aL ∈ Ωcut
L . If there exists one constructed A with full

rank, then this rate γindex is achievable. The procedure is shown in Fig. 5.

We summarize this procedure to constructing the full rank network coding system matrix A with candidate sets

ΩTmax

1 , ΩTmax

2 , · · · , ΩTmax

L and the corresponding computation rate sets ΓTmax

1 , ΓTmax

2 , · · · , ΓTmax

L as follows.

Algorithm 2

Network Coding System Matrix Constructing Algorithm

Input: Candidate vector sets ΩTmax

1 , ΩTmax

2 , · · · , ΩTmax

L ;

Computation rate sets ΓTmax

1 , ΓTmax

2 , · · · , ΓTmax

L .

Output: The network coding system matrix A constructed from a1 ∈ ΩTmax

1 , a2 ∈ ΩTmax

2 , · · · , aL ∈ ΩTmax

L with

full rank that gives the maximum transmission rate Rmax
D .

Step 1: Sort the overall computation rate set for all relays {ΓTmax

1 ,ΓTmax

2 , · · · ,ΓTmax

L } in a descending order into

{γ1, γ2, · · · , γL×Tmax
}, such that γ1 ≥ γ2 ≥ · · · ≥ γL×Tmax

. Initialize index = L.

Step 2: Check whether the rate of γindex is achievable by the following procedure. Suppose γindex = R
(n)
m ∈ ΓTmax

m .

Then, for relay i, the reduced candidate set Ωcut
i , i = 1, 2, · · · , L will be constructed as follows.

(i) For relay m, set Ωcut
m = {a(n)m }.

(ii) For relay i 6= m, compare the value of γindex and the sorted descending set ΓTmax

i = {R(1)
i , R

(2)
i , · · · ,
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R
(Tmax)
i }. Find all {R(1)

i , R
(2)
i , · · · , R

(T cut

i
)

i } greater or equal to γindex. Set Ωcut
i = {a(1)i , a

(2)
i , · · · , a(T

cut

i
)

i }.

Step 3: Check every a1 ∈ Ωcut
1 , a2 ∈ Ωcut

2 , · · · , aL ∈ Ωcut
L , until we find one network coding system matrix

A = [a1, a2, · · · , aL]T has full rank, i.e. |A| 6= 0. If so, terminate and output the network coding system matrix

A and the maximum transmission rate Rmax
D = γindex.

Step 4: If for any a1 ∈ Ωcut
1 , a2 ∈ Ωcut

2 , · · · , aL ∈ Ωcut
L , we cannot construct a full rank network coding system

matrix A, then set index = index + 1, go to Step 2.

One possible implementation of the whole system will let relays calculate the candidate sets and corresponding

computation rate sets, construct the optimal network coding system matrix A, then transmit the L×L integers matrix

A to the destination. Another possible implementation is to allow the destination work as processing center, that

does all calculations, including candidate sets, corresponding computation rate sets, and the optimal network coding

system matrix A construction. The destination will then feedback the optimal network coding vector am ∈ Z
L to

relay m for m = 1, 2, · · · , L. After system initialization, these optimal network coding vectors can be used for the

system when the channels are stationary.

IV. EXPERIMENTAL STUDIES

A. A Transparent Realization

In this subsection, we will give a detailed experimental example to show our proposed algorithms in a transparent

way. For a three-source three-relay system with L = 3, we set the power constraints P = 10dB and Tmax = 5.

The channel coefficient vector hm for each relay is generated as

h1 = [0.9730, 0.4674, 0.5103]T,

h2 = [−1.7291, 0.7166,−0.5856]T ,

h3 = [−0.3912, 1.4407,−0.8115]T .

After calculating Gm, m = 1, 2, 3 and running our proposed FP based candidate set searching algorithm for each

relay, we will get the network coding candidate vector sets ΩTmax

1 , ΩTmax

2 , ΩTmax

3 and corresponding computation

rate sets ΓTmax

1 , ΓTmax

2 , ΓTmax

3 as follows

ΩTmax

1 =








1 2 1 1 1

0 1 1 0 1

0 1 1 1 0







,

ΓTmax

1 = [0.4846, 0.4620, 0.3408, 0.2918, 0.2231] ;

ΩTmax

2 =








1 2 3 −1 −2

0 −1 −1 1 1

0 1 1 0 0







,

ΓTmax

2 = [0.7087, 0.6785, 0.5572, 0.3625, 0.2694] ;
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ΩTmax

3 =








0 0 1 0 1

−1 1 −2 −2 −3

1 0 1 1 2







,

ΓTmax

3 = [0.5987, 0.5935, 0.4384, 0.4165, 0.2902] .

We can see that the computation rate set ΓTmax

m , m = 1, 2, 3 has elements sorted in descending order where the first

element is the maximum computation rate for relay m. The n-th column in ΩTmax

m is a candidate network coding

vector a
(n)
m for relay m, while the corresponding computation rate is the n-th element in ΓTmax

m . Note that if we

optimize the network coding coefficients separately, which means each relay will use network coding vector that

maximizes its own computation rate, am is taken from the first column of ΩTmax

m , m = 1, 2, 3 and the constructed

network coding system matrix

Alocal =








1 1 0

0 0 −1

0 0 1








T

is obviously not of full rank. In this case, the destination actually cannot decode all the messages efficiently.

Then we go forward to run our proposed network coding system matrix constructing algorithm. We sort the

computation rates for all relays in a descending order,

{0.7087
︸ ︷︷ ︸

γ1

, 0.6785
︸ ︷︷ ︸

γ2

, 0.5987
︸ ︷︷ ︸

γ3

, 0.5935
︸ ︷︷ ︸

γ4

, 0.5572
︸ ︷︷ ︸

γ5

, 0.4846
︸ ︷︷ ︸

γ6

, · · · }.

and start to check the rate from the third maximum value, γ3 = 0.5987, then γ4 = 0.5935, then γ5 = 0.5572, · · · ,
to see whether it is achievable. If so, terminate and output; if not, move to the next rate.

For example, when we are checking γ4 = 0.5935 = R
(2)
3 , which is taken from the second element of ΓTmax

3 ,

the reduced candidate sets Ωcut
1 , Ωcut

2 , Ωcut
3 with all corresponding rates greater or equal to γ4 = 0.5935 can be

constructed as

Ωcut
1 = ∅, Ωcut

2 =








1 2

0 −1

0 1







, Ωcut

3 =








0

1

0







.

We can easily see that no full rank network coding system matrix A can be constructed with a1 ∈ Ωcut
1 , a2 ∈ Ωcut

2 ,

a3 ∈ Ωcut
3 . Hence the rate of γ4 = 0.5935 is not achievable. We will move to γ5 = 0.5572 and check in the same

way.

After running our proposed Network Coding System Matrix A Constructing Algorithm 2, the network coding

system matrix A = [a1, a2, a3]
T

is finally constructed as

Aproposed =








1 2 0

0 −1 1

0 1 0








T

and the maximum transmission rate Rmax
D = 0.4846.
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B. Simulation Results

We present numerical results to evaluate the performance of our proposed algorithms. First, we show that if

network coding integer coefficient vector is optimized separately/locally at each relay, the probability that the

network coding system matrix A is not of full rank, i.e. |A| = 0, in which case the destination actually cannot

decode the original messages efficiently. With the average of 10000 randomly generated channel realizations, it can

be observed from Fig. 6 the severity of this issue. For example, when L = 3 and P = 1dB-8dB, the probability of

rank failure with local optimized network coding vectors is always beyond 0.4. This further assures the importance

and necessity of our proposed algorithms.
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Fig. 6. Probability of rank failure with local optimization for L = 2, 3, 4

In Fig. 7, we compare the overall transmission rate RD at destination, with the average of 10000 randomly

generated channel realizations, of several different strategies in multi-source multi-relay channels with L = 3 and

Tmax = 5. (i) The “DF with interference as noise” is a strategy in which relay m is trying to decode one message

from source m and treat other messages as noise. In this special case, the system matrix A = IL. (ii) The “CPF

NC with Round-H” is a strategy that each relay decodes a linear integer combination of transmitted messages, while

the network coding coefficients are set by a simplified method, i.e. rounding the channel coefficients directly to

the nearest integers. (iii) The “CPF NC with local optimization” is a strategy that each relay also decodes a linear

integer combination of transmitted messages, while the network coding coefficients are optimized locally/separately.

Due to the rank failure issue of network coding system matrix, in which case the destination cannot decode all

messages, the rate is decreased. Finally, (iv) the “CPF NC with proposed algorithms” is the strategy that each relay

decodes a linear integer combination of transmitted messages with our proposed FP based candidate set searching
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algorithm and network coding system matrix constructing algorithm.
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Fig. 7. Rate comparisons of different schemes for L = 3

As shown in Fig. 7, the performance differences are significant. “DF with interference as noise” gives very poor

result. Furthermore, increasing power constraint has not much effect on this strategy since as the power increases for

the interested message, the corresponding interference power is also raised. The “CPF NC with Round-H” strategy

works a little better since it somehow takes advantage of network coding to improve the rate, but the coefficients

are chosen in a simplified way and not optimal. The “CPF NC with proposed algorithms” strategy, in which case

the network coding coefficients are optimized systematically, performs superior to all other strategies and has about

3dB gain compared with the “CPF NC with local optimization”.

We repeat our experiment with multi-source multi-relay channels of L = 4 and present the average rate

comparisons of different schemes with respect to the power constraint. Similar results are shown as in Fig. 8. “CPF

NC with proposed algorithms” strategy still gives the best performance and further demonstrates the effectiveness

of our proposed algorithms.

V. CONCLUSION

In this work, we consider the problem of integer network coding coefficients design in a system level over a

compute-and-forward multi-source multi-relay system. Instead of optimizing network coding vector of each relay

separately, we propose the Fincke-Pohst based candidate set searching algorithm, to provide a network coding vector

candidate set for each relay with corresponding computation rate in descending order. Then, with our proposed

network coding system matrix constructing algorithm, we choose network coding vectors from candidate sets to

construct network coding system matrix with full rank, while in the meantime the transmission rate of the overall
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Fig. 8. Rate comparisons of different schemes for L = 4

system is maximized. Numerical results give the performance comparisons of our proposed compute-and-forward

network coding algorithms and other strategies.
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