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Abstract

We investigate the diversity order of decode-and-forward relay selection in Nakagami-m fading, in cases

where practical channel estimation techniques are applied. In this respect, we introduce a unified model for

the imperfect channel estimates, where the effects of noise, time-varying channels, and feedback delays are

jointly considered. Based on this model, the correlation between the actual and the estimated channel values,

ρ, is expressed as a function of the signal-to-noise ratio (SNR), yielding closed-form expressions for the

overall outage probability as a function ofρ. The resulting diversity order and power gain reveal a high

dependence of the performance of relay selection on the highSNR behavior ofρ, thus shedding light onto

the effect of channel estimation on the overall performance. It is shown that when the channel estimates

are not frequently updated in applications involving time-varying channels, or when the amount of power

allocated for channel estimation is not sufficiently high, the diversity potential of relay selection is severely

degraded.

In short, the main contribution of this paper lies in answering the following question: How fast should

ρ tend to one, as the SNR tends to infinity, so that relay selection does not experience any diversity loss?
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I. INTRODUCTION

Wireless relaying technology has been recently proposed asa method that promises significant performance

improvement in wireless communications without any power increase [1], [2]. Among the most common

relaying techniques is so-called relay selection which hasbeen extensively analyzed in the literature [3]–[7].

In relay selection, the system is able to select a single relay out of the set of available relays, in order

to take advantage of the multiple paths available and thus achieve spatial diversity. It has been shown that

activating only the relay with the strongest instantaneousend-to-end channel represents a bandwidth-efficient

alternative to all-participate relaying, since, on the onehand, the same diversity order is achieved, yet on

the other hand, the excessive bandwidth usage that the activation of multiple relays entails is avoided [5].

Most of the literature dealing with relay selection in fading channels has assumed that perfect channel

state information (CSI) is available at the terminal where the decision on which relay to activate is made.

This assumption, however, may not be true in practical scenarios where the channel changes rapidly enough,

so that the CSI available at the selecting terminal is outdated. In addition, if the power allocated to the pilot

symbols is not sufficiently high, the noisy channel estimates may lead to suboptimal relay selection. The

above two cases reveal the vulnerability of relay selectionto imperfect channel estimation, and constitute

the main rationale for conducting a thorough outage and diversity analysis of relay selection in scenarios

with imperfect CSI in this work.

In fact, the case of relay selection under outdated CSI and Rayleigh fading has been recently studied in [8]–

[15], where interesting results on the outage probability and diversity order were derived. Nonetheless, these

works consider only a special case, since they assume that the CSI imperfection stems only from delayed

feedback. This may not always be the case in practice, since channel estimates may also be impaired by

time-varying fading and channel noise. In the very recent works [16], [17], the effect of noisy channel

estimates is also included in the performance analysis. However, these works are based on the assumption

that the same estimates are used for both relay selection anddetection, leading to zero diversity order. Such

assumption may not always be true in practical scenarios where the number of pilots used for relay selection

and that used for symbol detection may not be equal to each other.

In light of the above, the contributions of this paper are summarized as follows.

• We conduct an outage analysis of relay selection with imperfect CSI, which is general enough so as to

account for both the effects of noisy and outdated channel estimates, integrated into a unified model. In

particular, a closed-form expression for the outage probability is derived, which incorporates all effects

that can cause imperfect channel estimates in practical applications. The considered channel estimation
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techniques include the cases of estimation in noisy static channels; estimation in noiseless time-varying

channels, and estimation in noisy time-varying channel with the aid of finite impulse response (FIR)

and infinite impulse response (IIR) channel prediction.

• The amount of CSI imperfection is reflected by the correlation coefficient between the actual and the

estimated channel values,ρ, which is modeled as a non-decreasing function of the signal-to-noise ratio

(SNR). As a result, the asymptotic outage behavior of relay selection is determined by the speed of

convergence of the correlation coefficient to unity, as the SNR approaches infinity. The diversity order

of relay selection with imperfect CSI is thereby derived, shedding light onto the diversity loss caused

by imperfect CSI, with implications for the design of channel estimation techniques.

• In contrast to other relevant works in the literature, whereRayleigh fading channels were assumed,

the versatile scenario of Nakagami-m fading is studied. It is shown that the resulting diversity order is

directly proportional to the fading shape parameter,m.

Overall, the general conclusion of this paper is that the level of CSI imperfection plays an important

role in the overall performance of relay selection, considerably affecting its diversity potential. A detailed

discussion on the diversity order of relay selection for several practical channel estimation techniques is

presented in Section VI-C, and corresponding numerical examples are given in Section VII. These results

are based on the exact outage analysis conducted in Section IV for Rayleigh fading and certain channel

estimation techniques, and extended to Nakagami-m fading in Section V. Prior to the outage analysis, the

unified model that incorporates the effects of noisy and outdated channel estimates is presented in Section

III. The system model of decode-and-forward (DF) relay selection with imperfect CSI is given next, in

Section II.

II. SYSTEM MODEL

Let us consider a cooperative relaying system which consists of a single source terminal,S, N DF relays

which are denoted byRi, i = 1, ..., N , and operate in the half-duplex mode [1], and a single destination

terminal,D.

Channel Model:Let hAB denote the complex channel between nodesA andB, whereA,B ∈ {S,D,Ri :

i = 1, ..., N}. Moreover, Rayleigh distributed fading in each of the participating links is assumed, implying

thathAB is complex Gaussian random variable (RV). The versatile scenario of Nakagami-m distribution of

fading is considered in Section V. In addition, since in thiswork we focus our attention on the asymptotic

properties of relay selection under imperfect CSI, we assume independent and identically distributed (i.i.d.)

September 22, 2018 DRAFT



3

fading in each of the links involved. Moreover, the fading isconsidered slow enough such thathAB remains

constant during the transmission of one frame.

Let γAB represent the instantaneous SNR of the link between terminals A andB, i.e.,γAB = |hAB|2 /N0,

whereN0 is the additive white Gaussian noise (AWGN) power. Due to thei.i.d. fading assumption, the

average SNR in each of the links involved is identical, and denoted byγ̄. Moreover, we use the notation

fX (·) andFX (·) to refer to the probability density function (pdf) and the cumulative distribution function

(cdf) of RV X, respectively.

Relay Selection Process:Among the available relays, only a single relay is activatedin each transmission

session, based on the selection cooperation protocol [4]. In particular, the relay selection procedure is

completed in two phases, as follows. In the first phase, the relays that can successfully decode the message

form the so-called decoding set, denoted byS.

Mathematically speaking, the decoding setS is defined asS = {Ri : γSRi
> T}, whereT denotes the

outage threshold SNR, defined as the maximum SNR value that allows decoding;T is related to the target

data rate,r, throughT = 22r − 1. In the second phase, the destination collects the estimated CSI of the

Ri-D links with i : Ri ∈ S, and activates the relay with the strongestRi-D channel.

A fundamental principle throughout this paper is the fact that the relay selection is based not on the actual

channel values but on their estimates, which are generally not equal to each other. In this respect, letĥAB

denote the estimate of channelhAB , so thatγ̂AB represents the estimated value ofγAB, as seen by the

destination. Hence, denoting the selected relay byRκ, we have

κ = arg max
i:Ri∈S

γ̂RiD. (1)

The CSI imperfection is assumed to affect the relay selection process, but not the symbol detection at the

destination. This is because the number of pilot symbols used for detection is typically higher than that

used for relay selection, and the channel estimates for detection can be updated more frequently. A detailed

description of the considered imperfect CSI model follows.

III. I MPERFECTCSI MODEL

The physical causes of the considered CSI degradation are the time-varying nature of fading channels, as

well as finite pilot symbol power. In this work, both of these causes of imperfect CSI are integrated into a

unified model, as shown below.

The level of CSI imperfection is quantified by the correlation coefficient between the actual squared channel

envelope value,|hAB |2, and its corresponding estimate,|ĥAB |2, whereA andB can be any terminals of the
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set{S,D,Ri : i = 1, ..., N}. This coefficient is defined as (in the sequel, all channel indices are dropped

due to the i.i.d. fading assumption)

ρ =
E
〈(

|h|2 − Ωh

)(

|ĥ|2 − Ωĥ

)〉

σ|h|2σ|ĥ|2
(2)

where Ωh = E
〈

|h|2
〉

, Ωĥ = E
〈

|ĥ|2
〉

with E 〈·〉 denoting expectation, andσX denotes the standard

deviation of RVX.

Note thatρ reflects the effect of imperfect CSI on the SNR of the selectedrelay and hence on the overall

performance of relay selection with imperfect CSI. For thisreason, the subsequent analysis focuses on

expressing the performance degradation as a function ofρ, so that all physical phenomena that cause CSI

degradation are, in fact, incorporated intoρ.

A. Versatile Imperfect CSI Case

In accordance with the intuition that channel estimation isperformed in noisy environments, let us consider

the versatile scenario whereρ is a function of the SNR. That is,

1− ρ = g (γ̄) (3)

whereg (·) is generally a non-increasing function of its argument, with 0 ≤ g (γ̄) ≤ 1. In order to obtain

insight into the asymptotic dependence of the CSI error on the SNR, we expandg (γ̄) into a Puiseux series

[18], so that for high SNR we have

g (γ̄) = bγ̄−a + o
(
γ̄−a

)
(4)

wherea andb are positive constants with0 < b ≤ 1, ando (γ̄−a) is defined such thatlimγ̄→∞ o (γ−a) / (γ̄−a) =

0.

It is emphasized that the versatile imperfect CSI model considered in (3) and (4) is general enough

to accommodate the cases of imperfect CSI due to noise impairment and the time-varying nature of the

underlying channels. Next, we study the scenarios of CSI imperfection in static and time-varying Rayleigh

fading channels, separately.

B. Static Channels, Noisy CSI

Let us assume the case of static channels, where channel estimation is implemented via averaging overL

noisy pilot symbols. As a result,g (γ̄) in (3) is a decreasing function of̄γ, for which limγ̄→∞ g (γ̄) = 0 holds.

Moreover, let us consider the scenario where the power allocated to pilot symbols,Ep, is not necessarily
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equal to the power allocated to data transmission,Ed. We allow the ratio ofEp overEd to be SNR-dependent,

so that

Ep = βγ̄αEd (5)

where β is a positive constant andα is a constant, the sign of which determines whetherEp increases

or decreases with SNR. The estimated channel values are expressed aŝh = h + np, where h and np

denote the true channel component and the remaining noise component, respectively. Given that the channel

estimates are derived by averaging overL pilot symbols, the noise variance of the estimation processequals

σ2np
= N0/ (EpL) .

Lemma 1:The correlation coefficient,ρ, between|h|2 and |ĥ|2, is given by

ρ =
Ωh

Ωĥ

=
Ωh

Ωh + σ2np

=
Lβγ̄α+1

Lβγ̄α+1 + 1
. (6)

Proof: Sinceĥ equals a linear combination of complex Gaussian RVs,|ĥ|2 is exponentially distributed.

Hence, it follows from the theory of the moments of exponential RVs thatE
〈

|h|4
〉

= 2Ω2
h; E

〈

|ĥ|4
〉

= 2Ω2
ĥ
.

Using this result, the proof follows from (2) after algebraic manipulations, in conjunction with (5) and the

fact thatγ̄ = EdΩh/N0.

Expanding (6) in a Taylor series for̄γ → ∞ and using (3), we obtain forα > −11

g (γ̄) = 1− ρ =
1

βL
γ̄−(α+1) + o

(

γ̄−(α+1)
)

. (7)

Therefore, using (4), from (7) we havea = α+ 1; b = 1/ (βL).

C. Time-Varying Channels

Next, the case of time-varying Rayleigh fading is studied, where the maximum Doppler frequency on each

of the participating links is assumed identical, and denoted by fd. Moreover, the autocorrelation function

of the complex channelh is denoted byρh (Td); based on the Jakes’ model [19],ρh (Td) is given as

ρh (Td) = ΩhJ0(2πfdTd), whereJ0 (·) denotes the zeroth order Bessel function of the first kind [20, Eq.

(8.411)].

1) FIR Channel Prediction:In time-varying environments, the channel estimation can be improved by

utilizing the CSI available from previous time instances, so that the channel estimates are derived through

a channel predictionprocess [21]. Let us consider an FIR channel prediction filter of lengthL, and denote

the time interval between consecutive CSI acquisitions byTd. In such case, following the analysis in [21],

1The case ofα < −1 yields ρ = 0 for γ̄ → ∞, and is out of the scope of this paper.
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the predictor coefficients can be optimized so as to yield theminimum squared error between the actual and

the predicted channel values,σ2e , resulting in

σ2e = Ωh − u
¯
H
h R

¯
−1u

¯h
. (8)

In (8), u
¯
h denotes theL-dimensional autocorrelation vector, i.e., u

¯
h = [ρh (−Td) , ..., ρh (−LTd)]T , R

¯
denotes

anL× L symmetric Toeplitz matrix, the first row of which is given by[ρh (0) +N0/Ep, ρh (−Td) , ...,
ρh (−LTd + Td)], and(·)H denotes the Hermitian operator. Hence,ρ is derived by combining (2) and (8),

as

ρ = u
¯
H
h R

¯
−1u

¯h
/Ωh. (9)

It follows from (3) that the CSI error can be expressed as a function of the SNR asg (γ̄) = 1 − ρ =

1−u
¯
H
h R

¯
−1u

¯
h/Ωh. Interestingly, it is noted that in the high-SNR regime and for fd > 0, g (γ̄) converges to

a finite non-zero constant, i.e.,

lim
γ̄→∞

g (γ̄) = 1− u
¯
H
h R

¯
−1
∣
∣
N0=0

u
¯h
/Ωh = b > 0 (10)

implying that the CSI error is independent of the SNR. Hence,considering (4), it follows that for the case

where the channel estimates are obtained through FIR channel prediction,a = 0 holds.

Ideal but Outdated CSI:This special case of channel estimation was considered in [8]–[14], and in

fact corresponds to noiseless FIR channel prediction with aone-tap predictor(L = 1), and is dubbed as

“outdated CSI” here. It implies that the CSI based on which the “best” relay is selected is noise-free, yet

the selection of the “best” relay is not based on the current time instant but on a previous one, because of,

e.g., a feedback delay. Based on (9), it can be shown that the correlation coefficient,ρ, for the outdated CSI

case equalsρ = ρ2h (−Td) /Ω2
h, a result which is in accordance with [8], [9]. Moreover,g (γ̄) is a constant

function in this case, and thus (4) yieldsa = 0; b = 1− ρ2h (−Td) /Ω2
h.

2) IIR Channel Prediction:Let us now extend the channel prediction case to the scenariowhere the

number of pilot symbols participating in the prediction process are infinitely large. As shown in Appendix

A, this scenario leads to a correlation coefficient of

ρ = 1− exp

(

Td

∫ fd

−fd

ln
[

Shh

(

ej2πfTd

)

+
(
βγ̄α+1

)−1
]

df

)
(
βγ̄α+1

)−(1−2fdTd)
+
(
βγ̄α+1

)−1
(11)

whereShh (·) represents the Fourier transform ofρh (·). Hence, combining (3) and (11), we obtain for high

SNR

g (γ̄) = exp

(

Td

∫ fd

−fd

ln
[

Shh

(

ej2πfTd

)]

df

)

β−(1−2fdTd)

︸ ︷︷ ︸

b

γ̄

−(α+ 1) (1− 2fdTd)
︸ ︷︷ ︸

a . (12)
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Consequently, it is concluded that the parametersa andb of the asymptotic dependence of the CSI error on

the SNR are given bya = (α+ 1) (1− 2fdTd) andb = exp
(

Td
∫ fd
−fd

ln
[
Shh

(
ej2πfTd

)]
df
)

β−(1−2fdTd).

The reader is referred to Table I for an overview of how the parametersa andb are derived for the practical

channel estimation scenarios considered in this paper. An asymptotic performance analysis of suboptimal

relay selection follows.

IV. OUTAGE ANALYSIS OF RELAY SELECTION WITH IMPERFECTCSI IN RAYLEIGH FADING

The outage probability is defined as the probability that theoverall SNR lies below a given threshold,

denoted here byT , i.e.,Pout = Pr {γκ < T}, whereκ denotes the index of the selected relay andγκ is the

corresponding end-to-end SNR. Observing that for all channel estimation scenarios considered in Section

III, ĥ is obtained as a linear combination of complex Gaussian RVs,it follows that ĥ is also a complex

Gaussian RV. Hence,̂γ is exponentially distributed. Consequently, the conditional pdf of the actual SNR,γ,

conditioned on its estimate,̂γ, is obtained from [22, Eq. (2.11)] as

fγ|γ̂ (x |y ) =
exp

(

− x
γ̄(1−ρ) −

yρ

γ̂(1−ρ)

)

γ̄ (1− ρ)
I0

(

2

√
ρxy

(1− ρ)
√

γ̄γ̂

)

(13)

whereγ̂ denotes the average estimated SNR andI0 (·) denotes the zeroth order modified Bessel function of

the first kind [20, Eq. (8.447.1)]. It is emphasized that since the parameters̄γ andγ̂ are not necessarily equal

to each other, which is in contrast to the outdated CSI case treated in [8], [9], the diversity investigation

of relay selection with imperfect CSI under the general imperfect CSI assumption requires that we conduct

a new outage analysis for our scheme. This outage analysis issimilar to that in [8], yet the corresponding

expression for thefγ|γ̂ (x |y ) used in [8] is substituted by (13) .

In particular, based upon the mode of operation of the selection cooperation [4] the outage probability is

expressed as

Pout = Pr {S = ∅}+
N∑

l=1

FγRκD
(T | |S| = l ) Pr {|S| = l} (14)

where|S| denotes the cardinality ofS and∅ is the empty set. Because of the i.i.d. assumption for the fading

in the S-Ri links, the second term within the sum in (14) is given by [8, Eq. (7)]

Pr {|S| = l} =

(
N

l

)[

1− exp

(

−T
γ̄

)]N−l

exp

(

− lT
γ̄

)

. (15)

Furthermore, by definingAi as the event that theith relay out of l relays is selected, i.e.,Ai : i = κ,
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FγRκD
(T | |S| = l ) is expressed as

FγRκD
(T | |S| = l ) =

l∑

i=1

FγRκD
(T | |S| = l, Ai ) Pr {Ai}

=

∫ T

0

∫ ∞

0
fγRiD|γ̂RiD

(x1 |x2 ) fγ̂RiD
|Ai

(x2 |Ai ) dx2dx1 (16)

where we used the fact thatPr {Ai} = 1/l, because of symmetry. The conditional density ofγ̂RiD

conditioned onAi is derived as

fγ̂RiD
|Ai

(x2 |Ai ) =
fγ̂RiD

|Ai
(x2 ∩Ai)

Pr {Ai}
=
fγ̂RiD

(x2)

Pr {Ai}

l∏

j=1
j 6=i

Fγ̂RjD
(x2) = lfγ̂RiD

(x2)F
l−1
γ̂RiD

(x2) . (17)

Consequently, substituting (13) and (17) in (16) we obtain an expression forFγRκD
(T | |S| = l ) which

coincides with [8, Eq. (8)], where the case of outdated CSI was considered. This leads to an interesting

observation which is summarized below.

Under i.i.d. Rayleigh fading and assuming correlation coefficient ρ between the actual and the estimated

SNR in each intermediate link, the outage probability of relay selection with imperfect CSI,Pout, expressed

as a function ofρ, is given by the same formula, irrespective of the channel estimation technique used.

Equivalently,Pout is independent of̂γ, a fact which can be explained by noting that only the relative values

of γ̂i are relevant for relay selection, not their absolute values. Hence, scaling all the estimated SNRs by the

same factor does not affect the relay selection process. Therefore, the outage probability of suboptimal DF

relay selection for any channel estimation technique is as shown in [8, Eq. (2)]. It is emphasized, however, that

different channel estimation techniques lead to differentdependences ofρ on the SNR, resulting ultimately

in different diversity behaviors.The diversity order of relay selection with imperfect CSI will be studied in

detail in Section VI.

V. OUTAGE ANALYSIS IN NAKAGAMI -m FADING

Let us now consider the case where the fading in all channels follows the Nakagami-m distribution [23].

In this case, since the distribution ofĥ is unknown for the unified imperfect CSI model, we confine ourselves

to investigating the performance of relay selection with imperfect CSI for the three special cases presented

below.

A. Time-Varying Channels: Outdated CSI

Recall from Section III-C1 that this case corresponds to noiseless FIR channel prediction with one tap.

Consequently,̂h represents a delayed version ofh, and ĥ follows the same distribution ash, so that the
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joint pdf of γ and γ̂ is obtained from the bivariate Gamma distribution [24], which is simplified using [20,

Eq. (9.210/1)] to

fγ̂,γ (x1, x2) =

∞∑

j=0

(m)jm
2m+2jρj

j! (1− ρ)m+2j

2∏

i=1

xm+j−1
i exp

{

− mxi

(1−ρ)γ̄

}

Γ (m+ j) γ̄m+j
(18)

where(x)y denotes the Pochhamer symbol defined in [20, pp. xliii].

Following the same steps as in (14)-(17), and using the fact that, the pdf and cdf of the SNR for the

Nakagami-m fading model are given byfγ (γ) = mmγm−1/ [γ̄mΓ(m)] exp (−mγ/γ̄) and Fγ (γ) = 1 −
Γ
(

m, mγ̄ y
)

/Γ (m), respectively, in conjunction with the binomial expansion[20, Eq. (1.110)], we obtain

the equivalent expression for (16), pertaining to Nakagami-m fading, as

FγRκD
(T | |S| = l ) = l

∫ T

0

∞∑

j=0

ρjm2m+2j

j!(1 − ρ)m+2j

xm+j−1
1

Γ (m) Γ (m+ j) γ̄2(m+j)
exp

(

− mx1
(1− ρ)γ̄

)

×
l−1∑

i=0

(
l − 1

i

)( −1

Γ (m)

)i
(
∫ ∞

0
xm+j−1
2 exp

(

− mx2
γ̄ (1− ρ)

)

Γ

(

m,
m

γ̄
x2

)i

dx2

)

dx1.

(19)

It is observed from (19) that in order to derive a closed-formexpression forFγRκD
(T | |S| = l ), the following

integral needs to be solved

I (µ, α,m, β, j) =

∫ ∞

0
xµ exp (−αx) Γj (m,βx) dx. (20)

For the case ofm ∈ Z, the integral in (20) is evaluated as illustrated in AppendixB. Hence,FγRκD
(T | |S| = l )

can be derived, using (37), [20, Eq. (3.351/1)], and [20, Eq.(8.352/6)] as

FγRκD
(T | |S| = l ) = l

∞∑

j=0

ρj
(

Γ (m+ j) − Γ
(

m+ j, mT
(1−ρ)γ̄

))

j!(1 − ρ)jΓ (m) Γ (m+ j)

l−1∑

i=0

(
l − 1

i

)

(−1)i ψ (m+ j, ρ, i) (21)

where we have set

ψ (x, ρ, i) =
Γ (i+ 1)

(
1

(1−ρ) + i
)x

i∑

ξ0,ξ1,...,ξm−1=0
ξ0+ξ1+...+ξm−1=i










m−1∏

k=0

(

1

k!
(

1

(1−ρ)
+j

)i

)ξk

Γ (ξk + 1)












x− 1 +

m−1∑

q=0

qξq



!. (22)

Consequently, a closed-form expression for the outage probability is obtained by combining (14), (15), and

(21), yielding

Pout =



1−
Γ
(

m, mγ̄ T
)

Γ (m)





N

+

∞∑

j=0

N∑

l=1

l−1∑

i=0

l

(
N

l

)


1−
Γ
(

m, mγ̄ T
)

Γ (m)





N−l


Γ
(

m, mγ̄ T
)

Γ (m)





l

× ρj (−1)i

j!(1 − ρ)jΓ (m) Γ (m+ j)

(

Γ (m+ j)− Γ

(

m+ j,
mT

(1− ρ)γ̄

))(
l − 1

i

)

ψ (m+ j, ρ, i) . (23)
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It is noted that, for practical SNR values, i.e.,γ̄ ≤ 30dB, the infinite series in (23) converges after a finite

number of terms, not greater than 100.

B. Time-Varying Channels: FIR Channel Prediction with Large L and IIR Channel Prediction

In this case, the channel estimateĥ is obtained as the weighted sum of a large number of observations

in time-varying fading scenarios (fd > 0) [21]. Hence, it follows from the central limit theorem thatĥ is a

complex Gaussian RV, so that|ĥ|2 is exponentially distributed with average value denoted byγ̂.

The joint pdf ofγ and γ̂ is obtained from [24, Eq. (10)] by settingm1 = m andm2 = 1, leading to

fγ̂,γ (x1, x2) = (1− ρ)m
∞∑

j=0

Γ (j + 1) ρj

j!

(
1

γ̂ (1− ρ)

)j+1( m

γ̄ (1− ρ)

)m+j

× xj2x
j+m−1
1

Γ (j + 1) Γ (j +m)
exp

(

− 1

1− ρ

(
x2

γ̂
+
mx1
γ̄

))

1F1

(

m− 1;m+ j;
ρmx1

γ̄ (1− ρ)

)

(24)

where 1F1 (·; ·; ·) is the confluent Hypergeometric function defined in [20, Eq. (9.210/1)]. Following the

same procedure as in (14)-(17), we obtain the conditional cdf of γRκD as

FγRκD
(T | |S| = l ) = l

∞∑

j=0

l−1∑

i=0

(l−1
i

)
(−1)i

(
m
γ̄

)m+j (
ρ

1−ρ

)j

[1 + i (1− ρ)]j+1 Γ (m+ j)

×
∫ T

0
xm+j−1
1 exp

(

− mx1
(1− ρ) γ̄

)

1F1

(

m− 1;m+ j;
ρmx1

γ̄ (1− ρ)

)

dx1 (25)

where ρ is given in (9) and (11). It is observed that, for the same reasons addressed in Section IV,

FγRκD
(T | |S| = l ) is independent of̂γ.

In case ofm = 1, using [20, Eq. (3.351/1)], [20, Eq. (8.352/2)] and the factthat 1F1 (0; b; z) = 1, (25)

reduces after some algebraic manipulations to

FγRκD
(T | |S| = l ) = l

l−1∑

i=0

(l−1
i

)
(−1)i (1− ρ)

[1 + i (1− ρ)]

∞∑

j=0

(
ρ

1 + i (1− ρ)

)j




1−

∞∑

t=0

(
T

(1−ρ)γ̄
ρ

1+i(1−ρ)

)t

t! e
T

(1−ρ)γ̄




 .

(26)

As a cross check, it follows from [20, Eq. (0.231)] and the infinite series representation of the exponential

function [20, Eq. (1.211/1)], that (26) is equivalent to [8,Eq. (8)]. In case ofm > 1, (25) in conjunction

with [20, Eq. (3.351/1)] yields

FγRκD
(T | |S| = l ) = l

∞∑

j=0

l−1∑

i=0

∞∑

k=0

(l−1
i

)
(−1)i (1− ρ)m ρi+j

[1 + i (1− ρ)]j+1 Γ (m− 1)

Γ (m− 1 + k)

Γ (m+ j + k) k!

×
(

Γ (m+ j + k)− Γ

(

m+ j + k,
mT

(1− ρ) γ̄

))

. (27)

The overall outage probability follows then from (27) (or (26), if m = 1) and (14).
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C. Static Channels: Noisy CSI in the high SNR Regime

Under the high SNR assumption, it is valid to assume thatĥ = h+ np is also Nakagami-m distributed,

with γ̂ = γ̄. Consequently, the outage probability for this scenario isgiven by (23), whereρ is given in the

ensuing Lemma.

Lemma 2:The correlation coefficient between|h| and |ĥ| for Nakagami-m fading is given by

ρ =

√
1
mΩ2

h
√

1
mΩ2

h + σ4np
+ 2Ωhσ2np

=
L

√

L2 + 2mL
βγ̄α+1 + m

β2γ̄2(α+1)

. (28)

Proof: The proof is similar to that forLemma1 by using the fourth moment of a Nakagami-m distributed

RV, E
[

|h|4
]

= m+1
m Ω2

h.

It is noted that (28) reduces to (6) form = 1. Expanding (28) in a Taylor series for̄γ → ∞ and using

(3), we obtain forα > −1

g (γ̄) = 1− ρ ≈ m

βL
γ̄−(α+1) + o

(

γ̄−(α+1)
)

. (29)

Next, we shed light onto the asymptotic behavior of relay selection with imperfect CSI in Nakagami-m

fading.

VI. D IVERSITY ANALYSIS

A. High-SNR Analysis

Here, we present a high SNR outage expression, which is used as a stepping stone for deriving the

diversity order of relay selection with imperfect CSI in Nakagami-m fading. For simplicity of exposition,

this expression pertains to the cases of outdated CSI and noisy CSI for Nakagami-m fading, as well as

FIR and IIR channel prediction in Rayleigh fading; an expression for FIR and IIR channel prediction in

Nakagami-m fading follows, likewise, from (27).

For sufficiently high values of̄γ, we have

Γ
(

m, mγ̄ y
)

Γ (m)
=

Γ (m)− γ
(

m, mγ̄ y
)

Γ (m)
≈ Γ (m)−

(

my

γ̄

)m

m

Γ (m)
= 1− mm−1ym

Γ (m) γ̄m
(30)

which holds based on the series representation of the lower incomplete Gamma function,γ (s, x) [20, Eq.

(8.354/1)], in conjunction with the fact that asx→ 0, γ (s, x) ≈ xs/s. Therefore, by substituting (30) in (23)

and settingρ = 1− bγ̄−a, as implied by (4), we obtain an alternative expression for the outage probability
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as a function of the parametersa andb for high SNR as follows

Pout ≈
(
mm−1ym

Γ (m) γ̄m

)N

+

∞∑

j=0

N∑

l=1

l
(N
l

)

j!Γ (m) Γ (m+ j)

(
1− bγ̄−a

bγ̄−a

)n(
mm−1Tm

Γ (m) γ̄m

)N−l

×
(

1− mm−1Tm

Γ (m) γ̄m

)l(

Γ (m+ j) − Γ

(

m+ j,
mT

bγ̄1−a

))

G (m+ j, a, b, l) (31)

where we have set

G (m+ j, a, b, l) =

l−1∑

i=0

(−1)i
(
l − 1

i

)

ψ
(
m+ j, 1− bγ̄−a, i

)
. (32)

B. Diversity Order

An important result derived from the high SNR analysis of Section VI-A is the diversity gain of the

scheme under consideration, which is summarized in the ensuing theorem.

Theorem 1:The diversity gain of relay selection with imperfect CSI with practical channel estimation

and Nakagami-m fading is given by

Gd =







m [a (N − 1) + 1] , if a < 1

mN , if a ≥ 1
(33)

Proof: The proof is given in Appendix C.

C. On The Diversity Potential of Relay Selection

Based on the high SNR analysis of the previous section, interesting results regarding the diversity order

of relay selection can be obtained. These results are presented below, for different types of channels and

different channel estimation techniques.

1) Channel Estimation over Static Channels:Let us first focus on the scenario where the channel estimates

are obtained via training in static channels. In this case, as can be seen from Table I the exponenta can

take any positive value, depending on how fast the training power increases with SNR, with respect to the

data transmission power. In particular, it follows from Theorem 1 that full diversity is achieved by using

a training power which increases with SNR at least as fast as the data transmission power, i.e.,α ≥ 0. A

slower increase with SNR results in a decreased diversity order. Further details regarding the latter argument

are provided in Section VII, via numerical examples.
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2) FIR Channel Prediction in Time-Varying Channels:Here, we concentrate our attention on the case

of FIR channel prediction; note that the special case of outdated channel estimates is also included in this

scenario, by setting the number of predictor taps equal to one. As shown in Table I, this case results ina = 0.

Interestingly, it follows from (33) that the diversity order equals the fading shape parameter,m, regardless

of the number of available relays. In other words,when the estimates of time-varying channels are obtained

via an FIR predictor, the diversity order of relay selectionreduces to that of the scheme where only a single

relay is available. From another viewpoint,when relay selection is performed over time-varying channels,

its full diversity potential is completely lost, unless a predictor with an infinitely large length is employed.

A study of the latter case follows.

3) IIR Channel Prediction in Time-Varying Channels:As implied by Table I and Theorem 1, the diversity

loss of relay selection incurred by the time-varying natureof the underlying channels can be recovered via

IIR channel prediction. Nevertheless, given that the full diversity order is recovered fora ≥ 1, it follows that

if the power of the channel estimation pilot symbols grows with SNR as fast as the data transmission power,

i.e., α = 0, the resulting diversity order is still lower than the maximum value. As a result, it is concluded

that in order to achieve full diversity in relay selection over time-varying channels, IIR channel prediction

is required, in conjunction with a training power which increases faster than the data transmission power,

i.e., α > 0. The amount of training power required to achieve full diversity is determined by the Doppler

spread of the channel and the time difference between the consecutive noisy channel observations.

VII. N UMERICAL RESULTS AND DISCUSSIONS

Figs. 1 and 2 consider the case of static channels, and illustrate the effect of noisy channel estimates on

the outage probability of relay selection over Nakagami-m fading. Specifically, Fig. 1 depicts results for the

special case of Rayleigh fading,N = 3 available relays andβ = 1, showing a significant dependence of

the outage probability on the parameterα. Recall from (5) that the parametersα andβ reflect the relation

between the power allocated to pilot symbols and the power used for data transmission. It is observed that

full diversity is achieved for anyα ≥ 0, yet there exists a power gain loss compared to the perfect CSI

case; this power gain loss is recovered for higher values ofα, i.e., for α ≥ 1. In Fig. 1, we also observe

the accuracy of the high SNR approximations in (48), (55), and (50) fora < 1 (α < 0), a ≈ 1 (α ≈ 0), and

a > 1 (α > 0), respectively.

The dependence of the outage probability on the ratio of the pilot power and data transmission power,

β, is depicted in Fig. 2, for the case of static channels. Similarly as in Fig. 1,N = 3 available relays and

Rayleigh fading (m = 1) are assumed, while theα parameter is set toα = 0. We notice a slight dependence
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of the outage probability onβ for a givenα, which becomes negligible asβ grows large. Consequently, it

is concluded that when the ratio ofEp andEd is constant in the whole SNR region, relay selection maintains

its full diversity characteristics when operating over noisy static channels; the corresponding loss in power

gain is noticeable only for small values of the ratio ofEp andEd.
Figs. 3 and 4 consider to the case of ideal but outdated CSI, where the channel estimation is assumed

noise-free yet it suffers from feedback delay. Specifically, in Fig. 3 we assume the typical scenario of a

vehicle moving at50 km/h and receiving at a frequency of2.4 GHz, which corresponds to a maximum

Doppler frequency of approximatelyfd = 100 Hz. Under this assumption, we illustrate the dependence

of the corresponding outage probability on the time interval between estimation updates,Td, for Rayleigh

fading (m = 1), T = 1 andN = 5.

We notice from Fig. 3 that the rate of estimation update significantly affects the outage performance of

relay selection, in the sense that low update rates result insevere diversity and power gain losses. This is

in agreement with (33) where, given that for outdated channel estimatesa = 0 holds, the diversity order

equalsm regardless ofTd. Nonetheless, it should be pointed out that for low values ofTd the slope of

the outage curves retains its full diversity characteristics in the practical SNR range, and approachesm

only for infinitely high SNRs. This observation sheds light onto the diversity potential of relay selection

with outdated channel estimates since,although it is impossible to achieve full diversity from a theoretical

perspective (i.e., when̄γ → ∞), it is still possible to achieve full diversity in the practical SNR range, by

decreasingTd. Fig. 3 also demonstrates that for relatively low channel estimation update rates (e.g., for

Td = 3 msec), relay selection cannot take advantage of the large number of available relays, since the case

of N = 5 yields approximately the same performance as that of no selection, i.e.,N = 1. Furthermore, it

is worth mentioning that the outage probability for the casewhere the mobile terminals are moving at the

walking speed of5 km/h can be also extracted from Fig. 3, by tenfolding the corresponding values ofTd

(i.e., Td = 30, 25, ..., 1 msec).

The outage probability dependence of relay selection with outdated CSI on the Nakagami-m parameter

is depicted in Fig. 4. We assume five participating relays (N = 5) and an outage threshold SNR ofT = 3,

while the relation betweenfd andTd is set such thatρ = 0.5. As expected from (33), it is seen that increasing

m results in a considerable outage probability decrease, accompanied by a shift of the slope of the outage

curves at high SNR. Note that in all cases the diversity orderequalsm, as also corroborated by (33).

On the basis of the moving-vehicle scenario considered above, which corresponds tofd = 100 Hz, the

case of channel prediction in time-varying channels is treated in Figs. 5 and 6. In particular, Fig. 5 depicts the

outage probability of relay selection in Rayleigh fading (m = 1) for several values of the channel predictor
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length,L, including the case ofL → ∞ which corresponds to IIR channel prediction and serves hereas

benchmark. As demonstrated in Fig. 5, by increasing the number of predictor coefficients in FIR channel

prediction the outage probability experiences a power gainincrease, yet no diversity gain increase is seen for

low values ofL. On the contrary, an increase in the diversity gain is attained through IIR channel prediction,

as shown in the ensuing, Fig. 6.

Fig. 6 illustrates the outage probability of relay selection for IIR channel prediction, when operating over

Rayleigh fading. We notice a high dependence of the outage probability on the value ofTd, which corresponds

to the time difference among the consecutive time instancesin the infinite-length channel predictor. In

particular, we notice that full diversity is achieved for small values ofTd, while for larger values ofTd the

diversity characteristics of relay selection are lost, as expected from (33) and Table I.

Finally, the achievable diversity order versusa for the unified imperfect CSI model, where the cases of

noisy channel estimation and CSI imperfection due to time-varying channels are incorporated, is plotted in

Fig. 7. As expected, we notice a linear increase of the diversity order for 0 ≤ a ≤ 1 and constant diversity

order fora ≥ 1, which equalsmN .

In fact, Fig. 7 sheds an interesting light onto our general assessment regarding the diversity order of relay

selection in Nakagami-m fading, which is as follows. The Nakagami-m fading model assumes multiple

scatterers in each link, causing an “internal diversity” phenomenon of orderm, which is independent of the

channel estimation quality. On the other hand, the presenceof multiple available relays offers the potential

for additional, “external diversity” yet this additional diversity strongly depends on the quality of channel

estimation, as reflected bya. Consequently, we notice from Fig. 7 that for any non-prime diversity order of

mN , the value ofm is more important thanN for the overall diversity order for anyα < 1; if a ≥ 1, m

andN affect the diversity order in exactly the same way.

VIII. C ONCLUSIONS

We presented an assessment of the diversity potential of relay selection with practical channel estimation

techniques, in Nakagami-m fading. The considered channel estimation techniques include the cases of

estimation in noisy static channels; estimation in noiseless time-varying channels, and estimation in noisy

time-varying channel with the aid of FIR and IIR channel prediction. A closed-form expression for the outage

probability of relay selection with imperfect CSI was provided, as a function of the correlation coefficient,

ρ, between the actual and the estimated channel values. Capitalizing on this outage expression, our principal

inference was that the diversity order of relay selection isdetermined by the relative speed of convergence

of ρ to one, compared to the speed that the SNR converges to infinity.
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APPENDIX A

IIR CHANNEL PREDICTION

Let us consider the processyl = hl+nl, wherehl andnl denote the channel value and the corresponding

noise component at time instancel, respectively, withl = 1, ...,∞. The variance of the prediction error is

derived as [25]

σ2e = exp

(

Td

∫ 1/(2Td)

−1/(2Td)
ln

[

Shh

(

ej2πfTd

)

+
N0

Ep

]

df

)

− N0

Ep
(34)

whereN0/Ep is the variance of the noise component andShh (f) denotes the Fourier transform ofρh (τ).

Therefore, considering that the spectrum ofShh (f) is band-limited byfd, (34) yields

σ2e = exp

(

Td

∫ fd

−fd

ln

[

Shh

(

ej2πfTd

)

+
N0

Ep

]

df

)(
N0

Ep

)1−2fdTd

− N0

Ep
. (35)

Assumingfd > 0, (11) is obtained from (35), (2), and (5).

APPENDIX B

DERIVATION OF THE AUXILIARY FUNCTION I (·, ·, ·, ·, ·)

Using the alternative representation of the incomplete Gamma function shown in [20, Eq. (8.352/4)], and

applying the multinomial theorem, we obtain

Γj (m,βx) = ((m− 1)!)j exp (−jβx)
(

m−1∑

i=0

βixi

i!

)j

= Γj (m) exp (−jβx)
j
∑

n0,n1,...,nm−1=0
n0+n1+...+nm−1=j

Γ (j + 1)

m−1∏

i=0

(
βi

i! x
i
)ni

Γ (ni + 1)
. (36)

Therefore, (20) yields

I (µ, α,m, β, j) =

j
∑

n0,n1,...,nm−1=0
n0+n1+...+nm−1=j

Γj (m) Γ (j + 1)





m−1∏

i=0

(
βi

i!

)ni

Γ (ni + 1)





∫ ∞

0
x
µ+

m−1
∑

i=0

ini

e−(a+jβ)xdx

=
Γj (m) Γ (j + 1)

(a+ jβ)µ+1

j
∑

n0,n1,...,nm−1=0
n0+n1+...+nm−1=j





m−1∏

i=0

(
βi

i!(a+jβ)i

)ni

Γ (ni + 1)





(

µ+

m−1∑

i=0

ini

)

!. (37)

APPENDIX C

DIVERSITY ANALYSIS IN NAKAGAMI -m FADING

The following Lemma provides a high-SNR investigation of function G (m+ j, a, b, l), allowing for a

simplification of (31).
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Lemma 3:For sufficiently highγ̄, the functionG (m+ j, a, b, l), defined in (32), decays proportionally

to γ̄−(alm+aj), i.e.,

lim
γ̄→∞

G (m+ j, a, b, l) ∼ γ̄−(alm+aj). (38)

Proof: It follows from (22) that the functionψ (m+ j, 1− bγ̄−a, i) takes the following form

ψ
(
m+ j, 1 − bγ̄−a, i

)
=

(
γ̄a

b
+ i

)−j

ψ
(
m, 1− bγ̄−a, i

)
. (39)

Therefore, for deriving the decay exponent ofG (m+ j, a, b, l) it suffices to evaluate the decay exponent of

G (m,a, b, l). After substituting (22) into (32) and algebraic manipulations, the functionG (m,a, b, l) can

be expressed as

G (m,a, b, l) =
µ0γ̄

−am
(

1 + µ1γ̄
a + µ2γ̄

2a + ...+ µ(
∑

l−1
i=1 i)(m−1)γ̄

(
∑

l−1
i=1 i)(m−1)a

)

(1 + γ̄a)2m−1 (2 + γ̄a)3m−2 × ...× (l − 1 + γ̄a)lm−(l−1)
(40)

whereµζ , ζ ∈
{
0, ..., l

2 (l − 1) (m− 1)
}

, are constants. It is observed from (40) that the dominant term of

G (m,a, b, l) in the high SNR regime decays in proportion toγ̄−dG , wheredG is given by

dG = am−
(

l−1∑

i=1

i

)

(m− 1) a+ a

l∑

i=2

[im− (i− 1)] = alm. (41)

The proof then follows from (41) and (39), by applying the binomial expansion to the first term of the right

hand side of (39).

For the derivation of the diversity order, we simplify (31) for different values ofa, as shown below.

1) Case ofa < 1: In this case, the second argument ofΓ
(
m+ n,mT/

(
bγ̄1−a

))
in (31) tends to zero

as γ̄ → ∞. Hence, simplifying the incomplete Gamma function similarly as in (30), we obtain

Γ (m+ j) − Γ

(

m+ j,
mT

bγ̄1−a

)

≈ mm+jym+j

(m+ j) bm+j γ̄(1−a)(m+j)
. (42)

Therefore, from (31) and (42) we obtain an expression for theoutage probability in the form of

Pout (y) ≈
(
mm−1Tm

Γ (m) γ̄m

)N

+ C (43)

where

C =

∞∑

j=0

N∑

l=1

l
(N
l

) (1−bγ̄−a

bγ̄−a

)n (
mm−1Tm

Γ(m)γ̄m

)N−l

j!Γ (m) Γ (m+ j)

(

1− mm−1ym

Γ(m)γ̄m

)l
mm+jTm+j

(m+ j) bm+j γ̄(1−a)(m+j)
G (m+ j, a, b, l) . (44)

The following lemma investigates the high SNR behavior ofC.

Lemma 4:For sufficiently highγ̄ anda < 1, the quantityC defined in (44) is approximated by reducing

the sums to single terms corresponding toj = 0 and l = N , respectively, and decays in proportion to

γ̄−m[a(N−1)+1], i.e.,

lim
γ̄→∞

C ∼ γ̄−m[a(N−1)+1]. (45)
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Proof: It follows from Lemma3 that in the high SNR region the quantity inside the summation of (44)

is analogous tōγdC , wheredC is given by

dC = an−m (N − l)− (1− a) (m+ n)− (alm+ an) = (1− a) (ml −m− n)−mN. (46)

Sincea < 1, (46) is maximized over the set of non-negative integersj for j = 0, regardless ofl; this value

of j corresponds thus to the dominant term in the outer sum of (44). Consequently, (46) reduces to

dC = m [(1− a) (l − 1)−N ] . (47)

Sincea < 1 and1 ≤ l ≤ N , it follows from (47) that the dominant term in the inner sum of (44) corresponds

to l = N . Hence, settingl = N to (47) completes the proof.

Therefore, considering the fact that the first term in (43) decays in proportion tōγ−mN , it follows from

Lemma4 that fora < 1 andN > 1, the dominant term in (43) isC, where only the term withj = 0 and

l = N is relevant, so that (43) reduces to

Pout ≈ N
mm−1Tm

Γ2 (m) bmγ̄(1−a)m
G (m,a, b,N) . (48)

Eq. (48) represents a high SNR expression for the outage probability for a < 1.

2) Case ofa > 1: Let us now assume thata is larger than one, and does not lie in the proximity of one.

The case wherea approaches unity will be considered separately in Section C-3. Fora > 1, we have

lim
γ̄→∞

[

Γ (m+ j) − Γ

(

m+ j,
mT

bγ̄1−a

)]

= Γ (m+ j) . (49)

Hence, following the same procedure as for provingLemma4, it is concluded that thelth-order term within

the double summation in (31) decays proportionally toγ̄−m[N+l(a−1)], irrespective ofj. Consequently, since

a > 1 the negative decay exponent of the second term of (31) is higher thanmN for any l ≥ 1. This implies

that the dominant term in (31) is the first term for high SNRs, yielding

Pout ≈
(
mm−1

Γ (m)

)N (
T

γ̄

)mN

. (50)

Eq. (50) represents the asymptotic outage expression in high SNR fora > 1.

3) Case ofa ≈ 1: The scenario wherea lies in the proximity of one is treated separately, since in this

case the second argument ofΓ
(
m+ j,mT/

(
bγ̄1−a

))
converges very slowly (to either zero or infinity) as

γ̄ → ∞, hence the approximations in (42) and (49) do not hold for practical SNR values. As a result, the

transition from thea < 1 case to thea > 1 case experiences a discontinuity in terms of the (practical) high

SNR approximation of the outage probability, asa approaches unity. This discontinuity is bridged through

the outage expression presented below. Recall from SectionIII-B that the case ofa = 1 corresponds to the
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common scenario of channel estimation in noisy static channels, where the power allocated to pilot symbols

equals the power allocated to data transmission.

Sincea ≈ 1, let us assume that̄γ1−a approaches a non-zero finite constant asγ̄ → ∞, i.e.,

lim
a→1
γ̄→∞

γ̄1−a = λ, 0 < λ <∞. (51)

This allows us to evaluate the integralI
(
m+ j − 1,m/

(
bγ̄1−a

)
,m,m/γ̄, i

)
, shown in (20), as follows.

• Let us assume0 < x <∞. Then, using [20, Eq. (8.352/7)] we have for high SNR

Γi

(

m,
m

γ̄
x

)

≈ Γi (m) . (52)

• Let x → ∞. In this case, (52) does not hold. However, it follows from L’Hospital’s rule, as well as

from the fact thatbλ is finite, that

lim
x→∞

[

xm+j−1 exp
(

−m

bλ
x
)

Γi

(

m,
m

γ̄
x

)]

= 0. (53)

Therefore, it follows from (52) and (53) that for high SNRs

I

(

m+ j − 1,
m

bγ̄1−a
,m,

m

γ̄
, i

)

≈
∫ ∞

0
xm+j−1 exp

(

−mx
bλ

)

Γi (m) dx = Γi (m) Γ (m+ j)

(
bλ

m

)m+j

.

(54)

By combining (31), (22), (37), (51), (54), [20, Eq. (0.15.4)], [20, Eq. (8.310/1)], [20, Eq. (8.350/2)], and

the infinite series representation of the exponential function, we arrive after some manipulations at

Pout ≈ (N + 1)

(
mm−1

Γ (m)

)N (
T

γ̄

)mN

. (55)

Eq. (55) represents a high SNR approximation of the outage probability for the case wherea lies in the

neighborhood of one.Theorem1 follows then directly from (48), (55), and (50).
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TABLE I

PARAMETERSa AND b FOR THE CONSIDERED IMPERFECTCSI SCENARIOS.

Case a b

Outdated CSI 0 1− ρ

Noisy CSI α+ 1 m/ (βL)

FIR Channel Prediction 0 1− u
¯
H
h R

¯
−1

∣

∣

N0=0
u
¯h

IIR Channel Prediction (α+ 1) (1− 2fdTd) exp
(

Td

∫ fd
−fd

ln
[

Shh

(

ej2πfTd
)]

df
)

β−(1−2fdTd)
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Fig. 1. Case of static channels: Outage probability of relayselection with noise-impaired channel estimates in Rayleigh fading

(m = 1) versus average SNR, assumingN = 3 available relays,T = 1, β = 1 and several different values ofα.

September 22, 2018 DRAFT



22

10 15 20

1E-5

1E-4

1E-3

 =0.1
 =0.2
 =0.4
 =0.6
 =0.8
 =1
 =1.5
 =2
 Ideal CSI, =1

O
ut

ag
e 

P
ro

ba
bi

lit
y

Average SNR   (dB)

Fig. 2. Case of static channels: Outage probability of relayselection with noise-impaired channel estimates in Rayleigh fading

versus average SNR, assumingN = 3 available relays,T = 1, α = 0 and several different values ofβ.
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Fig. 3. Case of outdated CSI: Outage probability of relay selection in Rayleigh fading versus average SNR, assumingN = 5

relays,T = 1, maximum Doppler frequencyfd = 100 Hz and several different values ofTd.

September 22, 2018 DRAFT



24

0 10 20 30 40 50
10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 

 

O
ut

ag
e 

pr
ob

ab
ili

ty

Average SNR   (dB)

 m=1
 m=2
 m=3
 m=4
 m=5

Fig. 4. Case of outdated CSI: Outage probability versus average SNR forρ = 0.5, N = 5, T = 3, and several values of the

Nakagami-m shape distribution parameter,m.
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Fig. 5. Time-varying channels with FIR channel prediction:Outage probability of relay selection in Rayleigh (m = 1) fading

versus average SNR, assumingN = 5 available relays,T = 1, Td = 3 msec,fd = 100 Hz, α = 0, β = 1, and several values of

the channel predictor length,L.
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Fig. 6. Time-varying channels with IIR channel prediction:Outage probability of relay selection in Rayleigh (m = 1) fading

versus average SNR, assumingN = 5 available relays,T = 1, α = 0, β = 1, and several values ofTd.
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Fig. 7. Diversity order of relay selection with imperfect CSI in Nakagami-m fading as a function of the exponent parametera,

for several combinations of the number of available relays,N , and the fading shape parameter,m. Applies to all the considered

imperfect CSI scenarios.
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