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Abstract—Space-Time Block Codes (STBCs) suffer from a
prohibitively high decoding complexity unless the low-complexity
decodability property is taken into consideration in the STBC
design. For this purpose, several families of STBCs that involve
a reduced decoding complexity have been proposed, notably
the multi-group decodable and the fast decodable (FD) codes.
Recently, a new family of codes that combines both of these
families namely the fast group decodable (FGD) codes was
proposed. In this paper, we propose a new construction scheme
for rate-1 FGD codes for 2a transmit antennas. The proposed
scheme is then applied to the case of four transmit antennas and
we show that the new rate-1 FGD code has the lowest worst-
case decoding complexity among existing comparable STBCs.
The coding gain of the new rate-1 code is optimized through
constellation stretching and proved to be constant irrespective
of the underlying QAM constellation prior to normalization .
Next, we propose a new rate-2 FD STBC by multiplexing two
of our rate-1 codes by the means of a unitary matrix. Also a
compromise between rate and complexity is obtained through
puncturing our rate-2 FD code giving rise to a new rate-3/2
FD code. The proposed codes are compared to existing codes in
the literature and simulation results show that our rate-3/2 code
has a lower average decoding complexity while our rate-2 code
maintains its lower average decoding complexity in the low SNR
region. If a time-out sphere decoder is employed, our proposed
codes outperform existing codes at high SNR region thanks to
their lower worst-case decoding complexity.

Index Terms—Space-time block codes, low-complexity decod-
able codes, conditional detection, non-vanishing determinants.

I. I NTRODUCTION

T HE need for low-complexity decodable STBCs is in-
evitable in the case of high-rate communications over

MIMO systems employing a number of antennas higher than
two. This is because despite their low decoding complexity
that grows only linearly with the size of the underlying
constellation, orthogonal STBCs suffer from a severe rate
limitation for more than two antennas [1], [2]. On the other
hand, the full-rate alternatives to orthogonal STBCs namely
the Threaded Algebraic Space-Time (TAST) codes [3] and
perfect codes [4] have generally a prohibitively high decoding
complexity.

The decoding complexity may be evaluated by different
measures, namely the worst-case decoding complexity mea-
sure and the average decoding complexity measure. The worst-
case decoding complexity is defined as the minimum number
of times an exhaustive search decoder has to compute the

Maximum Likelihood (ML) metric to optimally estimate the
transmitted codeword [5], [6], or equivalently the number of
leaf nodes in the search tree if a sphere decoder is employed,
whereas the average decoding complexity measure may be nu-
merically evaluated as the average number of visited nodes by
a sphere decoder in order to optimally estimate the transmitted
codeword [7].

Arguably, the first proposed low-complexity rate-1 code for
the case of four transmit antennas is the quasi-orthogonal
(QO)STBC originally proposed by H. Jafarkhani [8] and
later optimized through constellation rotation to providefull-
diversity [9], [10]. The QOSTBC partially relaxes the orthog-
onality conditions by allowing two complex symbols to be
jointly detected. Subsequently, rate-1, full-diversity QOSTBCs
were proposed for an arbitrary number of transmit antennas
that subsume the original QOSTBC as a special case [11].
In this general framework, thequasi-orthogonalitystands for
decoupling the transmitted symbols into two groups of the
same size.

However, STBCs with lower decoding complexity may be
obtained through the concept of multi-group decodability laid
by S. Karmakaret al. in [12], [13]. Indeed, the multi-group
decodability generalizes the quasi-orthogonality by allowing
the codeword of symbols to be decoupled into more than
two groups not necessarily of the same size. Thanks to
this approach, one can obtain rate-1, full-diversity4-group
decodable STBCs for an arbitrary number of transmit antennas
[14].

However, due to the strict rate limitation imposed by the
multi-group decodability, another family of STBCs namely
fast decodable (FD) STBCs [5], [15], [16] has been proposed.
These codes are conditionally multi-group decodable thus
enabling the use of the conditional detection technique [15]
in which the ML detection is carried out in two steps. The
first step consists of evaluating the ML estimation of the
subset of the transmitted symbols which are separable say
px1, x2, . . . , xkq, conditioned on a given value of the rest
of the symbolspx̂k`1, x̂k`2, . . . , x̂2Kq that we may note
by

`

xML
1 , xML

2 , . . . , xML
k |x̂k`1, x̂k`2, . . . , x̂2K

˘

. In the second
step, the receiver minimizes the ML metric only over all the
possible values ofpxk`1, xk`2, . . . , x2Kq.

Recently, STBCs that are at the time multi-group and fast
decodable namely the fast group decodable (FGD) codes were
proposed [17]. These codes are multi-group decodable such
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that each group of symbols is fast decodable. The contributions
of this paper are summarized in the following:

‚ We propose a novel systematic construction of rate-1
FGD STBCs for2a transmit antennas. The rate-1 FGD
code for a number of transmit antennas that is not a power
of two is obtained by removing the appropriate number of
columns from the rate-1 FGD code corresponding to the
nearest greater number of antennas that is a power of two
(e.g. the rate-1 FGD STBC for three transmit antennas
is obtained by removing a single column from the four
transmit antennas rate-1 FGD STBC).

‚ We apply our new construction method to the case of
four transmit antennas and show that the resulting new
4ˆ4 rate-1 code can be decoded at half the worst-case
decoding complexity of the best known rate-1 STBC.

‚ The coding gain of the new 4̂4 rate-1 code is optimized
through constellation stretching [18] and the nonvanish-
ing determinant (NVD) property [19] is proven to be
achieved by properly choosing the stretching factor.

‚ We propose a new rate-2 STBC by multiplexing two
of the new rate-1 codes by the means of a unitary
matrix and numerical optimization. Next we achieve a
significant reduction of the worst-decoding complexity at
the expense of a rate loss by puncturing the rate-2 code
to obtain a new rate-3/2 code. It is worth noting that the
proposed rate-3/2 and rate-2 codes can be viewed as block
orthogonal STBCs [20].

We provide comparisons in terms of bit error rate (BER)
performance and average complexity through numerical sim-
ulations and show that the reduction in worst-case decoding
complexity comes at the expense of a negligible performance
loss. We also considered a more practical scenario where
a time-out sphere decoder [21] is used and show that our
proposed rate-3/2 and rate-2 codes outperform existing codes
at high SNR.

The rest of the paper is organized as follows: The system
model is defined and the families of low-complexity STBCs
are outlined in Section II. In Section III, we propose our
scheme for the rate-1 FGD codes construction for the case
of 2a transmit antennas. In Section IV, we address the case of
four transmit antennas and the coding gain of the new 4ˆ4
rate-1 STBC is optimized. Next, the rate of the proposed code
is increased through multiplexing and numerical optimization.
Numerical results are provided in Section V, and we conclude
the paper in Section VI. The relevant proofs are provided in
the Appendices.

Notations:

Hereafter, small letters, bold small letters and bold capital
letters will designate scalars, vectors and matrices, respec-
tively. If A is a matrix, thenAH , AT and detpAq denote
the Hermitian, the transpose and the determinant ofA, re-
spectively. We define the vecp.q as the operator which, when
applied to amˆn matrix, transforms it into amnˆ1 vector by
simply concatenating vertically the columns of the correspond-
ing matrix. Theb operator is the Kronecker product andδkj is
the Kronecker delta. The signp.q operator returns 1 if its scalar

input isě 0 and -1 otherwise. The roundp.q operator rounds its
argument to the nearest integer. Thep̃.q operator when applied
to a complex vectora returns

“

ℜ
`

aT
˘

,ℑ
`

aT
˘‰T

and when

applied to complex matrixA returns
“

ℜ
`

AT
˘

,ℑ
`

AT
˘‰T

.
For any two integersa andb, a ” b pmodnq means thata´b

is a multiple ofn and pmqk meansm modulok. Mn is the
set ofn ˆ n complex matrices. IfA is a finite set, then|A|
denotes its cardinality.

II. PRELIMINARIES

The baseband MIMO channel input-output relationship may
be described by:

Y
TˆNr

“ X
TˆNt

H
NtˆNr

` W
TˆNr

(1)

whereT is the codeword signalling period,Nr is the number
of receive antennas,Nt is the number of transmit antennas,
Y is the received signal matrix,X is the code matrix,H is
the channel coefficients matrix with entrieshkl „ CN p0, 1q,
and W is the noise matrix with entrieswij „ CN p0, N0q.
According to the above model, thet’th row of X denotes
the symbols transmitted through theNt transmit antennas
during thet’th channel use while then’th column denotes the
symbols transmitted through then’th transmit antenna during
the codeword signalling periodT .

A STBC matrix that encodes2K real symbols can be
expressed as a linear combination of the transmitted symbols
as [22]:

X “
2K
ÿ

k“1

Akxk (2)

with xk P R and theAk, k “ 1, ..., 2K areT ˆ Nt complex
matrices called dispersion or weight matrices that are required
to be linearly independent overR. A useful manner to express
the system model can be directly obtained by replacingX in
(1) by its expression in (2):

Y “
2K
ÿ

k“1

pAkHqxk ` W. (3)

Applying the vecp.q operator to the above we obtain:

vecpYq “
2K
ÿ

k“1

pINr
b Akq vecpHqxk ` vecpWq. (4)

whereINr
is theNr ˆ Nr identity matrix.

If yi, hi andwi designate thei’th columns of the received
signal matrixY, the channel matrixH and the noise matrix
W, respectively, then equation (4) can be re-written in matrix
form as:
»

—

–

y1

...
yNr

fi

ffi

fl

loomoon

y

“

»

—

–

A1h1 . . . A2Kh1

...
...

...
A1hNr

. . . A2KhNr

fi

ffi

fl

loooooooooooooooomoooooooooooooooon

HHH

»

—

–

x1

...
x2K

fi

ffi

fl

loomoon

s

`

»

—

–

w1

...
wNr

fi

ffi

fl

looomooon

w

.

(5)
A real system of equations can be obtained by separating the
real and imaginary parts of the above to obtain:

ỹ “ H̃HHs ` w̃ (6)
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wherey,w P R2NrTˆ1, andH̃HH P R2NrTˆ2K . Assuming that
NrT ě K, the QR decomposition of̃HHH yields:

H̃HH “
“

Q1 Q2

‰

„

R

0



(7)

whereQ1 P R2NrTˆ2K ,Q2 P R2NrTˆp2NrT´2Kq, QT
i Qj “

δijI, i, j P t1, 2u, R is a 2K ˆ 2K real upper triangular
matrix and0 is ap2NrT´2Kqˆ2K null matrix. Accordingly,
the ML estimate may be expressed as:

sML “ arg min
sPC

›

›

›

“

Q1 Q2

‰T
ỹ ´

“

RT 0T
‰T

s

›

›

›

2

(8)

which reduces to:

sML “ arg min
sPC

}y1 ´ Rs}2 (9)

whereC is the vector space spanned by information vectors,
andy1 “ QT

1 ỹ. In the following, we will outline the known
families of low-complexity STBCs and the structure of their
correspondingR matrices that enable simplified ML detection.

A. Multi-group decodable codes

Multi-group decodable STBCs are designed to significantly
reduce the worst-case decoding complexity by allowing sepa-
rate detection of disjoint groups of symbols without any loss
of performance. This is achieved iff the ML metric can be
expressed as a sum of terms depending on disjoint groups of
symbols.

Definition 1. A STBC code that encodes2K real symbols is
said to beg-group decodable if its weight matrices are such
that [13], [12]:

AH
k Al ` AH

l Ak “ 000, @Ak P Gi, Al P Gj ,

1 ď i ‰ j ď g, |Gi| “ ni,

g
ÿ

i“1

ni “ 2K.
(10)

whereGi denotes the set of weight matrices associated to the
i’th group of symbols.

For instance if a STBC that encodes2K real symbols isg-
group decodable, its worst-case decoding complexity order
can be reduced fromMK to

řg

i“1

?
M

ni

with M being
the size of the used square QAM constellation. The worst-
case decoding complexity order can be further reduced to
řg

i“1

?
M

ni´1

if the conditional detection via hard slicers
is employed. In other words, theg-group decodability can be
seen to split the original tree with2K ´ 1 levels tog smaller
trees each withni ´1 levels. In the special case of orthogonal
STBCs, the worst-case decoding complexity isOp1q as the
PAM slicers need only a fixed number of simple arithmetic
operations irrespective of the square QAM constellation size.
The corresponding upper triangular matrixR will be a block
diagonal matrix:

R “

»

—

—

—

–

R1 0 . . . 0

0 R2 . . . 0
...

...
. . .

...
0 0 . . . Rg

fi

ffi

ffi

ffi

fl

whereRi is a ni ˆ ni upper triangular matrix.

B. Fast decodable codes

A STBC is said to be fast decodable [5] if it is conditionally
multi-group decodable.

Definition 2. A STBC that encodes2K real symbols is said
to be FD if its weight matrices are such that:

AH
k Al ` AH

l Ak “ 000, @Ak P Gi, Al P Gj ,

1 ď i ‰ j ď g, |Gi| “ ni,

g
ÿ

i“1

ni “ κ ă 2K.
(11)

The above definition slightly generalizes the definition of FD
codes in [5] where the FD code is restricted to be conditionally
orthogonal, that isn1 “ n2 . . . “ ng “ 1. The advantage of
FD STBCs is that one can resort to the conditional detection
to significantly reduce the worst-case decoding complexity.
For instance, if a STBC that encodes2K real symbols is
FD, its corresponding worst-case decoding complexity order
for square QAM constellations is reduced from

?
M

2K´1

to?
M

2K´κ ˆ
řg

i“1

?
M

ni´1

. If the FD code is conditionally
orthogonal, the worst-case decoding complexity order is re-
duced to

?
M

2K´κ
. Fast decodability reduces to the splitting

of the lastκ levels of the real sphere decoder tree intog
smaller trees each withni ´ 1, i “ 1, . . . , g levels. In the
particular case ofni “ 1, @i “ 1, . . . , g (i.e. the FD code is
in fact conditionally orthogonal), fast decodability reduces to
the removal of the lastκ levels of the real valued tree. The
upper triangular matrixR takes the following form:

R “
„

A B

0 C



whereB has no special structure,C is ap2K ´ κqˆp2K ´ κq
upper triangular matrix, andA is a block diagonalκ ˆ κ

matrix:

A “

»

—

—

—

–

R1 0 . . . 0

0 R2 . . . 0
...

...
. . .

...
0 0 . . . Rg

fi

ffi

ffi

ffi

fl

with Ri being ani ˆ ni upper triangular matrix.

C. Fast group decodable codes

A STBC is said to be fast group decodable [17] if it is
multi-group decodable such that each group is fast decodable.

Definition 3. A STBC that encodes2K real symbols is said
to be FGD if:

AH
k Al ` AH

l Ak “ 000, @Ak P Gi, Al P Gj ,

1 ď i ‰ j ď g, |Gi| “ ni,

g
ÿ

i“1

ni “ 2K
(12)

and that the weight matrices within each group are such that:

AH
k Al ` AH

l Ak “ 000, @Ak P Gi,m, Al P Gi,n,

1 ď m ‰ n ď gi, |Gi,j | “ ni,j ,

gi
ÿ

j“1

ni,j “ κi ă ni.
(13)

whereGi,m (resp.gi) denotes the set of weight matrices that
constitute them’th group (resp. the number of inner groups)
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within the i’th group of symbolsGi. For instance, if a STBC
that encodes2K real symbols is FGD, its corresponding
worst-case decoding complexity order for square QAM con-
stellations is reduced from

?
M

2K´1

to
řg

i“1

?
M

ni´κi ˆ
řgi

j“1

?
M

ni,j´1

. Similarly, if each group is conditionally
orthogonal, the worst-case decoding complexity order is equal
to

řg
i“1

?
M

ni´κi

. If a real sphere decoder is employed, fast
group decodability reduces to splitting the original2K ´ 1

real valued tree intog smaller trees each withni levels, and
that for each of these new trees the lastκi levels are split into
gi smaller trees each withni,j ´ 1 levels. The corresponding
upper triangular matrixR takes the following form:

R “

»

—

—

—

–

R1 0 . . . 0

0 R2 . . . 0
...

...
. . .

...
0 0 . . . Rg

fi

ffi

ffi

ffi

fl

(14)

such that for1 ď i ď g, one has:

Ri “
„

Ai Bi

0 Ci



(15)

where Bi has no special structure,Ci is a pni ´ κiq ˆ
pni ´ κiq upper triangular matrix, andAi is a κi ˆ κi block
diagonal matrix:

Ai “

»

—

—

—

–

Ri,1 0 . . . 0

0 Ri,2 . . . 0
...

...
. . .

...
0 0 . . . Ri,gi

fi

ffi

ffi

ffi

fl

(16)

whereRi,j being ani,j ˆ ni,j upper triangular matrix

III. T HE PROPOSEDFGD SCHEME

In this section, we provide a systematic approach for
constructing rate-1 FGD STBCs for2a transmit antennas.
Recognizing the key role of the matrix representations of the
generators of the Clifford Algebra overR [2] in the sequel
of this paper, we briefly review their main properties in the
following.

A. Linear Representations of Clifford generators

The Clifford algebra overR is generated by the generators
γi satisfying the following property:

γiγj ` γjγi “ ´2δij1 (17)

The above equation can be split in two equations:

γ2

i “ ´1 (18)

γiγj “ ´γjγi @i ‰ j. (19)

In [2], the question about the maximum number of unitary
representations of the Clifford generators has been thoroughly
addressed and it has been proven that for2a ˆ 2a matrices
there are exactly2a ` 1 unitary matrix representations of the

Clifford algebra generators. The matrix representations of γi
denotedR pγiq for the 2a ˆ 2a case are obtained as [2]:

Rpγ1q “ ˘j σ3 b σ3 . . . b σ3
loooooooomoooooooon

a

Rpγ2q “ I2a´1 b σ1

Rpγ3q “ I2a´1 b σ2

...

Rpγ2kq “ I2a´k b σ1 bσ3 b σ3 . . . b σ3
loooooooooomoooooooooon

k´1

Rpγ2k`1q “ I2a´k b σ2 bσ3 b σ3 . . . b σ3
loooooooooomoooooooooon

k´1

...

Rpγ2aq “ σ1 b σ3 b σ3 . . . σ3
looooooomooooooon

a´1

Rpγ2a`1q “ σ2 b σ3 b σ3 . . . σ3
looooooomooooooon

a´1

(20)

where

σ1 “
„

0 1

´1 0



, σ2 “
„

0 j

j 0



, σ3 “
„

1 0

0 ´1



(21)

From now on, we will denoteRpγiq by Ri for simplicity.
The properties of the matricesRi, i “ 1, . . . , 2a ` 1 can be
summarized as follows:

RH
i “ ´Ri, R2

i “ ´I, @1 ď i ď 2a ` 1,

andRiRj ` RjRi “ 000, @1 ď i ‰ j ď 2a ` 1.
(22)

B. A systematic approach for the construction of FGD codes

Proposition 1. For 2a transmit antennas, the two sets of
matrices, namelyG1 “ tI,R1, . . . ,Rau Y A and G2 “
tRa`1, . . . ,R2a`1uYB satisfy(10) whereA andB are given
in Table I and Table II, respectively, andδApmq, δBpmq are
given in Table III:

TABLE III
DIFFERENT CASES FORδ

a δApmq δBpmq
4n

ppmq
4

´1qppmq
4

´2q
2

2´pmq
4

2

4n ` 1
ppmq

4ppmq
4

´1qq
4

2

pmq
4

´1

2

4n ` 2
ppmq

4ppmq
4

´3qq
4

2

pmq
4

2

4n ` 3
pppmq

4
´2qppmq

4
´3qq

4

2

3´pmq
4

2

See Appendix A for proof.

Proposition 2. The rate of the proposed FGD codes is equal
to one complex symbol per channel use regardless of the
number of transmit antennas.

See Appendix B for proof.
Examples of the rate-1 FGD codes for 4,8 and 16 transmit
antennas are given in Table IV.
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TABLE I
DIFFERENT CASES FORA

a A

4n
!

j
ś2a`1

i“a`1
Ri

)

a´2Y
m“1

!

jδApmq
ś2a`1

i“a`1
Ri

śm

i“1
Rki

: 1 ď k1 ă . . . ă km ď a
)

4n ` 1

!

ś2a`1

i“a`1
Ri

)

a´2Y
m“1

!

jδApmq
ś2a`1

i“a`1
Ri

śm

i“1
Rki

: 1 ď k1 ă . . . ă km ď a
)

4n ` 2

!

ś2a`1

i“a`1
Ri

)

a´2Y
m“1

!

jδApmq
ś2a`1

i“a`1
Ri

śm
i“1

Rki
: 1 ď k1 ă . . . ă km ď a

)

4n ` 3

!

j
ś2a`1

i“a`1
Ri

)

a´2Y
m“1

!

jδApmq
ś2a`1

i“a`1
Ri

śm
i“1

Rki
: 1 ď k1 ă . . . ă km ď a

)

TABLE II
DIFFERENT CASES FORB

a B

4n tjśa

i“1
Riu

a´2Y
m“2,4

 

jδBpmq
śa

i“1
Ri

śm

i“1
Rki

: a ` 1 ď k1 ă . . . ă km ď 2a ` 1
(

4n ` 1
a´2Y

m“1,3

 

jδBpmq
śa

i“1
Ri

śm

i“1
Rki

: a ` 1 ď k1 ă . . . ă km ď 2a ` 1
(

4n ` 2 tśa

i“1
Riu

a´2Y
m“2,4

 

jδBpmq
śa

i“1
Ri

śm

i“1
Rki

: a ` 1 ď k1 ă . . . ă km ď 2a ` 1
(

4n ` 3
a´2Y

m“1,3

 

jδBpmq
śa

i“1
Ri

śm
i“1

Rki
: a ` 1 ď k1 ă . . . ă km ď 2a ` 1

(

TABLE IV
EXAMPLES OF RATE-1 FGDCODES

Tx G1 G2

4 I,R2,R4,R1R3R5 R1,R3,R5,R2R4

I,R2,R4,R6 R1,R3,R5,R7

jR1R3R5R7 jR2R4R6R1

8 jR1R3R5R7R2 jR2R4R6R3

jR1R3R5R7R4 jR2R4R6R5

jR1R3R5R7R6 jR2R4R6R7

I,R2,R4,R6,R8 R1,R3,R5,R7,R9

jR1R3R5R7R9 jR2R4R6R8

R1R3R5R7R9R2 R2R4R6R8R1R3

R1R3R5R7R9R4 R2R4R6R8R1R5

R1R3R5R7R9R6 R2R4R6R8R1R7

16 R1R3R5R7R9R8 R2R4R6R8R1R9

R1R3R5R7R9R2R4 R2R4R6R8R3R5

R1R3R5R7R9R2R6, R2R4R6R8R3R7

R1R3R5R7R9R2R8 R2R4R6R8R3R9

R1R3R5R7R9R4R6, R2R4R6R8R5R7

R1R3R5R7R9R4R8 R2R4R6R8R5R9

R1R3R5R7R9R6R8 R2R4R6R8R7R9

IV. T HE FOUR TRANSMIT ANTENNAS CASE

In this section, a special attention is given to the case of four
transmit antennas. The proposed rate-1 FGD code arises as the
direct application ofProposition 1. in the case of four transmit
antennas. Settinga “ 2, we haveG1 “ tI,R2,R4,R1R3R5u
and G2 “ tR1,R3,R5,R2R4u. It is worth noting that the
above choice of weight matrices guarantees an equal average
transmitted power per transmit antenna per time slot.

A. A new rate-1 FGD STBC for four transmit antennas

The Proposed rate-1 STBC denotedX1 is expressed as:

X1psq “Ix1 ` R2x2 ` R4x3 ` R1R3R5x4`
R1x5 ` R3x6 ` R5x7 ` R2R4x8.

(23)

According to Definition 3., the proposed codeX1 is FGD
with g “ 2, n1 “ n2 “ 4 and g1 “ g2 “ 3 such asni,j “
1, i “ 1, 2, j “ 1, 2, 3. Therefore, the worst-case decoding
complexity order is2

?
M . However, the coding gain ofX1 is

equal to zero, and in order to achieve full-diversity, we resort
to the constellation stretching [18] rather than the constellation
rotation technique, otherwise the symbols inside each group
will be entangled together which in turns will destroy the FGD
structure of the proposed code and causes a significant increase
in the decoding complexity.

The full diversity code matrix takes the form of (24) where
s “ rx1, . . . , x8s and k is chosen to provide a high coding

gain. The term
b

2

1`k2 is added to normalize the average
transmitted power per antenna per time slot.

Proposition 3. Taking k “
b

3

5
, ensures the NVD property

for the proposed code with a coding gain equal to 1.

See Appendix C for proof.
For illustration purposes, a comparison between regular and
stretched 16-QAM constellation points is depicted in Fig 1
where the dark dots denote the regular 16-QAM constellation
points whereas the red squares denote the stretched 16-QAM

constellation points with stretching factork “
b

3

5
.

B. The proposed rate-2 code

The proposed rate-2 code denotedX2 is simply obtained by
multiplexing two rate-1 codes by means of a unitary matrix.
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X1psq “
c

2

1 ` k2

»

—

—

–

x1 ` ikx5 x2 ` ikx6 x3 ` ikx7 ´ikx4 ´ x8

´x2 ` ikx6 x1 ´ ikx5 ´ikx4 ´ x8 ´x3 ´ ikx7

´x3 ` ikx7 ikx4 ` x8 x1 ´ ikx5 x2 ` ikx6

ikx4 ` x8 x3 ´ ikx7 ´x2 ` ikx6 x1 ` ikx5

fi

ffi

ffi

fl

(24)

I

Q

Fig. 1. regular (‚) versus stretched (‚) 16-QAM constellation points

Mathematically speaking, the rate-2 STBC is expressed as:

X2 px1, . . . , x16q “ X1 px1, . . . , x8q ` ejφX1 px9, . . . , x16qU
(25)

whereU andφ are chosen in order to maximize the coding
gain. It was numerically verified for QPSK constellation that
taking Uopt “ jR1 and φopt “ tan´1

`

1

2

˘

maximizes the
coding gain which is equal to 1.

To decode the proposed code, the receiver evaluates the
QR decomposition of the real equivalent channel matrixH̃HH

(6). Thanks to the FD structure of the proposed rate-2 code
with K “ 8, κ “ 8, n1 “ n2 “ 4, the corresponding upper-
triangular matrixR takes the form:

R “
„

A B

0 C



(26)

whereB P R
8ˆ8 has no special structure,C P R

8ˆ8 is an
upper triangular matrix andA P R8ˆ8 takes the form:

A “

»

—

—

—

—

—

—

—

—

—

—

–

x 0 0 x 0 0 0 0

0 x 0 x 0 0 0 0

0 0 x x 0 0 0 0

0 0 0 x 0 0 0 0

0 0 0 0 x 0 0 x

0 0 0 0 0 x 0 x

0 0 0 0 0 0 x x

0 0 0 0 0 0 0 x

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(27)

wherex indicates a possible non-zero position. For each value
of px9, . . . , x16q, the decoder scans independently all possible
values ofx4 andx8, and assigns to them the corresponding 6
ML estimates of the rest of symbols via hard slicers according
to equations (28) and (29) at the top of the next page whereri,j
denote the entries of the upper-triangular matrixR. Therefore,

instead of evaluating the ML metricM8 times, the sphere
decoder needs only2M4.5 ML metric evaluations.

A rate-3/2 code that will be denotedX3{2 may be easily
obtained by puncturing the rate-2 proposed code in (25), and
may be expressed as:

X3{2 px1, . . . , x12q “X1 px1, . . . , x8q `
ejφoptX1 px9, . . . , x12qUopt

(30)

V. NUMERICAL AND SIMULATION RESULTS

In this section, we compare our proposed codes to similar
low-complexity STBCs existing in the literature in terms of
worst-case decoding complexity, Peak-to-Average Power Ratio
(PAPR), average decoding complexity, coding gain, and bit
error rate (BER) performance over quasi-static Rayleigh fading
channels. One can notice from Table V that the worst-case
decoding complexity of the proposed rate-1 code is half that
of [24] and [23]. The worst-case decoding complexity of the
proposed rate-3/2 code is half that of the punctured rate-3/2
P.Srinath-S.Rajan code [26] and is smaller by a factor of?
M{2 than the rate-3/2 S.Sirianunpiboonet al. code [25].

The worst-case decoding complexity of our rate-2 code is half
that of the rate-2 P.Srinath-S.Rajan code [26] and smaller by
a factor of

?
M{2 than the rate-2 T.P. Ren codeet al. [27].

Simulations are carried out in quasi-static Rayleigh fading
channel in the presence of AWGN for 2 receive antennas. The
ML detection is performed via a depth-first tree traversal with
infinite initial radius sphere decoder. The radius is updated
whenever a leaf node is reached and sibling nodes are visited
according to the simplified Schnorr-Euchner enumeration [28].

From Fig. 2, one can notice that the proposed rate-1 code
loses about 0.6 dB w.r.t to Md.Khan-S.Rajan rate-1 code [24]
while offering similar performance to M.Sinnokrot-J.Barry
rate-1 code [23] at10´3 BER for several spectral efficiencies
namely 2,4, and 6 bpcu.

From Fig. 3, one can notice that the proposed rate-3/2 code
loses about 0.6 dB w.r.t the punctured P.Srinath-S.Rajan code
[26] while it gains about 0.4 dB w.r.t S.Sirianunpiboonet al.
code [25] at10´3 BER for several spectral efficiencies namely
3,6, and 9 bpcu. Moreover, from Figs 4(a), 4(b), and 4(c) one
can easily verify that the proposed rate-3/2 code maintainsits
lower average decoding complexity for the considered spectral
efficiencies while the average decoding complexity of the
S.Sirianunpiboonet al. code increases with the size of the
underlying constellation.

From Fig. 5, one can notice that the proposed rate-2 code
loses about 0.8 dB w.r.t the P.Srinath-S.Rajan code [26] while
gaining about 0.25 dB w.r.t T.P. Renet al. code [27] at10´3

BER. From Fig. 6, it is easily noticed that our proposed
code is decoded with lower average decoding complexity
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xML
i | px̂4, x̂9, . . . , x̂16q “ signpziq ˆ min

”

ˇ

ˇ2 round
`

pzi ´ 1q {2
˘

` 1
ˇ

ˇ,
?
M ´ 1

ı

, i “ 1, 2, 3 (28)

xML
j | px̂8, x̂9, . . . , x̂16q “ signpzjq ˆ min

”

ˇ

ˇ2 round
`

pzj ´ 1q {2
˘

` 1
ˇ

ˇ,
?
M ´ 1

ı

, j “ 5, 6, 7 (29)

where:

zi “
˜

y1
iri,4x̂4 ´

16
ÿ

k“9

ri,kx̂k

¸

{ri,i, i “ 1, 2, 3, zj “
˜

y1
j ´ rj,8x̂8 ´

16
ÿ

k“9

rj,kx̂k

¸

{rj,j , j “ 5, 6, 7

TABLE V
SUMMARY OF COMPARISON IN TERMS OF WORST-CASE COMPLEXITY, M IN DET AND PAPR

Code Worst-case Min det (“
?
δ) PAPR (dB)

complexity for QAM constellations QPSK 16QAM 64QAM
The proposed rate-1 code 2

?
M 1 0 2.5 3.7

M.Sinnokrot-J.Barry code [23] 4

?
M 7.11 0 2.5 3.7

Md.Khan-S.Rajan code [24] 4

?
M 12.8 5.8 8.3 9.5

The proposed rate-3/2 code 2M2.5 1 (verified for 4-QAM) 3 5.6 6.7
S.Sirianunpiboonet al. code [25] M3 N/A 5.4 8 8.4

P.Srinath-S.Rajan rate-3/2 code [26] 4M2.5 12.8 4 6.5 7.7
The proposed rate-2 code 2M4.5 1 (verified for 4-QAM) 2.8 5.3 6.5

P.Srinath-S.Rajan code [26] 4M4.5 12.8 (verified for 4/16-QAM) 2.8 5.3 6.5
Tian Peng Renet al. rate-2 code [27] M5 N/A 4 7 7.66
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M.Sinnokrot-J.Barry code

Md.Khan-S.Rajan code
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Fig. 2. BER performance for 4̂2 system

than T.P. Renet al. code [27] over the entire SNR range
while it maintains its lower average decoding complexity w.r.t
P.Srinath-S.Rajan code [26] in the low SNR region.

Next, we considered a more practical scenario where atime-
out sphere decoder [21] is employed. In fact, the tree-based
search is terminated if a predetermined limit on the number of
visited nodes is exceeded and the sphere decoder returns the
current codeword estimation. In Fig. 7 we fixed a threshold of
50, 500, 5000 nodes count at 3, 6, and 9 spectral efficiencies
respectively. It can be verified that our rate-3/2 proposed code
outperforms the punctured P.Srinath-S.Rajan code [26] andthe
S.Sirianunpiboonet al.code [25] at high SNR for 3 and 6 bpcu
spectral efficiencies. In Fig. 8 the threshold is fixed at 1000
nodes count. One can easily verify that the proposed code
outperforms the P.Srinath-S.Rajan code [26] and the T.P. Ren
et al. code [27] code at high SNR. This can be justified by

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
10´6

10´5

10´4

10´3

10´2

10´1

100

SNR per receive antenna

B
E

R

S.Sirianunpiboonet al. code

Proposed rate-3/2 code

P.Srinath-S.Rajan rate-3/2 code

3 bpcu 6 bpcu 9 bpcu

Fig. 3. BER performance for 4̂2 system

the fact that the maximum number of visited nodes is related
to the worst-case decoding complexity which is lower in our
proposed codes.

VI. CONCLUSIONS

In the present paper we have proposed a systematic ap-
proach for the construction of rate-1 FGD codes for an
arbitrary number of transmit antennas. This approach when
applied to the special case of four transmit antennas results in
a new rate-1 FGD STBC that has the smallest worst-case de-
coding complexity among existing comparable low-complexity
STBCs. The coding gain of the proposed FGD rate-1 code
was then optimized through constellation stretching. Nextwe
managed to increase the rate to 2 by multiplexing two rate-
1 codes through a unitary matrix. A compromise between
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Fig. 4. Average complexity for 4̂2 system at 3, 6 and 9 bpcu
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complexity and throughput may be achieved through punc-
turing the proposed rate-2 code which results in a new low-
complexity rate-3/2 code. The worst-case decoding complexity
of the proposed codes is lower than their STBC counterparts
in the literature.

According to the simulations results, the proposed rate-
1 code loses about 0.6 dB w.r.t to Md.Khan-S.Rajan rate-1
code [24] while offering similar performance to M.Sinnokrot-
J.Barry rate-1 code [23] at10´3 BER for several spectral
efficiencies namely 2,4, and 6 bpcu. The proposed rate-3/2
code loses about 0.6 dB w.r.t the punctured P.Srinath-S.Rajan
code [26] while it gains about 0.4 dB w.r.t S.Sirianunpiboon
et al. code [25] at10´3 BER for several spectral efficiencies
namely 3,6, and 9 bpcu. Moreover, the proposed rate-3/2
code maintains its lower average decoding complexity for the
considered spectral efficiencies.

The proposed rate-2 code loses about 0.8 dB w.r.t the
P.Srinath-S.Rajan code [26] while gaining about 0.25 dB w.r.t
T.P. Renet al. code [27] at10´3 BER . Our proposed code is
decoded with lower average decoding comlexity than T.P. Ren
et al. code [27] over the entire SNR range while it maintains
its lower average decoding complexity w.r.t P.Srinath-S.Rajan
code [26] in the low SNR region.

Next, we considered a more practical scenario where atime-
out sphere decoder is employed. Our rate-3/2 proposed code
outperforms the punctured P.Srinath-S.Rajan code [26] andthe
S.Sirianunpiboonet al.code [25] at high SNR for 3 and 6 bpcu
spectral efficiencies.The proposed rate-2 code outperforms the
P.Srinath-S.Rajan code [26] and the T.P. Renet al. code [27]
code at high SNR. This can be justified by the fact that the
maximum number of visited nodes is related to the worst-case
decoding complexity which is lower in our proposed codes

APPENDIX A

Proof: From the properties of the matrix representa-
tions of the Clifford algebra generators overR (22), it is
straightforward to prove that for a matrixA P M2a , if
A “ śm

i“1
Rki

: 1 ď k1 ă . . . ă km ď 2a ` 1, then we

have:
AH “ p´1qmpm`1q{2A (31)

moreover, it is easy to prove that:

RlA “

$

’

’

&

’

’

%

ARl
m odd l P tk1, . . . , kmu
m even l R tk1, . . . , kmu

´ARl
m even l P tk1, . . . , kmu
m odd l R tk1, . . . , kmu

. (32)

It is easy to see thatG1zAYG2zB is the set of weight matrices
for the Complex Orthogonal Design (COD) for2a transmit
antennas. Thus we need only to prove that theG1, and G2

satisfy (10). Towards this end letAk P A, Bl P B, C P G1zA,
andD P G2zB. Let a “ 4n, we have according to Table II:

B1 “ j

a
ź

i“1

Ri (33)

and Bm{2`1 is given by (34) at the top of the next page.
Consequently, from (31):

BH “ ´B, @B P B (35)

and from (32) one has:

BHC ` CHB “ 0, @B P B. (36)

On the other hand from Table I we have:

A1 “ j

2a`1
ź

i“a`1

Ri (37)

andAm is given by (38) at the top of the next page. From
(31), it follows that:

AH
1 “ A1 (39)

AH
m “

"

Am m even
´Am m odd

(40)

and from (32), we obtain:

AHD ` DHA “ 0,@A P A. (41)

Finally, from Eqs (32), (33), (34), (37), and (38)we get:

AHB ` BHA “ 0, @A P A,B P B. (42)

It remains to prove that the proposed weight matrices are
linearly independent overR. Towards this end recall from
[29] that if tMk : k “ 1, . . . , 2au are pairwise anti-commuting
matrices that square to a scalar, then the set:

B2a “ tIu Y tMk : k “ 1, . . . , 2au 2aY
m“2

#

m
ź

i“1

Mki
: 1 ď k1 ă . . . ă km ď 2a

+

forms a basis ofM2a overC. Consequently, the setB2aYjB2a

forms a basis overR. Thanks to the properties of the matrix
representations of Clifford algebra generators (22), the set of
matrices defined in (43) forms a basis ofM2a overR:

tI, jIu Y tRk, jRk : k “ 1, . . . , 2au 2aY
m“2

#

m
ź

i“1

Rki
, j

m
ź

i“1

Rki
: 1 ď k1 ă . . . ă km ď 2a

+

(43)
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Bm{2`1 “
"

j
śa

i“1
Ri

śm
i“1

Rki
a ` 1 ď k1 ă . . . ă km ď 2a ` 1, m “ 4n, n1 ‰ 0

śa

i“1
Ri

śm

i“1
Rki

a ` 1 ď k1 ă . . . ă km ď 2a ` 1, m “ 4n1 ` 2
(34)

Am “

$

’

’

’

&

’

’

’

%

j
ś2a`1

i“a`1
Ri

śm

i“1
Rki

1 ď k1 ă . . . ă km ď a, m “ 4n1, n1 ‰ 0
ś2a`1

i“a`1
Ri

śm

i“1
Rki

1 ď k1 ă . . . ă km ď a, m “ 4n1 ` 1, n1 ‰ 0
ś2a`1

i“a`1
Ri

śm

i“1
Rki

1 ď k1 ă . . . ă km ď a, m “ 4n1 ` 2

j
ś2a`1

i“a`1
Ri

śm

i“1
Rki

1 ď k1 ă . . . ă km ď a, m “ 4n1 ` 3

(38)

But from (20), one has:

2a`1
ź

i“1

Ri “ ¯ja´1I2a (44)

which reduces for the case ofa “ 4n to:
2a`1
ź

i“1

Ri “ ˘jI2a . (45)

In what follows, we will express the proposed weight matrices
in terms ofRi, i “ 1, 2, . . . , 2a thanks to (45). Readily, the set
G2zB becomes

!

Ra`1, . . . ,R2a,˘j
ś2a

i“1
Ri

)

. After some
manipulations, the setsA in Table I andB in Table II may
be re-written as in (46) and (47) respectively at the top of
the next page. Now it can be easily verified thatG1 Y G2 is
a subset of the basis in (43). The proofs for other cases ofa

follow similarly and are therefore omitted.

APPENDIX B

Proof: The rate of the proposed FGD codes for the case
of 2a transmit antennas may be expressed as:

R “ 2a ` 2 ` |A| ` |B|
2a`1

(48)

However form Table I, regardless ofa we have:

|A| “ 1 `
a´2
ÿ

i“1

ˆ

a

i

˙

“
a´2
ÿ

i“0

ˆ

a

i

˙

“ 2
a ´ pa ` 1q (49)

On the other hand, from Table II, we have fora even:

|B| “ 1 `
a´2
ÿ

i“2,4,...

ˆ

a ` 1

i

˙

“ 1 `
a´2
ÿ

i“2,4...

ˆ

a

i ´ 1

˙

`
ˆ

a

i

˙

“ 1 `
a´3
ÿ

j“1,3...

ˆ

a

j

˙

`
a´2
ÿ

i“2,4...

ˆ

a

i

˙

“ 1 `
a´2
ÿ

l“1

ˆ

a

l

˙

“
a´2
ÿ

l“0

ˆ

a

l

˙

“ 2
a ´ pa ` 1q

(50)

where we used the recursion identity:
ˆ

n

k

˙

“
ˆ

n ´ 1

k ´ 1

˙

`
ˆ

n ´ 1

k

˙

(51)

Similarly, for a odd, we have:

|B| “
a´2
ÿ

i“1,3,...

ˆ

a ` 1

i

˙

“
a´2
ÿ

i“1,3...

ˆ

a

i ´ 1

˙

`
ˆ

a

i

˙

“
a´3
ÿ

j“0,2...

ˆ

a

j

˙

`
a´2
ÿ

i“1,3...

ˆ

a

i

˙

“
a´2
ÿ

l“0

ˆ

a

l

˙

“
a´2
ÿ

l“0

ˆ

a

l

˙

“ 2
a ´ pa ` 1q.

(52)

Finally, using these relations, we get:

R “ 1. (53)

Thus concluding the proof.

APPENDIX C

Proof: The proposed code is 2-group decodable
and the corresponding two sub-codes will be
denoted by XI “ Xpx1, x2, x3, x4, 0, 0, 0, 0q and
XII “ Xp0, 0, 0, 0, x5, x6, x7, x8q to avoid any ambiguity.
The coding gainδX is equal to the minimum Coding Gain
Distance (CGD) [30], or mathematically:

δX “ min
s‰s1

s,s1PC

det
´

`

Xpsq ´ Xps1q
˘H `

Xpsq ´ Xps1q
˘

¯

looooooooooooooooooooooooomooooooooooooooooooooooooon

CGDpXpsq,Xps1qq

“ min
∆sP∆Czt0u

|detppXp∆sqqq |2 (54)

where∆s “ s ´ s1, ∆C is the vector space spanned by∆s.
Thanks to the quasi-orthogonality structure one has [31]:

δX “ mintδXI
, δXII

u . (55)

The coding gain of the first sub-code is expressed as:

δXI
“

„

`

∆x2

1 ` ∆x2

2 ` ∆x2

3 ´ k2∆x2

4

˘

ˆ

2

1 ` k2

˙4

(56)

Choosingk “
b

3

5
, the above expression becomes:

δXI
“

«

`

5∆x2
1 ` 5∆x2

2 ` 5∆x2
3 ´ 3∆x2

4

˘

5

ˆ

2

1 ` 3

5

˙

ff4

(57)
where ∆xi “ 2ni, ni P Z. Consider the Diophantine
quadratic equation below:

5pX2

1 ` X2

2 ` X2

3 q ´ 3X2

4 , X1, X2, X3, X4 P Z (58)

In order to find a solution we resort to the following theorem
[32]:
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A “
#

˘
a
ź

i“1

Ri

+

a´1Y
m“2

#

jδApa´mq`1

m
ź

i“1

Rki
: 1 ď k1 ă . . . ă km ď a

+

(46)

B “
#

j

a
ź

i“1

Ri

+

a´2Y
m“2,4

#

jδBpmq
a
ź

i“1

Ri

m
ź

i“1

Rki
: a ` 1 ď k1 ă . . . ă km ď 2a

+

a´1Y
m“3,5

#

jδBpa`1´mq`1

m
ź

i“1

Rki
: a ` 1 ď k1 ă . . . ă km ď 2a

+ (47)

Theorem 1. The equation:

fpxq “ a1x
2

1 ` a2x
2

2 ` a3x
2

3 ` a4x
2

4 “ 0. (59)

is solvable in rational integers iff the coefficients
ai, i “ 1, . . . , 4 are such that:
if a1a2a3a4 ” 1 pmod 8q, then we require
a1 ` a2 ` a3 ` a4 ” 0 pmod 8q. There are no
conditions if a1a2a3a4 ” 2, 3, 5, 6, 7 pmod 8q. In the
casea1a2a3a4 ” 4 pmod8q and a1 ” a2 ” 0 pmod 2q then
if 1

4
a1a2a3a4 ” 1 pmod8q it is required that:

1

2
a1 ` 1

2
a2 ` a3 ` a4 ” 1

2

`

a23a
2

4 ´ 1
˘

pmod8q. (60)

No conditions are required if:

1

4
a1a2a3a4 ” 3, 5, 7 pmod8q (61)

Consequently equation (58) equals to 0 iffX1 “ X2 “ X3 “
X4 “ 0, this follows directly from the above theorem aś3ˆ
5ˆ5ˆ5 ” 1 pmod8q with 5`5`5´3 “ 12 ” ˘4 pmod8q.
Moreover, one has:

5pX2

1 ` X2

2 ` X2

3 q ´ 3X2

4 ‰ ˘1. (62)

Otherwise, we must have:

3X2

4 ” ˘1 pmod 5q (63)

which cannot be true, since the quadratic residues modulo
5 are 0,1 and 4 [33], thus3X2

1 ” 0,˘3 or ˘ 2 pmod 5q.
Therefore, we can write:
ˇ

ˇ

ˇ
5pX2

1`X2

2`X2

3 q´3X2

4

ˇ

ˇ

ˇ
ě 2, @ pX1, X2, X3, X4q ‰ 0 (64)

The above equality holds for many cases, take for instance
X1 “ X2 “ 1, X3 “ X4 “ 0. It is worth noting that the
numerator of the expression (57) is a special case of the Dio-
phantine equation in (58) as∆xi “ 2ni, ni P Z, i “ 1, 2, 3, 4.
Therefore thanks to the above inequality one has:

δX1
“ p8{5q4 24

p8{5q4
“ 16. (65)

The coding gain of the second sub-code is expressed as:

δXII
“

„

`

k2∆x2

5 ` k2∆x2

6 ` k2∆x2

7 ´ ∆x2

8

˘

ˆ

2

1 ` k2

˙4

(66)

For k “
b

3

5
, the above expression becomes:

δXII
“

«

`

3∆x2
5 ` 3∆x2

6 ` 3∆x2
7 ´ 5∆x2

8

˘

5

ˆ

2

1 ` 3

5

˙

ff4

.

(67)

Consider the Diophantine quadratic equation below:

3pX2

5 ` X2

6 ` X2

7 q ´ 5X2

8 , X5, X6, X7, X8 P Z (68)

It is easy to verify fromTheorem 1. that the above equation
equals 0 iffX5 “ X6 “ X7 “ X8 “ 0 as ´3 ˆ 3 ˆ 3 ˆ 5 ”
1 pmod 8q with 3 ` 3 ` 3 ´ 5 “ 4 ” ˘4 pmod 8q.
However, we have:
ˇ

ˇ

ˇ
3pX2

5 `X2

6 `X2

7 q´5X2

8

ˇ

ˇ

ˇ
ě 1, @pX5, X6, X7, X8q ‰ 0 (69)

The above inequality holds for instance by takingX5 “
0, X6 “ X7 “ X8 “ 1. By noting that the nominator in
expression (67) is a special case of the Diophantine equation
(68) as∆xi “ 2ni, ni P Z, i “ 5, 6, 7, 8, then thanks to the
above inequality we have:

δX2
“ p4{5q4 24

p8{5q4
“ 1 (70)

and thusδX “ 1.
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