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. INTRODUCTION

Due to their importance in current and future wireless comigation systems, multiple-input multiple-
output (MIMO) interference channels have gained much atterirom the research community in recent
years. Since Cadambe and Jafar showed that interferemgremant (IA) achieved the maximum number
of degrees of freedom in MIMO interference channels [2]reéh@as been extensive research in devising
good beam design algorithms for MIMO interference chanmédsy, there are many available beam design
algorithms for MIMO interference channels such as IA-baakgbrithms [3]-[5] and sum-rate targeted
algorithms [3], [4], [6]-[9]. However, most of these algbrns assume perfect channel state information
(CSI) at transmitters and receivers, whereas the assumpfigerfect CSlI is unrealistic in practical
wireless communication systems since perfect CSI is uledbtaiin practical wireless communication
systems due to channel estimation error, limited feedbaakteer limitations [10]. Thus, the CSI error
should be incorporated into the beam design to yield bet#giopnance, and this is typically done under
robust beam design frameworks.

There are many robust beam design studies in the convehsimgde-user MIMO case and also in the
multiple-input and single-output (MISO) multi-user case.the MISO multi-user case, the problem is
more tractable than in the MIMO multi-user case, and extensisearch results are available on MISO
broadcast and interference channels with imperfect CS}[13]; the outage rate region is defined
for MISO interference channels in [11], and the optimal bestracture that achieves a Pareto-optimal
point of the outage rate region is given in [12]. For more cboaped MIMO interference channels,
there are several pioneering works on robust beam desiger @8l uncertainty [14]-[16]. In [14], the
authors solved the problem based on a worst-case appraacheil work, the CSI error is modelled
as a random variable under a Frobenius norm constraint, asin&definite relaxation method is used
to obtain the beam vectors that maximize the minimum sigmatterference-plus-noise ratio (SINR)
over all users and all possible CSI error. In [15], on the othend, the CSI error is modelled as an
independent Gaussian random variable, and the beam isndestg minimize the mean square error
(MSE) between the transmitted signal and the reconstrugitgthl at the receiver with given imperfect
CSI at the transmitter (CSIT).

In this paper, we consider the robust beam design in MIMOrfietence channels based on a different
criterion. Here, we consider the rate outage due to chanmetrtainty and the problem of sum rate
maximization under an outage constraint in MIMO interfemichannels. This formulation is practically

meaningful since an outage probability is assigned to eaeh and the supportable rate with the given
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outage probability is maximized in practical systems. Hame assume that the transmitters and receivers
have imperfect CSI and the CSI error is circularly-symneetomplex Gaussian distributed. Under this
assumption, we first derive closed-form expressions forahege probability in MIMO interference
channels for an arbitrarily given set of transmit and reeddeamforming vectors, and then derive the
asymptotic behavior of the outage probability as a functiérseveral system parameters by using the
Chernoff bound. It is shown thalhe outage probability decreases exponentially with resfe(w.r.t.) the
quality of CSI measured by the inverse of the MSE of CSl, dilpicalled the channeK factor [10] or
interpreted as the Fisher informatidi 7] in statistical estimation theory. In particular, itdeown that in
the case of interference alignment, the outage probalsiitybe made arbitrarily small by improving the
CSI quality if the target rate is strictly less than the ratidéained by using the estimated as the nominal
channel. Next, based on the derived outage probabilityesgions, we propose an iterative beam design
algorithm for maximizing the weighted sum rate under thest@int that the outage probability for each
user is less than a certain level. Numerical results showtligaproposed beam design algorithm yields
better sum outage rate performance than conventional beaigrdalgorithms such as the ‘max-SINR’

algorithm [3] developed without the consideration of chelrimcertainty.

A. Related work

The outage analysis for MIMO interference channels has peeiormed by several other researchers
[16], [18]. In [16], the outage probability for a given ratgpte is computed under the assumption that
the knowledge of the channel mean and covariance matrix\aitable, and transmit and receive beam
vectors that minimize the power consumption for a given geiteonstraint are obtained. However, it is
difficult to generalize this method of analysis to the casenaftiple data streams per user, whereas our
analysis includes the multiple data stream case. In [18]otltage probability and SINR distribution of
each user in MIMO interference channels with the knowledfyehannel distribution information are
obtained under a particular transmit and receive beamtateiof IA transmit beams and zero-forcing
(ZF) receivers. On the other hand, our analysis can be apmithe case of general transmit and receive
beam structures beyond IA and ZF.

The probability distribution of a quadratic form of Gaussieandom variables has been studied
extensively in the statistics field [19]-[22] and in the coomitations area [23]-[25]. The most widely-
used approach to obtain the probability distribution of au§€san quadratic form is the series fitting
method [20], [21], [23], [26], which typically converges the probability distribution of a Gaussian

guadratic form from the lower tail first. However, the outalgdinition associated with robust beam design
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for MIMO interference channels in this paper requires aaticomputation of upper tail probabilities.
The series expansion for the cumulative distribution fiomct{CDF) obtained in this paper based on
the integral form for the CDF in [25] and the residue theor&®] [is well suited to this purpose and
converges to the upper tail first. Thus, the obtained senig¢ki$ paper is more relevant for our outage

analysis. For a detailed explanation of the derived seplesse see Appendices B—C.

B. Notation and organization

We will make use of standard notational conventions. Vecéod matrices are written in boldface with
matrices in capitals. All vectors are column vectors. Foratrin A, A”, |A|» and A(i, j) indicate
the Hermitian transpose, the Frobenius norm and the eleimentv i and column; of A, respectively,
and ve¢A) and t(A) denote the vector composed of the column®\oénd the trace oA, respectively.

For vectora,

al| and[a]; represent the 2-norm and tli¢h element ofa, respectivelyl,, stands for the
identity matrix of sizen (the subscript is included only when necessary), and(diag- - ,d,,) means
a diagonal matrix with diagonal elements, - -- ,d,,. x ~ CN(u, X) means that the random vecter
has the circularly-symmetric complex Gaussian distrdrutivith mean vectop: and covariance matrix
. K={1,2,---,K}, . =+/—1, and|A| denotes the cardinality of the st

The paper is organized as follows. The system model andgmofdrmulation are described in Section
II. In Section lll, closed-form expressions for the outagehability are derived, and the behavior of the
outage probability as a function of several system paramétesxamined by using the Chernoff bound.
In Section IV, an outage-based beam design algorithm isgsegh Numerical results are provided in

Section V, followed by the conclusion in Section VI.

[I. SYSTEM MODEL AND PROBLEM FORMULATION

In this paper, we consider/g-user time-invariant MIMO interference channel in whiclcle&ransmitter
equipped withN; antennas is paired with a receiver equipped withantennas, and interferes with all
receivers other than the desired receiver. We assume #rantitterk transmitsd (< min(N¢, N,.))

independent data streams to receikgraired with transmittek. Then, the received signal at receiver

is given by
K
vi =HuVisg + Y HyVis; +ny, 1)
i=L,ik
whereHy; is the N, x N; channel matrix from transmitterto receiverk; V; = [v§1>, cee ,v§d>] is the
Ny x d transmit beamforming matrix with normalized column vestat transmittes, i.e., vam)H =1
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form=1,---,d; ands; = [s§1>, e ,s§d>]T is thed x 1 symbol vector at transmitter We assume that

the transmit symbol vectay; is drawn from the zero-mean Gaussian distribution with uaitance, i.e.,
si ~ CN(0,1I), and the additive noise vectar, is zero-mean Gaussian distributed with varianégi.e.,
n;, ~ CN(0,0%I). We assume that the CSI available to the system is not pefféet is, neither the

transmitters nor the receivers have perfect CSI. For thesifapt CSI, we adopt the following model
Hy; = Hy + Ep (2)

for each(k,:) € K x K, whereHy; is the unknown true channdi,; is the channel state available to the
transmitters and the receivers, aRg; is the error between the true and available channel infoomat
For the CSI errofE,; between the true and available channel information, we taith@oKronecker error
model which is widely used for MIMO systems to model the erorrelation that may be caused by

the transmit and receive antenna structure [10]. Underrtiadel, the CSI erroEy; is given by
Ey = SV2PHYS? with veqHY) ~ CN(0,071) for some o7 > 0, (3)

whereX; and X, are transmit and receive antenna correlation matricepeotisely, and the elements
of Hl(fl”) are independent and identically distributed (i.i.d.) ame drawn from a circularly-symmetric
zero-mean complex Gaussian distribution. The CSI uncegytanatrix E;; is a circularly-symmetrit
complex Gaussian random matrix with distribution {@#@g;) ~ CA(0,0% (=} ® X,)) [10, p.90], and
o7 is the parameter capturing the uncertainty level in CSI. \&&ume that théE,,’s are independent
across transmitter-receiver pairs ). To specify the quality of CSI and signal reception, we define

parameters A A A
oy IHelE [ Hlle and 1) — [Hy|| %
T E{ELE) oS o X T2
kil or(E; ®%,)

Kéﬁi) is the channeK factor defined as the ratio of the power of the known channeltpahat of the

unknown channel part, representing the quality of CSI [0 T'(*) is the signal-to-noise ratio (SNR)
at receiverk sinceV; ands; are normalized in our formulation. Hereafter, we will ugeto represent
the collection of channel informatio{lﬂm,zt,zr} known to the transmitters and receivers. By using
the receiver filteru,gm) (||u,im)|| = 1), receiverk projects the received signgl, in (1) to recover the
desired signal streamm:

K
§ — @™y, = (@™ (Fg + Bre) Viese + > (Hy + Ep) Visi + ny,
i=1,ik

The circular symmetry of a random matrix in form &fZB with constant matricedA and B and a circularly-symmetric

complex Gaussian matriX can easily be shown by a similar technique to that used in {hygeAdix A.
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We assume that the design of the transmit beamforming reat{i¥';,k € K} and receive filters
{U;, = [u,(fl),--- (d)] k € K} is based on the available C31. This model of beam design and
signal transmission and reception captures many coheneairlbeamforming MIMO schemes including
interference alignment and sum rate maximizing beamfagnsichemes [3], [6], [27] in which transmit
and receive beamforming matrices are designed based olaldgaCSI| at transmitters and receivers.
Under this processing model, the SINR for streanof userk is given by

SINRY™|, = 4
(u (m))HHka |2
[ ) B v ™ 2 4 5 () (Bl + B vy 12 30 325 (™) (B + ) vy 2 + 02
where the numerator of the right-hand side (RHS) in (4) is desired signal power, and the first,

second, third and fourth terms in the denominator of the R $4) represent the interference purely
by channel uncertainty, inter-stream interference, ottser interference and thermal noise, respectively.
(Here, the dependence of SINR @nis explicitly shown. Since the dependence is clear, thetioota
|, will be omitted hereafter.) Because th&y;} are randomSINR,(fm) is a random variable for given
H and{V(H), U,(#), k € K}. Thus, an outage at stream of userk occurs if the supportable rate
determined by the received SINR (4) is below the target I%)(Cf@), and the outage probability is given

by

Pr{outagd — Pr {log2 (1 v S|NR,<§”>) < R,Ej”>} . (5)
By rearranging the terms in (4), the outage event can be sspdeas
(m)Hyy (m)2
(mi)H x(mg) o (W~ Hrpvy | 2 .
ZZX DH x(mi) > =T (6)
=1 j=1
where
iy ] B, i=k andj=m -
e u/™"(H,, + Ep)v?, otherwise.
Since the{Ey; } are circularly-symmetric complex Gaussian random maﬁtn{:ﬁ’(m” 1=1,--- K,j=

,d} are circularly-symmetric complex Gaussian random vagesbénd the left-hand side (LHS) of
(6) is aquadratic form of non-central Gaussian random variabl&e simplify notation, we will use

vector form from here on. In vector form, (6) can be expressed

x(mMHEx ) > (8)
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where X(™ .= [x D) . xled) x ) o x(MOIT The elements of the mean vectaf™ (:=
E{X,(Cm)}) of X,(Cm) are given by
0, i=k, j=m,
[ 10y = _ 9
koD ulgm)HHkin(”), otherwise
fori=1,--- /K andj =1,---,d, and the covariance matrix,(fm) of X,im) is given by a block diagonal
matrix, since{E;;, i = 1,--- , K'} are independent for different values ©fi.e.,
=y = B{X - BN X - BN = ding(BY, - B, (10)
where thed x d sub-block matrixZ,(;”Z) is given by
VEI)HEtVZ(I) VZ@)HEtVEl) ng)HEtvgl)
(WHs (2) (2)H s _(2) (H 5 (2)
v, NV v v v v
2](:2) _ U%(u]gm)Hzruém)) 7 . tVy 7 . tVy i . tVy (11)
VZ(l)HZtVZ(d) Vzgz)HthZ(d) VZ(d)HEtVZ(d)

for eachi. (The proof of (11) is given in Appendix A.) In the followingestions, we will derive closed-
form expressions for (5), investigate the behavior of théage probability as a function of several

parameters, and propose an outage-based beam desigthatgori

I1l. THE COMPUTATION OF THE OUTAGE PROBABILITY

In this section, we first derive a closed-form expressiontffier outage probability in the general case
of the Kronecker CSI error model, and then consider speeis¢s. After this, we examine the behavior
of the outage probability as a function of several importsydgtem parameters based on the Chernoff

bound.

A. Closed-form expressions for the outage probability

For a Gaussian random vect& ~ CN (u, X) with the eigendecomposition of its covariance matrix
> = WAWY the CDF of X7 QX for some givenQ is given by [25]

1 00 eT(Lw—i-ﬁ) e—¢
o /_OO w+ B det(I+ (w+ B)Q)

for some > 0 such thatl + 3Q is positive definite, wher€ = A#2@HQWA/?, y = A~1/2wH

Pr{XQX <7} = dw (12)

—1
andc = x? <I+ iBQ*) x- From here on, we will derive closed-form series expressiton the

299

CDF of the outage probability in several important cases filyang the residue theorem used in [22]
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to the integral form (12) for the CDF. First, we consider thesingeneral case of the Kronecker CSI

error model. The outage probability in this case is givenhsy following theorem.

Theorem 1:For given transmit and receive beamforming matrif¥s = [v,(j), e ,v,gd)]} and{U; =
[u,gl), e ,uffd)]} designed based oi = {H,,,%;, 2, }, the outage probability for stream of userk

with the target rateR,gm) under the CSI error model (2) and (3) is given by

Pr{outagdé = Pr{log,(1+SINR!™) < RI™

ko425 D7) oo Ki () 2\ Hitl
o Z o (57 X Z 1 g(")(O) 1 Zj:l x| (13)
— A W n!”" (n —k; +1)! by
wherer is given in (6);{\;,i = 1,--- ,x} are all the distinct eigenvalues of ti€éd x Kd covariance

matrix zl(j” in (10) with eigendecompositioE,&m) = w,gm>A;m>@,§m>H; r; is the multiplicity’ of the

eigenvalue);; X(j) is the element of vector

X = (AR ) (14)

corresponding to the-th eigenvector of the eigenvalue (1 < j < k;), i.e., it is thej-th element of
()\,-I,ﬂ)‘%\lfl(m.)H (m) (\If )is aKd x r; matrix composed of the eigenvectorsEim) associated with
Ais);

oS exp (— D pti 1fsl/1>£’\A Sty g2 )

s=1/h [1,2i (1+(S—1//\i) p)ﬁp ’

andgi(”)(s) is the n-th derivative ofg;(s) W.r.t. s.

9i(s) = (15)

Proof: By using (12) and the factQ =1 andX ~ CN(Mk Z(m)) in this case, we obtain the
outage probability for streamn of userk in an integral form as

B0 s T 2ui=11 5>\ (Z] 1 ‘X51>| )

pr{xX(MAXM > 1 L £.c i |

27t Jp—io 8 [T (1 + shg)e

wheres = g+ w (6 > 0). The outage probability (16) can be expressed as a conttegral:

ds, (16)

Pr{X""x{™ > 7} =

st i e OO0 )
i= 1+ >\
! 746 ¢ ds, a7)
C

s T (1 + s
=:F(s)

C2m

where(C is a contour of integration containing the imaginary axisl &me whole left half plane of the
complex plane. By the residue theorem, the sum of the residusingular points of'(s) which do not

have positive real parts yields the contour integral in (mes 27.. It is easy to see that the singular
ZSinceZ,(c'") is a normal matrix, we hav&d = "7 | &
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points of F'(s) ares = 0 ands = —1/X;, i = 1,--- , K. SinceZ,(C";) are all positive—definitezl(cm) is

positive definite and\; > 0 for all i. So, the outage probability is given by
Pr{outage =1 — (RgOsF(s) + Res F(s)). (18)

It is also easy to see from (17) that the residué'of) ats = 0 is R%sF(s) = 1. To compute R?i F(s),
s= s=—1/\;

for eachi we introduceG;(s) defined as

N
Gils) = F <S - )‘_z> - Y [l (T + Ap(s = 1/A))
eT-1N) T DL T - D SE G Tk
T s Y (Ais)mi . [z (14 Ap(s = 1/X))

N
=:1;

= 2
(T K )2 g ris FI=1IAd e’s
AT ) < “1).

()\Z‘S)m S — 1/)\1
=:1(s) =:9.(5)
Now, the residue off'(s) at s = —1/); is transformed to that of7;(s) at s = 0. The Laurent series
expansion off;(s) and the Taylor series expansion @fs) at s = 0 are given respectively by
o] Ki (32 " o]
_ 1 1 Zj:l |Xi | . 1 (n) n
fi(s) = Dus) ; ] (T and gi(s) = 7;) 9% (0)s". (19)
By multiplying the two series and computing the coefficiehtlds, we obtain the residue df;(s) at
s=0as
—(E+T5L KPR ki )2\
e ri 1 1 > x|
ResG;(s) = : —3; 20
SS(?G (8) )\? e 1 n!g’ (O) (n — Ki + 1)! < )\Z’ ( )
for eachi. Finally, substituting the residues into (18) yields (13). |

To compute (13), we need to computs; }, {XZ(.j)} and the higher order derivatives ¢f(s). The first
two terms are easy to compute since they are related with damector of sizé(d and the covariance
matrix of sizeK dx K d. Furthermore, the higher order derivativegigfs) can also be computed efficiently
based on recursion. (Please see Appendix C-A.) Note thakicdse that the elemeriféjf) in (3) have
difference variances, (13) is still valid since the difiece variances only change the covariance matrix
(10) and the outage expression depends on the covariance (&) through{)\;} and {ng)}.

Next, we provide some useful corollaries to Theorem 1 raggrthe outage probability in meaningful
special cases. First, we consider the case in which a subskaonels are perfectly known at receiver

i.e., Hy; = Hy; andE; = 0 for somei € K. This corresponds to the case in which channel estimation
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or CSI feedback for some links is easier than that for othwsli For example, the desired link channel
may be easier to estimate than others. The outage prolaipilithis case is given by the following

corollary.

Corollary 1: When perfect CSI for some channel links including the deldirk is available at receiver

k,i.e., H;, = Hy,; for i € T, C K, the outage probability for stream of userk is given by

Pr{outagd = Pr{log,(1+SINR!™) < RI™1

R =G TP oo ki @2\
_ _Ze N X Z 1 (n)(O) 1 Zj:l |Xi | 21)
AL YRR (n —k; +1)! i
i=1 ? n=r;—1 v v
where7’ is defined belowi{\;,7 = 1,--- ,x'} is the set of all the distinct eigenvalues of the covariance
g

matrix (10); & is the multiplicity of \;, satisfying(K — |Yx|)d = %, ki; x\7) is given in (14); and
e‘r's exp (_ Zp;éz % Z |X(q)| )

=1 [Tpsi (1 +(s=1/\) p) "

91,i(s) = (22)

Proof: When CSI for some links including the desired link is perfélseé outage event at stream
of userk is given by

e
10g2 - |u(m) Hkagn)F <R(m)
=
Siery L=, 0T Hv 2+ e, o™ T v 2 4 S epe S ™ (B + Br)v 2 + 02
J#EmM i#k

sinceEy; = 0 for i € YT;. Thus, in this case the outage event is expressed in a gicatbah as

follows:
(mi)H m) lu{™" Hkkv(m) (m)Hpar . (7)12 (m)H¢y .(m)2 2
> 3w = R S i 0 it
i€ j=1 2% €Tk j=1, i€ h,
j#m i#k

(23)
and we haveXli’ZLj) = 0 for all i € T (See (7)). The size oX,im) now reduces tqK — |Yi|)d, and
the size of the covariance matrE,(fm) is (K — |Yg|)d x (K — |Tg|)d. With the new threshold”’, the

same argument as that in Theorem 1 can be applied to yielcethdt.r ]

Thus, when perfect CSl is available for some links, the oadéne distribution is reduced under the same

structure. Next, consider the specific beam design methaoderference alignment and the corresponding

outage probability, which can be obtained by Corollary 1 endiven in the following corollary.
Corollary 2: When the desired channel link is perfectly known (kez Y;) and{V} and{Uy} are

designed under IA based ¢4, the outage probability for stream of userk is given by

Pr{outagd = —Z ‘?——1),9%‘”(0). (24)
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ki

When the beam is designed under 1A basedronwe haveE{X,im)} =0 sinceu,im)HHka( 7 — 0 for

alli e C\{k} D Y5, j=1,---,d. (See (9).) Hencexém) =0 and thusx(j) =0 for all 7 andj. (See

)

Proof: First, express the random term in (23) B3y S XX = (x)EX ™.

(14).) Then, the terms in the infinite series in (21) are zeroall n > x; — 1 from the fact tha0® = 1

and0! = 1, and the result follows. [ |

The outage probability for single stream communicationiveig in Corollary 3.
Corollary 3: Whend = 1 and all eigenvalues oE,(Cm) are distinct, the outage probability for user

is given by
Pr{outagé = Pr{log2(1 + SINRy) < Ry}
—(Ixil*+7/xi) 2 Ixil? (n)
- —Z > (A7 (%Y g (25)

Ap(s—1/X;)
= Cpti TR, Go17a ol

Hp¢i <1+)‘p(8_1/>‘11))
superscripts since the stream index is unique.)

TS

e

whereg;(s) in (15) reduces tg;(s) = —=

P ol . (Here, we have omitted the stream

Proof: Since all eigenvalues are assumed to be distinct, there arei’ eigenvalues withs; = 1

for all <. Substituting these into Theorem 1 yields the result. [ |

Now, let us consider a simpler case fér= 1 with no antenna correlation. In this case, the outage
probability is given as an explicit function of the channelartainty levels?, and it is given by the

following corollary to Theorem 1.

Corollary 4: Whend = 1 and there is no antenna correlation, the outage probalsligiven by

Pr{outagd = — ¢TI i 1wyt <ka?H2>"_K+17 (26)
(07) ! n—-K+1)'\ o;
wherex,, = E{X}} /o, andg(s) = 8_81—/0%
Proof: In this case, an outage at usewoccurs if and only ikaHXk > W 2. Now, the

covariance matrixt; of Xy, is o071, (see (10) and (11)), and thus there is only one eigenvajueith
multiplicity K. Moreover,x;, = E{Xy}/o, from (14) since®, = I and A, = o71. By substituting
these into Theorem 1, the outage probability (26) is obthine ]

B. The behavior analysis of the outage probability basedhenGhernoff bound

The obtained exact expressions for the outage probabilitthé previous subsection can easily be
computed numerically, and will be used for the robust beasigiiebased on the outage probability

in Section IV. Before we address the outage-based robush lessign problem, let us investigate
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the behavior of the outage probability as a function of ssvparameters. Suppose that transmit and
receive beam vectorsv,(cm),ul(cm)} are designed by some known method basediorFor the given
beam vectors, as seen in the obtained expressions, theegoitalpability is a function of other system
parameters such as the known channel mi@p, }, the noise variance?, the channel uncertainty level
ah, the antenna correlatioR; andX,., and the target ratR(m) Here, the dependence (ﬁ]kk, o2 and
R( ™) is via the thresholc&(Hkk,a ,R,g )), and the dependence arf, ;, X, and {ﬂki,i # k} is

via x\™ (=™ (02, %,, £,), E{X\™1(H},)) and the eigenvalues dt,(f”’;‘) (02,5, %,). This complicated
dependence structure makes it difficult to analyze the ptiggeof the outage probability as a function
of the system parameters. Thus, in this subsection we applZhernoff bounding technique [17] to the
tractablé case ofd = 1 to obtain insights into the outage probability as a functidrseveral important

parameters. Whed = 1, the outage event is expressed as

’U_ Hkkka K
Pr{XkHXk > = (2371) 2} = Pr{ > XH X > T}. (27)
i=1
Since Eq,--- ,Epx are independent and circularly-symmetric complex Gaunssédom matrices,
X1, , Xpi are independent and circularly-symmetric complex Ganssiadom variables. (See (7).)

Thus, the term on the LHS in the second bracket in (27) is a sSumdependent random variables, and

the Chernoff bound can be applied to yield

Pr{X/X,, > 7} <e ™ [[L, E {esl¥ul") (28)
for any s > 0. The moment generating function (m.g.f.) 0¥4;|? (Xi; ~ CN (ui, 0;)) is given by
E{GS‘X’”‘Z} _
o2 (ull 3, u) (v ZHZtv,-). (See (7,9,11).) Therefore, the Chernoff bound on the @upaigbability is given
by

- exp ( | s) for s < 1/0%;, wherepuy, = 0, pug; = uf Hyv; for i # k, ando?, =

K
1 2
Pr{XkHX.k 2 T} S e_Ts H m exp (1|'UJ]“| )
i=1 i i

Uk
= exp {—

’Nkz‘ S
7-3+Zlog (1—o0%s +Zams—1 (29)
for 0 < s < min;{1/0%,}. Now, (29) provides a tool to analyze the behavior of the getprobability

as a function of several important parameters. The mostategiroperty is the behavior of the outage

®In certain cases of > 1, Chernoff bound can still be obtained when each elemerxgﬁ) is independent of the others.
Such cases include the case that there is no antenna domedad the transmit beam vectors are orthogonal as in theebb

case. In this case, similar results to the casd ef 1 are obtained.
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probability as a function of the channel uncertainty levihis behavior is explained in the following

theorem.

Theorem 2:Whend = 1, aso; — 0, the outage probability decreases to zero, and the decaysrat
given by
Pr{outagé < e - exp(—cy/0}) (30)

for somec; andc, > 0 not depending om?, if the target rateR;, and the designed transmit and receive

beam vectord vy, u;} satisfy

juf Hyovi|?

| |2 2
> +o
2iz1 1 ef o Bvi)

tr( D) tr(2dy)

Rk<Rk:log2 1+

(31)

Proof: (29) is valid for anys € (0, min;{1/0%,}). So, lets = 1/otr(T)tr(X,) (< min;{1/0,}
since |[vi|| = |Jux|| = 1 and o}, = o2 (0l X, u,)(vEEv;) < oltr(Z)tr(X,) for all i). Then, the
exponent in (29) is given by

K K 2
N N— Zlog 1— (wy Zrug) (vi Bevi) | Z |foni
F(E(S,) tr(S)tr(s,) o2 (0 S (VI B — o tr(S)(E,)
B 1 K | |2 al (s, ) (vES,v,)
- {tr(Et +; WS, (VIS v;) — (B (s,) _;k’g {1 TS SATTT6 >N
(=:c2) (=:c1)
Now, substitutingr = |ul! Hjvi|? /(25 — 1) — o2 into the inequalityc; > 0 yields (31). [ |

Theorem 2 states that the outage probability decays to zetloeaCSI quality improves, more precisely,
it decays exponentially w.r.t. the inverse of channel estiom MSE (or equivalently w.r.t. the channel
K factor), if the target rate is below,.. In the Fisherian inference framework, the inverse of estiiom
MSE is information. Thus, another way we can view the abovthd the outage probability decays
exponentially as the Fisher information for channel stateréases, if the target rate is below a certain
value. So, the outage probability due to channel uncertainty isth@rocase in which information is
the error exponent as in many other inference problems. itainecases, the condition (31) can be
simplified considerably. For example, when interfereniigning beam vectors based ¢ are used at
the transmitters and receivers, we hayg = ukHﬂkivi = 0 for i # k in addition to g, = 0, and the
condition is simplified toR;, < log, (1 + '“fli+"’°|2> Thus, in the case of interference alignment the
outage probability can be made arbitrarily small by impngvihe CSI quality if the target rate is strictly

less than the rate obtained by usifig; as the nominal channel. Next, consider the outage behasior a
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the effective SNRI'.sf := \ukHﬂkkka/Uz, increases. Since the two terms determining the effective

SNR are contained only in, it is straightforward to see from (29) that
PI’{OUtagQ < c3exp (—C4Feff) , (32)

for somecs andcy = so?/(2f% — 1) > 0 not depending of.;;. Finally, consider the case in which
the target rateR;, decreases. One can expect that the outage probability siécaero if the target rate

decreases to zero. The decaying behavior in this case ia givihe following theorem.

Theorem 3:Whend = 1, as R, — 0, the outage probability decreases to zero, and the decaysrat
given by

cr <
r{outagé < cgexp ( oRr 1> €6 eXP ( Ry + O(Rk)> 39

for somecz, ¢ > 0 not depending omR;,. The last equality is whe®®), is near zero.
Proof: Let s be any positive constant contained in an inte(¢all/ max;{o? (0 =, u;) (vF Z,v;)}).
Then, the exponent in (29) becomes

K
—T8 — Zlog [1—o2(ullZ,u)(vES,vy)s

=1 =

(=:cs5)

|/Lk1|25
A3 u) (vESv;) — 1

EMN
Vel
q

2Rk — 1 2Rk — 1 >

s\ufﬂkkka

Hence, the Chernoff bound is given By{outagé < cg exp (‘W) = g exXp (‘#,7(.&)) for
somec, > 0. The last equality is wheRy, is near zero. In this case, we had& —1 = (log 2) R +o(Rx)

by Taylor's expansion. |

IV. OUTAGE-BASED ROBUSTBEAM DESIGN

In this section, we propose an outage-based beam desigritlablgdoased on the closed-form expres-
sions for the outage probability derived in the previougisec Our assumption is tha{ is given for the
beam design, as mentioned earlier. Suppose that transthiteaeive beamforming matricd&/;,, Uy}
are designed by using any available beam design method basgd Based on the designdd/;,, U}
and known{’l:l,az}, one can compute and use a nominal rate for transmissione Siris not perfect,
however, an outage may occur depending on the CSI error tidhanal rate is used for transmission. Of
course, the outage probability can be made small by makiadrémsmission rate low or by improving
the CSI quality, as seen in Section 1lI-B. However, thesehods$ are inefficient sometimes since we

may have limitations in the CSI quality or need as high rat@assible for giver?{. Further, in many
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wireless systems the target outage probability for trassiom is determined and the data transmission
is performed under such an outage constraint. Thus, we lwrgider the beam design problem when
the outage probability is given as a system parameter. liicpkar, we consider the following per-stream

based beam design problem to maximize the stontage rate for givef:

K d
maximize R} (34)
v} ul} ;7’;
subject to Pr{log,(1 + SINR{"™|,.) < R/} < e (35)
Hu,(fm)H - HV;Em)H =1, VkeK, m=1,---.,d, (36)

where thee-outage rate for streamn of userk is the maximum rate satisfying (35). Like other beam
design problems in MIMO interference channels, the sinmaitaus joint optimal design for all transmit
and receive beam vectors for this problem also seems diffildehce, we propose an iterative approach to
the above suna-outage rate maximization problem. The proposed methodpkamed as follows. In the
first step, we initialize{v,(fm)} and{u,im)} properly (here a known beam design algorithm for the MIMO
interference channel can be used), and then find optimatupte (RP, e ,Rid),RS), e ,R%)) that
maximizes the sum for give{rvg”), u,g’”)} under the outage constraint. This step is performed based on
the derived outage probability expressions in the previargion. Since designing ead—tﬁm) does not
affect others, this step can be done separately for %@ﬁ Since the outage probability for stream

of userk increases monotonically w.r.R,gm), the optimalR,ﬁm) in this step is the rate with the outage
probability e. In the second step, for the obtained rate-tuple and reteaen vectors{u,(fm)} in the first
step, we update the transmit beam vec{o\rg”)} to minimize the maximum of the outage probabilities
of all streams and all users. (Since the outage probabilifeall streams of all users areat the end

of the first step, this means that the outage probability ebesas for all streams and all users.) Here, we
apply the alternating minimization technique [28] to cimoeent the difficulty in the joint transmit beam
design. (The change in one transmit beam vector affects tage probabilities of other users.) That
is, we optimize one transmit beam vector while fixing all thbess at a time. We iterate this procedure
from the first stream of transmittdr to the last stream of usdx until this step converge. In the third
step, we design the receive beam veatéﬂl) to minimize the outage probability at streamof userk
with the rate-tuple determined in the first step a{mgm)} determined in the second step for eaghm).
This optimization can also be performed separately for ea@am of each user since the receiver filter
for one stream does not affect the performance of otherrage&inally, we go back to the first step

with the updated transmit and receive beam vectors (in thisited first step, the rate for each stream
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will be increased by increasing the outage probability upte again), and iterate the procedure until the
sume-outage rate does not change. We have summarized the sugecata maximizing beam design

algorithm in Table I.

The Proposed Algorithm

Input: channel state estimaté and allowed outage probability

0. Initialize {v,im)} and {u,im)} as sets of unit-norm vectors properly.

1. For given{V}} and{U,}, find (Rgl), - ,Rﬁ?)) that maximizesZ,CK:1 ZZ@:I R,(J”) while
the outage constraint is satisfied.

2. Update{V, = [v\"), .- v{¥1} for {R™} and {U{™} given from step 1.
eFor pair (i, j), fix {v{" k=1,--- K, m=1,--- ,d\{v"} and{U,} and solve

vgj) = arg min max Pr{outagém)}. (37)
vecnNy km
(Here, a commercial tool such as the matlab fminimax fumctan be used to solve (37)
together with the derived outage expression.)
elterate the above step from the first stream of transmitter the last stream of transmitter
K until {Vy,---,Vg} converges.

3. For receiverl to K, obtain the receive fiIteug”) that minimize the outage probability of
streamm of receiverk for given {V,} from step 2 and giverR,gm) from step 1. (Here,
again a commercial tool such as the matlab fmincon functaomlee used together with the
derived outage expression.)

4. Go to step 1 and repeat the whole procedure until the #fgorconverges.

TABLE |

THE PROPOSED ALGORITHM FOR SUM-OUTAGE RATE MAXIMIZATION WITH CHANNEL UNCERTAINTY

Theorem 4:The proposed beam design algorithm converges.
Proof: It is straightforward to see that the suroutage rate increases monotonically for each iteration
of the three steps of the proposed algorithm. Also, the mainsum rate is bounded by the rate with
perfect CSI. Hence, the algorithm converges by the monotomeergence theorem for real sequences.

V. NUMERICAL RESULTS

In this section, we provide some numerical results to védidaur series derivation, to examine the

outage probability as a function of several system parameted to evaluate the performance of the
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5 [Proposed] 30 [Laguerre]
15 [Proposed] b \ T T
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0 2 4 6 8 10

Fig. 1. Comparison of two series expressions for the CDF dddcatic form of Gaussian random variableX. ~
CN([0.5,0.5,0.5,0.5]7,0.314), Q = [1,0.5,0,0;0.5,1,0,0;0,0,1,0;0,0,0,1], and 3 = 2 for Laguerre series expansion.

proposed beam design algorithm. For giBp X, Kézi) andI'®) | we first generate@f{k,-} randomly
according to zero-mean Gaussian distribution, and theleddd,,; to yield HI:IMH% = NN, for all
(k,4). In this way, the channek factor and the SNR were simply controlled by ando?, respectively.
After {H,;} were generated as such, we generaBg,} according to (3) and the true channel was
determined by (2) if necessdryFor simplicity, we used(é,’ji) = K., for all (k,i) andI'®) =T for all

k.

First, Fig. 1 compares the convergence behavior of the e@geries in this paper with that of the series
fitting method [20], [21], [23], [26] based on the Laguerresisafunctions for a given set of parameters
shown in the label of the figure. It is seen that indeed oureseconverges from the upper tail first
whereas the series fitting method converges from the lowkefirst. (For a proof of this in the identity
covariance matrix case, please refer to Appendix C-B.) N the series fitting method vyields large
error at the upper tail distribution even with a reasonablgé number of terms. With this verification,

next consider the outage behavior as a function of sevesi¢isyparameters.

“The computation of the closed-form outage probability reguonly the channel statistics afi#;} regarding the channel

information, but for Monte Carlo runs we need to generdik; }.
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Outage Probability
o
[<2)

Target Rate [bits/channel use]

Fig. 2. Outage probability versus the target r&e (K =3, N. = N, =2d =2, ¥, = ¥, = I, I' = 15 dB. Transmit and

receive beam vectors are obtained by the IIA algorithm in) [3]

Fig. 2 shows the outage probability w.r.t. the target fatefor a given set{ﬂki} (randomly generated
as above) with several different chandél factors, whenk = 3, Ny = N, = 2d = 2, Xy = 3, =1,
I' = 15 dB and the transmit and receive beam vectors were designie literative interference alignment
(HA) algorithm [3]. The solid and dotted lines represeng ttesult of our analysis, and the markers
and x indicate the result of Monte Carlo runs for the outage prdhlgbThe theoretical outage curves in
Fig. 2 were obtained by using (21) with the first 38 terms inittimite series. It is seen that our analysis
matches the result of Monte Carlo runs very well. The dashexddhows the outage performance when
K., = o, i.e., all transmitters and receivers have perfect CSlhéndase of., = oo, we have a sharp
transition behavior acrosB;;,,,;; determined by the SINR (4) witk; = 0 for all (k,7). It is seen that
the outage performance deteriorates from the ideal stepe @frk.;, = oo, as the CSI quality degrades.
The solid lines correspond to the outage performance fofittite values ofK ., when the CSI for all
channel links is imperfect. It is seen that;, = 100 (20 dB) yields reasonable outage performance
compared with the perfect CSI case in this setup. Note tleag#tin in the outage probability by knowing
the desired link perfectly is not negligible. (See the dibtires.) Fig. 3 show the outage probability w.r.t.
the target rateR;, for a given set{ﬂki} with several different;,, when K = 3, N; = N, = 2d = 4,
¥, =%, =1, =25 dB and the transmit and receive beam vectors were designteehiA algorithm.

Similar behavior is seen as in the single stream case, he.outage performance generally deteriorates
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as K, decreases. However, it is interesting to observe in theipielstream case that sufficiently good
but not perfect CSI quality yields better outage perforneatitan the perfect CSl in the high outage
probability regime. (See Fig. 3 (b).) This implies that ire timultiple stream case the second term (i.e.,
the self inter-stream interference term) in the denominatadhe SINR formula (4) is made smaller by
Exr's being negatively aligned witi, than in the case oE., = 0. However, this is not useful in
system operation since the system is operated in the lowgeyteobability regime. All the theoretical
curves in Figures 3 (a) and (b) were obtained by (21) with tiet 45 terms in the infinite series. Fig. 4
shows the outage probability curves when the transmit aceive beamforming vectors are respectively
chosen as the right and left singular vectors corresponttirthe largest singular value of the desired
channel and the other parameters are identical to the casg.i@2. A similar outage probability behavior

to the previous case is observed.

0 Ky =101

x Ko, =3x10*

: + Ko, =10°
: > . - 106
E ' Zogl] * Ker=10
= : || K =00
Ke) 4 Qo
o ! [e)
a ] a 0.6
% H | %
g i ,x Ty = {k} ‘50.47
o ==t Kop =00 o
K. — 00
5 0.2f
5 K., = 1000
%
/ ‘ ‘ 0 ‘
0 1 2 3 4 5 6 7 47 4.8 ] 4.9
Target Rate [bits/channel use] Target Rate [bits/channel use]
(a) CDF (b) Residual error

Fig. 3. Outage probability versus the target ré&g (K =3, Nt = N, =2d = 4, X; = 3, = I, I = 25 dB. Transmit and
receive beam vectors are designed by the IIA algorithm ip) [3]

Next, the outage probability w.r.t. the chanrélfactor for a given se(ﬂ} for several values of the
target rateR; is shown in Fig. 5, where the outage probability along #kaxis is drawn in log scale.
(The same setup as for Fig. 2 was used and the IIA algorithnsasl dor the transmit and receive beam
design. Here, (21) with the first 38 terms in the infinite ser&s used to compute the analytic curves.)
As predicted by Theorem 2, the outage probability indeedagie@xponentially w.r.t. the channél
factor (equivalently, w.r.t. the inverse of). The exponent depends on the target aje the higher the

target rate is, the smaller the exponent is. This decayitg\er is also predicted in Theorem 2; the
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exponente in (30) is proportional tor, andr is inversely proportional to the target raf&,. It is seen
that the outage probability does not decayrasg increases, ifR; is larger thanR;;,,;;. In addition to
the exact outage probability, the Chernoff bound in thisecasshown in Fig. 5 as the lines with dots
and dashes. It is seen that the Chernoff bound is not very tighthe decaying slope is the same as

that of the exact outage probability.

Outage Probability

— Yk:D
L X Yk={k}

1 15 2 25 3
Target Rate [bits/channel use]

Fig. 4. Outage probability versus the target r&ge (K =3, N. = N, =2d =2, ¥, = ¥, =1, I' = 15 dB. Transmit and
receive beam vectors are respectively chosen as the righteétrsingular vectors corresponding to the largest siamguélue of

the desired channel matrix.)

Figures 6 and 7 show the impact of antenna correlation on titege probability. We adopted the
exponential antenna correlation profile considered in,[E2]]. Under this model, théi, j)-th element
of the antenna correlation matri,; (or X,) in (3) is given bypl'~7l, wherep € [0, 1] is a parameter
determining the correlation strength. Sinc&y) = N, and t(X,) = N, for this exponential antenna
correlation model, we have the same transmit and receiversoas in the case of no antenna correlation,
i.e.,, 3X; =TI and X, = I. Since the outage probability depends {jﬁki} as well as on¥; and X,
we generated one hundre{(ﬂki} randomly in the way that we explained already, and averabed t
corresponding 100 outage probabilities to see the impattiefkrror correlation only. Other aspects of
the system configuration were the same as those for Figured B.dt is seen that the error correlation
decreases the outage probability especially when the C8litgus very bad, but the gain becomes

negligible when the CSI quality is good.
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Fig. 5. Outage probability versu., (K =3, Ny = N, =2d =2, 3; = X, =1, I' = 15 dB. Transmit and receive beam

vectors are designed by the IIA algorithm in [3].)
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Fig. 6. Average outage probability verslis K = 3, N; = N, = 2d = 2. Transmit and receive beam vectors designed by the
I1A algorithm in [3].)
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Fig. 7. Average outage probability versiis(K = 3, N; = N, = 2d = 2, Ry = 1.2. Transmit and receive beam vectors

designed by the IIA algorithm in [3].)

Finally, the performance of the proposed beam design dlgormaximizing the suni-outage rate
was evaluated. As reference, we adopted the max-SINR #igo@and IIA algorithm in [3]. Although
the max-SINR and IlA algorithms were originally proposeditsign beam vectors with perfect channel
information, we applied the algorithms to design beam wschy treating the imperfect chanrél as
the true channel. The-outage rate of the max-SINR algorithm (or the IlIA algorithis defined as the
maximum rate that can be achieved under the outage constfainusing the beam vectors designed
by the max-SINR algorithm (or the IIA algorithm). Oné&/,.} and {U,} are designed by any design
method for giveny:,, 3, and {ﬂki}, the outage probability corresponding to the designed besstors
is easily computed as a function of the target ra&le from Theorem 1. Thus, for the beam vectors
designed by the max-SINR and IlA algorithms as well as forséhdesigned by the proposed design
algorithm in Section IV, the-outage rateR; can easily be obtained. Figures 8 and 9 show the sum
outage rate of the proposed beam design method averagethowedifferent sets oﬁﬁki} fore =0.1
ande = 0.2, respectively, wherkl = 3, N; = N, = 2d = 2 andX; = X, = I for different K.;’s. (The
outage probability expression (26) with the first 40 terms waed to compute the outage probability.)
It is seen that the proposed algorithm outperforms the IlA arax-SINR algorithms in all SNR, and
the max-SINR algorithm shows good performance almost coampa to the proposed algorithm at low
SNR. However, as SNR increases, the performance of the iNR-8lgorithm degrades to that of the

IIA algorithm (the two algorithm themselves converge as ShgReases) and there is a considerable gain
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by exploiting the channel uncertainty.

Proposed algorithm

- - max-SINR algorithm [3]

7f- 1A algorithm [3]
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Fig. 8. Sume-outage rate foe =0.1 (K =3, Ny =N, =2d=2,3;, =%, =1)
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Fig. 9. Sume-outage rate foe =02 (K =3, Ny =N, =2d=2,3;, =%, =1)
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VI. CONCLUSION

In this paper, we have considered the outate probabilitytaadutage-based beam design for MIMO
interference channels. We have derived closed-form egjmes for the outage probability in MIMO
interference channels under the assumption of Gaussstibdied CSI error, and have derived the
asymptotic behavior of the outage probability as a functbrseveral system parameters based on the
Chernoff bound. We have shown that the outage probabilityedeses exponentially w.r.t. the chanigél
factor defined as the ratio of the power of the known channelgra that of the unknown channel part.
We have also provided an iterative beam design algorithmmrfakimizing the sum outage rate based
on the derived outage probability expressions. Numeriealllts show that the proposed beam design
method significantly outperforms conventional methoduasésg perfect CSI in the sum outage rate

performance.

APPENDIXA

PROOF OF(11)
The (p, ¢)-th element ofE,(:Z) is given by
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Here, (a) is obtained by applying \ekBC) = (CT ® A)veqB) to each of the two terms in the
expectation, (b) is byE{vedE;)\vedE;)} = 0(Z] ® £,), (c) and (d) are bfA ® B)(C ® D) =

(AC ® BD), and finally (e) is because!”’” £7v!?* and u,gm)HZruém) are scalars. [ |

APPENDIX B

DISTRIBUTION OF ANON-CENTRAL GAUSSIAN QUADRATIC FORM

The contents in Appendices B and C are from the technicalrtaptSRL-2012-APR-1, KAIST, "A

Study on the Series Expansion of Gaussian Quadratic Forms”.
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A. Previous work and literature survey

There exist extensive literature about the probabilityritigtion and statistical properties of a quadratic
form of non-central (complex) Gaussian random variablehéncommunications area and the probability
and statistics community. Through a literature survey, aunfl that the main technique to compute the
distribution of a central (or a non-central) Gaussian gaticiform is based on series fitting, which was
concretely unified and developed by S. Kotz [20], [21], andstaf other works are its variants, e.g.,
[23]. First, we briefly explain this series fitting method &er

Consider a Gaussian quadratic fos? Qx, wherex ~ CA(u, X) with sizen andQ = Q. The
first step of the series fitting method is to convert the namyed Gaussian quadratic form into a linear
combination of chi-square random variables:

x1Qx = 2": Nilzi + 6% = 2": Ai[Re(z + 6;) + Im(z; + &)?], (38)

i=1 i=1
where z; "™ CAF(0,2) for i = 1,--- ,n, and {8, \;} are constants determined I, p and .
Note thatRe(z;) ~ N(0,1) andRe(z;) ~ N(0,1). Thus, the non-central Gaussian quadratic form is
equivalent to a weighted sum of non-central Chi-squareaandariables of which moment generating
function (MGF) isknown The MGF of a weighted sum of independent non-centrgf random variables
with degrees of freedor?m; and non-centrality parametg# is given by
n n 9 n

@(s):exp{—%;u?—i-%;l_uim}-gm. (39)
Note here thatb(—s) is nothing but the Laplace transform of theobability density function (PDFpf
x1Qx or equivalently>" ", \;|z; + &;/%. Now, the series fitting method expresses the PDF as an @finit
series composed of a set of known basis functions and triésdathe linear combination coefficients

so that the Laplace transform of this series is the same denttven ®(—s). Specifically, let the PDF be
gn(Q 1, T5y) = Y cehu(y), (40)
k=0

where {h;(y),k = 0,1,---} is the set of known basis functions akd,,k = 0,1,---} is the set of
linear combination coefficients to be determined. Here, akenthe problem tractable, in most cases,
the following conditions are imposed. First, the sequefiegy)} of basis functions is chosen among

measurable complex-valued functions [0nco] such that

> lerllhi(y)| < Ae®,  y € [0,00] almost everywhete (41)
k=0
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Gaussian quadratic form

Linear combination of
Chi-square random variables

Moment generating function
(or Laplace transform)

1

Eguivalent series expansion Direct inversion

Raphaeli (96)

Kotz (67)

Nabar (05)

Fig. 10. Computation of the distribution of a Gaussian qaadrform

where A andb are real constants. Second, the Laplace transfgrfa) of h(y) has a special form:
hi(s) = &(s)n" (s), (42)

where{(s) is a non-vanishing, analytic function fdte(s) > b, andn(s) is analytic forRe(s) > b and
has an inverse function. The first condition is for the existe of Laplace transform and the second
condition is to make the problem tractable. Finally, witle fire-determinedh(y)} with the conditions,

the coefficients{c; } are computed so that
L(gn(Q, 1, Z3y) = > crh(s) = (=), (43)
k=0

whereL(-) denote the Laplace transform of a function.
Widely used{h(y)} for the series expansion of the PDF of a quadratic form of cemtral Gaussian

random variables is as follows [20], [21].

) n/24k—1
1. (Power series)y,(y) = (-UR%'

2. (Laguerre polynomials):

) = gl B L 25), (44)

(n/2 +k)
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whereg(n;y) is the central? density withn degrees of freedom arﬂni"/?_l)(x) is the generalized

Laguerre polynomial defined by Rodriges’ formula

ks
L2 () = 1 e e @ ok

k! dxk
for a > 1 and a positive control parametgr
For the detail computation dfc, }, please refer to [20], [21], [26]. The whole procedure is marized
in Fig. 10.
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Gaussian random vector in Laguerre polynomial.
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Indian Journal of Statisticsol. 17, pp. 37 — 50, Jan. 1956: CDF for the indefinite quadratic form
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integration,”SIAM J. Scient. Statist. Computql. 1, no. 4, pp. 438 — 448, 1989: Another numerical
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[Biyari-93] K. H. Biyari and W. C. Lindsey, “Statistical disbution of Hermitian quadratic forms
in complex Gaussian variablesEEE Trans. Inform. Theorwol. 39, pp. 1076 — 1082, Mar. 1993.
= Series expansion of multi-variate complex Gaussian randamables. This paper deals with the
case that the Hermitian matrix in the quadratic form is a gpddock-diagonal matrix.

Reference group 3
[Raphaeli-96] D. Raphaeli, “Distribution of noncentratigfinite quadratic forms in complex normal
variables,”IEEE Trans. Inf. Theoryol. 42, pp. 1002 — 1007, May 1996.
[Al-Naffouri-09] T. Al-Naffouri and B. Hassibi, “On the disbution of indefinite quadratic forms
in Gaussian random variables,” Proc. of IEEE Int. Symp. Inf. TheqgrySeoul, Korea), Jun.—Jul.
20009.
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B. The difference of our work from the previous works

First, let us remind our outage event in MIMO interferencarafiels. From equations (5), (6) and (7),

we have
H £ (m)2
\u(m) Hka ’
k o k —o?=7 , (45)
2R 1

K
Prioutagg = Pr{ S S x (x>

i >
i=1 j=1

whereX,g”j) is a non zero-mean Gaussian random variable. Note that thg@®probability is ampper
tail probability of the distribution of the Gaussian quaardorm Z;l:l X,iTj)HX,ETj). However, as seen
in Fig. 11,the most widely-used series fitting method explained in tbeiqgus subsection yields a good
approximation of the distribution at the lower tail not atethupper tail. The discrepancy between the
series and the true PDF is large at the uppait for a truncated serie©n the other hand, our approach
yields a good approximation to the true distribution at thgpar tail. Thus, the proposed series is more
relevant to our problem than the series fitting method.

Our approach to the upper tail approximation is based ondhent works by Raphaeli [22] and by
Al-Naffouri and Hassibi [25]. First, let us explain Raph@emethod. The procedure in Fig. 10 up to
obtaining the MGF of the Gaussian quadratic form is commohdadih the sequence fitting method and
Raphaeli’'s method. However, Raphaeli's method obtainPDE by direct inverse Laplace transform of
the MGF ®(s). Typically, the inverse Laplace transform of the MGF is emanted as a complex contour
integral and then the complex contour integral is computedrainfinite series by the residue theorem.
However, to obtain the cumulative distribution functionD(E), which is actually necessary to compute
the tail probability, Raphaeli’s method requires one mdep sthe integration of the PDF, to obtain the
CDF since the MGF(s) is the Laplace transform of thRDF.

To obtain the CDF of a general Gaussian quadratic form, wendiduse the MGFP(s), which is
a bit complicated and requires an additional step, like Refphbut instead we directly used a simple
contour integral for the CDF (12), obtained by Al-NaffouricaHassibi [25F Then, the contour integral

was computed as an infinite series by the residue theorenndltise residue theorem is borrowed from

®In the case of the problem considered in [23], the outage eféfin [23] is associated with the lower tail of the distrilouti
and thus the series fitting method is well suited to that chiesvever, our system setup and considered problem are efiffer
from those in [23].

8In [25], Al-Naffouri and Hassibi obtained the contour intaly (12) for the CDF of a Gaussian quadratic form. However,
they did not obtain closed-form series expressions for trgaur integral in general cases except a few simple casesnigin

goal of [25] was to derive a nice and simple contour integoahf for the CDF.
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(@) (b)
Fig. 11. Series fitting method versus direct inverse Lapkraesform method: number of variables = 4,= 0.51, Q =
[1,0.5,0,0;0.5,1,0,0;0,0,1,0;0,0,0,1], and X = 0.3L. (@ 8 = 1 and (b)3 = 2. (8 is the control parameter for the
Laguerre polynomials in (44).) Note that the convergenedpef the series fitting method based on the Laguerre polysdemi
depends much of. In the case of3 = 2, the series fitting method based on the Laguerre polynomjialds large errors at the
upper tail. It is not simple how to choogg and an efficient method is not known. (One cannot run simanatifor empirical
distributions for all cases.) The series fitting method Hase the power series shows bad performance, and it cannasdak u

in practice.

Raphaeli’'s work.) Thus, our result is simpler than Rapfsapproach and does not require the integration
of a PDF for the CDF.

As mentioned already, the series expansion in this papemlhaarticular advantage over the series
fitting method considered in [23] for the outage event defiimethis paper; The series in this paper fits
the upper tail of the distribution well with a few number ofrtes. We shall provide a detailed proof for
this in a special case in the next subsection. Thus, ourssexigressions for outage probability in MIMO

interference channels are meaningful and relevant.
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APPENDIX C

COMPUTATIONAL ISSUES ANDCONVERGENCE OF THEOBTAINED SERIES
A. Computing higher order derivatives

The general outage expression in Theorem 1 is given by

Pr{outagd = Pr{log,(1+ SINR!™) < R"™}

K )2 00 K i n—r;+1
Y G P ST S P ”
im1 )\? i ’I’L!gl (TL ok 1)| \; 5

where e, @
eTs exp <— Zp;,g, THG=1/A)N, )\ Z |X:Dq |2>

SN L (14 1208

To compute (46), we need to compute

9i(s) = (47)

« {)\i} (the eigenvalues of th&d x Kd covariance matrixs = WA®H),
. {Xz(j)} (the elements of<d vectory = A~'/2®H 1, wherep is the mean vector of the Gaussian
distribution),
« and the higher order derivatives 9f(s).
The computation of \;} and {XZQ)} is simple since the sizes of the mean vector and the covarianc
matrix are Kd and Kd x Kd, respectively. Furthermore, the higher order derivativkg;(s) can also
be computed efficiently based on recursion [26], [22]. Nbot §;(s) = €'°29:(), Thus, the derivative of

gi(s) can be written as

gM(s) = gi(s)llog gi()] W,

a2 (s) = ¢V (s)llog gi(s)]V + gi(s)[log g:(s)]?,

[asry

n—

i) = <”‘1) ()loggu(s)]™D,  n=1 (48)

1=
where gl(l)(s) and [log g;(s)]) denote thel-th derivatives ofg;(s) and log g;(s), respectively. Here,
[log gi(s)]™ can be computed from (47) as

n) _ (n— 1Y nl(=1)"~tAn a n—l)!(—l)"—lﬁp/\g
log gi(a)]"™ = 7610~ (s —1/>\ _Z (14 X ( 3—1/A n+1Z!xp = Z (T4 Xp(s — 1/\)"

whered,,, is Kronecker delta function. Thus, for given(s) and [log g;(s)]), we can comput@y)(s)

efficiently in a recursive way, as shown in (48).
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B. Convergence analysis

In this subsection, we provide some convergence analysteeuderived series expansion in Sec. .

Consider the general result in Theorem 1 for the CDF of a Gawmsgiadratic form:

KA P s R\
i~ 1 (n 1 > e x|
Pr{Y<y}—1+Z > ggg )(07y)(n_ﬁ,+1)u< ’ ¥
2 n=k;—1 ! ’ ‘
(49)
where

s Ai)
v oxp (= X T e P
-1
5= [y (14 = 1/000)
Here, we explicitly use the variablg as an input parameter of the functigy(s) for later explanation.

gi(n)(s,y) denotes then-th partial derivative ofg;(s,y) with respect tos. (Here, x is the number of

gi(s,y) =

distinct eigenvalues of th&'d x Kd covariance matriXx® and x; is the geometric order of eigenvalue
Xi- >t k; = Kd.) The residual error caused by truncating the infinite sesiger the firstV terms is
given by

Fo (BT ) o ke ()2 PR
e ‘g T4 1 1 Z; 1‘X ‘
B Y 50
r) =3 e > o (22 e

and we have

Pr{Y < y;infinite sun} = Pr{Y < y;truncation atN} + Ry (y).

The truncation erro?;(y) can be expressed as

y) =Y Ri(y), (51)
i=1

where

—(i.+2521 |X5j)‘2) o0 Ki ()2 n—r;+1
g e v n 1 >t il
Ry(y) = > =0 0,y) ( = ) (52)

- g
A7 o (n — s + 1) \;

for eachl < i < k. Then, the magnitude of each tefiid, (y)| in the truncation error is bounded as

Ki 0 Ki (j)2 n—ritl
Z, : 1| (n 1 > 5o x|
R W) < 3 exp{ <%+§:Ix?)l2>}' > o] — ( = ) -

by
n=N+1

(53)
As seen in Fig. 11, our series expansion fits the upper tdiilalision first. Now, to assess the overall

convergence speed of our series, for the same step as in Figvelran some simulations to obtain an
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empirical distribution, and computed the overall mean sguaror (MSE) between the truncated series

and the empirical distribution ovér< y < 10 as
| 200 5
CDF MSE= 300 Z ‘Pr{Y < y;; N, type of series — Pr{Y < y;; empirical| ,
i=1
where {y;} are the uniform samples @6, 10]. Fig. 12 shows the CDF MSE of the three methods in
Fig. 11: the proposed series, the series fitting method Wite 1 and the series fitting method with

£ = 2. Itis seen in Fig. 12 that the overall convergence of the psed series can be worse than

10

1072} a -

o ~
@ 10 “r R
= . B ‘?.(\ ST
[a)
(@]
10°
_g|| —— Proposed expression
10 "f---a- Laguerre polynomial (3=1)
- % - Laguerre polynomial (3=2)
0 10 20 30 40

Order

Fig. 12. CDF MSE of the CDFs in Fig. 11

the series fitting method at the small values for the numbesuaimation terms for the setting in Fig.
11. The bad overall convergence is due to worse fitting atdahe tail of the distribution, but the bad
lower tail approximation is not important to our outage caonapion. (Please see Fig. 11.) Fig. 13 shows
another case. In this case, the proposed series outpertbarseries fitting method both in the overall
convergence and in the upper tail convergence. It is seerencaily that the proposed series fits the
upper tail distribution first. Now, we shall prove this profyeof the proposed series. However, it is a
difficult problem to prove this property in general casesug,tin the next subsection, we provide a proof
of this property when the number of distinct eigenvalueshef ¢covariance matri is one, e.g., in the
i.i.d. case.

1) The identity covariance matrix cas&uppose that there is only one eigenvalye(> 0), with

multiplicity ~ for the covariance matri¥. This case corresponds to Corollary 4, and the outage pildpab
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1.2 ‘ ‘ 10° : :
¢ 15 [Laguerre] —e— Proposed expression
1t A S R -8 Laguerre polynomial (f=1)
0.87 X 5 [Laguerre] 1 1072}
0.6f
—~
> 04 B 107} a.
= .
- % T
Qs: 0.2F (@) Sa. o
15 [Proposed| _
0 10°
0.2 X5 [Proposed]
—— Empirical distribution _g
-0.4 —— Proposed expression|]| 10 ¢
- - - Laguerre polynomial
-0.6 : : . . .
5 10 15 0 10 20 30 40
y Order
(a) (b)

Fig. 13. number of variables = 44 = 0.51, Q = I, and ¥ = [0.2641 0.0328 0.1963 0.1140; 0.0328 0.6097 —
0.1739 0.1708; 0.1963 — 0.1739 0.8746 — 0.0022; 0.1140 0.1708 — 0.0022 0.1250]. In this case eigenvalues ateH000,
0.6318, 0.2158, and0.0259 with 8 = 1. (a) CDF, (b) CDF MSE. Uniform sample af is taken over0, 15.9].

is given by
9 0o 2 n—k+1
exp(—n y n /A
Pr{YSZ/}Zl%-%eXP (_X) Z g¢ )(O,y)%, (54)
n=xk—1 ’ ’
where
eY®
9(s.y) = = (55)

andn? = Z;’T”Zl |x)|2. The residual error caused by truncating the infinite seafter the firstV terms
is given by

xp(— 2 i 2 n—r+1
vt = U oy () 5 g AL 56)

Before we proceed, we first obtain theth derivative ofg(s,y) ats = 0, which is given in the following

lemma.

Lemma 1:Forn > 0,

n!
g (0,y) = =AY Ay (57)
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Proof: Proof is given by induction. The validity of the claim far= 0,1 and2 is shown by direction
computation:

s 0
(0)(07 ) = yey Y 7
g eyl kzo
g(0,y) :yeyS((z__ll///}\))g_ e¥ B Ay +2) = /\Z )\k 1=k
e’ (ys — — e¥sy) (s — +)2 — 2e¥3 (ys — —1)(s— 4+

= — A2 + 2y + 2X?) = —AZ Aka

Now, suppose that (57) holds up to the — 1)-th derivative ofg(s,y). From the recursive formula in
(48), g™ (0,y) is obtained as

9" (0,y)

- Z (n ) (0,7)(log g(0,y)) ™"

— <ng 1) 790, y)(log g(0,y))™ + <nI 1>g(1)(0,y)(logg(O,y))("‘” + -
* (Z } i) 9"~ (0,9)(log 9(0,9)) 1. 8)

Since[log g(s)] = ys — log(s — 1/)), we can easily see thélbg g(0)]) = 3 4+ X\ and [log g(0)](™
(n — 1)!I\™ for n > 2. Therefore, (58) can be rewritten as

70.5) =(n = DGO + (1= g0 -2+ ("5 ) gD - 3

+(n—1)g" 2 (0,9)A% + gD (0,y)(y + N)

—1\!
—(n— Dlg(0, A" + (n— DD (0, a1 4 CZ g an2

- (n — 1) =2 (0, )N + g™ (0, y) + yg" 1 (0,y)

l n—1
n—l ! _ ne n—1)! m, n—m—
k=0 ' ’

=
g
M |

LI=0 m=0 ( m= 1)'
A = (n - 1) : I Ak -k An_l — (’I’L B 1)' Am n—m 59
I P kZ:O(Z—k)! Y +m:0(n—m—1)! Y (59)

where (a) holds since (57) holds for gl?)(0,%),--- ,¢™1(0,%) by the induction assumption.
n

Here, consider the coefficient of eaghin (59) fori = 0, - -

© .
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i) y" is obtained only whemn = 0. The coefficient ofy"™ from (59) is therefore given by-\. It

corresponds to the coefficient gf in (57).

ii) For 0 < p < n, the coefficient ofy"? is obtained by considering all, k) that satisfieg — k =

n — p due to the first term in the right-hand side (RHS) of (59), ane- p due to the second term
of the RHS of (59). In the first case, we obtajifi ? with the following pairs(l, k) = (n—1,p—1),

(n—2,p—2),---, (n—p,0). For thesg(l, k) pairs, we have
n—1 n—1
(n—1)! < ! I—ntp. n— ) . (n—1)! _ (n—1)! _
—A . ATy TP AT = ) APyt TP = —\ APyt P,
D A\ 2 ™ P
(60)
In the second case of = p, we have
(n—-1!
Finally, the coefficient ofy” ¢ is given by adding (60) and (61):
(n—1)! (n—1)! _
—-A +p APyn—P
<<n—p— 0 =)
_ (’I’L B 1)' p p, n—p
= Ai(n—p—l)! 1+—n_p APy
n!
- _ D, =P
A(n —p)!A s
which is equivalent to the coefficient fof*—» in (57) (0 < p < n). Thus, (57) holds fog™ (0, ).

Note thatg(™ (0,%) < 0 for all n > 0 from (57). ThereforeRy(y) < 0 for all N andy and|g™(0,)| =

—9"™(0,y).
Now, consider the residual error terRi (y) in (56). The magnitude of the residual error can be upper
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bounded as follows:

B M' oy = (n) M
\RN(y)\ — G exp( )\> ng\;“ \g (O’y)‘n!(n —k+1)
ol o . 2 A n—r+1
_ pg\ﬁﬁ) exp _§> (—g' )(O,y))%
n=N+1 ' .
 exp(—p) Y\ N (m? /2"
- g () 5 o
n=N-+1
) 0o 2\n—k+1 k=1
exp(—n y L, 1\"(2n 2\
= S e () X e oa(5) P
n=N+1 .
e () 9w 1oy ERNCI0 i
= e IR e () B e 0a(x) e
(2) —(2n) exp(—1r") - exp <_Q> i lg(")(o y)(i>ne}(p(2n2)
< 2\E A NNl n! ’ 2\
Kk—1 >
y e !
= = exp(n?) - exp <_X) Z —'g( )(O’y)(ﬁ)
n=N+1
b el N !
S - exp(1°) - exp (_%) 'Z_lg(n)(o’y)(ﬁ)
n=0
. 2/{—1 1
92 ) exn (-2) 0 (.0)
@ 287! 2 _Y) . exp(y/2Y)
=~ o) exp( )\) —1/2)
ok 2\ Y
= 2%exp(n?) eXP( 2)\> ©

where (a) is from 'Yk—'f < exp(y) = > ,207"/p! for anyy > 0, (b) is from the fact that summand is
negative, (c) is by using the Taylor series expansion, afds(dfom (55). Sincen is a fixed constant,
from (62), for anyN > 0

lim Ry (y)| = 0. (63)

y—)OO
Thus, it is clear that the proposed series converges fronuplper tail distribution!

Now, let us consider the residual error magnitude as a fonaif y for given N. From (57), we have

9g9'™(0,y)

= ng" b . 64
By ng 0,y) (64)
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Differentiating Ry (y) with respect toy yields
2 > 2 n—k+1

oy AP A A N nl(n —r+1)!
exp (=) v\ = 990,y (/N
+ e (1) D Tl |
A ( ) W dy nl(n — k +1)!
exp(—n°) v\ N~ @/ (n—1)
_ _Z ——gn n : 65
e A>nZZN+1 T ] G VA G R CN0) B CO
Furthermore, from (57) we have
1 — n
= 59" (0,9) +ng" V(0 y) =" (66)
By substituting (66) into (65), we have
ORN(y) exp (=) v\ N~ Py
= exp (—= — (67)
dy AR ( )\) n:%:ﬂ nl(n —k+1)!
which is positive. SinceRy (y) < 0, limy, oo Rn(y) =0 andaRaLy(y) > 0, the residual error magnitude

monotonically decreases gsincreases and the maximum error occurg at 0 for any given\N.

Now, let us compute the worst truncation eri®x (0), which is given by

(1) (* /At
Ry(0) = THZEN:HQ (070)m- (68)

From (57), we havg(™ (0,0) = —n!\"t!. Therefore,

RN(O) _ exp(_nz) i (_n!)\n-l—l) (n2/)\)n—n+1

K | _ |
A ot nl(n —k+1)!
_ OB $ (N
o (n—r+1)!
__ewC) g R
AR N (n—r+1)!
o (772)n—n+1
n=N+1
From (54),N > xk — 2. For generalN > k — 2, letm =n — x + 1. Then,
- ()
Ry(0) = —exp(—7?) Z E—
m=N—r+2

Note that) > v _. ., (”;# is the residual error of the Taylor series expansiomr:qf(x) after the first

(N — k+ 1) terms. By the Taylor theorem,

0 2\m 2\N—k+2
_g_: . (nm)! 1 5\7 . w1 P (70)
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where somex € [0, 1]. Therefore, the worst truncation error is given by
(UZ)N—H+2 (UZ)N—n—i-Q
(N—rk+2)! = (N—k+2)’

Ry (0)] = exp (@ = 1)) x (72)

where the inequality holds sinesp((a — 1)n?) < 1 for 0 < o < 1. Furthermore, the residual error

magnitude is a strictly decreasing function iffor any y,

RN (y)| > [Bny1(y)|- (72)

This can be shown easily as follows.

Rn(y) :Mexp (—g> i g(")(O,y)M

AR A ol nl(n — K+ 1)!

exp(_n2) y e8] . (n2/)\)n—n+1 (772/)\)N_H+2
o P (‘X) {n;m g )(O’y)m g (0.y) (N + DI(N — 5+ 2)! }

=Rn11(y) +

exp(—n?) exp (_g) g™ (0, y) (/)N 2

AR A TN+ DN -k +2)1
Since Ry (y) < 0 and g+ (y) < 0 for all y > 0 and N, we have (72). Now, based on (71) and (72),
with given x;, and o7, we can compute the required numhgrof terms in the series to achieve the

desired level of accuracy sineg is known.

12

- Empirical distirbution
—— Proposed expression

0o 1 2 3 4
y

(a) CDF (b) Residual error

Fig. 14. number of variables = 44 = 0.51, Q =1, and X = 0.11.

Finally, consider the worst case &f = x — 2 andy = 0:

B 2\n—r+1 00 1\m
Rn—?(o) = —exp(_772) Z % = —exp(—772) Z (nm)' = —1,
n=rk—1 m=0
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where the second equality is by replacimg= n — x 4 1. It is easy to see that the worst case error is -1
in the identity covariance matrix case. Fig. 14 shows thdéopmance of the proposed series expansion
in the case of the identity covariance matrix. The numernieallts well match our theoretical analysis
in this subsection. From the figure, it seems reasonable @osehV > 20 ~ 30 for accurate outage

probability computation.
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