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Combined Pilot-Aided and Decision-Directed

Carrier Synchronization for

Filtered Multitone Wireless Systems

Giulio Dainelli, Marco Moretti, Vincenzo Lottici, and Ruggero Reggiannini

Abstract

This paper focuses on the issue of carrier frequency synchronization for filtered multitone wireless

transmission over time-frequency selective fading channels. Rather than either relying only on known

pilot symbols multiplexed within the transmitted burst or exploiting the specific signal structure in a

blind mode, the estimation algorithm we pursue is derived from the maximum likelihood principle

and takes advantage of both pilot symbols and also the unknown information-bearing symbols through

specific differential decision-directed processing. Whencompared to conventional pilot-based methods,

the proposed approach improves the frequency acquisition range without degrading estimation accuracy

at even lower cost in terms of computational complexity.

Index Terms

Filter bank multicarrier modulation, carrier frequency synchronization, time-frequency selective chan-

nels, differential decision-directed processing.

I. INTRODUCTION

In view of their appealing features, multicarrier (MC) techniques are currently recognized as

the key technology in the area of high-data-rate transmissions over fading wireless channels [1].

The interest surrounding MC schemes is demonstrated by their adoption in several standards,
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either in the form of orthogonal frequency division multiplexing (OFDM) modulation, as in

terrestrial digital audio broadcasting (DAB) and video broadcasting (DVB-T/H) [2], IEEE 802.11

Wi-Fi indoor wireless LANs [3], IEEE 802.16 Wi-Max broadband wireless access (BWA) [4]

and 3GPP Long Term Evolution (LTE) [5], or based on filter bankMC (FBMC) modulation, as

in the return channel of terrestrial DVB (DVB-RCT) [6] and the release 2 of the ETSI terrestrial

trunked radio (TETRA) enhanced data system (TEDS) air interface [7]-[8]. The advantages of

MC signaling have to be necessarily traded off, however, against a considerable sensitivity to

residual carrier frequency offsets (CFOs) arising from oscillator instability and Doppler effects,

that have to be accurately removed from the received waveform prior to data decoding.

Relations with Prior Works. In the following, for simplicity we limit our focus on the FBMC

format based on a set of contiguous non-overlapping subcarriers, also referred to as filtered

multitone (FMT) modulation in very high-speed digital subscriber lines (VDSL) applications

(basic references are [9], [10] and the works cited therein), even though the algorithms we discuss

could be adapted to different FBMC schemes, such as discretewavelet multitone (DWMT)

[11] and staggered OFDM/OQAM [12]. In the FBMC context, the algorithms proposed in the

literature for CFO recovery can be classified either as pilot-aided (PA) [13]-[14] or blind [15]-

[16], depending on whether they rely or not on known pilot symbols multiplexed within the

transmitted burst. Most of the algorithms cited above, however, such as those in [14]-[16],

are derived assuming time-invariant fading and therefore their performance gets rapidly poor

whenever the channel has a significant time selectivity, as it may easily occur in wireless mobile

communications. Conversely, the PA-based maximum-likelihood estimator (PA-MLE) recently

proposed in [13] efficiently copes with time-frequency selective channels assuming statistical

knowledge of the channel in terms of fading covariance matrix.

Purpose and contributions. The PA-MLE approach shows better estimation accuracy as com-

pared to blind algorithms [15]-[16] in spite of substantially lower computational requirements.

However, the interval of frequency offsets where it offers reliable performance, the so-called

acquisition range, is given approximately by the inverse of the time-domain pilot spacing,

and consequently, it may turn out to be very narrow as pilot symbols cannot be packed too

tightly within the burst not to degrade spectrum and power efficiency. This strong limitation

motivates our search for an improved version of the PA-basedCFO estimator capable of extended

acquisition range while retaining good accuracy and affordable complexity. Compared to previous
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schemes, the proposed novel estimation approach exhibits several distinctive features, as outlined

in the following:

1) We exploit (known) pilot symbols as in [13] but, as a further step ahead, we also take

advantage of the presence of the (unknown) information-bearing symbols through a specific

(non-linear) differential decision-directed (DD) based processing. In our view, combining

together the PA and DD concepts for CFO recovery represents amajor point of novelty.

Indeed, to our knowledge, the combined PA-DD approach has received much less consid-

eration in synchronization than that obtained in other contexts, as for instance in iterative

soft or hard channel estimation.

2) Modulation symbols are supposed to belong to a 4-QAM constellation, an assumption that

may appear at first glance too restrictive. However, we recall that 4-QAM is often adopted

when frequency acquisition is being carried out in the receiver startup process. This occurs

in the TETRA 2 standard [7]-[8], for instance, wherein 4-, 16- and 64-QAM formats are

employed during data transmission, but a specific mixed pilot/data frequency correction

burst made of all 4-QAM symbols is used for initial receiver frequency recovery.

3) The rationale behind our approach combining the PA and DD concepts together is as

follows: i) we start from the log-likelihood function (LLF) for the joint estimation of

the CFO and data symbols;ii) we get rid of data symbols in the LLF replacing them

by differential decisions drawn on pairs of received samples taken on the subcarriers,

without requiring any prior knowledge of either the CFO or the channel gains;iii) to save

complexity we approximate the fading covariance matrix by ablock-diagonal structure

and optimize the resulting simplified metric.

4) Simulation runs in typical mobile wireless scenarios confirm that the proposed CFO

recovery algorithm, when compared to conventional PA-MLE offers a wider acquisition

range with an improvement or no degradation in estimation accuracy, at even lower

complexity.

Organization. Sect. II describes the FMT signal model, while Sect. III first reviews the PA-

MLE CFO synchronization issues, and then illustrates the proposed PA-DD algorithm. The

computational complexity of the algorithm is analyzed and evaluated in Sect. IV. Sect. V presents

and discusses simulation results. Finally, conclusions are drawn in Sect. VI.
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Notations. Matrices are in uppercase bold while column vectors are in lowercase bold,(·)T

denotes transpose,(·)H denotes conjugate transpose,(·)−1 denotes inverse,[A]i,j denotes the

(i, j) entry of the matrixA, tr{A} denotes the trace of the matrixA, ‖A‖ denotes the 2-norm

of the matrixA, diag(·) converts a sequence of sizeN into a N × N diagonal matrix, Diag(·)

converts a sequence ofN matrices of sizeL × L into a NL × NL block-diagonal matrix,IN

is theN × N identity matrix,⊗ denotes convolution, T{·} denotes the 4-QAM hard threshold

detector,J0(·) denotes the first-type Bessel function of order 0, and E{·} denotes statistical

expectation.

II. FMT SIGNAL MODEL

In a FMT communication system, the available bandwidth is split into a set ofN adjacent non-

overlapping subcarriers [10], each of which is shaped by means of a square root raised cosine

(SRRC) prototype filter having impulse responseg(t) with roll-off factor ξ and frequency-shifted

at multiples of(1+ξ)/T , T being the subcarrier signaling interval; see the block diagram of Fig.

1 as a reference. Denoting witha(q)
l the information or pilot symbol transmitted over theq−th

subcarrier,0 ≤ q ≤ N − 1, within the l−th FMT block, 0 ≤ l ≤ L − 1, and constraining the

quantityM
∆

= (1+ ξ)N to be an integer for ease of implementation, the FMT signal transmitted

over a burst ofL consecutive blocks can be written as

s(t) =
L−1
∑

l=0

N−1
∑

q=0

a
(q)
l g(t − lT )ej2πqMt/NT . (1)

Differently from [14]-[16] and following the approach in [13], we assume that the propaga-

tion channel isselective both in time and frequency, with impulse response given byc(t) =
∑U−1

u=0 ρu(t)δ(t − τu), whereU is the total number of paths, whileρu(t) and τu are the time-

varying complex gains and the delays of theu−th path, respectively. At the receiver side, the

input waveformx(t)
∆

= s(t) ⊗ c(t) is sampled at rateM/T , processed by the cascade of the

receiver polyphase filter bank (that performs matched filtering on each subcarrier) and the DFT

unit, as shown in the lower part of Fig. 1. As last step, data detection is performed after channel

equalization. Assuming error-free timing recovery, it canbe shown under some mild assumptions

that the sample taken on then−th subcarrier at the instantt = kT at the output of the DFT unit

can be accurately approximated as [13]

z
(n)
k ≃ ϕ

(n)
k a

(n)
k ej2πνk + w

(n)
k , (2)
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where

ϕ
(n)
k

∆

= ejϑ
U−1
∑

u=0

ρu(kT )e−j2πnMτu/NT (3)

is a multiplicative factor correlated both in time and frequency accounting for the channel

selectivity,ν is the CFO normalized to the signaling rate1/T , ϑ is the phase offset, andw(n)
k is a

complex-valued zero-mean independent Gaussian random variable (RV) with varianceσ2 = 2N0.

We remark thata(n)
k in (2) corresponds to a known pilot symbol for the pair of indexesn and

k such thatn ∈ N andk ∈ K.

Letting z(n) ∆

= [z
(n)
0 , . . . , z

(n)
L−1]

T , ϕ
(n) ∆

= [ϕ
(n)
0 , . . . , ϕ

(n)
L−1]

T and w(n) ∆

= [w
(n)
0 , . . . , w

(n)
L−1]

T

denote the vectors collecting the received samples at the DFT output, the time-varying channel

gains and the noise samples, respectively, on then−th subcarrier, from (2) it follows that

z(n) = Ψ(ν)A(n)
ϕ

(n) + w(n), (4)

whereΨ(ν) andA(n) areL×L diagonal matrices defined asΨ(ν)
∆

= diag
{

1, ej2πν , . . . , ej2πν(L−1)
}

andA(n) ∆

= diag
{

a
(n)
0 , . . . , a

(n)
L−1

}

. Hence, stackingz(n), ϕ(n) andw(n) to formz
∆

= [z(0)T

, . . . , z(N−1)T

]T ,

ϕ
∆

= [ϕ(0)T

, . . . , ϕ(N−1)T

]T and w
∆

= [w(0)T

, . . . ,w(N−1)T

]T , the observed sequence can be

expressed as

z = Γ(ν)Aϕ + w, (5)

whereΓ(ν) andA areLN ×LN diagonal matrices defined asΓ(ν)
∆

= Diag{Ψ(ν), . . . ,Ψ(ν)}

andA
∆

= Diag
{

A(0), . . . ,A(N−1)
}

.

III. ML C ARRIER FREQUENCY ESTIMATION

A. Formulation of the ML Estimation Problem

Let us model the set of channel coefficientsϕ as a complex zero-mean Gaussian random

vector with covariance matrixCϕ

∆

= E{ϕϕ
H}. We note that sinceCϕ changes slowly with

time, it can be estimated at the receiver either through channel sounding or exploiting the a-

priori knowledge about the multipath delay profile and the Doppler spread. For later use, in

Appendix ACϕ is calculated under the assumptions that the path delays areeither independent

exponentially-distributed RVs or deterministic parameters.

Given the CFOν and the matrixA collecting all the symbols transmitted within the burst,

it turns out that the received samplesz in (5) are jointly complex zero-mean Gaussian as well,
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with covariance matrix

Cz(ν)
∆

= E{zzH} = Γ(ν)ACϕAHΓ(ν)H + σ2ILN . (6)

In light of (6), the joint ML estimate (JMLE) of the normalized CFO and the transmitted symbols

is obtained by maximizing the LLF as

(ν̂, Â) = argmin
ν̃∈I,Ã∈A

{ΛJMLE(ν̃, Ã)}, (7)

where the JMLE metric reads as

ΛJMLE(ν,A)
∆

= zHΓ(ν)AFAHΓ(ν)Hz, (8)

whereF
∆

= (Cϕ + σ2ILN)
−1, while the intervalI includes the possible trial values forν and

A is the set of all possible realizations of the transmitted symbol matrixA. Finding the JMLE

requires solving a mixed integer optimization problem involving a multidimensional search over

the setsI andA. Due to its combinatorial nature, however, the computational complexity of (7)

becomes intractable even for smallL andN , and consequently, alternative methods for efficient

CFO recovery need to be devised.

A good complexity-vs-accuracy tradeoff is offered by the PA-MLE approach pursued in [13].

Therein, the main assumption is that each ofS subcarriers, withS ≤ N , conveysP pilot

symbols, withP ≤ L, so that the total number of known pilots embedded in the transmitted

burst amounts toQ
∆

= PS. Exploiting the fact that observation model (5) still holdswhen applied

to the subset of received samples corresponding to pilot positions (with the only difference that

z, ϕ andw are nowQ-dimensional vectors andΓ(ν), A andCϕ areQ×Q diagonal matrices,

with Q < LN), we can build a metric quite similar to that in (8), which no longer depends

on the (unknown) data symbols but only on the frequency offset to be estimated; see [13] for

additional details. The following remarks about the PA-MLEmethod can be of help.

1) Since the matrix inversion to obtainF for a givenCϕ andσ2 required by the metric (8)

can be performed off-line, the PA-MLE can be obtained through a two-step procedure

based on a linear grid search over the intervalI of trial valuesν̃ (coarse search), which

can be efficiently carried out using FFT, followed by interpolation (fine search) [13].

2) For sake of simplicity, it is appropriate to remove the dependence ofF on σ, i.e., on the

received signal-to-noise-ratio (SNR), by setting it to a predefined valueσ0; see Sect. V-A

for further details about this issue.
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3) It can be argued that the acquisition range of the PA-MLE gets larger by reducing the

pilot spacing in the time-domain, i.e., by increasing the number of pilot symbolsQ within

the time-frequency grid. It is also true, however, that the pilot overheadχ
∆

= Q
NL

has to be

chosen as low as possible, say below 10 %, not to degrade powerand spectrum efficiency.

B. Combined Pilot-Aided and Decision-Directed Frequency Estimation

The contrasting requirements about the choice ofQ discussed above motivate the search

for a more efficient alternative to the PA-MLE scheme. Ratherthan increasing the number of

pilots Q, thereby incurring an efficiency loss, we pursue a differentestimation strategy based on

combining the PA and DD concepts together, an approach referred to in the sequel as combined

MLE (CMLE). In a nutshell, the idea is not only to exploit the known pilot symbols, but also

the unknown information-bearing data via some form of hard DD-based processing. The main

steps of the CMLE approach can be summarized as follows.

1) The metricΛJMLE(ν,A) in (8) can be reformulated after some algebra into

ΛJMLE(ν,A) =
L−1
∑

l=0

N−1
∑

s,c=0

a
(s)
l a

(c)∗

l z
(s)∗

l z
(c)
l G

(s,c)
l,l

+2

L−1
∑

k=1

L−1−k
∑

l=0

Re

{

e−j2πνk

N−1
∑

s,c=0

a
(s)
l a

(c)∗

l+kz
(s)∗

l z
(c)
l+kG

(s,c)
l,l+k

}

, (9)

whereG
(s,c)
n,m

∆

= [G](s−1)L+n,(c−1)L+m, with G being defined asG
∆

= (Cϕ + σ2
0ILN)

−1, i.e.,

the matrixF in (8) evaluated atσ = σ0.

2) The metric (9) depends on all the products between any two symbols (data or pilots) within

the burst. This basic fact suggests that a possible way of getting rid of the unknown data

symbols is to resort to the differential decisions taken on the productsz(s)
l z

(c)∗

l+k . From (2),

indeed, it can be easily obtained

z
(s)
l z

(c)∗

l+k = ϕ
(s)
l ϕ

(c)∗

l+ka
(s)
l a

(c)∗

l+ke−j2πνk + ζ
(s,c)
l,l+k, (10)

whereζ
(s,c)
l,l+k is a disturbance term accounting for both channel noise and fading. Now, we

invoke the following restrictive assumptions, the first twoof which are provisional and

will be shortly dropped, while the third one is not limiting in view of the discussion made

in point 2) of Sect. I.
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A1) The channel fading is sufficiently correlated in both time- and frequency domains so

that ϕ
(s)
l ϕ

(c)∗

l+k ≃
∣

∣

∣
ϕ

(s)
l

∣

∣

∣

2

holds, regardless of the time lagk, 1 ≤ k ≤ L − 1, and the

subcarrier index difference|s − c|, 0 ≤ s, c ≤ N − 1.

A2) The normalized CFOν is sufficiently small so that e−j2πνk ≃ 1, for 0 ≤ k ≤ L − 1.

A3) The data and pilot symbols belong to a 4-QAM constellation with unitary radius, and

all pilots are equal.

3) After defining thedifferential symbol b
(s,c)
l,l+k

∆

= a
(s)
l a

(c)∗

l+k , applying A1)-A2) in (10) yields

z
(s)
l z

(c)∗

l+k ≃
∣

∣

∣
ϕ

(s)
l

∣

∣

∣

2

b
(s,c)
l,l+k + ζ

(s,c)
l,l+k. (11)

Hence, in view of A3), the differential symbolb(s,c)
l,l+k belongs to a 4-QAM constellation as

well, and due to (11) can be estimated without the knowledge of both the CFO and the

channel gains, by feeding the productz
(s)
l z

(c)∗

l+k into a conventional 4-QAM hard threshold

detector, i.e.,

b̂
(s,c)
l,l+k = T

{

z
(s)
l z

(c)∗

l+k

}

. (12)

4) Now, we show that assumptions A1) and A2) can be properly relaxed. First, we observe

that due to A3) the differential symbolb(s,c)
l,l+k can be written as the product of a sequence

of differential symbols, each involving either adjacent symbols on the same subcarrier (in

the time domain) or symbols over different subcarriers withthe same time index (in the

frequency domain). For instance, lettings > c and exploitinga
(s)
l a

(s)∗
l = 1, one gets

b
(s,c)
l,l+k = a

(s)
l a

(s)∗
l+1 a

(s)
l+1 · · ·a

(s)∗
l+k a

(s)
l+ka

(s−1)∗
l+k a

(s−1)
l+k · · ·a(c+1)∗

l+k a
(c+1)
l+k a

(c)∗
l+k

= b
(s,s)
l,l+1 · · · b

(c+1,c)
l+k,l+k. (13)

The result in (13) suggests that the detection ofb
(s,c)
l,l+k can be carried out by means of

concatenated decisions on the differential symbols corresponding to data symbols placed

contiguously either in time or frequency, so that these decisions are minimally affected by

both the channel fading and the CFO. On the other hand, each differential decision may

be in error mainly due to noise, and also possibly by fading and the CFO. So, the number

of intermediate steps in (13) should be kept as small as possible. Our idea is then to also

exploit the known pilot symbols as follows. Let us designateas p
(s̄)

l̄
and p

(c̄)
q̄ the pilots

closest to the data symbolsa(s)
l anda

(c)
q , respectively, in the time-frequency grid. We note

that there are pilot symbols close to any data symbol insofaras the pilot pattern has to be
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employed for channel estimation as well, and accordingly, it has to be designed such that

the fading process is tightly sampled on both time and frequency domains. Hence, taking

into account in view of A3) thatp(s̄)∗

l̄
p

(c̄)
q̄ = 1, the differential symbol can be rearranged

as

b
(s,c)
l,q = a

(s)
l p

(s̄)∗

l̄
p

(c̄)
q̄ a(c)∗

q = b
(s,s̄)

l,l̄
b
(c̄,c)
q̄,q . (14)

and therefore, it can be detected through the product of decisions

b̂
(s,c)
l,q = b̂

(s,s̄)

l,l̄
b̂
(c̄,c)
q̄,q , (15)

where each differential decision is taken on closely spacedsamples, with the result that

error propagation is strongly mitigated. Collecting all the above together, we can conclude

that:

• assumption A1) can be substantially dropped, as for the algorithm to work correctly

it is sufficient that there exists significant fading correlation only betweenadjacent

symbols both along time and frequency;

• assumption A2) can be replaced by the far milder condition that the phase rotation

induced by the CFO is negligible in asingle symbol interval only.

5) Thus, replacing the producta(s)
l a

(c)∗

l+k in (9) by the differential decision̂b(s,c)
l,l+k computed

through (15), and dropping immaterial factors independentof the CFO, the CMLE metric

can be written as

ΓCMLE(ν) =

L−1
∑

k=1

L−1−k
∑

l=0

Re

{

e−j2πνk
N−1
∑

s,c=0

b̂
(s,c)
l,l+k z

(s)∗

l z
(c)
l+kG

(s,c)
l,l+k

}

, (16)

whose minimization provides the CMLE solution.

IV. COMPUTATIONAL COMPLEXITY ISSUES

We now focus on some issues concerning the computational complexity of the CMLE-based

CFO recovery.

1) Compared to (9), the CMLE metric in (16) does no longer depend on the unknown data

symbols, since they have been replaced by the differential decisions (12) taken on the

productsz(s)
l z

(c)∗

l+k . Therefore, the CMLE requires the same two-step search procedure on

the intervalI we already mentioned for the PA-MLE in Sect. III-A.
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2) Let us observe that due to the specific way the fading vectorϕ is built, the covarianceCϕ

is a block-Toeplitz matrix composed ofN2 sub-matricesC(n,m)
ϕ , 1 ≤ n, m ≤ N , of size

L×L, each representing the covariance between the subcarriersof indexesn andm. Hence,

a possible route to further simplify the CMLE algorithm consists of ignoring the correlation

between the fading coefficients belonging to different subcarriers, i.e., replacingCϕ by

C̄ϕ

∆

= Diag
{

C
(1,1)
ϕ , . . . ,C

(N,N)
ϕ

}

. As a consequence, the simplified CMLE employing the

covariancēCϕ is actually mismatched to the actual fading conditions, although the resulting

performance loss is moderate, as proved by the simulation results in Sect. V. Further, thanks

to the stationarity of channel fading, we haveΩ
∆

= C
(1,1)
ϕ = C

(2,2)
ϕ = · · · = C

(N,N)
ϕ , and

therefore,C̄ϕ = Diag{Ω, . . . ,Ω}. As a result, the inversēG ∆

=
(

C̄ϕ + σ2
0ILN

)−1
can

be computed as a block diagonal matrix whose blocks are all equal to theL × L matrix

∆
∆

= (Ω + σ2
0IL)

−1. Accordingly, the CFO recovery algorithm employinḡG instead of

G in (16) will be designated as low-complexity CMLE, or LC-CMLE for short, and the

relevant metric to be minimized will be expressed as

ΦLC−CMLE(ν) =
L−1
∑

k=1

L−1−k
∑

l=0

Re

{

e−j2πνk∆l,l+k

N−1
∑

s=0

b̂
(s,s)
l,l+k z

(s)∗

l z
(s)
l+k

}

, (17)

where∆l,l+k
∆

= [∆]l,l+k.

3) To evaluate the complexity of the CFO recovery schemes illustrated so far, we adopt the

following assumptions:

A4) the computational complexity load is defined as the number of real-valued floating

point operations, i.e., additions and multiplications, referred to in the following as

real-flops for short, required to compute the metric to be optimized at theNν (equi-

spaced) trial values within the search intervalI;

A5) given Cϕ andσ0, the matrixG for the PA-MLE is computed only once as product

between an upper and lower triangular matrices via Choleskydecomposition;

A6) the multiplications involved by the differential decisions are not taken into account as

they correspond to phase rotations by multiples ofπ/2, and can be easily performed

by swapping the real and/or imaginary parts of the operands;

A7) the values of e−j2πνk at theNν trial values inI are stored in a look-up table;

A8) the parametersN , L andNν are assumed to be of the same order of magnitude.
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Hence, from the analysis detailed in Appendix B we end up to the results summarized

in Tab. I. It is seen that the LC-CMLE shows a complexity orderreduced byN when

compared to the CMLE and, in view of A8), lower than that of thePA-MLE.

V. PERFORMANCE RESULTS

In this section, simulations results over doubly-selective fading scenarios are employed to com-

pare the accuracy of the PA-MLE, CMLE and LC-CMLE schemes. Two performance benchmarks

are considered:i) the PA-MLE scheme withQ = NL pilots, i.e., where all the burst symbols

are assumed to be known, which will be referred to as data-aided MLE (DA-MLE), and ii)

the corresponding Cramer-Rao lower bound (CRLB), derived in Appendix C. First, we focus

on the mean square estimation error (MSEE) defined as E{(ν̂ − ν)2} as a function of the true

normalized CFOν for a given received mean-energy-per-symbol-to-noise-spectral-density ratio

Es/N0, that permits to identify theacquisition range of the CFO estimation algorithm. Next,

the noise sensitivity is assessed in terms of the MSEE as a function ofEs/N0 for a specified

CFO to be estimated.

A. Simulation Setup

The selection of signal and channel parameters employed in simulations can be considered as

typical in mobile radio applications, such as e.g. in [8]. Each burst is composed ofN subcarriers,

with N = 16, 32, 64, 128, and spansL = 51 FMT symbol intervals. A uniform pilot pattern is

chosen withS = N/2 subcarriers, each bearingP = 6 pilots, so that the total number is

Q = PS = 3N , and the pilot overhead isχ ≃ 6 %, regardless the value ofN . For instance, the

pilot distribution we adopted forN = 16 subcarriers is such that the pilot symbol transmitted over

then−th subcarrier within thek−th FMT block is identified byn ∈ N = {0, 2, 4, 6, 9, 11, 13, 15}

andk ∈ K = {0, 9, 19, 29, 39, 49}, with Q = 48. The roll-off factor of the SRRC prototype filter

g(t) is set toξ = 0.25, while both data and pilot symbols are unit-energy 4-QAM symbols.

The channel is time- and frequency-selective withU = 6 paths. As usually assumed in FMT

wireless transmissions over selective fading channels, the path delaysτu, 0 ≤ u ≤ U − 1, are

chosen to be uniformly spaced (withτ0 = 0 for simplicity), whereas the path gains are modeled

as zero-mean independent complex-valued Gaussian processes, having Jakes power spectrum

with Doppler bandwidthfD and variance decaying exponentially withτu, adjusted so that the
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normalized channel delay spread isστ/T = 2 ·10−2. Two different propagation environments are

considered: slow-fading (SF) withfDT = 7.5 · 10−3 and fast-fading (FF) withfDT = 3 · 10−2.

As an example, in Fig. 2 we show a realization of the time-frequency fading process affecting

the transmitted burst for the FF scenario andN = 16 subcarriers. It is apparent that our choice

of time and Doppler spread leads to severe doubly-selectivefading conditions along both time

and frequency.

Further, concerning the noise varianceσ2
0 adopted by the estimators in the matricesG (PA-

MLE and CMLE) and∆ (LC-CMLE), its value is selected so that the correspondingEs/N0 is

equal to 15 dB. The reason behind this choice is twofold. First, it comes from the observation

(resulting from intensive simulation trials) that the above value safely avoids the numerical

instability inherent in the matrix inversion involved in the definition ofG and∆. On the other

side,σ2
0 has not to be too small so thatG and∆ can be still considered approximately “matched”

to the receiver operating point, i.e., its sensitivity, although some performance loss may arise at

higher SNRs.

B. Complexity Comparison

To compare the complexity load of the CFO recovery schemes discussed so far, we focus

on the setup outlined in Sect. V-A and assume two test cases based onN = 16 andN = 128

subcarriers, letting the number of CFO trial values beNν = 30. Denoting asCPA−MLE, CCMLE

and CLC−CMLE the number of real-flops required by the the PA-MLE, CMLE and LC-CMLE,

respectively, according to the results of Appendix B, we canwrite

CPA−MLE/CCMLE ≃ Nνχ
2 = 0.108, (18)

CPA−MLE/CLC−CMLE ≃ 2Nνχ
2N = 0.216N. (19)

where the conventional PA-MLE was taken as the reference benchmark. From inspection of

(18)-(19) it can be concluded thati) the complexity of the CMLE is an order of magnitude

larger than PA-MLE irrespective ofN , and ii) the complexity of LC-CMLE issmaller by a

factor linearly scaling withN , namely around 3.46 (N = 16) and 27.7 (N = 128).
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C. Acquisition Range

The acquisition range is shown in Figs. 3 and 4 for the SF and FFchannels, respectively,

assumingN = 16 subcarriers andEs/N0 of 30 dB. For both scenarios, it is worth noting that:i)

the MSEE of the DA-MLE (in the considered interval ofν) turns out to be nearly independent

of the CFO, andii) both the LC-CMLE and CMLE outperform the PA-MLE, i.e., the latter

exhibits a definitely narrower acquisition range, althoughall the estimators have a comparable

MSEE. These results are consistent with the well-known rulethat in PA-based synchronization

the acquisition range is roughly as wide as the inverse of thetime-domain pilot spacing; see

[13] and references therein. When we arrange pilots adjacent together as in DA-MLE, indeed,

the acquisition range is approximately equal to the inverseof symbol interval, i.e.,1/T , while

spacing them one every 10 data symbols as in the PA-MLE gives anarrower acquisition range,

i.e., around 10 % of1/T . On the other side, combining pilots and differential decisions together

makes the acquisition range of both the CMLE and LC-CMLE around twice as wide as compared

to the PA-MLE. Therefore, we get the interesting result thatthe combined PA-DD approach can

considerably widen the acquisition range without having topay any increase in pilot overhead,

nor any penalty in terms of MSEE or algorithm complexity.

Figs. 5 and 6 show plots of the MSEE for the LC-CMLE as a function of the CFO for different

values ofN , namelyN = 16, 32, 64, 128. Again, we consider both the SF and FF scenarios,

and assumeEs/N0 equal to 30 dB. Inspection of the figures reveals that the acquisition range

is substantially independent ofN , while the MSEE floor tends to improve asN grows, in view

of the larger number of observations available to the estimator.

Over the faster (FF) channel, as shown in Figs. 4 and 6, the acquisition range of all the

algorithms tend to degrade if compared to the slow channel (Figs. 3 and 5), inasmuch as both

the CMLE and LC-CMLE algorithms (and the PA-MLE as well) exhibit a more rounded MSEE

curve about the minimum atν = 0. This behavior can be explained noting that the larger the

Doppler bandwidth or, in other words, the less the time-domain fading correlation, the less

accurate the assumption A1) in Sect. III-B even on a intervalof a few symbols. A similar effect

can be ascribed to a reduction ofEs/N0, since this leads to a larger error rate in the differential

decisions (12) and jointly to a higher sensitivity of the CMLE and LC-CMLE schemes to a

nonzero CFO. Actually, in both cases, i.e., faster fading and larger noise, the CFO estimation
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accuracy degrades due to a less reliable cancellation of themodulation phase shifts in the metrics

(16) and (17). Nevertheless, the plots show that the limits of the acquisition range are hardly

affected if measured at a reasonable MSEE level, say10−4, and accordingly, the performance

margins offered by the CMLE and LC-CMLE still hold.

It is worth noting that the availability of a wider acquisition range allows to accommodate

more severe Doppler-induced frequency deviations, that are sometimes hard to recover via the

more classical PA-MLE scheme. Consider for instance the TETRA Release 2 standard [7], where

the carrier frequency is either 400 MHz or 800 MHz, and the signaling rate1/T is 2.4 kHz.

Assuming a terminal speed of 200 km/h, the worst-case Doppler shift amounts to±150 Hz,

which is fully covered by the acquisition range of 10 % of1/T , i.e.,±240 Hz, featured by the

CMLE and LC-CMLE algorithms, while use of PA-MLE in this casewould be more troublesome.

D. Noise sensitivity

Figures 7 and 8 show the MSEE over the SF and FF channels, respectively, as a function of

Es/N0 assuming that the CFO to be estimated isν = 0. As for the SF scenario of Fig. 7, it can be

noted that:i) the DA-MLE does not achieve the CRLB due to the finite data record [17], while

the additional MSEE gap of the other estimators is due, respectively, to the limited number

of pilots Q < NL transmitted within the burst (PA-MLE), to errors on differential decisions

(CMLE and LC-CMLE) and to the approximation of the fading covariance matrix as a diagonal

block matrix (LC-CMLE); ii) as expected, the CMLE closely approaches the DA-MLE at large

SNRs thanks to the differential decisions getting asymptotically more and more reliable;iii) the

LC-CMLE offers worse (asymptotical) performance with respect to the CMLE because of the

inherent approximation of the fading covariance matrix, although its behavior is substantially

equivalent to that of the PA-MLE.

Finally, results for the FF channel are illustrated in Fig. 8. Due to the faster channel variations

from symbol to symbol, the MSEE curves of all the estimators depart slightly further from the

CRLB if compared to what obtained in Fig. 7 for the SF channel.Then, coherently with Fig.

4, the reduced reliability of the differential decisions due to the faster channel makes now the

CMLE and LC-CMLE incur a MSEE floor at large SNRs, comparable with that of the PA-MLE,

although at low SNRs the CMLE performs closest to the DA-MLE.
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VI. CONCLUSIONS

We have addressed the basic design issues for a novel CFO recovery algorithm intended

for FMT burst-mode transmissions over doubly-selective fading channels. Exploiting the fading

correlation on time and frequency domains, the estimator relies on the combined use of two well-

known concepts, namely, pilot symbols uniformly distributed within the burst and differential

decisions taken on the received samples without requiring any prior knowledge of CFO and

channel state. Numerical results obtained in typical mobile wireless environments confirm that

the proposed estimation approach, when compared to the conventional PA-MLE scheme, offers

a significantly wider frequency acquisition range with no accuracy degradation at even lower

complexity load.

APPENDIX A: FADING COVARIANCE MATRIX

Let us assume that the time-varying path gainsρu(t) are modeled as stationary zero-mean

independent complex-valued Gaussian processes, having Jakes power spectrum with Doppler

bandwidthfD, or equivalently E{ρu(t)ρ
∗
u(τ)} = σ2

ρu
J0[2πfD(t− τ)], and varianceσ2

ρu
decaying

exponentially with the path delayτu. Hence, according to (3), the generic entry of the fading

covariance matrixCϕ is given by

[Cϕ](s−1)L+k,(c−1)L+q

∆

= E{ϕ(s)
k ϕ(c)∗

q }

=
U−1
∑

u=0

U−1
∑

l=0

E{ρu(kT )ρ∗

l (qT )}E{e−j2πsMτu/NT ej2πcMτl/NT}

=

U−1
∑

u=0

E{ρu(kT )ρ∗

u(qT )}E{e−j2π(s−c)Mτu/NT}

= J0[2πfD(k − q)T ]

U−1
∑

u=0

σ2
ρu

E{e−j2π(s−c)Mτu/NT}, 0 ≤ k, q ≤ L − 1, 0 ≤ s, c ≤ N − 1.(20)

Considering the path delaysτu as independent exponentially-distributed RVs with parameter λ,

we obtain

E{e−j2πsMτu/NT} =
1

1 + j2πsMλ
NT

, (21)
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and accordingly, (20) can be rewritten as

[Cϕ](s−1)L+k,(c−1)L+q =

J0[2πfD(k − q)T ]

1 + j2π(s − c)Mλ
NT

·
U−1
∑

u=0

σ2
ρu

, 0 ≤ k, q ≤ L − 1, 0 ≤ s, c ≤ N − 1. (22)

In the specific case of path delays being deterministic quantities of typeτu = u δ, 0 ≤ u ≤

U − 1, i.e., uniformly spaced within the interval∆τ
∆

= (U − 1)δ, (20) turns into

[Cϕ](s−1)L+k,(c−1)L+q =
U−1
∑

u=0

E{ρu(kT )ρ∗

u(qT )}e−j2π(s−c)Mτu/NT

= J0[2πfD(k − q)T ]

U−1
∑

u=0

σ2
ρu

e−j2π(s−c)uMδ/NT , 0 ≤ k, q ≤ L − 1, 0 ≤ s, c ≤ N − 1. (23)

It can be pointed out that[Cϕ](s−1)L+k,(c−1)L+q in both (22) and (23) depends only on the

differencesk − q ands − c taken along the time and frequency domains, respectively.

APPENDIX B: COMPLEXITY EVALUATION

Based on assumptions A4)-A8) made in Sect. IV, we evaluate here the complexity required

by the PA-MLE, CMLE and LC-CMLE algorithms.

PA-MLE. In view of A5), let us assume that theQ × Q matrix G is decomposed off-line as

G = PPH , whereP is a lower triangular matrix with strictly positive diagonal entries. The

PA-MLE metric in (8) can thus be written as

ΛPA−MLE(ν) = ‖(Γ(ν)AP)Hz‖2, (24)

whereΓ(ν) andA areQ×Q matrices andz is a vector of sizeQ. We recall thatQ = χNL is

the total number of pilots multiplexed within the burst andχ is the pilot overhead, as discussed

in Sect. III-A.

For a given CFO trial valueν ∈ I, the following steps to calculate (24) are required:

• Dropping the evaluation ofΓ(ν)A due to A6), the matrixU
∆

= Γ(ν)AP involves Q2/2

complex-valued operations, i.e.,3Q2 real-flops.

• About y
∆

= UHz, the required number of real-flops is3Q2.

• ComputingΛPA−MLE(ν) = ‖y‖2 requires4Q real-flops.
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Then, the total computational load of the PA-MLE amounts to

CPA−MLE = Nν(6Q
2 + 4Q) = Nν(6χ

2N2L2 + 4χNL), (25)

or equivalently,O(Nνχ
2N2L2).

CMLE. The metricΓCMLE(ν) in (16) can be computed according to the following steps.

• The termvk
∆

=
L−1−k
∑

l=0

N−1
∑

s,c=0

b̂
(s,c)
l,l+k z

(s)∗

l z
(c)
l+kG

(s,c)
l,l+k, 1 ≤ k ≤ L − 1, requires6N2L2 real-flops.

• For a given CFO trial valueν ∈ I, computingΓCMLE(ν) = Re

{

L−1
∑

k=1

e−j2πνk vk

}

requires

3L real-flops.

Then, the total computational load of the CMLE amounts to

CCMLE = 3NνL + 6N2L2, (26)

or equivalently,O(N2L2).

LC-CMLE. The metricΦLC−CMLE(ν) in (17) can be computed according to the following steps.

• The termuk
∆

=
L−1−k
∑

l=0

∆l,l+k

N−1
∑

s=0

b̂
(s,s)
l,l+k z

(s)∗

l z
(s)
l+k, 1 ≤ k ≤ L − 1, requiresL2(3N + 2) real-

flops.

• For a given CFO trial valueν ∈ I, computingΦLC−CMLE(ν) = Re

{

L−1
∑

k=1

e−j2πνk uk

}

requires3L real-flops.

Then, the total computational load of the LC-CMLE amounts to

CLC−CMLE = 3NνL + L2(3N + 2), (27)

or equivalently,O(NL2).

APPENDIX C: CRLB FOR THE DA-MLE

The CRLB for the CFO estimate is derived under the assumptionthat all the symbols trans-

mitted within the burst, which are included inA, are known. Based on the approach pursued

in [18] for single-carrier transmission, the observation model we adopt is given by (5), i.e.,

it ignores the errors for nonzero CFO due to the filterbank being not exactly matched to the

incoming waveform. However, the impact of these errors can be considered negligible for values

of CFO up to a few percent of the signaling rate, as assumed throughout the paper. Bearing in

mind that the probability density functionp(z; ν) of the received samplesz in (5) for givenν is
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complex Gaussian with zero mean and covariance matrixCz(ν), the Fisher information results

as [17]

I(ν) = −E

{

∂2 ln p(z; ν)

∂ν2

}

= tr

{

[

C−1
z

(ν)
∂Cz(ν)

∂ν

]2
}

, (28)

and correspondingly,CRLB(ν) = I−1(ν).

Putting the covariance matrixCz(ν) in (6) into the formCz(ν) = Γ(ν)(ACϕAH+σ2ILN)Γ(ν)H ,

its derivative with respect toν is found to be

∂Cz(ν)

∂ν
= j2πΓ(ν)

[

H(ACϕAH + σ2ILN) − (ACϕAH + σ2ILN)H
]

Γ(ν)H , (29)

where theLN×LN diagonal matrixH is defined asH
∆

= diag{0, 1, . . . , L − 1, . . . , 0, 1, . . . , L − 1}.

Hence, substitutingC−1
z

(ν) = Γ(ν)(ACϕAH+σ2ILN)−1Γ(ν)H and (29) into (28) produces after

some algebra the desired result

I(ν) = 8π2tr
{

(Cϕ + σ2ILN)−1H(Cϕ + σ2ILN)H− H2
}

, (30)

where σ2 is the inverse of theEs/N0 ratio. Note that ifCϕ were a diagonal matrix, i.e., if

the fading process were uncorrelated both in time and frequency, we would obtainI(ν)=0 and

thereforeCRLB(ν) = ∞, thus meaning that the CFO estimation (as expected) would have no

significance.

Finally, it can be of interest evaluating the asymptotic values of (30) in correspondence of

σ → ∞ (low-SNR). After expanding
(

ILN +
1

σ2
Cϕ

)−1

(31)

into a matrix series under the assumption of‖Cϕ‖/σ
2 < 1, letting σ → ∞ yields

I∞(ν) = 8π2

(

Es

N0

)2

tr
{

C2
ϕ
H2 − (CϕH)2

}

, (32)

whereas in the case ofσ → 0 (high-SNR), we get

I0(ν) = 8π2tr
{

C−1
ϕ

HCϕH− H2
}

, (33)

which proves the existence of a floor in the CRLB due to the time-variance of the fading channel.
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PA-MLE O(Nνχ2N2L2)

CMLE O(N2L2)

LC-CMLE O(NL2)

TABLE I

COMPUTATIONAL COMPLEXITY ORDER

Fig. 1. FMT transmitter and receiver.
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Fig. 2. A snapshot of the time-frequency fading process on fast-fading channel forN = 16 andL = 51.

−0.1 −0.05 0 0.05 0.1 0.15−0.15
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

ν

M
S

E
E

 

 

PA−MLE
DA−MLE
CMLE
LC−CMLE

SF
L = 51, N = 16

στ/T = 0.02

Fig. 3. Acquisition range on slow-fading channel atEs/N0 = 30 dB andN = 16.
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Fig. 4. Acquisition range on fast-fading channel atEs/N0 = 30 dB andN = 16.
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Fig. 6. Acquisition range of the LC-CMLE on fast-fading channel atEs/N0 = 30 dB andN = 16, 32, 64, 128.
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Fig. 7. MSEE versusEs/N0 on slow-fading channel forν = 0.
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Fig. 8. MSEE versusEs/N0 on fast-fading channel forν = 0.


