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Abstract—Extensive research has been done on studying the
capacity of wireless multi-hop networks. These efforts have led
to many sophisticated and customized analytical studies onthe
capacity of particular networks. While most of the analysesare
intellectually challenging, they lack universal properties that can
be extended to study the capacity of a different network. In this
paper, we sift through various capacity-impacting parameters
and present a simple relationship that can be used to estimate
the capacity of both static and mobile networks. Specifically, we
show that the network capacity is determined by the average
number of simultaneous transmissions, the link capacity and the
average number of transmissions required to deliver a packet
to its destination. Our result is valid for both finite networks
and asymptotically infinite networks. We then use this result
to explain and better understand the insights of some existing
results on the capacity of static networks, mobile networksand
hybrid networks and the multicast capacity. The capacity analysis
using the aforementioned relationship often becomes simpler.
The relationship can be used as a powerful tool to estimate
the capacity of different networks. Our work makes important
contributions towards developing a generic methodology for
network capacity analysis that is applicable to a variety of
different scenarios.

Index Terms—Capacity, mobile networks, wireless networks

I. I NTRODUCTION

W IRELESS multi-hop networks, in various forms, e.g.
wireless sensor networks, underwater networks, vehic-

ular networks, mesh networks and unmanned aerial vehicle
formations, and under various names, e.g. ad-hoc networks,
hybrid networks, delay tolerant networks and intermittently
connected networks, are being increasingly used in military
and civilian applications.
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Studying the capacity of these networks is an important
problem. Since the seminal work of Gupta and Kumar [1],
extensive research has been done in the area. Particularly,
in [1] Gupta and Kumar considered an ad-hoc network with
a total of n nodes uniformly andi.i.d. on an area of unit
size. Furthermore, each node is capable of transmitting at
W bit/s and using a fixed and identical transmission range.
They showed that the transport capacity and the achievable
per-node throughput, when each node randomly and indepen-
dently chooses another node in the network as its destination,
areΘ

(

W
√

n
logn

)

andΘ
(

W√
n logn

)

respectively1. When the

nodes are optimally and deterministically placed to maximize
throughput, the transport capacity and the achievable per-
node throughput becomeΘ(W

√
n) andΘ

(

W√
n

)

respectively.
In [2], Franceschettiet al. considered essentially the same
random network as that in [1] except that nodes in the network
are allowed to use two different transmission ranges. The
link capacity between a pair of directly connected nodes
is determined by their SINR through the Shannon–Hartley
theorem. They showed that by having each source-destination
pair transmitting via the so-called “highway system”, formed
by nodes using the smaller transmission range, the transport
capacity and the per-node throughput can also reachΘ(

√
n)

and Θ
(

1√
n

)

respectively even when nodes are randomly
deployed. The existence of such highways was established
using the percolation theory [3]. In [4] Grossglauser and Tse
showed that in mobile networks, by leveraging on the nodes’
mobility, a per-node throughput ofΘ(1) can be achieved at
the expense of unbounded delay. Their work [4] has sparked
huge interest in studying the capacity-delay tradeoffs in mobile
networks assuming various mobility models and the obtained
results often vary greatly with the different mobility models

1The following notations are used throughout the paper. For two positive
functionsf (x) andh (x):

• f (x) = o (h (x)) iff (if and only if) limx→∞

f(x)
h(x)

= 0;
• f (x) = ω (h (x)) iff h (x) = o (f (x));
• f (x) = Θ (h (x)) iff there exist a sufficiently largex0 and two positive

constantsc1 and c2 such that for anyx > x0, c1h (x) ≥ f (x) ≥

c2h (x);
• f (x) ∼ h (x) iff limx→∞

f(x)
h(x)

= 1;
• f (x) = O (h (x)) iff there exist a sufficiently largex0 and a positive

constantc such that for anyx > x0, f (x) ≤ ch (x);
• f (x) = Ω (h (x)) iff h (x) = O (f (x));
• An eventξ is said to occur almost surely if its probability equals one;
• An event ξx depending onx is said to occur asymptotically almost

surely (a.a.s.) if its probability tends to one asx → ∞.

The above definition applies whether the argumentx is continuous or discrete,
e.g. assuming integer values.
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being considered, see [5]–[10] and references therein for
examples. In [11], Chen et al. studied the capacity of wireless
networks under a different traffic distribution. In particular,
they considered a set ofn randomly deployed nodes transmit-
ting to single sink or multiple sinks where the sinks can be
either regularly deployed or randomly deployed. They showed
that with single sink, the transport capacity is given byΘ(W );
with k sinks, the transport capacity is increased toΘ(kW )
whenk = O(n log n) or Θ(n lognW ) whenk = Ω(n logn).
Furthermore, there is also significant amount of work studying
the impact of infrastructure nodes [12] and multiple-access
protocols [13] on the capacity and the multicast capacity [14].
We refer readers to [15] for a comprehensive review of related
work.

The above efforts have led to many sophisticated and
customized analytical studies on the capacity of particular
networks. The obtained results often vary greatly with evena
slight change in the scenario being investigated. While most of
the analyses are intellectually challenging, they lack universal
properties that can be extended to study the capacity of a
different network. In this paper, we sift through these capacity-
impacting parameters, e.g. mobility, traffic distribution, spatial
node distribution, the capability of nodes to adjust their trans-
mission power, the presence of infrastructure nodes, multiple-
access protocols and scheduling algorithms, and present a
simple relationship that can be used to estimate the capacity of
wireless multi-hop networks. In addition to capacity, delay is
also an important performance metric that has been extensively
investigated. In this paper we focus on the study of capacity.
We refer readers to [5]–[9] for relevant work on delay.

The main contribution of this paper is the development of
a simple relationship for estimating the capacity of wireless
multi-hop networks applicable to various different scenarios.
The following is a detailed summary of our contributions:

• Considering an arbitrary network, we show that the
network capacity is determined by the link capacity, the
average number of simultaneous transmissions, and the
average number of transmissions required to deliver a
packet to its destination;

• We extend the above relationship for arbitrary networks
to random networks;

• We apply our new result to determine the asymptotic
capacity of several typical random networks considered
in the literature [1], [2], [4], [10], [12]–[14]. The capac-
ity analysis using the aforementioned relationship often
becomes simpler;

• Based on the intuitive understanding gained from our
result, we point out limitations of some existing results
and suggest further improvements;

• Furthermore, using our result, the capacity analysis for
different networks can be transformed into the analysis of
the three key parameters, i.e. the link capacity, the average
number of simultaneous transmissions, and the average
number of transmissions required to deliver a packet
to its destination. Therefore our work makes important
contributions towards developing a generic methodology
for network capacity analysis that is applicable to a
variety of different scenarios.

The rest of the paper is organized as follows: Section II
gives a formal definition of the network models and notations
considered in the paper. Section III gives the main results in
this paper on the capacity of arbitrary networks and random
networks. In Section IV, we demonstrate wide applications of
our result by using it to analyze the asymptotic capacity of
various random networks considered in the literature [1], [2],
[4], [10], [12]–[14]. Finally Section V concludes this paper.

II. N ETWORK MODELS

We consider two classes of networks in this paper:arbitrary
networksand random networks.

A. Arbitrary networks

We use the term arbitrary network to refer to a network
with a total ofn nodes arbitrarily and deterministically (i.e.
not randomly) placed in a bounded areaA initially. These
nodes may be either stationary or moving following arbitrary
and fixed (i.e. not random) trajectories. A node may choose
an arbitrary and fixed number of other nodes as its destina-
tion(s). In the case that a source node has multiple destination
nodes, the source node may transmit the same packets to its
destinations, viz. multicast, or transmit different portions of
its packets to different destinations, viz. unicast. Packets are
transmitted from a source to its destination(s) via multiple
intermediate relay nodes. Each node can be either a source, a
relay, a destination or a mixture. It is assumed that there are
always packets waiting at the source nodes to be transmitted,
viz. a so-called saturated traffic scenario is considered.

Let Vn be the node set. LetE be the set of links. The
establishment of a link between a pair of nodes may follow
either the protocol model or the physical model [1]. Our
analysis does not depend on the particular way a link is
established. When nodes are mobile, the link between a pair
of nodes may only exist temporarily and the link set at a
particular time instantt may be more appropriately denoted
by Et to emphasize its temporal dependence. In this paper,
we drop the subscriptt for convenience. It is assumed that
there is a spatial and temporal path between every source and
destination pair.

Without loss of generality [1], [4], [10], [12]–[14], we
further assume that each node can transmit at a fixed and
known data rate ofW bits per second over a common wireless
channel. Following the same analytical approach as that in
[1], it can be shown that it is immaterial to our result if
the channel is broken into several subchannels of capacity
W1,W2, · · · ,WM bits per second, as long as

∑M
m=1 Wm =

W . This assumption allows us to ignore some physical layer
details and focus on the topological aspects of the network
that determine the capacity. Our result however can be readily
extended to incorporate the situation that each link has a
different and known capacity. We do not consider the impact of
erroneous transmissions in our analysis. Transmission errors
will cause a decrease in the effective link capacity and its
impact can be captured in the parameterW , which is assumed
to be known.
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Denote the above network byG (Vn, E) and in this paper,
we study the capacity ofG (Vn, E).

In the following paragraphs, we give a formal definition of
the capacity ofG (Vn, E). Let vi ∈ V be a source node and
let bi,j be thejth bit transmitted fromvi to its destination.
Let d (vi, j) be the destination ofbi,j . For unicast trans-
mission,d (vi, j) represents single destination; for multicast
transmission,d (vi, j) represents the set of all destinations of
bi,j . Let Nχ

i,T be the number of bits transmitted byvi and
which reached, i.e. successfully received by, their respective
destinations during a time interval[0, T ], with T being an
arbitrarily large number. The superscriptχ ∈ Φ denotes the
spatial and temporal scheduling algorithm used in the network
andΦ denotes the set of all scheduling algorithms. If the same
bit is transmitted from a source to multiple destinations, e.g. in
the case of multicast, it is counted as one bit in the calculation
of Nχ

i,T .
It is assumed that the network isstable∀χ ∈ Φ. A network

is calledstable if and only if for any fixedn, assuming that
each node has an infinite queue, the queue length in any
intermediate relay node storing packets in transit does not
grow towards infinity asT → ∞, or equivalently the long-
term incoming traffic rate into the network equals the long-
term outgoing traffic rate. It is further assumed that there is
no traffic loss due to queue overflow.

The transport capacity when using the spatial and temporal
scheduling algorithmχ, denoted byηχ (n), is defined as:

ηχ (n) , lim
T→∞

∑n

i=1 N
χ
i,T

T
(1)

and the transport capacity of the network is defined as

η (n) , max
χ∈Φ

ηχ (n) (2)

Obviouslyη (n) ≥ ηχ (n) , ∀χ ∈ Φ.
An important special case occurs when the scheduling

algorithm divides the transport capacity equally among all
source-destination pairs asymptotically over time. Denote by
Φf ⊆ Φ the set of fair scheduling algorithms that divide
the transport capacity equally among allm source-destination
pairs asymptotically over time. The throughput per source-
destination pair is defined as

λm , max
χ∈Φf

ηχ (n)

m
(3)

The above definitions of the transport capacity and through-
put capacity are valid for both finiten and asymptotically
infinite n.

B. Random networks

In addition to arbitrary networks, random networks have
also been extensively studied in the literature, particularly the
asymptotic properties of random networks as the number of
nodesn approaches infinity [1], [2], [4], [10], [12]–[14]. By a
random network, we mean a network with a total ofn nodes
and each node is i.i.d. in a bounded areaA initially following a
known distribution. If these nodes are mobile, their trajectories
may also be random and i.i.d. A link between a pair of nodes

in a random network may be established following either the
protocol model or the physical model [1]. Denote the above
random network byGn to distinguish it from the arbitrary
network considered in the previous subsection.

Given the randomness involved in the problem statement,
the above definitions of throughput capacity for arbitrary
networks need to be modified to account for “vanishingly
small probabilities” [1]. Particularly, for asymptotic random
networks whose number of nodesn is sufficiently large, we
say that under the spatial and temporal scheduling algorithm
χ, the transport capacity ofGn is ηχ (n) if and only if
ηχ (n) is themaximumtransport capacity that can be achieved
asymptotically almost surely (a.a.s.)asn → ∞ underχ. Given
the above modification onηχ (n), the transport capacity of an
arbitrary network defined in (2) can still be used for random
networks.

The most extensively studied traffic distribution in random
networks involves each node choosing another node inde-
pendently as its destination and the transport capacity being
divided equally among all source-destination pairs. In that
case, the total number of source-destination pairs equalsn
and the capacity of the network is often studied using the
metric known as theper-node throughputor the throughput
capacity. Denote byΦf ⊆ Φ the set of fair scheduling
algorithms that divide the transport capacity equally among
all n source-destination pairs asymptotically over time. The
per-node throughput (or throughput capacity) is defined as

λ (n) , max
χ∈Φf

ηχ (n)

n
(4)

Intuitively, a scheduling algorithmχ is fair if it divides the
transport capacity equally among all source-destination pairs
asymptotically over time and also distributes traffic evenly
acrossA such that there is no traffic hot spot. For nodes
uniformly and i.i.d. onA and each node choosing another
node independently as its destination, which is the scenario
studied in Sections III-B and IV, the technique is well known
to establish the (asymptotic) fairness of a scheduling algorithm
χ, or to construct a (asymptotically) fair scheduling algorithm.
It typically involves partitioningA into a set of equal-size sub-
areas, allocating transmission opportunities equally among all
sub-areas and then demonstrating that usingχ, the number
of source-destination pairs crossing each sub-area variesby at
most a constant factor. The conclusion readily follows thatthe
throughput obtainable by each source-destination pair varies
by at most a constant factor and each source-destination pair
has access to throughput of the same order asymptotically,
see [2], [16] for examples. The set of scheduling algorithms
analyzed in Section IV are known to be fair in the sense that
a.a.s., each source-destination pair can achieve a throughput
of the same order.

Note that the above definitions of transport capacity and
throughput capacity for random networks are consistent with
those in [1], [2], [4], [10], [12]–[14]. Particularly in [1], a
throughput capacity ofλ (n) bits per second is calledfeasible
if there is a spatial and temporal scheme for scheduling
transmissions such that every node can sendλ (n) bits per
second on average to its chosen destination [1]. The throughput
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capacity of random networks withn node is of orderΘ(f (n))
bits per second if there are deterministic constantsc > 0 and
c′ < +∞ such that

lim
n→∞

Pr (λ (n) = cf (n) is feasible) = 1

lim inf
n→∞

Pr (λ (n) = c′f (n) is feasible) < 1

III. C APACITY OF ARBITRARY AND RANDOM NETWORKS

In this section, we analyze the capacity of arbitrary networks
and the capacity of random networks respectively.

A. Capacity of Arbitrary Networks

The following theorem on the capacity of arbitrary networks
summarizes a major result of the paper:

Theorem 1. Consider an arbitrary networkG (Vn, E). Let
χ be the spatial and temporal scheduling algorithm used in
G (Vn, E). Letkχ (n) be the average number of transmissions
required to deliver a randomly chosen bit to its destination. Let
Y χ (n) be the average number of simultaneous transmissions
in G (Vn, E), the transport capacityηχ (n) satisfies:

ηχ (n) =
Y χ (n)W

kχ (n)
(5)

Proof: Recall from Section II thatvi ∈ Vn represents a
source node,bi,j represents thejth bit transmitted fromvi
to its destination(s),d (vi, j), andNχ

i,T is the number of bits
successfully transmitted byvi during a time interval[0, T ].

Let hχ
i,j be the number of transmissions required to deliver

bi,j to its destination (or all destination nodes ind (vi, j) in the
case of multicast) when the spatial and temporal scheduling
algorithm χ ∈ Φ is used. LetY χ

t (n) be the number of
simultaneous transmissions in the networkG (Vn, E) at time
t. It follows from the definitions ofkχ (n) andY χ (n) that

kχ (n) = lim
T→∞

∑n

i=1

∑N
χ
i,T

j=1 hχ
i,j

∑n
i=1 N

χ
i,T

(6)

and

Y χ (n) = lim
T→∞

´ T

0
Y χ
t (n) dt

T
(7)

Let τi,j,l, 1 ≤ l ≤ hi,j be the time required to transmit
bi,j in the lth transmission and assume that the transmitting
node is active during the entireτi,j,l interval. As each node
transmits at the same data rateW , τi,j,l = 1

W
.

Given the above definitions, we are now ready to prove the
theorem.

Remark2. The technique used in the proof is based on first
considering thetotal transmission time, viz. the amount of
traffic transmitted, measured in bits, multiplied by the time
required to transmit each bit, in the network on the individual
node level by aggregating the transmissions at different nodes,

viz.
∑n

i=1

∑N
χ

i,T

j=1

∑h
χ
i,j

l=1 τi,j,l shown in the latter equations,
and then evaluating the total transmission time in the network
on the network level by considering the number of simulta-
neous transmissions in the entire network, viz.

´ T

0
Y χ
t (n) dt

shown in the latter equations. Obviously, the two values must
be equal. On the basis of this observation, the theorem can be
established.

At time T , the total transmission time during[0, T ] is given
by

n
∑

i=1

N
χ
i,T
∑

j=1

h
χ
i,j
∑

l=1

τi,j,l + qχT =
1

W

n
∑

i=1

N
χ
i,T
∑

j=1

hχ
i,j + qχT (8)

where
∑n

i=1

∑N
χ

i,T

j=1

∑h
χ
i,j

l=1 τi,j,l accounts for the transmission
time for traffic that has reached its destination andqχT accounts
for the transmission time for traffic still in transit at timeT .

Let pχmax be the maximum length, measured in the num-
ber of hops, of all routes inG (Vn, E) underχ, obviously
pχmax < n. Furthermore, since the network is stable, there
exists a positive constantC1, independent ofT , such that the
total amount of traffic in transit is bounded byC1n. Therefore

qχT ≤ pχmaxC1n

W
<

C1n
2

W
(9)

On the other hand, the total transmission time during[0, T ]

evaluated on the network level equals
´ T

0
Y χ
t (n) dt. Obviously

n
∑

i=1

N
χ

i,T
∑

j=1

h
χ
i,j
∑

l=1

τi,j,l + qχT =

ˆ T

0

Y χ
t (n) dt

When T is sufficiently large and the network isstable,
using (9), the amount of traffic in transit is negligibly small
compared with the amount of traffic that has already reached
its destination. Therefore, the following relationship can be
established:

lim
T→∞

∑n
i=1

∑N
χ

i,T

j=1

∑h
χ
i,j

l=1 τi,j,l
´ T

0
Y χ
t (n) dt

= 1 (10)

Noting that τi,j,l = 1
W

, Equation (5) follows readily by
combing (1), (6), (7) and (10).

Remark3. Equation (5) can also be obtained using Little’s
formula [17]. Intuitively, defining thesystemas consisting
of the set of all wireless channels inG (Vn, E), the long-
term average effective arrival rate into the system equals
kχ (n) ηχ (n), the long-term average amount of traffic in the
system equalsY χ (n) and the average time in the system
equals 1

W
. Equation (5) then readily follows using Little’s

formula.

Equation (5) is obtained under a very generic setting and is
applicable to networks of any size. It reveals that the network
capacity can be readily determined by evaluating the average
number of simultaneous transmissionsY χ (n), the average
number of transmissions required for reaching the destinations
kχ (n) and the link capacityW . The two parametersY χ (n)
andkχ (n) are often related. For example, in a network where
each node transmits using a fixed transmission ranger (n), re-
ducingr (n) (while keeping the network connected) will cause
increases in bothY χ (n) andkχ (n) and the converse. On the
other hand,Y χ (n) and kχ (n) also have their independent
significance, and can be optimized and studied independently
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of each other. For example, an optimally designed routing
algorithm can distribute traffic evenly and avoid creating
bottlenecks which helps to significantly increaseY χ (n) at
the expense of slightly increasedkχ (n) only, compared with
the shortest-path routing.

The following corollary is an easy consequence of Theorem
1:

Corollary 4. Under the same setting as that in Theorem 1,

η (n) = max
χ∈Φ

Y χ (n)W

kχ (n)
≤ maxχ∈Φ Y χ (n)W

minχ∈Φ kχ (n)

Corollary 4 allows the two key parameters that determining
the capacity ofG (Vn, E), viz. Y χ (n) andkχ (n) to be studied
separately. Parametermaxχ∈Φ Y χ (n)W is determined by the
maximum number of transmissions that can be accommodated
in the network area. Assuming that each node transmits using
a fixed transmission ranger (n), each transmission will then
“consume” a disk area of radius at leastC2r(n)

2 in the sense
that two simultaneous active transmitters must be separated
by an Euclidean distance of at leastC2r (n), whereC2 > 1
is a constant determined by the interference model [1]. The
problem of finding the maximum number of simultaneous
transmissions, viz.maxχ∈Φ Y χ (n), can be converted into one
that finds the maximum number of non-overlapping equal-
radius circles that can be packed intoA and then studied as
a densest circle packing problem (see [18] for an example).
ParameterY χ (n) can also be studied as the transmission
capacity of networks [19]. For unicast transmission,kχ (n)
becomes the average number of hops between two randomly
chosen source-destination pairs and has been studied exten-
sively [20]. As will also be shown in Section IV,Y χ (n) and
kχ (n) can be optimized separately to maximize the network
capacity.

B. Capacity of Random Networks

We now consider the capacity of random networks. Note the
connection between random networks and arbitrary networks
that an instance of a random network forms an arbitrary
network. The following result on the capacity of an arbitrary
network can be obtained from Theorem 1.

Corollary 5. Consider a random networkGn. Let χ ∈ Φf

be the spatial and temporal scheduling algorithm used inGn.
Let kχ (n) be the average number of transmissions required to
deliver a randomly chosen bit to its destination in an instance
of Gn. Let Y χ (n) be the average number of simultaneous
transmissions in an instance ofGn. Both kχ (n) and Y χ (n)
are random numbers associated with a particular (random)
instance ofGn. If there exist two positive functionsf (n) and
g (n) such that

Pr

(

lim
n→∞

kχ (n)

f (n)
= 1

)

= 1

and

Pr

(

lim
n→∞

Y χ (n)

g (n)
= 1

)

= 1

the throughput capacityλχ (n) satisfies:

Pr



 lim
n→∞

λχ (n)
g(n)W
nf(n)

= 1



 = 1 (11)

Proof: Using the union bound,

1− Pr





λχ (n)
g(n)W
nf(n)

= 1





≤
(

1− Pr

(

kχ (n)

f (n)
= 1

))

+

(

1− Pr

(

Y χ (n)

g (n)
= 1

))

The result in the corollary readily follows from Theorem 1.

In reality, such two functionsf (n) and g (n) required by
Corollary 5 do not necessarily exist or are very difficult to find.
Therefore asymptotic capacity of random networks is more
commonly studied by investigating its upper and lower bounds.
The following two corollaries give respectively an upper and a
lower bound on the asymptotic capacity of random networks.
These two corollaries are used in Section IV to examine the
asymptotic capacity of random networks.

Corollary 6. Consider a random networkGn. Let χ ∈ Φf

be the spatial and temporal scheduling algorithm used inGn.
Let f (n) and g (n) be two positive functions such that

lim
n→∞

Pr

(

min
χ∈Φf

kχ (n) ≥ f (n)

)

= 1

and letg (n) be a function ofn such that

lim
n→∞

Pr

(

max
χ∈Φf

Y χ (n) ≤ g (n)

)

= 1

the throughput capacity ofGn satisfies:

lim
n→∞

Pr

(

λ (n) ≤ g (n)W

nf (n)

)

= 1 (12)

Corollary 7. Consider a random networkGn. Let χ ∈ Φf

be the spatial and temporal scheduling algorithm used inGn.
Let f (n) and g (n) be two positive functions such that

lim
n→∞

Pr (kχ (n) ≤ f (n)) = 1

and
lim
n→∞

Pr (Y χ (n) ≥ g (n)) = 1

the throughput capacity ofGn satisfies:

lim
n→∞

Pr

(

λ (n) ≥ g (n)W

nf (n)

)

= 1, ∀χ ∈ Φf (13)

As implied in Corollaries 4 and 6, finding the throughput
capacity upper bound ofGn is achieved by analyzing the upper
bound ofY χ (n) , ∀χ ∈ Φf , viz. maxχ∈Φf Y χ (n), and then
the lower bound ofkχ (n) , ∀χ ∈ Φf , viz. minχ∈Φf kχ (n),
separately. An upper bound ofmaxχ∈Φf Y χ (n) can usually
be found by analyzing the maximum number of simultaneous
transmissions that can be accommodated inA, which is in
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turn determined by such parameters like SINR threshold or
the transmission range, independent ofχ. A lower bound of
minχ∈Φf kχ (n) can often be found by analyzing the average
number of hops between a randomly chosen source-destination
pair along the shortest path, which is mainly determined by the
network topology and node distribution, and is independent
of χ. Finding the throughput capacity lower bound ofGn

often involves using a constructive technique, i.e. constructing
a particular scheduling algorithmχ ∈ Φf and analyzing
the throughput capacityλχ (n) under χ by analyzing the
associated parameterskχ (n) andY χ (n).

IV. A PPLICATIONS OF THERELATIONSHIP TO DETERMINE

THE CAPACITY OF RANDOM NETWORKS

In this section, to demonstrate the usage and applicabilityof
our results developed in Section III, we use these results tore-
derive some well-known results in the literature obtained for
different networks and through the use of some intellectually
challenging and customized techniques [1], [2], [4], [10],[12]–
[14]. Due to the large amount of existing work in the area, it is
not possible for us to include all of them. Therefore the random
networks considered [1], [2], [4], [10], [12]–[14] are chosen as
typical examples only. We show that the use of our result often
lead to simpler analysis. Furthermore, through the intuitive
understanding revealed in our result on the interactions of
these capacity-impacting parameters, we point out limitations
in some existing results and suggest further improvement.

A. Capacity of static ad-hoc networks with uniform transmis-
sion capability

In [1], Gupta and Kumar first considered a random network
with n nodes uniformly andi.i.d. on a unit squareA and
each node is capable of transmitting at a fixed rate ofW bit/s
using a common channel. Every node chooses its destination
randomly and independently of other nodes and transmits
using a fixed and identical transmission ranger (n). Both
the protocol model and the physical model are considered for
modeling the interference. As shown in [1], results obtained
assuming the protocol model can be readily extended to those
assuming the physical model. Therefore, in this paper, we
focus on the protocol model only.

In the protocol model, a direct transmission from a transmit-
ter vi located atXi to a receivervj located atXj is successful
if the Euclidean distance betweenvi and vj is smaller than
or equal to r (n) and for every other nodevk simultane-
ously transmitting over the same channel,‖Xk −Xj‖ ≥
(1 +△) r (n) where the parameter△ > 0 defines a guard
zone which prevents a nearby node from transmitting on the
same channel at the same time and‖•‖ denotes the Euclidean
norm.

Given the above setting, it is straightforward to show that
each transmitter defines a disk with a radius equal to1

2△r (n)
and centered at itself such that for the set of concurrent
transmitters, their respective associated disks do not overlap.
Therefore, each transmitter located inA “consumes” a disk of
area at least14π

(

1
2△r (n)

)2
= π

16△2r2 (n) in A (The worst

case happens for a transmitter located at the corners ofA
where only one quarter of the disk falls inA.). It follows that

max
χ∈Φ

Y χ (n) ≤ 1
π
16△2r2 (n)

(14)

We now establish a lower bound ofminχ∈Φf kχ (n). Let
A1 be a 1

4 × 1
4 square located at the lower left corner ofA

and letA2 be a 1
4 × 1

4 square located at the upper right corner
of A. Using the property that nodes are uniformly and i.i.d. on
A, it can be shown thata.a.s.the expected fraction of source-
destination pairs with the source located inA1 (or A2) and the
destination located inA2 (orA1) equals2× 1

16× 1
16 = 1

128 . The
minimum Euclidean distance between these source-destination
pairs is

√
2
2 and thus the minimum number of hops between

these source-destination pairs is
√
2

2r(n) . It is then follows that

lim
n→∞

Pr

(

min
χ∈Φf

kχ (n) ≥
√
2

256
× 1

r (n)

)

= 1 (15)

Note thatΦf ⊆ Φ, the following lemma can be obtained as
an easy consequence of Corollary 6, (14) and (15).

Lemma 8. In the random network considered by Gupta and
Kumar [1] and assuming the protocol model, the per-node
throughput satisfies

lim
n→∞

Pr

(

λ (n) ≤ 2048
√
2

π△2
W

1

nr (n)

)

= 1

In Lemma 8, the upper bound ofλ (n) is expressed as a
function of the transmission ranger (n) and an increase in
r (n) will reduce the upper bound. As the minimum trans-
mission range required for the network to bea.a.s.connected

is well known to ber (n) =
√

logn+f(n)
πn

where f (n) =

o (logn) andf (n) → ∞ asn → ∞ [21], the conclusion read-

ily follows that limn→∞ Pr
(

λ (n) ≤ 2048
√
2

△2 W 1√
πn logn

)

=

1.

We now proceed to obtaining a lower bound ofλ (n). The
lower bound is obtained constructively. Specifically, using the
scheduling algorithmχ ∈ Φf presented in [1], we will analyze
the associatedkχ (n) and Y χ (n) and then obtain a lower
bound ofλχ (n). The lower bound obtained under a particular
scheduling algorithm is of course also a lower bound ofλ (n).

We first recall the scheduling algorithm used in [1]. In
[1], the network areaA is partitioned into a set of Voronoi
cells such that every Voronoi cell contains a disk of radius

ρ (n) =
√

100 logn
πn

and is contained in a disk of radius2ρ (n).
Packets are relayed sequentially from a node in a Voronoi cell
to another node in an adjacent Voronoi cell along the Voronoi
cells intersecting the direct line connecting the source and the
destination. Denote the above scheduling scheme byχ.

The following result on a lower bound ofY χ (n) is required
for obtaining the lower bound ofλχ (n):

Lemma 9. In the random network considered by Gupta and
Kumar [1] and assuming the protocol model, there exists a
small positive constantc1 such that the average number of



7

simultaneous transmissions usingχ satisfies

lim
n→∞

Pr

(

Y χ (n) ≥ c1
n

logn

)

= 1

Note that each Voronoi cell has an area of at most400 logn
n

.
Therefore the total number of Voronoi cells inA is at least

n
400 logn

. The result in Lemma 9 follows readily from [1,
Lemma 4.4]2 which states thata.a.s. there exists a positive
constantc2 such that every(1 + c2) slots, each cell gets at
least one slot in which to transmit.

In addition to Lemma 9 , we also need the following lemma
that provides an upper bound ofkχ (n).

Lemma 10. Under the same setting as that in Lemma 9, there
exists a positive constantc3 such that

lim
n→∞

Pr

(

kχ (n) ≤ c3

√

n

logn

)

= 1

Proof: In [1, Lemma 4.4], it was shown that for every
line connecting an arbitrary source-destination pair, denoted
by L, and every Voronoi cellV ∈ Γn where Γn denotes
the set of Voronoi cells, there exists a positive constantc4

such thatPr (L intersectV ) ≤ c4

√

logn
n

. Since each Voronoi

cell has an area of at least100 log n
n

, the maximum number of
Voronoi cells is bounded by n

100 logn
. Denoting byN (L) the

expected number of cells intersected by a randomly chosen
source-destination line and using the union bound, it follows
from the above results thatN (L) ≤ c4

100

√

n
logn

. This result,

together with the result in [1, Lemma 4.8], which shows
that there exists a sequenceδ (n) → 0 as n → ∞ such
thatPr (Every cellV ∈ Γn contains at least one node) ≥ 1−
δ (n), allow us to conclude that there exists a positive constant
c3 = c4

100 such that

lim
n→∞

Pr

(

kχ (n) ≤ c3

√

n

logn

)

= 1

Combing the results in Lemmas 9 and 10, and also using
Corollary 7, the following result can be shown:

Lemma 11. In the random network considered by Gupta and
Kumar [1] and assuming the protocol model, there exists a
positive constantc5 such that the per-node throughput satisfies

lim
n→∞

Pr

(

λ (n) ≥ c5W

√

1

n logn

)

= 1

Combing Lemmas 8 and 11, conclusion readily follows that
a.a.s.λ (n) = Θ

(

W
√

1
n log n

)

.

In [1], Gupta and Kumar also investigated the capacity
of arbitrary networks and showed that by placing nodes
optimally and deterministically to maximize the capacity,e.g.

on grid points,λ (n) = Θ
(

W
√

1
n

)

. Realizing that when
nodes are optimally placed, a reduced transmission range

2Strictly speaking, the result in [1, Lemma 4.4] was derived for nodes on
the surface of a sphere. However the result can be readily modified for a
planar area with due consideration to the boundary effect. Thus we ignore the
difference and use the result directly.

of r (n) = Θ
(√

1
n

)

is required for the network to be
connected. Following a similar analysis leading to Lemma
8 and using Theorem 1 and (4), result readily follows that

λ (n) ≤ 2048
√
2

π(1+△)2
W 1

nr(n) and henceλ (n) = O
(

W
√

1
n

)

.

To obtain a lower bound ofλ (n), first it can be shown

that whenr (n) = Θ
(√

1
n

)

, a scheduling algorithmχ can

be easily constructed such thatY χ (n) = Θ
(√

1
n

)

and

kχ (n) = Θ
(√

1
n

)

(for example an algorithm that first routes
packets along a horizontal line to a node on the same vertical
height as the destination node and then routes packets alonga
vertical line to the destination). Conclusion then followsthat

λχ (n) = Θ
(

W
√

1
n

)

and λ (n) = Ω
(

W
√

1
n

)

. Combing
the lower and the upper bound, results follows using Theorem
1 that for an arbitrary network with optimally placed nodes,

λ (n) = Θ
(

W
√

1
n

)

.
The above results on the throughput capacity of arbitrary

networks and random networks unsurprisingly are consistent
with those in [1]. In addition to the above rigorous analysis, we
also offer the following intuitive explanation on the capacity
results in [1] using the relationship revealed in Section III.
In the network considered by Gupta and Kumar, each node
transmits using a fixed and identical transmission ranger (n).
Therefore each transmission consumes a disk area of radius
Θ(r (n)) and Y (n) = O

(

1
r2(n)

)

. Here we dropped the

superscriptχ when we discussk (n) and Y (n) generally
and the result does not depend on a particular scheduling
algorithm being used. Furthermore, a scheduling algorithmcan
be readily constructed that distributes the transmissionsevenly
acrossA such thatY (n) = Θ

(

1
r2(n)

)

. Given that the average
Euclidean distance between a randomly chosen pair of source-
destination nodes equals a constant, independent ofn [22], it
can be shown thatk (n) = Θ

(

1
r(n)

)

. Thus result follows that

the throughput capacityλ (n) = Θ
(

W
nr(n)

)

, viz. a smaller
transmission range will result in a larger throughput. The
minimum transmission range required for a random network to

bea.a.s.connected is known to ber (n) = Θ

(

√

logn
n

)

while

the minimum transmission range required for a network with
optimally and deterministically deployed nodes is known to

ber (n) = Θ
(√

1
n

)

. Accordingly, the throughput capacity of
random networks and arbitrary networks with optimally placed
nodes areΘ

(

W√
n logn

)

andΘ
(

W√
n

)

respectively. Therefore

the 1√
log n

factor is the price in reduction of network capacity
to pay for placing nodes randomly, instead of optimally.

B. Capacity of static networks with non-uniform transmission
capability

In [2], Franceschettiet al. considered a network withn
nodes uniformly andi.i.d. on a square of

√
n×√

n. A node
vi can transmit to another nodevj directly at a rate of

R (vi, vj) = log

(

1 +
Pl (Xi,Xj)

N0 +
∑

k∈Γi
Pl (Xk, Xj)

)
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where Γi denotes the set of indices of nodes that
are simultaneously active asvi, l (Xi, Xj) denotes
the power attenuation function andl (Xi, Xj) =
min

{

1, e−γ‖Xi−Xj‖/ ‖Xi −Xj‖α
}

with γ > 0 or γ = 0 and
α > 2, andN0 represents the background noise. It is assumed
that all nodes transmit at the same power levelP . Each node
chooses its destination randomly and independently of other
nodes.

Remark12. Strictly speaking, the results derived in Section
III can only be used when the link capacityW is fixed.
However it is straightforward to extend these results to study
the capacity of the network considered in [2] where the
link capacity depends on its SINR and is a variable. More
specifically, given the two functionsg (n) and f (n) defined
in Corollary 6, if a third functionh (n) can be found such
that W = O (h (n)), it can be readily shown using Corol-

lary 6 thatλ (n) = O
(

g(n)h(n)
nf(n)

)

. Similarly, given the two

functions g (n) and f (n) defined in Corollary 7, if a third
function h (n) can be found such thatW = Ω(h (n)), then

λ (n) = Ω
(

g(n)h(n)
nf(n)

)

.

We first introduce the scheduling algorithm used in [2]. The
network area is partitioned into non-overlapping squares of
size c2, called cells hereinafter. These cells are grouped into
l2 non-overlapping sets of cells wherel = 2 (d+ 1) and within
each set, adjacent cells are separated by an Euclidean distance
of (l − 1) c, see Fig. 4 of [2] for an illustration. Parameter
d is a positive integer to be specified later. The time is also
divided intol2 time slots, which are equally distributed among
the l2 sets of cells. Within each time slot, at most one node
in a cell can transmit. Furthermore, nodes located in cells
belonging to the same set can transmit at the same time and
nodes located in cells of different sets should use different
time slots to transmit. The following result was established
in [2] on the transmission rate between a pair of directly
connected transmitter and receiver, which will be used in the
later analysis:

Lemma 13. Using the above scheduling algorithm, for any
integerd > 0, there exists anW (d) > 0 such that a.a.s., when
a node is scheduled to transmit, the node can transmit directly
to any other node located within an Euclidean distance of√
2c (d+ 1) at rateW (d). Furthermore, asd tends to infinity,

we have
W (d) = Ω

(

d−αe−γ
√
2cd
)

Lemma 13 is essentially the same as Theorem 3 in [2]
except that in [2, Theorem 3], it was considered thatW (d) is
further multiplied by the fraction of time a cell is scheduled
to be active, i.e.1/l2, and the data rate is given in terms of
rate per cell whereas in Lemma 13,W (d) corresponds to the
link rate, i.e.W in Theorem 1 and Corollaries 4, 5, 6 and 7.

In addition to the above result, capacity analysis in [2] also
relies on the use of the percolation theory. More specifically,

the
√
n×√

n square is partitioned intoL =

⌈ √
n

κ log(
√
n)

⌉

non-

overlapping horizontal slabs whereκ is a positive constant and
each slab is of size

√
n

L
× √

n. By symmetry, the
√
n × √

n

square can also be partitioned intoL =

⌈ √
n

κ log(
√
n)

⌉

non-

overlapping vertical slabs and each slab is of size
√
n×

√
n

L
.

Using the percolation theory, it was shown that there exists
positive constantsc1 and c2 such that by directly connecting
nodes separated by an Euclidean distance of at mostc1 only,
a.a.s.there are at leastc2 log (

√
n) disjoint left-to-right (top-

to-bottom) crossing paths within every horizontal (vertical)
slab asn → ∞ [2, Theorem 5]. These crossing paths are
termed “highway” in [2]. Furthermore it was shown that for
nodes not part of the highway, they can access their respec-
tive nearest highway node in single hops of length at most
proportional tolog (

√
n), i.e. the Euclidean distance between

non-highway nodes and their respective nearest highway nodes
is O (log (

√
n)).

On the basis of the above results, the following scheduling
algorithm was used in [2] to deliver a packet from its source
to its destination. The algorithm uses four separate phases,
and in each phase time is divided intol2 = 4 (d+ 1)

2 slots
where the value ofd varies in each phase. The first phase is
used by source nodes to access their nearest highway nodes; in
the second phase, information is transported on the horizontal
highways; in the third phase information is transported on
vertical highways to highway nodes nearest their respective
destinations; and in the fourth phase information is delivered
to the respective destinations. The first and fourth phases use
direct transmissions to deliver information from the source
nodes to the respective highway nodes within Euclidean dis-
tanceO (log (

√
n)) away; while the second and third phases

use multiple hops to deliver information hop-by-hop along the
highway and each hop is separated by a maximum Euclidean
distance ofc1. Denote the above scheduling algorithm by
ξ. The following result on the throughput capacity can be
established:

Lemma 14. Using the scheduling algorithmξ, the throughput
capacity in the random networks considered in [2] satisfies
λξ (n) = Ω

(

1√
n

)

.

Proof: Denote the per-node throughput in the four differ-
ent phases byλξ

1 (n) , λξ
2 (n), λ

ξ
3 (n) andλξ

4 (n) respectively.
We analyzeλξ

1 (n) , λξ
2 (n), λ

ξ
3 (n) and λξ

4 (n) separately in
the following paragraphs to obtainλξ (n) where λξ (n) =

min
{

λξ
1 (n) , λ

ξ
2 (n) , λ

ξ
3 (n) , λ

ξ
4 (n)

}

.
We first analyze the link capacity in phase 1. From

the earlier result that the Euclidean distance between non-
highway nodes and their respective nearest highway nodes
is O (log (

√
n)), there exists a positive constantc3 such that

a.a.s.the Euclidean distance between non-highway nodes and
their respective nearest highway nodes is smaller than or equal
to c3 logn. Choosing the value ofd such thatd is the smallest
integer satisfying

√
2c (d+ 1) ≥ c3 logn and using Lemma

13, it follows that each non-highway node can transmit to
its nearest highway node at a rate ofΩ

(

d−αe−γ
√
2cd
)

=

Ω
(

(log n)
−α

n−cγ
√

2

2

)

a.a.s.usingξ.
Now we analyze the number of simultaneous transmissions

in phase 1. Note that each highway node is separated from
its nearest highway node by at most an Euclidean distance
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c1. Therefore if a node has no other node located within an
Euclidean distance ofc1 from itself, that node must be a non-
highway node. LetNh be the number of cells where each cell
has at least one non-highway node, letNo be the number of
cells where each cell has exactly one non-highway node and
let Niso be the number of cells where each cell has exactly
one nodeand that node has no other node located within an
Euclidean distance ofc1 from itself. It follows from the above
observation that

Nh ≥ No ≥ Niso (16)

Now we further analyze the asymptotic property ofNiso.
Let Γ denote the set of all cells. LetIi be an indicator random
variable such that if theith cell, denoted byCi, has exactly
one nodeand that node has no other node located within an
Euclidean distance ofc1 from itself, Ii = 1; otherwiseIi = 0.
It follows from the definition ofNiso thatNiso =

∑

Ci∈Γ Ii.
Using the property that nodes are uniform and i.i.d., it can be
shown thatlimn→∞ E (Ii) = p = c2e−c2e−πc2

1 wherec2e−c2

is the probability thatCi has exactly one node ande−πc2
1 is the

probability that the node has no other node located within an
Euclidean distance ofc1 from itself. FurthermoreV ar (Ii) =
E
(

I2i
)

−E2 (Ii) = E (Ii)−E2 (Ii) and limn→∞ V ar (Ii) =
p− p2. Note thatIi andIj are asymptotically independent as
n → ∞ if the associated cellsCi and Cj are separated by
an Euclidean distance greater than or equal to2c1. Denote by
Γind a maximal set of cells where adjacent cells are separated
by an Euclidean distanceµ =

⌈

2c1
c

⌉

c. It can be readily shown

that |Γind| ≥
( √

n

µ+c

)2

, where|Γind| denotes the cardinality of
Γind. Therefore using the central limit theorem,

lim
n→∞

Pr

(

∑

Ci∈Γind

Ii ≥
n

(µ+ c)
2 − h (n)

)

= 1

where h (n) is an arbitrary positive function satisfying
h (n) = o (n) and limn→∞ h (n) = ∞. Noting thatNiso =
∑

Ci∈Γ Ii ≥
∑

Ci∈Γind
Ii and using inequality (16) and the

above equation,a.a.s.Nh = Ω(n) asn → ∞. Using ξ, every
l2 = 4 (d+ 1)2 time slots, each cell gets one time slot to
transmit. Thereforea.a.s.the average number of simultaneous
transmissions in phase 1 equalsΩ

(

n
4(d+1)2

)

.

Note that in phase 1, only direct transmission is allowed.
It then follows from Corollary 7 that in the first phase, each
node can have access a per-node throughput ofλξ

1 (n) where

λξ
1 (n) = Ω

(

n

4 (d+ 1)
2

)

×
Ω
(

(log n)−α n−cγ
√

2

2

)

n

or equivalentlyλξ
1 (n) = Ω

(

(logn)
−α−2

n−cγ
√

2

2

)

.

Using a similar analysis, it can be shown thatλξ
4 (n) =

Ω
(

(logn)
−α−2

n−cγ
√

2

2

)

.

Now we analyze the throughput capacity in phases 2 and 3.
We consider phase 2 first. In phase 2,d is chosen such thatd
is the smallest integer satisfying

√
2c (d+ 1) ≥ c1. It follows

from Lemma 13,a.a.s.there exists a positive constantc4 such
that each highway node can transmit at a rate of at leastc4

bits per second, i.e.W > c4 in phase 2.
As introduced earlier,a.a.s. each horizontal slab of size√
n

L
× √

n has at leastc2 log (
√
n) disjoint highways where

L =

⌈ √
n

κ log(
√
n)

⌉

. Two nodes belonging to two disjoint

highways are separated by an Euclidean distance of at least
c1. Therefore the number of disjoint highways that can
cross a cell is at most

⌈

c2

1

4
πc2

1

⌉

. Each horizontal slab has
√
n

L
×

√
n

c2
cells. Thus each horizontal highway crosses at most√

n

L
×

√
n

c2
×
⌈

c2

1

4
πc2

1

⌉

/ (c2 log (
√
n)) = O (

√
n) cells. A packet

moves by at least one cell in each hop. Therefore the average
number of hops traversed by a packet in phase 2 isO (

√
n).

Furthermore,a.a.s.the total number of disjoint horizontal
highways is at leastc2L log (

√
n) > c2

κ

√
n and each hori-

zontal highway crosses at least
√
n

c
cells where

√
n is the

minimum length of a left-to-right line inA. The number of
disjoint highways that can cross a cell is at most

⌈

c2

1

4
πc2

1

⌉

.
Therefore,a.a.s.the number of cells where each cell contains
at least one high-way node is at leastc2

κ

√
n ×

√
n

c
/
⌈

c2

1

4
πc2

1

⌉

.

Using ξ, every l2 = 4 (d+ 1)
2 time slots, each cell gets

one time slot to transmit. It follows thata.a.s. the average
number of simultaneous transmissions in phase 2 is greater
than or equal toc2

κ

√
n ×

√
n

c
× 1

l2
/
⌈

c2

1

4
πc2

1

⌉

= c5n, where

c5 = c2
κ
× 1

c
× 1

l2
/
⌈

c2

1

4
πc2

1

⌉

is a positive constant independent
of n.

It follows from the above analysis and Corollary 7 that

λξ
2 (n) = Ω

(

1√
n

)

By symmetry,λξ
3 (n) = Ω

(

1√
n

)

. By choosing the value

of c such thatcγ
√
2
2 < 1

2 , the conclusion in the lemma readily
follows.

Lemma 14 allows us to conclude that the throughput capac-
ity in the random network considered by Franceschetti et al.
satisfiesλ (n) = Ω

(

1√
n

)

, which is consistent with the result
in [2].

In [2], essentially nodes are allowed to use two transmission
ranges, viz. a smaller transmission range ofΘ(1) for nodes
forming the highways and a larger transmission range of
O (log (

√
n)) for non-highway nodes to access their respective

nearest highway nodes. Most transmissions are through the
highway using the smaller transmission range while the larger
transmission range is only used for the last mile in phases 1
and 4. It can be shown that phases 1 and 4 do not become the
bottleneck in determining the throughput capacity. Therefore
both Y (n) andk (n) are dominated by the smaller transmis-
sion range and accordinglyY (n) = Θ (n), k (n) = Θ (

√
n).

Furthermore, as a consequence of Lemma 13,W = Ω(1).

It then readily follows thatλ (n) = Ω
(

1√
n

)

. This higher
throughput capacity, compared with that in [1], is achieved
by allowing nodes to adjust their transmission capabilities as
required.

In [13], Chau, Chen and Liew showed that the higher
throughput capacity ofλ (n) = Ω

(

1√
n

)

can also be achieved
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in large-scale CSMA wireless networks if wireless nodes
performing CSMA operations are allowed to use two different
carrier-sensing ranges. The capacity analysis in [13] is based
on two findings: a) by adjusting the count-down rate, a tunable
parameter in CSMA protocols, of each node, a distributed
and randomized CSMA scheme can achieve the same capacity
as a centralized deterministic scheduling scheme [23]; b) by
using the highway system defined in [2], a higher throughput
capacity ofλ (n) = Ω

(

1√
n

)

can be achieved using a central-
ized deterministic scheduling algorithm. Using [13, Lemma
9], which states that in CSMA schemes, there exists a set of
count-down rates such that the throughput of each and every
link is not smaller than that can be achieved with a centralized
deterministic scheduling scheme, and a similar analysis above
for analyzing the capacity of networks in [2], the result in
[13] can also be obtained using the relationship established in
this paper. Except for some analysis on particular details of
CSMA networks, i.e. hidden node problem and distributedness
of CSMA protocols, the analysis is similar as the analysis
earlier in the section and hence is omitted in the paper.

Observing that in a large network, a much smaller transmis-
sion range is required to connect most nodes in the network
(i.e. forming a giant component) whereas the larger transmis-

sion range ofΘ

(

√

logn
n

)

is only required to connect the few

hard-to-reach nodes [24], a routing scheme can be designed,
which achieves a per-node throughput ofλ (n) = Θ

(

1√
n

)

and
does not have to use the highway system, such that a node uses
the smaller transmission ranges for most communications and
only uses the larger transmission if the next-hop node cannot
be reached when using the smaller transmission ranges.

C. Capacity of mobile ad-hoc networks

In [4], Grossglauser and Tse considered mobile ad hoc
networks consisting ofn nodes uniformly and i.i.d. on a unit
squareA initially. Nodes are mobile and the spatial distribution
of nodes is stationary and ergodic with stationary distribution
uniform onA. The trajectories of nodes are i.i.d. Each node
chooses its destination randomly and independently of other
nodes. At timet, a nodevi can transmit directly to another
nodevj at rateW if the SINR at vj is above a prescribed
thresholdβ:

Pi (t) γij (t)

N0 +
1
L

∑

k∈Γi(t)
Pk (t) γkj (t)

> β

whereN0 is the background noise power,L is the process-
ing gain, Γi (t) is the set of nodes, not includingvi itself,
simultaneously transmitting withvi at time t and Pi (t) is
the transmitting power ofvi at timet. The transmitting power
Pi (t) is determined by the scheduling algorithm and is chosen
to be a constant independent ofn. For a narrowband system
L = 1. Parameterγij (t) is the channel gain and is given
by γij (t) = ‖Xi (t)−Xj (t)‖−α whereXi (t) represents the
location ofvi at time t andα is a parameter greater than2.

A two-hop relaying strategy is adopted. In the first phase, a
source transmits a packet to a nearby node (acting as a relay).
As the source moves around, different packets are transmitted

to different relay nodes. In the second phase, either the source
or a relay transmits the packet to the destination when it
is close to the destination and is scheduled to transmit to
the destination. Within each time slot, the set of concurrent
transmissions are scheduled randomly and independently of
transmissions in the previous time slot. More specifically,a
parameterθ ∈ (0, 0.5), called the transmitter density, is fixed
first. nS = θn number of nodes are randomly designated
as transmitters and the remaining nodes are designated as
potential receivers. Denote the set of potential receivers byRt.
Each transmitter transmits its packets to its nearest neighbor
among all nodes inRt. Among all thenS sender-receiver pairs,
only those whose SINR is aboveβ are retained. Denote the
number of such pairs byNt. Note that the set of transmitter-
receiver pairs is random in each time slot (thusNt is a random
integer) and depends on the time varying locations of nodes.
Denote the above scheduling algorithm byχ.

From the above description of the scheduling algorithmχ,
obviously1 ≤ kχ (n) ≤ 2. Furthermore, it can be shown [4,
Theorem III-4] thatY χ (n) = E (Nt) and that there exists a
positive constantc such that

lim
n→∞

Pr

(

Y χ (n)

n
≥ c

)

= 1 (17)

The following result on the asymptotical throughput capacity
of the random mobile ad hoc networks considered in [4]
readily follows:

Lemma 15. In the random mobile ad hoc network considered
by Grossglauser and Tse [4], a.a.s.λ (n) = Θ (1).

Proof: We first consider an upper bound ofλ (n). It
can be easily shown thatminχ∈Φf kχ (n) = Ω (1) and
maxχ∈Φf Y χ (n) = O (n). It then follows using Corollary
6 thatλ (n) = O (1).

Now we consider the lower bound. Using the two-phase
scheduling algorithmχ introduced above,1 ≤ kχ (n) ≤ 2.
Using the above result, (17) and Corollary 7, conclusion
readily follows thatlimn→∞ Pr

(

λ (n) ≥ c
2W

)

= 1 whereW
is a constant independent ofn.

The capacity result in [4] and the use of the two hop
relaying strategy can be intuitively explained as follows.
Obviously the two-hop relaying strategy helps to capkχ (n)
at 2. Compared with a one-hop strategy where a source is
only allowed to transmit when it is close to its destination,
the two-hop relaying strategy also helps to spread the traffic
stream between a source-destination pair to a large number of
intermediate relay nodes such that in steady state, the packets
of every source node will be distributed across all the nodes
in the network. This arrangement ensures that every node
in the network will have packets buffered for every other
node. Therefore a node always has a packet to send when a
transmission opportunity is available. Thus the role of thetwo-
hop relaying strategy, compared with a one-hop strategy is to
maximizeY χ (n) such thatY χ (n) = Θ (n) [4] at the expense
of a slightly increasedkχ (n). A lower bound onλ (n) readily
results usingY χ (n) = Θ (n), kχ (n) ≤ 2 and Corollary 7. An
upper bound onλ (n) can be easily obtained using Corollary
6. Therefore conclusions readily follows forλ (n). Capacity
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of mobile ad-hoc networks assuming other mobility models
and routing strategies [10] can also be obtained analogously.

Given the insight revealed in Theorem 1 and Corollaries
4, 5, 6 and 7, it can be readily shown that in a network
with a different traffic model than that in [4], e.g. each node
has an infinite stream of packets for every other node in
the network, a one-hop strategy can also achieve a transport
capacity ofη (n) = Θ (n). Therefore the insight revealed in
Theorem 1 and Corollaries 4, 5, 6 and 7 helps to design the
optimum routing strategy for different scenarios of mobilead-
hoc networks.

D. Multicast capacity

In the previous three subsections, we have used Theorem
1 and Corollaries 4, 5, 6 and 7 established in Section III to
analyze the capacity of the random static and mobile networks
considered in [1], [2], [4]. An upper bound on the throughput
capacity can often be readily obtained using Corollary 6.
For the lower bound, the procedure generally involves using
existing results and scheduling algorithms already established
in [1], [2], [4] to obtain kχ (n) and Y χ (n), and then using
Corollary 7 to obtain the throughput capacity lower bound.
The use of Theorem 1 and Corollaries 4, 5, 6 and 7 often
results in simpler analysis. Similar methods can also be used to
obtain the multicast capacity and capacity of hybrid networks
considered in this subsection and the next subsection. To avoid
repetition and to focus on the main ideas, in this subsectionand
the next subsection, we choose to give an intuitive explanation
of the results on the multicast capacity and capacity of hybrid
networks only using Theorem 1 and Corollaries 4, 5, 6 and 7.

In [14], Li considered the multicast capacity of a network
with n nodes uniformly and i.i.d. on aa× a square, denoted
by A. It is assumed that all nodes have the same transmission

ranger (n) = Θ

(

√

log n
n

)

and are capable of transmitting

at W bits per second over a common channel. Furthermore,
a protocol interference model is assumed and two concurrent
transmitters must be separated by an Euclidean distance of at
least(1 +△) r (n). A subsetS ⊆ Vn of ns = |S| nodes are
randomly chosen to serve as the source nodes ofns multicast
sessions wherens is assumed to be sufficiently large. Each
node vi ∈ S chooses a set ofl − 1 points randomly and
independently fromA and multicast its data to the nearest node
of each point. Denote byΦf the set of scheduling algorithm
that allocate the transport capacity equally among all multicast
sessions. Denote byηχ (n) the maximum transport capacity
that can be achieveda.a.s.using χ. The multicast capacity
η (n) is the maximum transport capacity that can be achieved
a.a.s.for all χ ∈ Φf : η (n) = maxχ∈Φf ηχ (n). Note that a
bit multicast tol− 1 destinations is counted as a single bit in
the calculation of the multicast transport capacity. Therefore
our definition of transport capacity in Section II is consistent
with the definition of the multicast transport capacity in [14]
and the results established in Section III can be used directly
here.

We first consider the situation thatl = O
(

n
log n

)

. We will
obtain an upper bound on the multicast transport capacity. It

can be readily shown thatmaxχ∈Φf Y χ (n) = O
(

1
r2(n)

)

.
Furthermore, it can be shown thata.a.s. any multicast tree
spanningl nodes that are randomly placed inA has a total edge
length of at leastca

√
l [14, Lemma 9] wherec is a positive

constant. It follows thatminχ∈Φf kχ (n) = Ω
(

ca
√
l

r(n) W
)

.

Therefore, as an easy consequence of Corollary 6,η (n) =

O
(

1
r(n)

√
l
W
)

= O
(

W√
l

√

n
logn

)

.

To obtain a lower bound on the multicast transport capacity,
a scheduling algorithmχ is constructed (see [14] for a detailed
description of the scheduling algorithmχ). More specifically,
A is partitioned into non-overlapping squares and each square
is of size r(n)√

5
× r(n)√

5
. Calling these squares cells, the total

number of cells equals5a
2

r2(n) . Furthermore, nodes located in
adjacent cells are directly connected, where two cells are
adjacent if they have at least one point in common. Using
the property that nodes are uniformly and i.i.d.,a.a.s. every
cell has at least one node [14, Lemma 18]. Dividing time into
time slots of equal length, it can be shown that there exists a
positive integerc1, independent ofn, such that every1

c1
time

slots,everycell gets at least one time slot to transit. Using the
above results,a.a.s.Y χ (n) ≥ 5a2

c1r2(n)
.

Choosing one node from each cell, it can be shown that
these nodes form a connected component, termedconnected
dominating set. All other nodes are directly connected to at
least one node in the connected dominating set. Multicast
traffic is routed using the connected dominating set. Using
the result that for an arbitrary cell,a.a.s., the probability
that a randomly chosen multicast flow is routed via the cell
is at mostc2

√
lr (n) /a [14, Lemma 20],a.a.s. the number

of cells crossed by a randomly chosen multicast flow is at
most c2

√
lr(n)
a

× 5a2

r2(n) = 5c2a
√
l

r(n) . Thereforea.a.s.kχ (n) =

O
( √

l
r(n)

)

andηχ (n) = Ω
(

1
r(n)

√
l
W
)

= Ω
(

W√
l

√

n
logn

)

.

Combing the upper and lower bounds on the transport
capacity, conclusion can be obtained that whenl = O

(

n
log n

)

,

a.a.s.η (n) = Θ
(

W√
l

√

n
log n

)

.

When l = Ω
(

n
log n

)

, the situation becomes slightly differ-
ent. More specifically, the density of the multicast destination
nodes becomes high enough such that the probability that
a single transmission will deliver the packet to more than
one multicast destination nodes becomes high. In fact, using
the above connected dominating set, it can be shown that
a.a.s.the number of transmissions required to deliver a packet
to all nodes (hence thel − 1 multicast destination nodes)
is at most 5a2

r2(n) , which is independent ofl. Consequently

k (n) = Θ
(

1
r2(n)

)

. Conclusion then readily follows that when

l = Ω
(

n
logn

)

, η (n) = Θ (W ).

E. Capacity of hybrid networks

Now we consider the impact of infrastructure nodes on
network capacity. In addition ton ordinary nodes uniformly
and i.i.d. on a unit squareA, a set ofM infrastructure nodes
are regularly or randomly placed in the same areaA where
M ≤ n. These infrastructure nodes act as relay nodes only
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and do not generate their own traffic. Following the same
setting as that in [12], it is assumed that the infrastructure

nodes have the same transmission ranger (n) = Θ

(

√

logn
n

)

and link capacityW when they communicate with the ordinary
nodes and these infrastructure nodes are inter-connected via a
backbone network with much higher capacity. Furthermore a
protocol interference model is adopted.

The routing algorithm used in the above network [12] has
been optimized such that these infrastructure nodes do not
become the bottleneck, which may be possibly caused by a
poorly designed routing algorithm diverting excessive amount
of traffic to the infrastructure nodes.

First consider the case whenM = o
(

1
r2(n)

)

= o
(

n
logn

)

.
In this situation, the number of transmissions involving an
infrastructure node as a transmitter or receiver is small and
has little impact onY (n), which has been shown in previous

subsections to beΘ
(

1
r2(n)

)

. Furthermore, it can be shown that
the average Euclidean distance between a randomly chosen
pair of infrastructure nodes isΘ(1) [22]. That is, a packet
transmitted between two infrastructure nodes moves by an
Euclidean distance ofΘ(1) whereas a packet transmitted
by a pair of directly connected ordinary nodes moves by
an Euclidean distance ofΘ(r (n)). Therefore a transmission

between two infrastructure nodesis equivalent toΘ
(

1
r(n)

)

transmissions between ordinary nodes and theequivalent
average number of simultaneous ordinary node transmissions
equalsΘ

((

1
r2(n) −M

)

+ M
r(n)

)

= Θ
(

1
r2(n) +

M
r(n)

)

. It fol-
lows using a similar procedure outlined in Section IV-A that

η (n) = Θ





(

1
r2(n) +

M
r(n)

)

W

1
r(n)



 = Θ

((√

n

logn
+M

)

W

)

Therefore whenM = o
(
√

n
logn

)

, the infrastructure nodes

have little impact on the order ofη (n); when M =

Ω
(
√

n
log n

)

(and M = o
(

n
logn

)

), the infrastructure nodes

start to have dominant impact on the network capacity and
the above equation on the transport capacity reduces to
η (n) = Θ (MW ). Noting that the fundamental reason why
infrastructure nodes improve capacity is that they help a pair
of ordinary nodes separated by a large Euclidean distance
to leapfrog some very long hops, thereby reducingk (n).
Therefore the same result in the above equation can also be
obtained by analyzing the reduction ink (n) directly. The
analysis is albeit more complicated.

When M = Ω
(

n
logn

)

, assuming that the transmission

range stays the same as whenM = o
(

n
logn

)

at r (n) =

Θ

(

√

logn
n

)

, the number of simultaneous active infrastruc-

ture nodes becomes limited by the transmission range. More
specifically, onlyΘ

(

1
r2(n)

)

= Θ
(

n
log n

)

infrastructure nodes
can be active simultaneously. Furthermore,a.a.s.each ordinary
node can access its nearest infrastructure node inΘ(1) hops.
Following a similar analysis as that in the last paragraph, it
can be shown thatη (n) = Θ

(

nW
logn

)

whenM = Ω
(

n
logn

)

.

The above results are consistent with the results in [12].
However we further note that whenM = Ω

(

n
logn

)

, a

smaller transmission range ofr (n) = Θ
(

1√
M

)

is sufficient
for an ordinary node to reach its nearest infrastructure node
and hence achieving connectivity. A smaller transmission
range helps to increaseY (n) and it has been shown previously

that Y (n) = Θ
(

1
r2(n)

)

, while k (n) = Θ (1). Therefore the
achievable transport capacity using the smaller transmission
range isη (n) = Θ (MW ) = Ω

(

nW
logn

)

, which is better than

the resultη (n) = Θ
(

nW
logn

)

in [12]. Moreover, different from

the conclusion in [12] suggesting that whenM = Ω
(

n
log n

)

,
further investment in infrastructure nodes will not lead to
improvement in capacity, our result suggests that even when
M = Ω

(

n
logn

)

, capacity still keeps increasing linearly with
M . This capacity improvement is achieved by reducing the
transmission range with the increase inM .

V. CONCLUSION AND FURTHER WORK

In this paper, we show that the network capacity can be
determined by estimating the three parameters, viz. the average
number of simultaneous transmissions, the link capacity and
the average number of transmissions required to deliver a
packet to its destination. Our result is valid for both fi-
nite networks and asymptotically infinite networks. We have
demonstrated the usage and the applicability of our result
by using the result to analyze the capacity of a number of
different networks studied in the literature. The use of our
result often simplifies analysis. More importantly, we showed
that the same methodology can be used to analyze the capacity
of networks under different conditions. Therefore our work
makes important contributions towards developing a generic
methodology for network capacity analysis that is applicable
to a variety of different scenarios. Furthermore, as illustrated
in Section IV-E, the simple capacity-determing relationship
revealed in the paper can be used as a powerful and convenient
tool to quickly estimate the capacity of networks based on an
intuitive understanding of the networks. However we readily
acknowledge that the analysis of the three parameters: the av-
erage number of simultaneous transmissions, the link capacity
and the average number of transmissions required to deliver
a packet to its destination, may still need some customized
analysis that takes into account details of a network different
from other networks.

For asymptotically infinite random networks, the use of
our result to estimate the capacity often involves estimating
the capacity upper bound and the capacity lower bound
separately. The capacity upper bound can be readily obtained
by estimating the maximum number of simultaneously active
transmissions satisfying the interference constraints that can be
accommodated in the network area and the minimum number
of transmissions required to deliver a packet. The capacity
lower bound is more difficult to find. It usually involves
constructing a spatial and temporal scheduling algorithm for
the particular network and demonstrating that the network
capacity is achievable using that algorithm. It remains to be
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investigated on whether a generic technique can be found
such that the capacity lower bound can be obtained without
resorting to designing customized algorithm for a particular
network.

In this paper, we have ignored physical layer details by
assuming that each node is capable of transmitting at a
fixed and identical data rate. This assumption allows us to
focus on the topological aspects of networks that determine
capacity. It remains to be investigated on how to develop a
generic methodology to incorporate the impact of physical
layer techniques, e.g. coding and MIMO, on capacity. We refer
readers to recent work by Jiang et al. [25], which suggests a
possible direction to extend our result to incorporate physical
layer details.
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