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Abstract—Extensive research has been done on studying the
capacity of wireless multi-hop networks. These efforts haw led
to many sophisticated and customized analytical studies othe
capacity of particular networks. While most of the analysesare
intellectually challenging, they lack universal properties that can
be extended to study the capacity of a different network. In his
paper, we sift through various capacity-impacting parameers
and present a simple relationship that can be used to estimat
the capacity of both static and mobile networks. Specificaji, we
show that the network capacity is determined by the average
number of simultaneous transmissions, the link capacity ad the
average number of transmissions required to deliver a packe
to its destination. Our result is valid for both finite networks
and asymptotically infinite networks. We then use this resul
to explain and better understand the insights of some exisig
results on the capacity of static networks, mobile networksand
hybrid networks and the multicast capacity. The capacity amlysis
using the aforementioned relationship often becomes simgt.
The relationship can be used as a powerful tool to estimate
the capacity of different networks. Our work makes important
contributions towards developing a generic methodology fo
network capacity analysis that is applicable to a variety of
different scenarios.

Index Terms—Capacity, mobile networks, wireless networks

I. INTRODUCTION

Studying the capacity of these networks is an important
problem. Since the seminal work of Gupta and Kumar [1],
extensive research has been done in the area. Particularly,
in [1] Gupta and Kumar considered an ad-hoc network with
a total of n nodes uniformly and.i.d. on an area of unit
size. Furthermore, each node is capable of transmitting at
W bit/s and using a fixed and identical transmission range.
They showed that the transport capacity and the achievable
per-node throughput, when each node randomly and indepen-
dently chooses another node in the network as its destmatio

are® (W\/%) and© (W"IZW) respectively. When the

nodes are optimally and deterministically placed to mazeni
throughput, the transport capacity and the achievable per-
node throughput becon@ (W,/n) and® (%) respectively.

In [2], Franceschettiet al. considered essentially the same
random network as that inl[1] except that nodes in the network
are allowed to use two different transmission ranges. The
link capacity between a pair of directly connected nodes
is determined by their SINR through the Shannon—Hartley
theorem. They showed that by having each source-destmatio
pair transmitting via the so-called “highway system”, faun

by nodes using the smaller transmission range, the transpor

IRELESS multi-hop networks, in various forms, e.gtapacity and the per-node throughput can also reéac'n)

wireless sensor networks, underwater networks, vehigad © \%2 respectively even when nodes are randomly
ular networks, mesh networks and unmanned aerial vehideployed. The existence of such highways was established
formations, and under various names, e.g. ad-hoc networksing the percolation theoryl[3]. 10][4] Grossglauser and Ts
hybrid networks, delay tolerant networks and intermitientshowed that in mobile networks, by leveraging on the nodes’
connected networks, are being increasingly used in mylitamobility, a per-node throughput @ (1) can be achieved at

and civilian applications.
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the expense of unbounded delay. Their waork [4] has sparked
huge interest in studying the capacity-delay tradeoffs atite
networks assuming various mobility models and the obtained
results often vary greatly with the different mobility mdsle

1The following notations are used throughout the paper. ®or fositive
functions f () and h (x):
f(z) = o(h(x)) iff (if and only if) limgz— 0o
f(@) =w(h(x))iff h(z)=o(f(z))
o f(z) =0 (h(z)) iff there exist a sufficiently largeo and two positive
constantsc; and c2 such that for anyr > zg, cih(z) > f(z) >
cah (z);
o [(@)~h (@) iff limeyoo £ = 1;
e f(z) =0 (h(x)) iff there exist a sufficiently large:p and a positive
constantc such that for anyc > xo, f (z) < ch (x);
o f(x) =Q(h(2)) iff hiz)=0(f(2));
« An event¢ is said to occur almost surely if its probability equals one;
e An event&, depending onr is said to occur asymptotically almost
surely (a.a.s.) if its probability tends to one &as—+ co.
The above definition applies whether the argumerst continuous or discrete,
e.g. assuming integer values.

f(=)
h(z

=0
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being considered, seé|[5]=[10] and references therein fbne rest of the paper is organized as follows: Secfidn I
examples. In[[11], Chen et al. studied the capacity of wazlegives a formal definition of the network models and notations
networks under a different traffic distribution. In parf@y considered in the paper. Section Ill gives the main results i
they considered a set afrandomly deployed nodes transmitthis paper on the capacity of arbitrary networks and random
ting to single sink or multiple sinks where the sinks can beetworks. In Section IV, we demonstrate wide applicatiohs o
either regularly deployed or randomly deployed. They skibweur result by using it to analyze the asymptotic capacity of
that with single sink, the transport capacity is givendyi?);  various random networks considered in the literatuie [A], [
with & sinks, the transport capacity is increasedetdkW) [4], [10], [12]-[14]. Finally Sectiori’V concludes this pape
whenk = O(nlogn) or © (nlognW) whenk = Q (nlogn).

Furthermore, there is also significant amount of work stngyi I
the impact of infrastructure nodes [12] and multiple-asces

protocols [13] on the capacity and the multicast capaCiflj.[1 ~We consider two classes of networks in this papébitrary
We refer readers to [15] for a comprehensive review of rdlat@etworksand random networks

work.

The above efforts have led to many sophisticated alAd
customized analytical studies on the capacity of particula”
networks. The obtained results often vary greatly with exen We use the term arbitrary network to refer to a network
slight change in the scenario being investigated. Whiletrabs with a total of n» nodes arbitrarily and deterministically (i.e.
the analyses are intellectually challenging, they lackersial not randomly) placed in a bounded ardainitially. These
properties that can be extended to study the capacity ohades may be either stationary or moving following arbitrar
different network. In this paper, we sift through these cilpa and fixed (i.e. not random) trajectories. A node may choose
impacting parameters, e.g. mobility, traffic distributiepatial an arbitrary and fixed number of other nodes as its destina-
node distribution, the capability of nodes to adjust theins- tion(s). In the case that a source node has multiple defstimat
mission power, the presence of infrastructure nodes, pledti nodes, the source node may transmit the same packets to its
access protocols and scheduling algorithms, and presendestinations, viz. multicast, or transmit different ponts of
simple relationship that can be used to estimate the capaicit its packets to different destinations, viz. unicast. Pilaze
wireless multi-hop networks. In addition to capacity, gels transmitted from a source to its destination(s) via mutipl
also an important performance metric that has been extgsivintermediate relay nodes. Each node can be either a source, a
investigated. In this paper we focus on the study of capacitglay, a destination or a mixture. It is assumed that theee ar
We refer readers td [5]-9] for relevant work on delay. always packets waiting at the source nodes to be transmitted

The main contribution of this paper is the development afz. a so-called saturated traffic scenario is considered.

a simple relationship for estimating the capacity of wissle Let V,, be the node set. LeE be the set of links. The
multi-hop networks applicable to various different scémsr establishment of a link between a pair of nodes may follow
The following is a detailed summary of our contributions: either the protocol model or the physical model [1]. Our
« Considering an arbitrary network, we show that thanalysis does not depend on the particular way a link is
network capacity is determined by the link capacity, thestablished. When nodes are mobile, the link between a pair
average number of simultaneous transmissions, and tifenodes may only exist temporarily and the link set at a
average number of transmissions required to deliverparticular time instant may be more appropriately denoted

. NETWORK MODELS

Arbitrary networks

packet to its destination; by E; to emphasize its temporal dependence. In this paper,
« We extend the above relationship for arbitrary networkge drop the subscript for convenience. It is assumed that
to random networks; there is a spatial and temporal path between every source and

« We apply our new result to determine the asymptotidestination pair.
capacity of several typical random networks consideredWithout loss of generality[[1],[[4], [ [10],[[12]=[14], we
in the literature([1], [[2], [[4], [10], [12]-{14]. The capac-further assume that each node can transmit at a fixed and
ity analysis using the aforementioned relationship oftétnown data rate of’ bits per second over a common wireless
becomes simpler; channel. Following the same analytical approach as that in

« Based on the intuitive understanding gained from o(i], it can be shown that it is immaterial to our result if
result, we point out limitations of some existing resultthe channel is broken into several subchannels of capacity
and suggest further improvements; Wy, Ws, -+, Wy, bits per second, as long {s:n]‘f:l Wi =

« Furthermore, using our result, the capacity analysis fé¥'. This assumption allows us to ignore some physical layer
different networks can be transformed into the analysis détails and focus on the topological aspects of the network
the three key parameters, i.e. the link capacity, the agerapat determine the capacity. Our result however can belgeadi
number of simultaneous transmissions, and the averagdended to incorporate the situation that each link has a
number of transmissions required to deliver a packdifferent and known capacity. We do not consider the imp#ct o
to its destination. Therefore our work makes importamrroneous transmissions in our analysis. Transmissiarrserr
contributions towards developing a generic methodologyill cause a decrease in the effective link capacity and its
for network capacity analysis that is applicable to ampact can be captured in the paramétérwhich is assumed
variety of different scenarios. to be known.



Denote the above network k¥ (V,,, E) and in this paper, in a random network may be established following either the
we study the capacity off (V,,, E). protocol model or the physical modél [1]. Denote the above
In the following paragraphs, we give a formal definition ofandom network byG,, to distinguish it from the arbitrary

the capacity ofG (V,,, E). Letv; € V be a source node andnetwork considered in the previous subsection.
let b; ; be the ' bit transmitted fromw; to its destination.  Given the randomness involved in the problem statement,
Let d(v;,j) be the destination ob; ;. For unicast trans- the above definitions of throughput capacity for arbitrary
mission, d (v;, j) represents single destination; for multicastetworks need to be modified to account for “vanishingly
transmissiond (v;, j) represents the set of all destinations a§mall probabilities” [1]. Particularly, for asymptotic ndom
bij. Let N be the number of bits transmitted by and networks whose number of nodesis sufficiently large, we
which reached, i.e. successfully received by, their repgec say that under the spatial and temporal scheduling algorith
destinations during a time intervdld, T'], with 7' being an y, the transport capacity of7, is nX (n) if and only if
arbitrarily large number. The superscripte ¢ denotes the 7X (n) is themaximumtransport capacity that can be achieved
spatial and temporal scheduling algorithm used in the nétwaasymptotically almost surely (a.a.89n — oo undery. Given
and® denotes the set of all scheduling algorithms. If the santiee above modification onX (n), the transport capacity of an
bit is transmitted from a source to multiple destinationg, &1  arbitrary network defined if12) can still be used for random
the case of multicast, it is counted as one bit in the calimriat networks.
of N} The most extensively studied traffic distribution in random
It is assumed that the networksgablevy € ®. A network networks involves each node choosing another node inde-
is calledstableif and only if for any fixedn, assuming that pendently as its destination and the transport capacitygbei
each node has an infinite queue, the queue length in afiyided equally among all source-destination pairs. Int tha
intermediate relay node storing packets in transit does nmtse, the total number of source-destination pairs equals
grow towards infinity asI” — oo, or equivalently the long- and the capacity of the network is often studied using the
term incoming traffic rate into the network equals the longnetric known as theper-node throughpubr the throughput
term outgoing traffic rate. It is further assumed that there ¢apacity Denote by ®f C & the set offair scheduling
no traffic loss due to queue overflow. algorithms that divide the transport capacity equally agion
The transport capacity when using the spatial and tempogdll » source-destination pairs asymptotically over time. The
scheduling algorithmy, denoted byyX (n), is defined as: per-node throughput (or throughput capacity) is defined as

DYy 2 oy -0
() £ i S ® M) £ ma = @
and the transport capacity of the network is defined as Intuitively, a scheduling algorithny is fair if it divides the
. N transport capacity equally among all source-destinatiainsp
n(n) = el (n) ) asymptotically over time and also distributes traffic eyenl

i acrossA such that there is no traffic hot spot. For nodes

Obviouslys (n) = 1* (n) ,Vx € . _uniformly and i.i.d. onA and each node choosing another
An. |mpor.ta.1nt special case occurs .When the scheduli Dde independently as its destination, which is the scenari

algorithm dI.VId(.ES the_ transport c_apacny equ_ally among kudied in Sections TIIEB an@ 1V, the technique is well known

fl)c;curge-gef;glaggno?girf :sr):g:j%tlci);lcagly gxfr:r:]'?;a?e dr;‘\‘;?l deto establish the (asymptotic) fairness of a schedulingrityo

the t?ansport capacity equally amo%g ﬁ?lsource-destination x or_to cor_1$truct a (asympt_otma_lly) fair scheduling a}lgum.

; . X It typically involves partitioningA into a set of equal-size sub-
pairs as_ympto_tlgally over time. The throughput per SOUrC§ieas, allocating transmission opportunities equally ragra|
destination pair is defined as sub-areas and then demonstrating that usinghe number
N 3) of source-destination pairs crossing each sub-area Vayies

xedl m most a constant factor. The conclusion readily follows that

The above definitions of the transport capacity and throqurothpm obtainable by each source-destination paiesar

put capacity are valid for both finite and asymptotically
infinite n.

by at most a constant factor and each source-destination pai
has access to throughput of the same order asymptotically,
see [2], [16] for examples. The set of scheduling algorithms
analyzed in Sectiop IV are known to be fair in the sense that
B. Random networks a.a.s, each source-destination pair can achieve a throughput
In addition to arbitrary networks, random networks havef the same order.
also been extensively studied in the literature, partitylidne Note that the above definitions of transport capacity and
asymptotic properties of random networks as the number tbfoughput capacity for random networks are consistertt wit
nodesn approaches infinity [1],12],14],[10]/[12]=[14]. By a those in [1], [2], [4], [10], [12]-[14]. Particularly in[]1]a
random network, we mean a network with a totalrohodes throughput capacity ok (n) bits per second is callef@asible
and each node is i.i.d. in a bounded aremitially followinga if there is a spatial and temporal scheme for scheduling
known distribution. If these nodes are mobile, their trijeies transmissions such that every node can serid) bits per
may also be random and i.i.d. A link between a pair of nodegcond on average to its chosen destinaltion [1]. The thputgh



capacity of random networks withnode is of orde® (f (n)) shown in the latter equations. Obviously, the two valuestmus
bits per second if there are deterministic constants0 and be equal. On the basis of this observation, the theorem can be

¢ < 4oo such that established.
7111—{20 Pr()(n) = cf (n) is feasible = 1 onAt time T, the total transmission time duriri@, T'] is given
lim nlggo Pr(A(n) = f (n) is feasiblg < 1 n NXpRY, | Ny
IIl. CAPACITY OF ARBITRARY AND RANDOM NETWORKS ; ; ;Ti’j’l +ar = w ; ; h?’j + 0} (®)

In this section, we analyze the capacity of arbitrary neksor

NX hX .
. R Z’n Z ) i, T [ A . .
and the capacity of random networks respectlvely. where i=1 Laj=1 Zl:l GNL accounts for the transmission

time for traffic that has reached its destination giidaccounts
for the transmission time for traffic still in transit at tinfe
Let pX,.. be the maximum length, measured in the num-
The following theorem on the capacity of arbitrary networkser of hops, of all routes irG (V,,, E) under x, obviously
summarizes a major result of the paper: DPXae < m. Furthermore, since the network is stable, there
exists a positive constaidt;, independent of”, such that the

\ be the spatial and temporal scheduling algorithm used ﬁ?tal amount of traffic in transit is bounded i} »n. Therefore

G (V,,, E). LetkX (n) be the average number of transmissions X < PrasCin  CO1n? )
required to deliver a randomly chosen bit to its destinatioet Ir = W < W

_YX (n) be the average number o_f simultane_ou_s transmissionspy, the other hand, the total transmission time dufing’]
in G (V,,, E), the transport capacity)X (n) satisfies: evaluated on the network level equg@g Y, X (n) dt. Obviously

A. Capacity of Arbitrary Networks

Theorem 1. Consider an arbitrary networlG (V,,, E). Let

YX(n)W
77X (TL) = kX( (2}/) (5) n i, T h’z(,j T
- S matar= [ v
Proof: Recall from Sectiof ]l thav; € V,, represents a P 0

source nodep; ; represents the*® bit transmitted fromu;

to its destination(s)d (vi, 7), andNin IS the number of bits using [9), the amount of traffic in transit is negligibly sinal

succesifully transmitted by; during a t!me |nter\_/a[0,T]. . compared with the amount of traffic that has already reached
Let h;'; be the number of transmissions required to deliver

b 10 e destination (or all destination nodesdtus, 7) in the its destination. Therefore, the following relationshimmche

case of multicast) when the spatial and temporal scheduliﬁgsgtab“Shed:

When T is sufficiently large and the network istable

algorithm y € @ is used. LetY;* (n) be the number of n p—
simultaneous transmissions in the netw6tKV,,, E) at time lim 2iz1 XTjFl =1 Tl (10)
t. It follows from the definitions ofcX (n) and Y (n) that T—o0 Jo Y (n)at

N Noting thatr; ;; = % Equation [(b) follows readily by

>ic1 Zj:llT hfj 6 combing [1), [(6), [[I7) and_(10). [ |
©) Remark3. Equation [[(b) can also be obtained using Little's

formula [17]. Intuitively, defining thesystemas consisting
fT YX (n) dt of the set of all wireless channels i@ (V,,, F), the long-
20t 7 (7) term average effective arrival rate into the system equals
_ _ kX (n)nX (n), the long-term average amount of traffic in the
Let 751, 1 < I < hi; be the time required to transmitsystem equals’X (n) and the average time in the system

b;,; in the [*" transmission and assume that the transmittingua|s L. Equation [(b) then readily follows using Little’s
node is active during the entirg ;,; interval. As each node formu|av_v

Rn) = Jim STUNX
o0 i=14V4,T

and

YX(n) = fim T

i ae 7, = = . . . . . .
transmits at the same .d‘?‘Fa rate, 7L = - Equation[(b) is obtained under a very generic setting and is
Given the above definitions, we are now ready to prove the .
theorem applicable to networks of any size. It reveals that the ngtwo

] ) ) _ capacity can be readily determined by evaluating the agerag
Remark2. The technique used in the proof is based on firgiymber of simultaneous transmissiol& (n), the average
considering thetotal transmission timeviz. the amount of number of transmissions required for reaching the deatinsit
traffic transmitted, measured in bits, multiplied by the dim;.x (n) and the link capacityy’. The two parameter¥ X (n)
required to transmit each bit, in the network on the indigidu 5,q . x (n) are often related. For example, in a network where
node level byNgggre}gxating the transmissions at differedesp each node transmits using a fixed transmission rargg, re-
viz. 33 >0 30 7 shown in the latter equations,ducingr (n) (while keeping the network connected) will cause
and then evaluating the total transmission time in the netwaincreases in botfyx (n) andkX (n) and the converse. On the
on the network level by considering the number of simultather hand,YX (n) and kX (n) also have their independent
neous transmissions in the entire network, \jg Y (n)dt significance, and can be optimized and studied independentl



of each other. For example, an optimally designed routingthe throughput capacityX (n) satisfies:
algorithm can distribute traffic evenly and avoid creating
bottlenecks which helps to significantly increas& (n) at pr [ lim AX (n) 1) =1 (11)
the expense of slightly increaséd (n) only, compared with n=oo g(MW
the shortest-path routing. nf(n)
The following corollary is an easy consequence of Theorem Proof: Using the union bound,
(I

AX (n)
Corollary 4. Under the same setting as that in Theollgm 1, I=Pr g(n()VI)/ -
nf(n
YX(n)W _ maxyep YX(n)W X X
7 (n) = max < : _ kX (n) _ _ YX(n) _
xe® kX (n) miny ecq kX (n) < (1 Pr ( Fn) L))+ |1-Pr g 1

Corollary[4 allows the two key parameters that determining
the capacity of7 (V,,, E), viz. YX (n) andkX (n) to be studied
separately. Parametetax, o Y'X (n) W is determined by the

maximum number of transmissions that can be accommodaig(h result in the corollary readily follows from Theordh 1.
in the network area. Assuming that each node transmits using -

a fixed transmission range(n), each transmission will then | reality, such two functiong (n) and g (n) required by
“consume” a disk area of radius at led$,™ in the sense Corollary(B do not necessarily exist or are very difficult tuffi
that two simultaneous active transmitters must be Sep:hratﬁ]erefore asymptotic Capacity of random networks is more
by an Euclidean distance of at leasSir (n), whereCz > 1 commonly studied by investigating its upper and lower baund
is a constant determined by the interference model [1]. Th$e following two corollaries give respectively an uppedan
problem of finding the maximum number of simultaneougwer bound on the asymptotic capacity of random networks.
transmissions, vizmax,ce Y'X (n), can be converted into oneThese two corollaries are used in Section IV to examine the

that finds the maximum number of non-overlapping equaisymptotic capacity of random networks.
radius circles that can be packed intoand then studied as ]
a densest circle packing problem (s&el [18] for an exampl&Prollary 6. Consider a random network:,,. Let y € ®/
ParameterY'X (n) can also be studied as the transmissiop® the spatial and temporal scheduling algorithm usedrin
capacity of networks[[19]. For unicast transmissiam,(n) €t/ (1) andg(n) be two positive functions such that
becomes the average number of hops between two randomly )
chosen source-destination pairs and has been studied- exten ,}ET;O Pr<
sively [20]. As will also be shown in Sectidn I\ (n) and

kX (n) can be optimized separately to maximize the netwoﬁpd letg (n)
ity.
capacty lim Pr (max YX(n)<g (n)) =1
n—00 xedf
the throughput capacity aofr,, satisfies:
lim Pr (/\ (n) < 9(n) W) =1 (12)

We now consider the capacity of random networks. Note the n—00 ~ nf(n)

connection between random networks and arbitrary networ&gro"ary 7. Consider a random network. . Let v € &
that an instance of a random network forms an arbitra ' n X

network. The following result on the capacity of an arbUzrarBIe the spatial and temporal scheduling algorithm usedjn
) . Let d be t itive functi h that
network can be obtained from Theoréin 1. et f(n) andg (n) be two positive functions such tha

nh_)rrgo Pr(kX(n) < f(n))=1

min kX (n) > f(n)) =1

xedf

be a function of: such that

B. Capacity of Random Networks

Corollary 5. Consider a random network,,. Let y € &f

be the spatial and temporal scheduling algorithm used’in  and
LetkX (n) be the average number of transmissions required to lim Pr(YX(n)>g(n)) =1
deliver a randomly chosen bit to its destination in an ins&n noee ] o

of G,,. Let YX (n) be the average number of simultaneous the throughput capacity of7,, satisfies:
transmissions in an instance 6f,,. Both kX (n) and YX (n) ) g(n)Ww ¢

are random numbers associated with a particular (random) lim Pr (/\ (n) > nf (n) ) =1, Vxe® (13)

n—oo
As implied in Corollaries ¥ anfl]6, finding the throughput
capacity upper bound @, is achieved by analyzing the upper
Pr ( lim kX (n) _ 1) 1 bound of Y (n), Vx € ®7, viz. max,cqs Y* (n), and then
n=oo f(n) the lower bound ofcX (n), Vyx € @7, viz. min, cqs kX (n),
separately. An upper bound afax, ces YX (n) can usually
YX(n) 1) 1 be found by analyzing the maximum number of simultaneous

instance ofG,,. If there exist two positive functions(n) and
g (n) such that

and

transmissions that can be accommodateddinwhich is in



turn determined by such parameters like SINR threshold case happens for a transmitter located at the cornerd of
the transmission range, independentyofA lower bound of where only one quarter of the disk falls ih). It follows that
min, cgs kX (n) can often be found by analyzing the average 1
number of hops between a randomly chosen source-destinatio I)?gg YX(n) < m
pair along the shortest path, which is mainly determinechiey t 16

network topology and node distribution, and is independent\we now establish a lower bound afin, cqr kX (n). Let

of x. Finding the throughput capacity lower bound 6f, A4, be al x 1 square located at the lower left corner 4f
often involves using a constructive technique, i.e. calesing and letA4, be a% X % square located at the upper right corner
a particular scheduling algorithny € ®/ and analyzing of A. Using the property that nodes are uniformly and i.i.d. on
the throughput capacit\X (n) under x by analyzing the 4, it can be shown thai.a.s.the expected fraction of source-

(14)

associated parametets (n) and Y (n). destination pairs with the source located4n (or 4,) and the
destination located inl; (or A1) equal2x 1= x 7 = 135 The
IV. APPLICATIONS OF THERELATIONSHIP TODETERMINE  Minimum Euclidean distance between these source-destinat
THE CAPACITY OF RANDOM NETWORKS pairs is@ and thus the minimum number of hops between

_ . _ .. these source-destination pairsé’%. It is then follows that
In this section, to demonstrate the usage and applicability T

our results developed in Sectionl 111, we use these results-to V2 1

derive some well-known results in the literature obtained f lim Pr| min kX (n) > -—x — | =1 (15)
) . n—oo xe®s 5 7 (n)

different networks and through the use of some intellettual

challenging and customized techniques [1], [2], [4]./[T0P]- Note that®/ C &, the following lemma can be obtained as

[14]. Dug to the Iarge_amount of existing work in the areas it ian easy consequence of Corollaty[6.](14) 4nd (15).
not possible for us to include all of them. Therefore the maand

networks considered [1]. [2]. [4]. [10]. [12]-[14] are clewsas Lemma 8. In the random network considered by Gupta and
typical examples only. We show that the use of our resultoft&<umar [1] and assuming the protocol model, the per-node
lead to simpler analysis. Furthermore, through the inteiti throughput satisfies
understanding revealed in our result on the interactions of
these capacity-impacting parameters, we point out limitat lim Pr (/\ (n) < 2048\/§W 1 )) _1

n

in some existing results and suggest further improvement. n—oo T2 nr (

. . _ _ ~In Lemmal[8, the upper bound of(n) is expressed as a
A_. Capacny.of static ad-hoc networks with uniform transmisynction of the transmission range(n) and an increase in
sion capability r(n) will reduce the upper bound. As the minimum trans-

In [1], Gupta and Kumar first considered a random netwofRission range required for the network to &#@.s.connected
with n nodes uniformly and.i.d. on a unit squared and is well known to ber (n) = /") \where f(n) =
each node is capable of transmitting at a fixed rat&l/obit/'s o (logn) andf (n) — oo asn — oo [21], the conclusion read-
using a common channel. Every node chooses its destinatignoliows that lim,,_, . Pr (/\ (n) < 204As2\/§W 1 _
randomly and independently of other nodes and transmits mnlogn
using a fixed and identical transmission rangé:). Both
the protocol model and the physical model are considered
modeling the interference. As shown in [1], results obtdin X ) ¥ g X
assuming the protocol model can be readily extended to thok é’ledullng_ algorithny € & presented in [1], we W'II analyze
assuming the physical model. Therefore, in this paper, ¢ associated’ (n) and ¥X (n) and _then obtain a 'O_WG”
focus on the protocol model only. bound of\X (n). The lower bound obtained under a particular

In the protocol model, a direct transmission from a transmﬁChEdu!mg algorithm is of cour.se also a. lower bounq 0).
ter v; located atX; to a receivem; located atX is successful _ We first recall the scheduling algorithm used I [1]. In
if the Euclidean distance between andv; is smaller than [1], the network aread is partitioned into a set of Voronoi
or equal tor (n) and for every other nodev, simultane- cells such that every Voronoi cell contains a disk of radius
ously transmitting over the same channglX, — X;|| > p(n)= w/loowl—ff" and is contained in a disk of radi2g (n).
(14 A)r(n) where the parametef > 0 defines a guard Packets are relayed sequentially from a node in a Voronbi cel
zone which prevents a nearby node from transmitting on tkeanother node in an adjacent Voronoi cell along the Voronoi
same channel at the same time &m¢ denotes the Euclidean cells intersecting the direct line connecting the sourattae
norm. destination. Denote the above scheduling schemeg.by

Given the_above _setting, jt is §traightfqrward to show that The following result on a lower bound afx (n) is required
each transmitter defines a disk with a radius equdldo- (n) tor obtaining the lower bound afX (n):
and centered at itself such that for the set of concurrent
transmitters, their respective associated disks do natlagve Lemma 9. In the random network considered by Gupta and
Therefore, each transmitter locatedAr‘consumes” a disk of Kumar [1] and assuming the protocol model, there exists a

area at leasw (3 Ar (n))2 = & A%?(n) in A (The worst small positive constant; such that the average number of

or

We now proceed to obtaining a lower bound)ofr). The
(iower bound is obtained constructively. Specifically, gsihe



simultaneous transmissions usiggsatisfies of r(n) = ©(4/2) is required for the network to be

connected. Following a similar analysis leading to Lemma
) =1 and using Theorerfl 1 andl (4), result readily follows that
A(n) < 20482 171 and hence\ (n) = O(W\/E).
i nﬁ@gtogn = w(14+4) nr(n) n
Note that each Voronoi cell has an area of atmesE™=. 1o obtain a lower bound of\ (n), first it can be shown
Therefore the total number of Voronoi cells i is at least h h 1 hedull orith
ootz The result in Lemmdl9 follows readily fron [1,that whenr (n) = © (\/;) a scheduling algorithmy can

Lemma 4.4] which states than.a.s.there exists a positive be easily constructed such thatx (n) = © (\/g) and
constantc, such that every(1 + ¢q) slots, each cell gets at T ) )
least one slot in which to transmit. kX (n)=0 \/; (for example an algorithm that first routes

In addition to Lemm&9 , we also need the following lemmBackets along a horizontal line to a node on the same vertical
that provides an upper bound &¥ (n). height as the destination node and then routes packets along

. _ vertical line to the destination). Conclusion then follothat

Lemma 10. Under the same setting as that in Lerrioha 9, therg, (n) = © (W,/L) and A(n) = @ (W/L). Combing
exists a positive constamg such that " I

n—oo

lim Pr (YX (n)>ac1
logn

the lower and the upper bound, results follows using Theorem
n > _ [ that for an arbitrary network with optimally placed nodes,

logn A(n) =0 (w@)

Proof: In [I, Lemma 4.4], it was shown that for every The above results on the throughput capacity of arbitrary
line connecting an arbitrary source-destination pair,otiesh networks and random networks unsurprisingly are condisten
by L, and every Voronoi cell/ € I', wherel', denotes Withthose in|[1]. In addition to the above rigorous analysie
the set of Voronoi cells, there exists a positive constant also offer the following intuitive explanation on the cajgc

such thatPr (I intersectV) < ¢, [logn gince each Voronoi results in [1] using the relationship revealed in Secfidh Il

0 log n . In the network considered by Gupta and Kumar, each node
cell has an area of at lea5t* 22", the maximum number of on ot using a fixed and identical transmission ran@e.

Voronoi cells is bounded bygsio— . Denoting byN (L) the  Therefore each transmission consumes a disk area of radius
expected number of cells intersected by a randomly chosgrtr (n)) and Y (n) = O (= Here we dropped the

source-destination line and using the union bound, it fedlo _ . . L diSCTngg{; (7'1) and Y (n) generall
from the above results thaYy (L) < %, /-2, This result, P Ptx g y

: . 100/ logn . and the result does not depend on a particular scheduling
together with the result inL[1, Lemma 4.8], which showg|gorithm being used. Furthermore, a scheduling algoritam
that there exists a sequendgn) — 0 asn — oo such pe readily constructed that distributes the transmissivesly

thatPr (Every cellV € T',, contains at least one node 1— acrossA such thaty’ (n) = © (L~ ). Given that the average

d (n), allow us to conclude that there exists a positive constgnf .- b Tz(")d v ch ir of
¢s — <+ such that uclidean distance between a randomly chosen pair of source

n—oo

lim Pr <kX (n) <es

100 destination nodes equals a constant, independent[a#], it
—_ 1
lim Pr <kx (n) < c3 n > -1 can be shown that (n) = © (—T(n)). Thus result follows that
n—r oo logn W

the throughput capacitp (n) = © o ) viz. a smaller

B transmission range will result in a larger throughput. The

Combing the results in Lemmas 9 and 10, and also usif@nimum transmission range required for a random network to
Corollary[{, the following result can be shown:

bea.a.s.connected is known to be(n) = © lozn ) while

n

Lemmarlll. Indthe random r;]etwork coTS|dedreId bﬁ’ Gupta ang,e minimum transmission range required for a network with
Kumar [1] and assuming the protocol model, there exists &ima|ly and deterministically deployed nodes is known to

positive constants such that the per-node throughput satlsﬁeger (n) = © (\/%) Accordingly, the throughput capacity of

lim Pr (/\ (n) > csW 1 ) -1 random networks and arbitrary networks with optimally pléc
n—oo nlogn nodes are® (%) and © (%) respectively. Therefore
Combing Lemmak]8 arid L1, conclusion readily follows thaite \/15_71 factor is the price in reduction of network capacity
a.as\(n)=0 (W nk}gn) to pay for placing nodes randomly, instead of optimally.

In [1], Gupta and Kumar also investigated the capacity

of arbitrary networks and showed that by placing nodgs capacity of static networks with non-uniform transnussi
optimally and deterministically to maximize the capacéyy. capability

. : B 1 .
on grid points, A (n) = © W\/;) Realizing that when 1, ) Franceschettit al. considered a network with
nodes are optimally placed, a reduced transmission rarggyes uniformly and.i.d. on a square of/n x \/n. A node
v; can transmit to another nodg directly at a rate of

PL(X; X;) )

2Strictly speaking, the result in][1, Lemma 4.4] was derived riodes on
the surface of a sphere. However the result can be readilyifieddor a
planar area with due consideration to the boundary effémtisTwe ignore the R (Uz‘, vj) =log |1+

No + > ger, PU(Xk, X;)

difference and use the result directly.
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where T'; denotes the set of indices of nodes thajguare can also be partitioned info = { ] v -‘ non-
are simultaneously active asv;, [(X;, X;) denotes _ _ .“ 08(\/-5)
the power attenuation function and (X;,X;) = overlapping vertical slabs and each slab is of sjze x @
min {1, e~ 71X =l /11 X; — X;||*} with v > 0 ory =0 and Using the percolation theory, it was shown that there exists
a > 2, andNj represents the background noise. It is assum@@sitive constants; andc, such that by directly connecting
that all nodes transmit at the same power leelEach node nodes separated by an Euclidean distance of at mosaly,
chooses its destination randomly and independently ofrottsa.s.there are at least; log (1/n) disjoint left-to-right (top-
nodes. to-bottom) crossing paths within every horizontal (veatjc

. : . . . slab asn — oo [2, Theorem 5]. These crossing paths are
Remark12. Strictly speaking, the results derived in SeCt'o"?ermed “highway” in [2]. Furthermore it was shown that for

I can OT"Y be gsed when the link capacity is fixed. nodes not part of the highway, they can access their respec-
However |t_ is straightforward to exte_nd thes_e results talstu tive nearest highway node in single hops of length at most
Ithi capac!:y c(i)f thed netwqtrk Sclcl)\lngderdeq i [2] .wbr;ereMth roportional tolog (1/n), i.e. the Euclidean distance between
INk capacity depends on 1ts 1 and Is a vanable. 0r?on—highway nodes and their respective nearest highwagsnod
specifically, given the two functiong(n) and f (n) defined is O (log (v/n))
'?1 CorOIE‘%[B}’L if a th'rd funl;:tlonh((ﬁ) c:an be fognd gucr; On the basis of the above results, the following scheduling
that W = O (h(n)), it Zigh(ne) rea _'y_ S owh using t.oro “algorithm was used i [2] to deliver a packet from its source
lary @ that A (n) = O( n () ) Similarly, given the two g jts destination. The algorithm uses four separate phases
functions g (n) and f (n) defined in Corollary(T7, if a third and in each phase time is divided infb= 4 (d + 1)* slots
function i (n) can be found such thdd” = Q (h (n)), then where the value ofl varies in each phase. The first phase is
A(n) = Q (2ht)) used by source nodes to access their nearest highway nodes; i
nf(n) . L .
o i ) i the second phase, information is transported on the hdgkon

We first mtro_duce th_e scheglulmg algorithm u_sed in [2]. Thﬁighways; in the third phase information is transported on
ngtwogrk area 1S part|t|oqed into_non-overlapping squarieg Yertical highways to highway nodes nearest their respectiv
SQIZEC , called gells hereinafter. These cells are grou_pe_d 'nﬁ%stinations; and in the fourth phase information is dedide
[* non-overlapping sets of cells where- 2 (d + 1) and within 15 16 respective destinations. The first and fourth phases u
each set, adjacent cells are separated by an Euclideanatistqyiroct transmissions to deliver information from the seurc
Of_ Us 1)6_’_368_ Fig. 4 of[[2] for an illustration. I?arar_netehodes to the respective highway nodes within Euclidean dis-
d_l; a p_osmve_lnteger to bg specified Iater._The time is alstﬁnceo (log (v/n)) away; while the second and third phases
divided into/? time slots, which are equally distributed among ¢ multiple hops to deliver information hop-by-hop alohg t
the I sets of cells. Within each time slot, at most one no ghway and each hop is separated by a maximum Euclidean
in a cell can transmit. Furthermore, nodes located in cell§once ofc,. Denote the above scheduling algorithm by

belonging to the same set can transmit at the same time andryq fo)10wing result on the throughput capacity can be
nodes located in cells of different sets should use d'frere@stablished'

time slots to transmit. The following result was establghe

in [2] on the transmission rate between a pair of directiemma 14. Using the scheduling algorithi the throughput
connected transmitter and receiver, which will be used & ti§apacity in the random networks considered lin [2] satisfies
later analysis: A (n) =9Q (%)

Lemma 13. Using the above scheduling algorithm, for any ~ Proof: Denote the per-node throughput in the four differ-
integerd > 0, there exists afil’ (d) > 0 such that a.a.s., when ent phases by (n) , X5 (n), A (n) and\j (n) respectively.
a node is scheduled to transmit, the node can transmit djrec¥Ve analyzexj (n) , A5 (n), A3 (n) and \j (n) separately in
to any other node located within an Euclidean distance #fe following paragraphs to obtaii® (n) where A* (n) =
V2¢(d + 1) at rate W (d). Furthermore, asl tends to infinity, min {/\§ (n), A5 (n), A5 (n), A§ (n)}.
we have We first analyze the link capacity in phase 1. From
W(d) =% (dio‘eﬂﬂc‘i) the earlier result that the Euclidean distance between non-
] . ~ highway nodes and their respective nearest highway nodes
LemmallB is essentially the same as Theorem 3.in [2] 0 (1og (1/n)), there exists a positive constant such that
except that in[[2, Theorem 3], it was considered tatd) is 5 3 s the Euclidean distance between non-highway nodes and
further multiplied by the fraction of time a cell is schedille {nejr respective nearest highway nodes is smaller thanwaleq
to be active, i.e1/I?, and the data rate is given in terms ofq ., 1og . Choosing the value af such thad is the smallest
rate per cell whereas in Lemrhal 18] (d) corresponds to the integer satisfyingy/2c (d + 1) > c3logn and using Lemma
link rate, i.e.W in Theorenil and Corollari¢s @ 5, 6 /A3, it follows that each non-highway node can transmit to
In addition to the above result, capacity analysis'in [2balsts nearest highway node at a rate @f(d—ae—vﬁcd) =

relies on the use of the percolation theory. More specificall Cu s )
r/ NG Q ( (logn) n‘”zzl a.a.s.usingé&.
1

rlog(v/n) non- Now we analyze the number of simultaneous transmissions
overlapping horizontal slabs wheses a positive constant andin phase 1. Note that each highway node is separated from
each slab is of size@ x 4/n. By symmetry, they/n x \/n its nearest highway node by at most an Euclidean distance

the \/n x y/n square is partitioned inth =



c1. Therefore if a node has no other node located within doits per second, i.dd > ¢4 in phase 2.
Euclidean distance af; from itself, that node must be a non- As introduced earliera.a.s. each horizontal slab of size
highway node. LetV;, be the number of cells where each cell@ x y/n has at least; log (1/n) disjoint highways where
has at least one non-highway node, ¥t be the number of _ NG
cells where each cell has exactly one non-highway node and | xlog(vn)
let N;,, be the number of cells where each cell has exactijghways are separated by an Euclidean distance of at least
one nodeand that node has no other node located within an. Therefore the number of disjoint highways that can
Euclidean distance af; from itself. It follows from the above cross a cell is at mos{%] Each horizontal slab has

4

. Two nodes belonging to two disjoint

observation that [ (16) 4 X g cells. Thus each horizontal highway crosses at most
h = No = Niso NIV Lch / (calog (v/n)) = O (y/n) cells. A packet

Now we further analyze the asymptotic property ®f.,. moves by at least one cell in each hop. Therefore the average
LetI" denote the set of all cells. Léf be an indicator random number of hops traversed by a packet in phase @ (/7).
variable such that if theé'" cell, denoted byC;, has exactly  Furthermorea.a.s.the total number of disjoint horizontal
one nodeand that node has no other node located within afighways is at leastsLlog (v/n) > <./n and each hori-

Euclidean distance Qfl_ fr_qm itself, I; = 1; otherwisel; = 0. ,ontal highway crosses at Ieasﬁli cells where,/n is the

It follows from the definition ofN;s, that Nis, = _Zcie.r Ii- " minimum length of a left-to-right line ind. The number of

Using the property that nodes are uniform and i.i.d., it can isjoint highways that can cross a cell is at m 2
T2 |”

shown thatli E(I) =p = c2e~"e~™ wherec2e— .
My o0 B (1i) =p =coe™ ¢ e Thereforea.a.s.the number of cells where each cell contains

is the probability that”; has exactly one node ard ™! is the . . NG o2
probability that the node has no other node located within E least one high-way node is at ledst/n x =/ lrimﬁ—"

Euclidean distance of; from itself. Furthermord/ar (I;) = Using &, every i = 4(d+ 1)* time slots, each cell gets
E (I?) — E? (I;) = E (I;) — E? (I;) andlim,,_,c Var (I;) = one time slot to transmit. It follows thad.a.s.the average
p — p?. Note that/; and I; are asymptotically independent asiumber of simultaneous transmissions in phase 2 is greater

2

n — oo if the associated cell§’; and C; are separated by than or equal to%/n x @ X %/ L;CJ = ¢sn, where
an Euclidean distance greater than or equa@do Denote by s 11 2 7 i e tant ind dent
I':nq @ maximal set of cells where adjacent cells are separaféd™ = XX @/ hmJ IS a positive constant independen

by an Euclidean distange= [22] c. It can be readily shown of . _
It follows from the above analysis and Corollddy 7 that

2
that |T;,q| > (fe , where|T';,,4| denotes the cardinality of

T";nq. Therefore using the central limit theorem, )\52 (n) =0 <%)
n
lim P Z 7> n h(n) ) By symmetry,/\§ (n) =Q (ﬁ) . By choosing the value
m Pr i > ———= —h(n =
nee CieTina (u+c)? of ¢ such tha‘rcv‘/T5 < 1, the conclusion in the lemma readily
follows. ]

where h(n) is an arbitrary positive function satisfying
h(n) = o(n) andlim, . h(n) = oco. Noting thatN;,, =
Ycierli = Ycier,,, Ii and using inequality( (16) and the
above equatiora.a.s.N, = Q (n) asn — oco. Using ¢, every
12 = 4(d+ 1)2 time slots, each cell gets one time slot tén [2]- ) o
transmit. Therefora.a.s.the average number of simultaneous !N [2], essentially nodes are allowed to use two transmiissio

o . ranges, viz. a smaller transmission rangecofl) for nodes
transmissions in phase 1 e ué]s(—g" ) . : o
P q 4(d+1) forming the highways and a larger transmission range of

Note that in phase 1, only direct transmission is allowed 1. (\ /) for non-highway nodes to access their respective
It then follows from Corollanf 7 that in the first phase, eacgarest highway nodes. Most transmissions are through the
node can have access a per-node throughpug ¢fi) where highway using the smaller transmission range while theelarg

Lemma 14 allows us to conclude that the throughput capac-
ity in the random network considered by Franceschetti et al.

satisfies\ (n) = 2 (L) which is consistent with the result

n

O ((logn)’a n—‘”§) transmission range is only used for the last mile in phases 1
)é (n) = ( n 2) v and 4. It can be shown that phases 1 and 4 do not become the
4(d+1) n bottleneck in determining the throughput capacity. Thanef
_ - Vs bothY (n) andk (n) are dominated by the smaller transmis-
or equivalently)§ (n) = ((10gn) “ n_CVT)- sion range and accordingly (n) = © (n), k (n) = © (y/n).
Using a similar analysis, it can be shown thét(n) = Furthermore, as a consequence of Lenima 13,= € (1).
0 ((bgn)faﬂ n—cr$ ) It then readily follows that\ (n) = Q %) This higher

dtgfoughput capacity, compared with that [n [1], is achieved

Now we analyze the throughput capacity in phases 2 an X : . . -
by allowing nodes to adjust their transmission capabdlits

We consider phase 2 first. In phased2s chosen such that ;

is the smallest integer satisfying2c (d + 1) > ¢;. It follows required. ] ]
from LemmdIBa.a.s.there exists a positive constantsuch 1" [13], Chau, Chen and Liew showed that the higher
that each highway node can transmit at a rate of at leastthroughput capacity of (n) = Q2 (ﬁ) can also be achieved
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in large-scale CSMA wireless networks if wireless nodds different relay nodes. In the second phase, either theceou
performing CSMA operations are allowed to use two differemtr a relay transmits the packet to the destination when it
carrier-sensing ranges. The capacity analysis in [13] getha is close to the destination and is scheduled to transmit to
on two findings: a) by adjusting the count-down rate, a tumalthe destination. Within each time slot, the set of concurren
parameter in CSMA protocols, of each node, a distributdéthnsmissions are scheduled randomly and independently of
and randomized CSMA scheme can achieve the same capatdpsmissions in the previous time slot. More specifically,

as a centralized deterministic scheduling schemeé [23];yb) parametel € (0,0.5), called the transmitter density, is fixed
using the highway system defined id [2], a higher throughpfitst. ng = 6n number of nodes are randomly designated
capacity of\ (n) = Q Ln can be achieved using a centralds transmitters and the remaining nodes are designated as
ized deterministic scheduling algorithm. Usirig [13, LemmBotential receiversDenote the set of potential receivers By.

9], which states that in CSMA schemes, there exists a setfAch transmitter transmits its packets to its nearest beigh

count-down rates such that the throughput of each and ev8f)ong all nodes ;. Among all thens sender-receiver pairs,

link is not smaller than that can be achieved with a centdlizONly those whose SINR is above are retained. Denote the

deterministic scheduling scheme, and a similar analysigeab Number of such pairs by;. Note that the set of transmitter-

for analyzing the capacity of networks il [2], the result if€ceiver pairs is random in each time slot (tisis a random

[13] can also be obtained using the relationship estaldisme integer) and depends on the time varying locations of nodes.

this paper. Except for some analysis on particular detdils Benote the above scheduling algorithm by

CSMA networks, i.e. hidden node problem and distributesines From the above description of the scheduling algoritm

of CSMA protocols, the analysis is similar as the analys@pviouslyl < kX (n) < 2. Furthermore, it can be shown [4,

earlier in the section and hence is omitted in the paper. ~ Theorem lll-4] thatY™* (n) = E'(V;) and that there exists a
Observing that in a large network, a much smaller transmig0sitive constant such that

sion range is required to connect most nodes in the network <yx (n) - C) )

(i.e. forming a giant component) whereas the larger tragsmi lim Pr 17)

n—00 n

sion range 00 | y/ 10%) is only required to connect the fewThe following result on the asymptotical throughput capaci
hard-to-reach nodes [?4], a routing scheme can be designefdthe random mobile ad hoc networks consideredlin [4]
which achieves a per-node throughputdi) = © &%) and readily follows:

does not have to use the highway system, such that a node ys&fima 15. In the random mobile ad hoc network considered
the smaller transmission ranges for most communicatiods &gy Grossglauser and Tsgl[4], a.a5(n) = © (1).

only uses the larger transmission if the next-hop node danno

be reached when using the smaller transmission ranges. Proof: We first consider an upper bound of(n). It

can be easily shown thatiin, s kX (n) = Q(1) and
. ) max,cqpr YX(n) = O(n). It then follows using Corollary
C. Capacity of mobile ad-hoc networks that\ (n) = O (1).

In [4], Grossglauser and Tse considered mobile ad hocNow we consider the lower bound. Using the two-phase
networks consisting of. nodes uniformly and i.i.d. on a unit scheduling algorithmy introduced above] < kX (n) < 2.
squared initially. Nodes are mobile and the spatial distributiotsing the above result (17) and Corolldy 7, conclusion
of nodes is stationary and ergodic with stationary distitnu readily follows thatlim,,,o. Pr (A (n) > £W) = 1 whereW
uniform on A. The trajectories of nodes are i.i.d. Each node a constant independent of u
chooses its destination randomly and independently ofrothe The capacity result in[J4] and the use of the two hop
nodes. At timet, a nodev; can transmit directly to anotherrelaying strategy can be intuitively explained as follows.
nodev; at rateW if the SINR atv; is above a prescribed Obviously the two-hop relaying strategy helps to dap(n)
thresholds: at 2. Compared with a one-hop strategy where a source is

P, (t)vi; (1) only allowed to tr_ansmit when it is close to its destination,_
Mot Iy Pe (1) s (1) the two-hop relaying strategy also helps to spread the draffi
0T I Zukeri(e) Tk A Tk stream between a source-destination pair to a large nunfber o
where Ny is the background noise powef, is the process- intermediate relay nodes such that in steady state, theetmck
ing gain, T'; (¢) is the set of nodes, not including itself, of every source node will be distributed across all the nodes
simultaneously transmitting withy; at time ¢ and P; (¢) is in the network. This arrangement ensures that every node
the transmitting power of; at time¢. The transmitting power in the network will have packets buffered for every other
P; (t) is determined by the scheduling algorithm and is chos@ede. Therefore a node always has a packet to send when a
to be a constant independentof For a narrowband systemtransmission opportunity is available. Thus the role ofttine-
L = 1. Parametery;; (t) is the channel gain and is givenhop relaying strategy, compared with a one-hop strategy is t
by vi; (t) = | X; (t) — X; ()] ~* whereX; (¢) represents the maximizeYX (n) such that'x (n) = © (n) [4] at the expense
location ofwv; at timet and« is a parameter greater than  of a slightly increasedX (n). A lower bound om (n) readily

A two-hop relaying strategy is adopted. In the first phase,rasults using’* (n) = © (n), kX (n) < 2 and Corollary¥. An
source transmits a packet to a nearby node (acting as a.relaypper bound om\ (n) can be easily obtained using Corollary
As the source moves around, different packets are traresiniffl. Therefore conclusions readily follows for(n). Capacity
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of mobile ad-hoc networks assuming other mobility modetsan be readily shown thahax,cqs YX (n) = O = )
and routing strategies [10] can also be obtained analogousturthermore, it can be shown thata.s.any multicast tree
Given the insight revealed in Theordm 1 and Corollariespanning nodes that are randomly placedArhas a total edge
@, [G,[6 andl, it can be readily shown that in a networlength of at leasta/I [14, Lemma 9] where: is a positive
with a different traffic model than that inl[4], e.g. each nodggnstant. It follows thatmin, cgs kX (n) = Q cavVipyr ).

has an infinite stream of packets for every other node 4ﬂ1erefore as an easy consequence of Eoro :;n()&) a
the network, a one-hop strategy can also achieve a transp r( 1 W) _0 (W - )
- Vi

capacity ofn (n) = O (n). Therefore the insight revealed in~ \r(n)vi’ logn ) _ _
Theorenill and Corollarids B B, 6 7 helps to design thelO Obtain a lower bound on the multicast transport capacity,

hoc networks. description of the scheduling algorithg). More specifically,

A is partitioned into non-overlapping squares and each squar

: . r(n) r(n) :
is of size 7= x —=. Calling these squares cells, the total

number of cells equalg%. Furthermore, nodes located in
In the previous three subsections, we have used Theoradjacent cells are directly connected, where two cells are
and Corollarie§]4,19.]16 arid 7 established in Sedfidn Ill &djacentif they have at least one point in common. Using
analyze the capacity of the random static and mobile netsvottke property that nodes are uniformly and i.i.d.a.s. every
considered in[[1],[12],[[4]. An upper bound on the throughputell has at least one node [14, Lemma 18]. Dividing time into
capacity can often be readily obtained using Corollaty @me slots of equal length, it can be shown that there exists a
For the lower bound, the procedure generally involves usipgsitive integeic;, independent ofi, such that everyclT time
existing results and scheduling algorithms already eistadd  slots,everycell gets at least one time slot to transit. Using the
in [, [2], [4] to obtain kX (n) and Y'X (n), and then using above resultsa.a.s.YX (n) > qiazn)-
Corollary[7 to obtain the throughput capacity lower bound. Choosing one node from each’ cell, it can be shown that
The use of Theorerhl 1 and Corollaries[4,[5, 6 &hd 7 oftehese nodes form a connected component, terowethected
results in simpler analysis. Similar methods can also bd tse dominating setAll other nodes are directly connected to at
obtain the multicast capacity and capacity of hybrid neksor least one node in the connected dominating set. Multicast
considered in this subsection and the next subsection. did avtraffic is routed using the connected dominating set. Using
repetition and to focus on the main ideas, in this subseetimh the result that for an arbitrary celp.a.s, the probability
the next subsection, we choose to give an intuitive expianat that a randomly chosen multicast flow is routed via the cell
of the results on the multicast capacity and capacity of klybris at mostcy+/1r (n) /a [14, Lemma 20],a.a.s.the number
networks only using Theorefi 1 and Corollafié§14.15, 6[@nd gt cells crossed by a randomly chosen multicast flow is at
In [14], Li considered the multicast capacity of a networknostw 73?2) — 502a%_ Thereforea.a.s.kX (n) =
with n nodes uniformly and i.i.d. on a x a square, denoted —~
by A. It is assumed that all nodes have the same transmiss%r(r{zl)) andn* (n) = 92 (r(nl)\ﬁw) =4 (%\/ logn)'
Combing the upper and lower bounds on the transport
_ capacity, conclusion can be obtained that whenO (&)
at W bits per second over a common channel. Furthermore, W —
a protocol interference model is assumed and two concurré@nf-S-" (n)=© (W m)'
transmitters must be separated by an Euclidean distance of gyhen; — 0 o), the situation becomes slightly differ-

least(1 + A)7 (n). A subsetS C V;, of n, = |S| node; ar'® ent. More specifically, the density of the multicast degtora
randpmly chosen to serve as the source.npdegmﬁulncast nodes becomes high enough such that the probability that
sessions where, is assumed to be sufﬁaently large. Eacr& single transmission will deliver the packet to more than
_node vi € S chooses a set_olf—_l points randomly and .o o iticast destination nodes becomes high. In factgusin
independently fromd and multicast its data to the nearestnodfhe above connected dominating set, it can be shown that

of each point. Denote b/ the set of scheduling algorithm , 5 ¢ the number of transmissions required to deliver a packet
that allocate the transport capacity equally among all icagt to all nodes (hence thé — 1 multicast destination nodes)

sessions. Denote byX (n) the maximum transport capacityiS at most-3%"_, which is independent of. Consequently
that can be achieved.a.s.using x. The multicast capacity rn)

n (n) is the maximum transport capacity that can be achievédn) = © %) Conclusion then readily follows that when
a.a.s.for all x € ®/: n(n) = max,cqer n* (n). Note that a ; _ q (ﬁ) n(n) =6 (W).

bit multicast tol — 1 destinations is counted as a single bit in s

the calculation of the multicast transport capacity. Tfane _ .

our definition of transport capacity in Sectipn Il is consigt E. Capacity of hybrid networks

with the definition of the multicast transport capacity iff[1  Now we consider the impact of infrastructure nodes on

and the results established in Secfion Il can be used Yiregtetwork capacity. In addition ta ordinary nodes uniformly

here. and i.i.d. on a unit squard, a set of M infrastructure nodes
We first consider the situation that= O (%) We will are regularly or randomly placed in the same areavhere

obtain an upper bound on the multicast transport capatity. M < n. These infrastructure nodes act as relay nodes only

D. Multicast capacity

ranger (n) = © 1"’%) and are capable of transmitting
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and do not generate their own traffic. Following the same The above results are consistent with the results in [12].
setting as that in[[12], it is assumed that the infrastrectur However we further note that wheid = Q (L) a

logn |
nodes have the same transmission ran@e) = © < loin) smaller transmission range of(n) = © (ﬁ) is sufficient
and link capacity? when they communicate with the ordinaryfor an ordinary node to reach its nearest infrastructureenod
nodes and these infrastructure nodes are inter-connei@ed vand hence achieving connectivity. A smaller transmission
backbone network with much higher capacity. Furthermorerange helps to increadé(n) and it has been shown previously
protocol interference model is adopted. thatY (n) = © (%) while k (n) = © (1). Therefore the

The routing algorithm used in the above netwark/[12] hagchjevable transport ‘capacity usin% the smaller transomiss

been optimized such that t.hese infrastructu.re nodes do Rhge isn (n) = © (MW) = Q (%), which is better than
become the bottleneck, which may be possibly caused by a _ ogn _
poorly designed routing algorithm diverting excessive anto the result) (n) = © ({;EZZ) in [12]. Moreover, different from

of traffic to the infrastructure nodes. . the conclusion in[[12] suggesting that whaf = Q (2
- m)-

H H _ 1 _ ) ’ ) ] logn )?
First consider the case whell = o (Tz(n)) further investment in infrastructure nodes will not lead to

In this situation, the number of transmissions involving ag, oyement in capacity, our result suggests that even when
infrastructure node as a transmitter or receiver is small an,

has little impact orY” (n), which has been shown in previous . log”) . ca_pacny sull kegps Increasing Ilnearly with
. ) . M. This capacity improvement is achieved by reducing the
subsections to b® S— . Furthermore, it can be shown tha

A\r?(n) ) Eransmission range with the increasefif.
the average Euclidean distance between a randomly chosen

pair of infrastructure nodes i® (1) [22]. That is, a packet
transmitted between two infrastructure nodes moves by an
Euclidean distance ob (1) whereas a packet transmitted In this paper, we show that the network capacity can be
by a pair of directly connected ordinary nodes moves if{etermined by estimating the three parameters, viz. thegee
an Euclidean distance @ (r (n)). Therefore a transmissionnumber of simultaneous transmissions, the link capacity an

between two infrastructure nodés equivalent to© (L the average number of transmissions required to deliver a
() t packet to its destination. Our result is valid for both fi-

transmissions between ordinary nodes and d#ugivalen " awork q totically infinit works. We h
average number of simultaneous ordinary node transms;si(gjle networks and asymptotically infiniteé etworks. We have
emonstrated the usage and the applicability of our result

1 M\ _ 1 M -
equaIsQ ((Tz(q) N M) + W) - Q(r%}) T 2 It fol by using the result to analyze the capacity of a number of
lows using a similar procedure outlined in Section IV-A thayjigterent networks studied in the literature. The use of our

V. CONCLUSION AND FURTHER WORK

1 M result often simplifies analysis. More importantly, we skeow
ORI M [ hat th hodol be used lyze th i
n(n) =0 - e (< + M) W> that the same metho lology can be use to analyze the capacity
) logn of networks under different conditions. Therefore our work

makes important contributions towards developing a generi
Therefore whenM = 0( @) the infrastructure nodes methodqlogy for_ network capa_city analysis that is a}ppllieab
have little impact on the order of)(n); when M _to avarlety of dlfferent_ scenarios. I_:urthermo_re, as |fhl:{_i!d

in Section[IV-E, the simple capacity-determing relatiapsh

@ (V ) (and M= o ( ))’ the infrastructure nodes revealed in the paper can be used as a powerful and convenient

logn logn
start to have dominant impact on the network capacity apdly 1o quickly estimate the capacity of networks based on an
iffitive understanding of the networks. However we regadil

the above equation on the transport capacity reduces

n(n) = © (MW). Noting that the fundamental reason wWhy, .\ nowledge that the analysis of the three parametersyvthe a
infrastructure nodes improve capacity is that they helpia parage number of simultaneous transmissions, the link dgpac
of ordinary nodes separated by a large Euclidean distanggy ihe average number of transmissions required to deliver
to leapfrog some very long hops, thereby reducing). 5 packet to its destination, may still need some customized
Therefore the same result in the above equation can also lysis that takes into account details of a network differ
obtained by analyzing the reduction in(n) directly. The ¢ other networks.
analysis is albeit more complicated. ~ For asymptotically infinite random networks, the use of
When M = Q (@) assuming that the transmissiorpyr result to estimate the capacity often involves estingati
range stays the same as wheh — O(lon'n) atr(n) = the capacity upper b_ound and the capacity Iovyer bom_Jnd
& separately. The capacity upper bound can be readily olotaine
1"’% , the number of simultaneous active infrastruddy estimating the maximum number of simultaneously active
ture nodes becomes limited by the transmission range. mdpansmissions sgnsfymg the interference constrgl_ralsdan be
accommodated in the network area and the minimum number

specmcall)_/, on!y@ (7‘2(71)) © logn infrastructure qodes of transmissions required to deliver a packet. The capacity
can be active simultaneously. Furthermae@,.s.each ordinary |over bound is more difficult to find. It usually involves

node can access its nearest mfrastru_cture node (i) hops. constructing a spatial and temporal scheduling algoritom f
Following a similar analysis as that in the last paragraph, ,q particular network and demonstrating that the network
can be shown thaj (n) = © (lzgz) whenM = Q{25 ). capacity is achievable using that algorithm. It remains ¢o b




investigated on whether a generic technique can be foupd
such that the capacity lower bound can be obtained without
resorting to designing customized algorithm for a parﬁcul[21]
network.

In this paper, we have ignored physical layer details H¥2]
assuming that each node is capable of transmitting at,3,
fixed and identical data rate. This assumption allows us to
focus on the topological aspects of networks that determine

. . . : [24]
capacity. It remains to be investigated on how to develop“a
generic methodology to incorporate the impact of physical
layer techniques, e.g. coding and MIMO, on capacity. Werref&>]
readers to recent work by Jiang et al.|[25], which suggests a
possible direction to extend our result to incorporate afs
layer detalils.
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