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Abstract

This paper focuses on the issue of carrier frequency synctation for filtered multitone wireless
transmission over time-frequency selective fading chinriRather than either relying only on known
pilot symbols multiplexed within the transmitted burst oqpmiting the specific signal structure in a
blind mode, the estimation algorithm we pursue is derivemnfrthe maximum likelihood principle
and takes advantage of both pilot symbols and also the unkimigrmation-bearing symbols through
specific differential decision-directed processing. Whempared to conventional pilot-based methods,
the proposed approach improves the frequency acquisgioger without degrading estimation accuracy

at even lower cost in terms of computational complexity.

Index Terms

Filter bank multicarrier modulation, carrier frequencynskironization, time-frequency selective chan-

nels, differential decision-directed processing.

. INTRODUCTION

In view of their appealing features, multicarrier (MC) tedues are currently recognized as
the key technology in the area of high-data-rate transomssover fading wireless channels [1].

The interest surrounding MC schemes is demonstrated by dldeiption in several standards,
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either in the form of orthogonal frequency division muléping (OFDM) modulation, as in
terrestrial digital audio broadcasting (DAB) and videodoasting (DVB-T/H) [2], IEEE 802.11
Wi-Fi indoor wireless LANs [3], IEEE 802.16 Wi-Max broadlmanvireless access (BWA) [4]
and 3GPP Long Term Evolution (LTE) [5], or based on filter b&f®& (FBMC) modulation, as
in the return channel of terrestrial DVB (DVB-RCT) [6] ancethelease 2 of the ETSI terrestrial
trunked radio (TETRA) enhanced data system (TEDS) air fiaxter [7]-[8]. The advantages of
MC signaling have to be necessarily traded off, howeverinagja considerable sensitivity to
residual carrier frequency offsets (CFOs) arising fromiltzdor instability and Doppler effects,
that have to be accurately removed from the received wavefoior to data decoding.
Relations with Prior Works. In the following, for simplicity we limit our focus on the RBC
format based on a set of contiguous non-overlapping subcsirralso referred to as filtered
multitone (FMT) modulation in very high-speed digital sabker lines (VDSL) applications
(basic references are [9], [10] and the works cited therewgn though the algorithms we discuss
could be adapted to different FBMC schemes, such as diseratelet multitone (DWMT)
[11] and staggered OFDM/OQAM [12]. In the FBMC context, tHgosithms proposed in the
literature for CFO recovery can be classified either as jaiided (PA) [13]-[14] or blind [15]-
[16], depending on whether they rely or not on known pilot bpis multiplexed within the
transmitted burst. Most of the algorithms cited above, h@mesuch as those in [14]-[16],
are derived assuming time-invariant fading and therefbesr tperformance gets rapidly poor
whenever the channel has a significant time selectivityt agy easily occur in wireless mobile
communications. Conversely, the PA-based maximum-hikeld estimator (PA-MLE) recently
proposed in [13] efficiently copes with time-frequency s#ile channels assuming statistical
knowledge of the channel in terms of fading covariance matri

Purpose and contributions. The PA-MLE approach shows better estimation accuracy as co
pared to blind algorithms [15]-[16] in spite of substarltidbwer computational requirements.
However, the interval of frequency offsets where it offeefiable performance, the so-called
acquisition range, is given approximately by the inverse of the time-domailotpspacing,
and consequently, it may turn out to be very narrow as pilohtsyls cannot be packed too
tightly within the burst not to degrade spectrum and powdéciehcy. This strong limitation
motivates our search for an improved version of the PA-b&J&@d estimator capable of extended

acquisition range while retaining good accuracy and a#fblel complexity. Compared to previous



schemes, the proposed novel estimation approach exheviésad distinctive features, as outlined

in the following:

1) We exploit (known) pilot symbols as in [13] but, as a furtlstep ahead, we also take
advantage of the presence of the (unknown) informatiomibg@aymbols through a specific
(non-linear) differential decision-directed (DD) basedgessing. In our view, combining
together the PA and DD concepts for CFO recovery representajar point of novelty.
Indeed, to our knowledge, the combined PA-DD approach hasvwed much less consid-
eration in synchronization than that obtained in other extst as for instance in iterative
soft or hard channel estimation.

2) Modulation symbols are supposed to belong to a 4-QAM @&iasion, an assumption that
may appear at first glance too restrictive. However, we f¢lcat 4-QAM is often adopted
when frequency acquisition is being carried out in the nemestartup process. This occurs
in the TETRA 2 standard [7]-[8], for instance, wherein 4-; B8d 64-QAM formats are
employed during data transmission, but a specific mixed/déa frequency correction
burst made of all 4-QAM symbols is used for initial receivegdquency recovery.

3) The rationale behind our approach combining the PA and DBcepts together is as
follows: i) we start from the log-likelihood function (LLF) for the jui estimation of
the CFO and data symbolg) we get rid of data symbols in the LLF replacing them
by differential decisions drawn on pairs of received sampbkken on the subcarriers,
without requiring any prior knowledge of either the CFO oe tthannel gaingji) to save
complexity we approximate the fading covariance matrix bigl@ck-diagonal structure
and optimize the resulting simplified metric.

4) Simulation runs in typical mobile wireless scenarios fecan that the proposed CFO
recovery algorithm, when compared to conventional PA-MLiters a wider acquisition
range with an improvement or no degradation in estimatiocui@cy, at even lower
complexity.

Organization. Sect. Il describes the FMT signal model, while Sect. llltfirsviews the PA-
MLE CFO synchronization issues, and then illustrates thgp@sed PA-DD algorithm. The
computational complexity of the algorithm is analyzed aval@ated in Sect. IV. Sect. V presents

and discusses simulation results. Finally, conclusiorsdaawn in Sect. VI.



Notations. Matrices are in uppercase bold while column vectors areowetcase bold(-)”
denotes transposé;)” denotes conjugate transpoge), ! denotes inverse[A], ; denotes the
(,7) entry of the matrixA, tr{ A} denotes the trace of the matri, ||A| denotes the 2-norm
of the matrixA, diag-) converts a sequence of si2éinto a N x N diagonal matrix, Diag)
converts a sequence o&f matrices of sizel. x L into a NL x NL block-diagonal matrix]y

is the N x N identity matrix,® denotes convolution, {f} denotes the 4-QAM hard threshold
detector, .Jy(-) denotes the first-type Bessel function of order 0, afd} Elenotes statistical

expectation.

II. FMT SIGNAL MODEL

In a FMT communication system, the available bandwidth ig sypo a set of N adjacent non-
overlapping subcarriers [10], each of which is shaped bynsied a square root raised cosine
(SRRC) prototype filter having impulse respomr$e) with roll-off factor ¢ and frequency-shifted
at multiples of(1+¢)/T', T' being the subcarrier signaling interval; see the block miagof Fig.

1 as a reference. Denoting Widﬁq) the information or pilot symbol transmitted over theth
subcarrier() < ¢ < N — 1, within the [—th FMT block,0 < | < L — 1, and constraining the
quantity M = (1+£&)N to be an integer for ease of implementation, the FMT sigraedsmitted

over a burst ofL, consecutive blocks can be written as
L—-1 N-1

st) =Y afg(t — IT)e?maMINT, (1)

=0 ¢=0
Differently from [14]-[16] and following the approach in 3], we assume that the propaga-

tion channel isselective both in time and frequency, with impulse response giverczy =
25;01 pu(t)o(t — 7,), whereU is the total number of paths, while,(¢) and 7, are the time-
varying complex gains and the delays of theth path, respectively. At the receiver side, the
input waveformz(t) = s(t) ® ¢(t) is sampled at raté//T, processed by the cascade of the
receiver polyphase filter bank (that performs matched ifiiteon each subcarrier) and the DFT
unit, as shown in the lower part of Fig. 1. As last step, dataam®n is performed after channel
equalization. Assuming error-free timing recovery, it @tgnshown under some mild assumptions
that the sample taken on the-th subcarrier at the instant= k7" at the output of the DFT unit

can be accurately approximated as [13]

o = o e @)



where
U—-1

‘Pl(cn) A e;’ﬁz pu(kT)efj%mMTu/NT (3)

u=0
is a multiplicative factor correlated both in time and frequy accounting for the channel
selectivity,v is the CFO normalized to the signaling ratél’, ) is the phase offset, and,i”) isa
complex-valued zero-mean independent Gaussian randoablea(RV) with variancer?> = 2.V,
We remark tha’u,i”) in (2) corresponds to a known pilot symbol for the pair of ixeler and
k such that, € N andk € K.

Letting z™ = [z(()n), o Z(L"_)l]T, o = [gp(on), . cp(L"_)l]T and w® = [w(()n), o ,w(Ln_)l]T
denote the vectors collecting the received samples at thie @fput, the time-varying channel

gains and the noise samples, respectively, onnthéh subcarrier, from (2) it follows that

where® (v) andA™ areL x L diagonal matrices defined ds(v) = diag{1,e>™, ... e?™(-D}
andA(™ = diag{aé”), o ,a(L"L}- Hence, stacking™, o™ andw( to formz = [z ... z(N-D"]T,
o = [0 eV VNT andw = [w©" ... w-D"]T the observed sequence can be
expressed as

z=T(V)Ap+w, (5)

whereI'(v) and A are LN x LN diagonal matrices defined &§v) = Diag{¥(v),..., ¥(v)}
and A = Diag{A©®, ..., AN=D},

I11. ML C ARRIER FREQUENCY ESTIMATION
A. Formulation of the ML Estimation Problem

Let us model the set of channel coefficiegtsas a complex zero-mean Gaussian random
vector with covariance matriC, = E{pp'}. We note that sinceC,, changes slowly with
time, it can be estimated at the receiver either through reflasounding or exploiting the a-
priori knowledge about the multipath delay profile and theppler spread. For later use, in
Appendix A C,, is calculated under the assumptions that the path delaysithex independent
exponentially-distributed RVs or deterministic paramete

Given the CFOv and the matrixA collecting all the symbols transmitted within the burst,

it turns out that the received samplesn (5) are jointly complex zero-mean Gaussian as well,



with covariance matrix
C.(v) = E{zz"} = T(v)AC AT ()" + %I, y. (6)

In light of (6), the joint ML estimate (JMLE) of the normalideCFO and the transmitted symbols

is obtained by maximizing the LLF as

(7,A) = argmin  {Apuwe(?, A)}, (7)

vel,AcA

where the JMLE metric reads as

Apie(v, A) = 29T (v) AFART (v)H 2, (8)

whereF = (Cyp + o*IrN) 1, while the intervalZ includes the possible trial values forand

A is the set of all possible realizations of the transmittechisyl matrix A. Finding the JMLE
requires solving a mixed integer optimization problem imimg a multidimensional search over
the setsZ and.A. Due to its combinatorial nature, however, the computaticomplexity of (7)
becomes intractable even for smalland N, and consequently, alternative methods for efficient
CFO recovery need to be devised.

A good complexity-vs-accuracy tradeoff is offered by the MRE approach pursued in [13].
Therein, the main assumption is that eachSfubcarriers, withS < N, conveysP pilot
symbols, withP < L, so that the total number of known pilots embedded in thestratted
burst amounts t@) = PS. Exploiting the fact that observation model (5) still holdsen applied
to the subset of received samples corresponding to pilatipes (with the only difference that
z, ¢ andw are now(-dimensional vectors anfl(r), A andC,, are( x () diagonal matrices,
with @ < LN), we can build a metric quite similar to that in (8), which rang§er depends
on the (unknown) data symbols but only on the frequency blisde estimated; see [13] for
additional details. The following remarks about the PA-Mutethod can be of help.

1) Since the matrix inversion to obtalh for a givenC,, and ¢? required by the metric (8)
can be performed off-line, the PA-MLE can be obtained thloagtwo-step procedure
based on a linear grid search over the intefaif trial valuesr (coarse search), which
can be efficiently carried out using FFT, followed by intdgtimn (fine search) [13].

2) For sake of simplicity, it is appropriate to remove the elggence off' on o, i.e., on the
received signal-to-noise-ratio (SNR), by setting it to adafined valuery; see Sect. V-A

for further details about this issue.



3) It can be argued that the acquisition range of the PA-MLEs d@rger by reducing the
pilot spacing in the time-domain, i.e., by increasing thenber of pilot symbolg) within
the time-frequency grid. It is also true, however, that thetmverheady = % has to be

chosen as low as possible, say below 10 %, not to degrade @owlespectrum efficiency.

B. Combined Pilot-Aided and Decision-Directed Frequency Estimation

The contrasting requirements about the choiceQ)ofliscussed above motivate the search
for a more efficient alternative to the PA-MLE scheme. Ratiwn increasing the number of
pilots (), thereby incurring an efficiency loss, we pursue a diffeestimation strategy based on
combining the PA and DD concepts together, an approachreefé¢o in the sequel as combined
MLE (CMLE). In a nutshell, the idea is not only to exploit thedwn pilot symbols, but also
the unknown information-bearing data via some form of hafHhased processing. The main

steps of the CMLE approach can be summarized as follows.

1) The metricAne(v, A) in (8) can be reformulated after some algebra into

L-1 N—-1
Apve (v, A) Z Z @’ GZC) zZC)G
=0 s,c=0
L—1L—1—k
28 refem i o) o
k=1 I= s,c=0

where Gl = (G, _y)1 4 c-1)pom: With G being defined a& = (Cy, + 03Ly) ", i€,
the matrixF in (8) evaluated atr = oy.

2) The metric (9) depends on all the products between any ywinsls (data or pilots) within
the burst. This basic fact suggests that a possible way @ihgeid of the unknown data
symbols is to resort to the differential decisions taken lun groducts:; )Zl(-i—k From (2),
indeed, it can be easily obtained

s) (c (s c)* (s) (c) 2wk s,c
( Zl—l—)k ©p )<Pl(+kaz )al(+ke 72 +Cz(,z+3w (10)

whereg‘l(jfzC is a disturbance term accounting for both channel noise adithg. Now, we
invoke the following restrictive assumptions, the first tebwhich are provisional and
will be shortly dropped, while the third one is not limiting view of the discussion made
in point 2) of Sect. I.



Al) The channel fading is sufficiently correlated in bothéiand frequency domains so
holds, regardless of the time ldg 1 < k£ < L — 1, and the

that o0} ~ ’901
subcarrier index differency —¢|, 0 < s,c < N — 1.

A2) The normalized CFQ is sufficiently small so that€?™* ~ 1, for 0 < k < L — 1.
A3) The data and pilot symbols belong to a 4-QAM constellatioth unitary radius, and
all pilots are equal.
3) After defining thedifferential symbol bl(sljk al( )aHk, applying A1)-A2) in (10) yields

(s) ()

(s,¢)
2 Zl+k =~ ’901 ll+k + Gt (11)

Hence, in view of A3), the differential symbijk belongs to a 4-QAM constellation as
well, and due to (11) can be estimated without the knowledgeoth the CFO and the
channel gains, by feeding the produ:ft Zl—f—k into a conventional 4-QAM hard threshold
detector, i.e.,
by = T{=744% ) (12)

4) Now, we show that assumptions Al) and A2) can be propetfxed. First, we observe
that due to A3) the differential symb(i)j ' can be written as the product of a sequence
of differential symbols, each involving either adjacentn®pls on the same subcatrrier (in

the time domain) or symbols over different subcarriers it same time index (in the

frequency domain). For instance, letting> ¢ and exploitingal(s)al(s)* =1, one gets
(s,¢) (s) (s)* (s) (s)x (s) (s=D)x (s—1) (c+1)x (c+1) (c)*
bl,l+k Ay Qi Qg O Qg Qg Qg Qe Qg Qg
_ 1(s,s) (c+1,c)
- bl,l+1 o 'bl+k,l+k' (13)

The result in (13) suggests that the detectionbl(éfk can be carried out by means of
concatenated decisions on the differential symbols cpomding to data symbols placed
contiguously either in time or frequency, so that thesedgiecs are minimally affected by
both the channel fading and the CFO. On the other hand, edfehneditial decision may
be in error mainly due to noise, and also possibly by fadind) thie CFO. So, the number
of intermediate steps in (13) should be kept as small as lpes$ur idea is then to also
exploit the known pilot symbols as follows. Let us designaﬁq)?) and pff) the pilots
closest to the data symboig) and aff), respectively, in the time-frequency grid. We note

that there are pilot symbols close to any data symbol insadahe pilot pattern has to be



employed for channel estimation as well, and accordingllgas to be designed such that
the fading process is tightly sampled on both time and frequelomains. Hence, taking
into account in view of A3) thapl pq) = 1, the differential symbol can be rearranged
as

b = Pl pPald) = peIpE), (14)

q

and therefore, it can be detected through the product osubes
72(s,¢) __ 7(s,5)7.(cc)
by =b7 " bg (15)

where each differential decision is taken on closely spaaedples, with the result that
error propagation is strongly mitigated. Collecting ak ibove together, we can conclude
that:
« assumption Al) can be substantially dropped, as for therigthgo to work correctly
it is sufficient that there exists significant fading cortigla only betweenadjacent
symbols both along time and frequency;
« assumption A2) can be replaced by the far milder conditiat the phase rotation
induced by the CFO is negligible insingle symbol interval only.
5) Thus, replacing the produojf al+k in (9) by the differential decisiorﬁ;l(j’j)k computed
through (15), and dropping immaterial factors indepenaénbhe CFO, the CMLE metric

can be written as
L—1L—

1-k
Pomee(v) = Z Re{e e Z bl Itk Z S Zl+kG§Sl—ic—)k} (16)

k=1 1=0 s,c=0

whose minimization provides the CMLE solution.

IV. COMPUTATIONAL COMPLEXITY ISSUES

We now focus on some issues concerning the computationgbleaity of the CMLE-based
CFO recovery.
1) Compared to (9), the CMLE metric in (16) does no longer depen the unknown data
symbols, since they have been replaced by the differen@aistbns (12) taken on the
productSzl( )zl(ik Therefore, the CMLE requires the same two-step searcheguve on

the intervalZ we already mentioned for the PA-MLE in Sect. IlI-A.



2)

3)

10

Let us observe that due to the specific way the fading vegtisrbuilt, the covarianc€,

is a block-Toeplitz matrix composed @¥> sub-matricescfﬁ’m), 1 <n,m < N, of size
Lx L, each representing the covariance between the subcarfiedexes: andm. Hence,
a possible route to further simplify the CMLE algorithm cmts of ignoring the correlation
between the fading coefficients belonging to different subers, i.e., replacingC,, by
C, = Diag{Cg’l), e CEPN’N)}. As a consequence, the simplified CMLE employing the
covarianceC,, is actually mismatched to the actual fading conditionfialgh the resulting
performance loss is moderate, as proved by the simulatguitsan Sect. V. Further, thanks
to the stationarity of channel fading, we hage= CcyV = c2? = ... = ¢, and
therefore,C,, = Diag{,...,Q}. As a result, the invers& = (CLPJFUSILN)*1 can
be computed as a block diagonal matrix whose blocks are alldq thelL x L matrix
A= (Q+a§IL)_1. Accordingly, the CFO recovery algorithm employi@g instead of
G in (16) will be designated as low-complexity CMLE, or LC-CMLfor short, and the

relevant metric to be minimized will be expressed as

L—1L-1-k N-1
Pro-cnie(v) =) Re{ejz’f“’%z,wzbﬁ’iﬁ 4 zfi’k}, (17)
k=1 1=0 s=0

WhereAl’H_k 2 [A]l,l—i—k'
To evaluate the complexity of the CFO recovery schemastithted so far, we adopt the

following assumptions:

A4) the computational complexity load is defined as the nundbeeal-valued floating
point operations, i.e., additions and multiplicationdereed to in the following as
real-flops for short, required to compute the metric to benoiged at theN, (equi-
spaced) trial values within the search inter¥al

A5) given C, and oy, the matrixG for the PA-MLE is computed only once as product
between an upper and lower triangular matrices via Choldgkpmposition;

A6) the multiplications involved by the differential deiwiss are not taken into account as
they correspond to phase rotations by multiples (2, and can be easily performed
by swapping the real and/or imaginary parts of the operands;

A7) the values of @?™* at the N, trial values inZ are stored in a look-up table;

A8) the parameter®y, L and N, are assumed to be of the same order of magnitude.
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Hence, from the analysis detailed in Appendix B we end up ®r#sults summarized
in Tab. I. It is seen that the LC-CMLE shows a complexity ordeduced byN when
compared to the CMLE and, in view of A8), lower than that of #&MLE.

V. PERFORMANCE RESULTS

In this section, simulations results over doubly-selectading scenarios are employed to com-
pare the accuracy of the PA-MLE, CMLE and LC-CMLE schemeso performance benchmarks
are considered) the PA-MLE scheme witl) = N L pilots, i.e., where all the burst symbols
are assumed to be known, which will be referred to as datdaMLE (DA-MLE), andii)
the corresponding Cramer-Rao lower bound (CRLB), derived\ppendix C. First, we focus
on the mean square estimation error (MSEE) defined{d$ E v)?} as a function of the true
normalized CFQv for a given received mean-energy-per-symbol-to-noisespl-density ratio
E,/Ny, that permits to identify thexcquisition range of the CFO estimation algorithm. Next,
the noise sensitivity is assessed in terms of the MSEE as a functiorZgfN, for a specified
CFO to be estimated.

A. Smulation Setup

The selection of signal and channel parameters employeidhuaions can be considered as
typical in mobile radio applications, such as e.g. in [8]cE&urst is composed o subcarriers,
with N = 16, 32,64, 128, and spand. = 51 FMT symbol intervals. A uniform pilot pattern is
chosen withS = N/2 subcarriers, each bearing = 6 pilots, so that the total number is
@ = PS = 3N, and the pilot overhead ig ~ 6 %, regardless the value @f. For instance, the
pilot distribution we adopted faV = 16 subcarriers is such that the pilot symbol transmitted over
then—th subcarrier within thé&—th FMT block is identified by» € N' = {0,2,4,6,9,11, 13,15}
andk € K ={0,9,19,29,39,49}, with Q = 48. The roll-off factor of the SRRC prototype filter
g(t) is set to = 0.25, while both data and pilot symbols are unit-energy 4-QAM byis.

The channel is time- and frequency-selective With= 6 paths. As usually assumed in FMT
wireless transmissions over selective fading channeés ptth delays,, 0 < u < U — 1, are
chosen to be uniformly spaced (with = 0 for simplicity), whereas the path gains are modeled
as zero-mean independent complex-valued Gaussian pescdsaving Jakes power spectrum

with Doppler bandwidthf, and variance decaying exponentially with, adjusted so that the
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normalized channel delay spreadris/T = 2-10~2. Two different propagation environments are
considered: slow-fading (SF) witfiy7 = 7.5 - 1073 and fast-fading (FF) withfpT = 3 - 1072

As an example, in Fig. 2 we show a realization of the timedergpy fading process affecting
the transmitted burst for the FF scenario avd= 16 subcarriers. It is apparent that our choice
of time and Doppler spread leads to severe doubly-selefanieg conditions along both time
and frequency.

Further, concerning the noise variange adopted by the estimators in the matri€gs(PA-
MLE and CMLE) andA (LC-CMLE), its value is selected so that the correspondihg/N, is
equal to 15 dB. The reason behind this choice is twofold.t Fircomes from the observation
(resulting from intensive simulation trials) that the abowvalue safely avoids the numerical
instability inherent in the matrix inversion involved inetldefinition of G and A. On the other
side,a? has not to be too small so th@tand A can be still considered approximately “matched”
to the receiver operating point, i.e., its sensitivityhaligh some performance loss may arise at
higher SNRs.

B. Complexity Comparison

To compare the complexity load of the CFO recovery schemssudsed so far, we focus
on the setup outlined in Sect. V-A and assume two test caseslban/N = 16 and N = 128
subcarriers, letting the number of CFO trial valuesMe= 30. Denoting a<pa_n1LE, CoMLE
and Crc_cvre the number of real-flops required by the the PA-MLE, CMLE ar@CMLE,

respectively, according to the results of Appendix B, we waite
Cra—nire/Conrr =~ N, x> = 0.108, (18)
Cra—MLE/CLo—CMLE 2N1/X2N = 0.216N. (19)

where the conventional PA-MLE was taken as the referencehmeark. From inspection of
(18)-(19) it can be concluded that the complexity of the CMLE is an order of magnitude
larger than PA-MLE irrespective ofV, andii) the complexity of LC-CMLE issmaller by a
factor linearly scaling withV, namely around 3.46/\ = 16) and 27.7 (V = 128).



13

C. Acquisition Range

The acquisition range is shown in Figs. 3 and 4 for the SF anathi&nnels, respectively,
assumingV = 16 subcarriers and’; /N, of 30 dB. For both scenarios, it is worth noting thit:
the MSEE of the DA-MLE (in the considered interval of turns out to be nearly independent
of the CFO, andi) both the LC-CMLE and CMLE outperform the PA-MLE, i.e., thatter
exhibits a definitely narrower acquisition range, althoagjhthe estimators have a comparable
MSEE. These results are consistent with the well-known tide in PA-based synchronization
the acquisition range is roughly as wide as the inverse oftithe-domain pilot spacing; see
[13] and references therein. When we arrange pilots adjaogether as in DA-MLE, indeed,
the acquisition range is approximately equal to the invefsgymbol interval, i.e.1 /T, while
spacing them one every 10 data symbols as in the PA-MLE givesm@wer acquisition range,
i.e., around 10% of /7. On the other side, combining pilots and differential dexis together
makes the acquisition range of both the CMLE and LC-CMLE atbiwice as wide as compared
to the PA-MLE. Therefore, we get the interesting result thatcombined PA-DD approach can
considerably widen the acquisition range without havingpay any increase in pilot overhead,
nor any penalty in terms of MSEE or algorithm complexity.

Figs. 5 and 6 show plots of the MSEE for the LC-CMLE as a functibthe CFO for different
values of N, namely N = 16,32, 64, 128. Again, we consider both the SF and FF scenarios,
and assumé’; /N, equal to 30 dB. Inspection of the figures reveals that the iaitijun range
is substantially independent &f, while the MSEE floor tends to improve @& grows, in view
of the larger number of observations available to the estma

Over the faster (FF) channel, as shown in Figs. 4 and 6, thaisitgn range of all the
algorithms tend to degrade if compared to the slow chanrigs(RB and 5), inasmuch as both
the CMLE and LC-CMLE algorithms (and the PA-MLE as well) exihia more rounded MSEE
curve about the minimum at = 0. This behavior can be explained noting that the larger the
Doppler bandwidth or, in other words, the less the time-daniading correlation, the less
accurate the assumption Al) in Sect. 1lI-B even on a inteo¥a few symbols. A similar effect
can be ascribed to a reduction Bf /Ny, since this leads to a larger error rate in the differential
decisions (12) and jointly to a higher sensitivity of the CElland LC-CMLE schemes to a

nonzero CFO. Actually, in both cases, i.e., faster fadind kmger noise, the CFO estimation
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accuracy degrades due to a less reliable cancellation ohdaeilation phase shifts in the metrics
(16) and (17). Nevertheless, the plots show that the limitthe acquisition range are hardly
affected if measured at a reasonable MSEE level, 1$ay, and accordingly, the performance
margins offered by the CMLE and LC-CMLE still hold.

It is worth noting that the availability of a wider acquisiti range allows to accommodate
more severe Doppler-induced frequency deviations, thatsametimes hard to recover via the
more classical PA-MLE scheme. Consider for instance theRARelease 2 standard [7], where
the carrier frequency is either 400 MHz or 800 MHz, and thenalipg ratel/7" is 2.4 kHz.
Assuming a terminal speed of 200 km/h, the worst-case Domgbl#t amounts to+150 Hz,
which is fully covered by the acquisition range of 10 %1017, i.e., 240 Hz, featured by the
CMLE and LC-CMLE algorithms, while use of PA-MLE in this caseuld be more troublesome.

D. Noise sensitivity

Figures 7 and 8 show the MSEE over the SF and FF channelscteghe as a function of
E, /N, assuming that the CFO to be estimated is 0. As for the SF scenario of Fig. 7, it can be
noted thati) the DA-MLE does not achieve the CRLB due to the finite datamred¢l7], while
the additional MSEE gap of the other estimators is due, cty@dy, to the limited number
of pilots @ < NL transmitted within the burst (PA-MLE), to errors on diffat@al decisions
(CMLE and LC-CMLE) and to the approximation of the fading agance matrix as a diagonal
block matrix (LC-CMLE);ii) as expected, the CMLE closely approaches the DA-MLE atlarg
SNRs thanks to the differential decisions getting asynigatly more and more reliableii) the
LC-CMLE offers worse (asymptotical) performance with respto the CMLE because of the
inherent approximation of the fading covariance matrixh@lgh its behavior is substantially
equivalent to that of the PA-MLE.

Finally, results for the FF channel are illustrated in FigD8ie to the faster channel variations
from symbol to symbol, the MSEE curves of all the estimatapatt slightly further from the
CRLB if compared to what obtained in Fig. 7 for the SF chanii&len, coherently with Fig.
4, the reduced reliability of the differential decisionsedw the faster channel makes now the
CMLE and LC-CMLE incur a MSEE floor at large SNRs, comparabithat of the PA-MLE,
although at low SNRs the CMLE performs closest to the DA-MLE.
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VI. CONCLUSIONS

We have addressed the basic design issues for a novel CF@ergcalgorithm intended
for FMT burst-mode transmissions over doubly-selectivirfg channels. Exploiting the fading
correlation on time and frequency domains, the estimatmsren the combined use of two well-
known concepts, namely, pilot symbols uniformly distréditwithin the burst and differential
decisions taken on the received samples without requirmg pior knowledge of CFO and
channel state. Numerical results obtained in typical neoliireless environments confirm that
the proposed estimation approach, when compared to theectbomal PA-MLE scheme, offers
a significantly wider frequency acquisition range with n@wacy degradation at even lower

complexity load.

APPENDIX A: FADING COVARIANCE MATRIX

Let us assume that the time-varying path gaip&l) are modeled as stationary zero-mean
independent complex-valued Gaussian processes, havkag f@wer spectrum with Doppler
bandwidth fp, or equivalently Bp,(t)p; (1)} = o3 Jo[27 fp(t — 7)], and variancer” decaying
exponentially with the path delay,. Hence, according to (3), the generic entry of the fading

covariance matrixC,, is given by

[C¢](371)L+k (c=1)L+q E{<Pk q }
—1U-
Z E{pu k:T)pl (qT)}E{e—jQWSMTu/NTe]Qﬂ'CMTl/NT}
1=0
U-1
= E{pu(kT)p; (qT)}E{e 727l IMm/NT}
u=0
U-1
= Jol2m fp(k — q)T] Y op E{e 7> oM/NTY [0 < kg < L—1,0<s,¢c < N — 1.(20)
u=0

Considering the path delays as independent exponentially-distributed RVs with partamsg,

Qj

i
o

we obtain
1

E e—j27rs]\/1’ru/NT ’
{ r= 1 +327T5M’\

(21)
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and accordingly, (20) can be rewritten as

[CCP](S—l)L—f—k,(c—l)L-l-q -

U—-1
J°[27,TfD(k_Q)§j~Za§, 0<kqg<L-—1,0<s,c<N-—1. (22
1+ j2m(s — ¢) 5% —

In the specific case of path delays being deterministic duesiof typer, = ud, 0 < u <
U — 1, i.e., uniformly spaced within the intervalT = (U — 1)4, (20) turns into

U-1
[C<P](s—1)L+k,(c—1)L+q - Z E{Pu(kT)PZ(qT)}eﬁ%(kc)MTu/NT

u=0
U—-1

= Jol2m fp(k — )T] > op e/ emMINT (g < g < L —1, 0<s,c< N —1. (23)
u=0

It can be pointed out thaﬂCgo](S_l) in both (22) and (23) depends only on the

Ltk,(c—1)L+q
differencesk — ¢ and s — ¢ taken along the time and frequency domains, respectively.

APPENDIX B: COMPLEXITY EVALUATION

Based on assumptions A4)-A8) made in Sect. IV, we evaluate tie complexity required
by the PA-MLE, CMLE and LC-CMLE algorithms.

PA-MLE. In view of Ab), let us assume that thg x (Q matrix G is decomposed off-line as
G = PP¥, whereP is a lower triangular matrix with strictly positive diagdnentries. The

PA-MLE metric in (8) can thus be written as
Apa-nie(v) = [[(T(v)AP) 2%, (24)

whereI'(v) and A are( x () matrices and: is a vector of siz&). We recall that) = yN L is
the total number of pilots multiplexed within the burst apds the pilot overhead, as discussed
in Sect. IlI-A.
For a given CFO trial value € Z, the following steps to calculate (24) are required:
. Dropping the evaluation of'(v)A due to A6), the matrixU = I'(v)AP involves Q?/2
complex-valued operations, i.6()? real-flops.
« Abouty = Uz, the required number of real-flops 3§)2.

« ComputingAps avre(v) = ||y]|* requires4@ real-flops.
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Then, the total computational load of the PA-MLE amounts to
Cpa_mie = N, (6Q% +4Q) = N, (6x*N2L? + 4yNL), (25)

or equivalently,O(N, x?N?L?).

CMLE. The metricl'cyge(v) in (16) can be computed according to the following steps.

L-1-k N-1

« The termy, = Z 3 bﬁjk Zl—i—)chl(l-i-)k’ 1 <k <L-1, requiresN?L? real-flops.
=0 s,c=0

L—1
« For a given CFO trial value € Z, computinglcye(v) = Re{ S ek vk} requires
k=1
3L real-flops.

Then, the total computational load of the CMLE amounts to
Comre = 3N, L + 6N2L2, (26)

or equivalently,O(N?L?).

LC-CMLE. The metricPc_ CMLE( ) in (17) can be computed according to the following steps.

L—-1-k
« The termu; = Z JAVEIt Z bﬁjk zl(j)k, 1 <k < L-1,requiresL*(3N + 2) real-

flops.
L—1
. For a given CFO trial valuer € Z, computing ®1c_cure(v) = Re{z g i2mvk Uk}
k=1
requires3L real-flops.

Then, the total computational load of the LC-CMLE amounts to
CchcMLE = 3N1,L + L2(3N + 2), (27)

or equivalentlyO(NL?).

APPENDIX C: CRLB FOR THEDA-MLE

The CRLB for the CFO estimate is derived under the assumptianall the symbols trans-
mitted within the burst, which are included i, are known. Based on the approach pursued
in [18] for single-carrier transmission, the observationd®l we adopt is given by (5), i.e.,
it ignores the errors for nonzero CFO due to the filterbankdpeiot exactly matched to the
incoming waveform. However, the impact of these errors @aodnsidered negligible for values
of CFO up to a few percent of the signaling rate, as assumedighout the paper. Bearing in

mind that the probability density functign(z; v) of the received samplesin (5) for givenv is
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complex Gaussian with zero mean and covariance métyiv), the Fisher information results

e I(v) = —E{W} = tr { {Czl(v)acazy(y)r} ) (¢9)

and correspondinghGRLB(v) = I~(v).
Putting the covariance matrix,(v) in (6) into the formC,(v) = I'(v)(AC, A" +0%1, 5)T'(v)H,

its derivative with respect to is found to be

0C,(v)
ov

where theL N x LN diagonal matri¥ is defined ad = diag{0,1,...,L—1,...,0,1,..., L —1}.
Hence, substituting’, ' (v) = T'(v)(AC,A"” +0%I,5) 'T'(v)" and (29) into (28) produces after

= j2rT(v) [H(AC,AY + 0%I1y) — (AC,AY + 0’1 y)H| T ()", (29)

some algebra the desired result
I(v) =8n°tr {(Cy + 0”In) 'H(Cy + oI n)H — H?} (30)

where ¢? is the inverse of the;/N, ratio. Note that ifC, were a diagonal matrix, i.e., if
the fading process were uncorrelated both in time and fregyyeve would obtain/ (v)=0 and
thereforeCRLB(v) = oo, thus meaning that the CFO estimation (as expected) wouwld ha
significance.

Finally, it can be of interest evaluating the asymptoticueal of (30) in correspondence of

o — oo (low-SNR). After expanding

1 -1
(1 + 2. ) @)
into a matrix series under the assumption||€f..||/o? < 1, letting o — oo yields
2 ES ’ 2 12 2
Io(v) =87 v {C.H? — (C,H)*}, (32)
0

whereas in the case of — 0 (high-SNR), we get
Io(v) = 87°tr {C;lHCq,H - H2} , (33)

which proves the existence of a floor in the CRLB due to the taugance of the fading channel.
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PA-MLE | O(N,x2N2L?)
CMLE O(N?L?)
LC-CMLE O(NL?)
TABLE |
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Fig. 1. FMT transmitter and receiver.
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Fig. 2. A snapshot of the time-frequency fading process sifiading channel fovV = 16 and L = 51.
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Fig. 3. Acquisition range on slow-fading channelfat/Ny, = 30 dB and N = 16.
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Fig. 4. Acquisition range on fast-fading channelft/No = 30 dB and N = 16.
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Fig. 5. Acquisition range of the LC-CMLE on slow-fading cimeh at £, /Ny = 30 dB and N = 16, 32, 64, 128.
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Fig. 6. Acquisition range of the LC-CMLE on fast-fading chehat £s /Ny = 30 dB and N = 16, 32, 64, 128.
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