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Abstract—Space-Time Block Codes (STBCs) suffer from a Maximum Likelihood (ML) metric to optimally estimate the
prohibitively high decoding complexity unless the low-comlexity  transmitted codeword [5]/[6], or equivalently the numbér o
decodability property is taken into consideration in the STBC leaf nodes in the search tree if a sphere decoder is employed,

design. For this purpose, several families of STBCs that iralve . -
a reduced decoding complexity have been proposed, notablyWhereas the average decoding complexity measure may be nu-

the multi-group decodable and the fast decodable (FD) codes Merically evaluated as the average number of visited noges b
Recently, a new family of codes that combines both of these a sphere decoder in order to optimally estimate the trateshit
families namely the fast group decodable (FGD) codes was codeword[[7].

proposed. In this paper, we propose a new construction schem a4y aply, the first proposed low-complexity rate-1 code for

for rate-1 FGD codes for 2¢ transmit antennas. The proposed th ff ¢ it ant is th orth |
scheme is then applied to the case of four transmit antennashd € case or four transmit anteénnas 1S thé quasi-orthogona

we show that the new rate-1 FGD code has the lowest worst- (QO)STBC originally proposed by H. Jafarkhanil [8] and
case decoding complexity among existing comparable STBCs.later optimized through constellation rotation to providé-
The coding gain of the new rate-1 code is optimized through diversity [9], [10]. The QOSTBC partially relaxes the ortho
constellation stretching and proved to be constant irespetive 45ty conditions by allowing two complex symbols to be
of the underlying QAM constellation prior to normalization. . . tlv detected. Sub " te-1. full-di . BC
Next, we propose a new rate-2 FD STBC by multiplexing two jointly detected. su Sequep y rate-1, ull- |verSIt§DQT S

of our rate-1 codes by the means of a unitary matrix. Also a Were proposed for an arbitrary number of transmit antennas
compromise between rate and complexity is obtained through that subsume the original QOSTBC as a special cask [11].
puncturing our rate-2 FD code giving rise to a new rate-3/2 |n this general framework, thguasi-orthogonalitystands for

FD code. The proposed codes are compared to existing codes i ; ; ;
the literature and simulation results show that our rate-32 code "decoupling the transmitted symbols into two groups of the

has a lower average decoding complexity while our rate-2 cad same size. . . .
maintains its lower average decoding complexity in the low SR However, STBCs with lower decoding complexity may be
region. If a time-outsphere decoder is employed, our proposed obtained through the concept of multi-group decodabibig |

codes outperform existing codes at high SNR region thanks to py S. Karmakaret al. in [12], [13]. Indeed, the multi-group
their lower worst-case decoding complexity. decodability generalizes the quasi-orthogonality by vaithgy
Index Terms—Space-time block codes, low-complexity decod- the codeword of symbols to be decoupled into more than

able codes, conditional detection, non-vanishing determants. two groups not necessarily of the same size. Thanks to
this approach, one can obtain rate-1, full-diversitgroup
|. INTRODUCTION decodable STBCs for an arbitrary number of transmit antenna
[14].

HE need for low-complexity decodable STBCs is in Y due to the strict rate limitation i d by th
evitable in the case of high-rate communications over owever, due 1o the strict rate imitation imposed by the

: : lti-group decodability, another family of STBCs namely
MIMO systems employing a humber of antennas higher th N . .
two. This is because despite their low decoding complexi st decodable (FD) STBCSI[S]. [15]. [16] has been proposed.
that grows only linearly with the size of the underlying hese codes are conditionally multi-group decodable thus

constellation, orthogonal STBCs suffer from a severe ra) éwabling the use of the. conditiongl detecFion techniqug [15
limitation for more than two antennals![1],/[2]. On the othej{7 which the M.L det?ctlonl IS .Camﬁd (IJ\/LIJE n t\.NO s.teps.fTrI]]e
hand, the full-rate alternatives to orthogonal STBCs ngm frst step consists o eva uating the : estimation of the
the Threaded Algebraic Space-Time (TAST) codes [3] al a’bset of the transm_|t_ted symbols \.Nh'Ch are separable say
perfect code<[4] have generally a prohibitively high déngd \“1:%2:---%k). conditioned on a given value of the rest
complexity. of the symbols(&yi1,%k+2,...,%2Kx) that we may note

ML ML ML X
The decoding complexity may be evaluated by differefd (1", 2h, | #r1, Bhs2, . k). In the second

measures, namely the worst-case decoding complexity mg}f_p,_the receiver minimizes the ML metric only over all the
sible values ofzyi1, Tkt2,- - -, Tak)-

sure and the average decoding complexity measure. The-woP$® : .
g g plexity ecently, STBCs that are at the time multi-group and fast

case decoding complexity is defined as the minimum numb
of times an exhaustive search decoder has to compute i%" odable namely the fast group decodable (FGD) codes were
proposed[[17]. These codes are multi-group decodable such
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that each group of symbols is fast decodable. The contabsti inputis> 0 and -1 otherwise. The roufij operator rounds its
of this paper are summarized in the following: argument to the nearest integer. Theoperator when applied
« We propose a novel systematic construction of ratet@ a complex vectoa returns[® (a’) ,S‘s(aT)]T and when
FGD STBCs for2® transmit antennas. The rate-1 FGDapplied to complex matrixA returns [m (AT) .S (AT)]T_
code for a number of transmit antennas that is not a powesr any two integers andb, a = b (mod n) means that,— b
of two is obtained by removing the appropriate number @ a multiple ofn and (m), meansm modulok. M,, is the

columns from the rate-1 FGD code corresponding to th@t ofn x n complex matrices. If4 is a finite set, then A
nearest greater number of antennas that is a power of t@énotes its cardinality.

(e.g. the rate-1 FGD STBC for three transmit antennas
is obtained by removing a single column from the four [l. PRELIMINARIES

transmit antennas rate-1 FG[.) STBC). The baseband MIMO channel input-output relationship may
« We apply our new construction method to the case %f

. ) e described by:
four transmit antennas and show that the resulting new y

4x4 rate-1 code can be decoded at half the worst-case Y =X H + W (1)
decoding complexity of the best known rate-1 STBC. TN NN Ny XN

« The coding gain of the news4 rate-1 code is optimized whereT is the codeword signalling period,. is the number
through constellation stretching [18] and the nonvaniskf receive antennasy, is the number of transmit antennas,
ing determinant (NVD) property [19] is proven to beY is the received signal matrixX is the code matrixH is
achieved by properly choosing the stretching factor. the channel coefficients matrix with entriég;, ~ CA(0, 1),

. We propose a new rate-2 STBC by multiplexing tw@nd W is the noise matrix with entries);; ~ CN(0, N).
of the new rate-1 codes by the means of a unitafjccording to the above model, théth row of X denotes
matrix and numerical optimization. Next we achieve e symbols transmitted through th¥, transmit antennas
significant reduction of the worst-decoding complexity 4iuring thet’th channel use while the’th column denotes the
the expense of a rate loss by puncturing the rate-2 codénbols transmitted through theth transmit antenna during
to obtain a new rate-3/2 code. It is worth noting that thée codeword signalling period.
proposed rate-3/2 and rate-2 codes can be viewed as blocR STBC matrix that encode2K real symbols can be

orthogonal STBCs [20]. expressed as a linear combination of the transmitted sysnbol
We provide comparisons in terms of bit error rate (BEF('?S [22]: oK
performance and average complexity through numerical sim- X — ALz @)
ulations and show that the reduction in worst-case decoding =1

complexity comes at the expense of a negligible performar\mh 2 € R and theAy, k = 1,...,2K areT x N, complex

Ios_s. We also considered g more practical scenario Wh?ﬁgtrices called dispersion or weight matrices that areirequ
a time-out sphere decodet [21] is used and ShOV.V Fhat W pe linearly independent ov&. A useful manner to express
prop_osed rate-3/2 and rate-2 codes outperform emstmg&o%e system model can be directly obtained by repladin
at high SNR. . . @r]? by its expression i {2):
The rest of the paper is organized as follows: The syste

model is defined and the families of low-complexity STBCs
are outlined in Section II. In Section Ill, we propose our
scheme for the rate-1 FGD codes construction for the case
of 2¢ transmit antennas. In Section IV, we address the caseA¥plying the ve¢.) operator to the above we obtain:

2K
Y = > (AgH)z + W. (3)
k=1

four transmit antennas and the coding gain of the newi 4 2K
rate-1 STBC is optimized. Next, the rate of the proposed code vedY) = Z (In, ® Ag)vec(H) zi, + vedW). (4)
is increased through multiplexing and numerical optimaat k=1

Numerical results are provided in Section V, and we conclugghereIy is the N, x N, identity matrix.
the paper in Section VI. The relevant proofs are provided jp yi, h; and w; designate the’th columns of the received

the Appendices. signal matrixY, the channel matriH and the noise matrix
W, respectively, then equationl (4) can be re-written in matri
Notations: form as:
Hereafter, small letters, bold small letters and bold edpit | ¥1 Aih; ... Aokl 1 w1
letters will designate scalars, vectors and matrices,e@sp | = : : : o+

tively. If A is a matrix, thenA”, AT and de{A) denote
the Hermitian, the transpose and the determinanfofre-
spectively. We define the vég as the operator which, when y H s w
applied to an x n matrix, transforms it into ann x 1 vector by
simply concatenating vertically the columns of the coroesp
ing matrix. The® operator is the Kronecker product afig is
the Kronecker delta. The sign operator returns 1 if its scalar y=Hs+w (6)

AthT AQKhNT oK WN,
[ —

r

®)
A real system of equations can be obtained by separating the
real and imaginary parts of the above to obtain:



wherey, w € R2N:Tx1 andH e R2N-T*2K  Assuming that B. Fast decodable codes

N, T > K, the QR decomposition ¢ yields: A STBC is said to be fast decodable [5] if it is conditionally
- R multi-group decodable.
H=[Q Q] [O] (7) - .
Definition 2. A STBC that encodesK real symbols is said
whereQ; € R2NV-Tx2K Q, ¢ RN Tx(QN,T-2K) QTQ; — to be FD if its weight matrices are such that:
0i;1, 4,7 € {1,2}, R is a 2K x 2K real upper triangular AFA +ATA, =0, VAL E€Gi, Aje G,
matrix and0 is a (2N, T —2K) x 2K null matrix. Accordingly, g ' (11)
the ML estimate may be expressed as: 1<i#j<g, |G| =mni, Z n; = k < 2K.

ML _ - T . 7 AT |? i=1
s =ag Qg'crﬂ [Ql QQ] y- [R 0 ] SH (8) The above definition slightly generalizes the definition &f F

which reduces to: codes in[[5] Wher_e the FD code is restricted to be conditignal
L oy ) orthogonal, that isi; = ny... = ny, = 1. The advantage of
s' = arg minjy’ — Rs| (9 FD STBCs is that one can resort to the conditional detection

whereC is the vector space spanned by information vestor to significantly reduce the worst-case decoding complexity
p P y For instance, if a STBC that encode#’ real symbols is

' — oTv i i i
andy’ = Qyy. In the following, we will outline the known FD, its corresponding worst-case decoding complexity orde

families of low-complexity STBCs and the structure of thei AM llati i reduced f Wszl
correspondin@® matrices that enable simplified ML detection.oz\/lszq,?ize Q constellations s reduced fr to

VM x Y9 /M. If the FD code is conditionally
orthogonal, the worst-case decoding complexity order is re
uced tov/ M~ ". Fast decodability reduces to the splitting
the lastx levels of the real sphere decoder tree igto
aller trees each with;, — 1, ¢ = 1,...,g levels. In the

A. Multi-group decodable codes

Multi-group decodable STBCs are designed to significant
reduce the worst-case decoding complexity by allowing sepg,
rate detection of disjoint groups of symbols without anyslos articular case of — 1. Vi — 1 g (i.e. the FD code is

of performance. This is achieved iff t.he ML mgt_nc can b h fact conditionally orthogonal), fast decodability reds to
expressed as a sum of terms depending on disjoint 9rOUPHE removal of the lask levels of the real valued tree. The
symbols. upper triangular matriR takes the following form:

Definition 1. A STBC code that encode#’ real symbols is A B

said to beg-group decodable if its weight matrices are such R = [0 C]

that [13], [L2]:
AFA + AHA VA A whereB has no special structur€} is a(2K — k) x (2K — k)
R ALHATAL =0, VAL € G, A€, upper triangular matrix, and\ is a block diagonak x s

. $ (10) matrix:
1<i#j<g |G| =ni, ) ni=2K. Ri 0 .. O
i=1 0 Ry ... 0
whereg; denotes the set of weight matrices associated to the A=| . . . .

i'th group of symbols. : : R
0 0 .. R,

For instance if a STBC that encod2& real symbols isg- . . . .

group decodable, its worst-case decoding complexity org¥jfih Ri being an; x n; upper triangular matrix.

can be reduced from\/X to 37  /M" with M being

the size of the used square QAM constellation. The word: Fast group decodable codes

case decoding complexity order can be further reduced toA STBC is said to be fast group decodablel![17] if it is
9 m’”_l if the conditional detection via hard slicersmulti-group decodable such that each group is fast decedabl

is employed. In other words, thegroup decodability can be pefinition 3. A STBC that encodezk real symbols is said

seen to split the original tree with/' — 1 levels tog smaller 5 pe FGD if:

trees each wit; — 1 levels. In the special case of orthogonal

H H
STBCs, the worst-case decoding complexity$1) as the Ay A+ A7 AL =0, VAL €6, Ajegy,
PAM slicers need only a fixed number of simple arithmetic o g (12)
operations irrespective of the square QAM constellatiae.si I<i#j<g |G]=ni, 2 n = 2K
The corresponding upper triangular matRxwill be a block ) . . .121
diagonal matrix: and that the weight matrices within each group are such that:
R, 0 .. O AFAL+A'AL =0, VAL €Gim, A€ Gin,
0 R .. 0 gi 13
R=| . N , : L<m#n< g, |Gijl =nij Y, nij = ki <ni 13)
. . . . j=1
0 0 .. R,

whereg, ,,, (resp.g;) denotes the set of weight matrices that
whereR,; is an; x n; upper triangular matrix. constitute them’th group (resp. the number of inner groups)



within the i'th group of symbolgj;. For instance, if a STBC Clifford algebra generators. The matrix representations;o
that encode2K real symbols is FGD, its correspondingdenotedR (;) for the 2% x 2 case are obtained &g [2]:
worst-case decoding complexity order for square QAM con-

i i - Vi R = 1j e
stellations is reduced from/3° " to Y VM X () 193803 B0y
gl 1\/Mn” " Similarly, if each group is conditionally R - L ¢
(72) 20-1 @ 01
orthogonal the worst-case decoding complexity order isakq
to 39, +/M" """, If a real sphere decoder is employed, fast R(1s) = L-1®o»
group decodability reduces to splitting the origirtdk’ — 1 :
real valued tree intg smaller trees each with; levels, and B
that for each of these new trees the lastevels are split into R(a2r) = Ipr @0 B3 803 O3
g; smaller trees each with, ; — 1 levels. The corresponding k=1
upper triangular matrixR. takes the following form: R(v2k+1) = Tk ®02@03Q03...®03
R, 0 ... 0 ot
0 R, ... O :
R=| . . : (14)
. . " . R(’}/Qa) = 0'1®0'3®0’3...0'3
Sy S
0 0 ... R, e
such that forl < i < g, one has: R(V2a41) = 02®03®03...03 (20)
A, B ot
R; = [ 0 Ci:| (15)  where
: : 0 1 0 j 1 0
where B; has no special structurel; is a (n; — k;) X oL = L o0 =|. , 03 = (21)
(n; — k;) upper triangular matrix, and; is ax; x x; block -10 j 0 0 -1
diagonal matrix: From now on, we will denoteR(v;) by R; for simplicity.
R, . 0 o 0 The properties of the matricé®;, i = 1,...,2a + 1 can be
6’ Ri» ... 0 summarized as follows:
A=l (16) R = —Ri, Rf=-LVl<is2+l
0 0 R andR,R; + R;R; =0, V1 <i#j <2a+1.

whereR; ; being an; ; x n; ; upper triangular matrix

B. A systematic approach for the construction of FGD codes

Proposition 1. For 2* transmit antennas, the two sets of

matrlces namelyG; = {LR;,...,R,} v A and Gy =

Rat1,. -, Ragy1}u B satisfy(@d) whereA and B are given
Table[] and Tabld€l, respectively, anth (m), dz(m) are

IIl. THE PROPOSEDFGD SCHEME

In this section, we provide a systematic approach for
constructing rate-1 FGD STBCs fd® transmit antennas.
Recognizing the key role of the matrix representations ef t
generators of the Clifford Algebra ové [2] in the sequel

of this paper, we briefly review their main properties in thglven in TableL T0:
following.
TABLE Il
DIFFERENT CASES FOR
A. Linear Representations of Clifford generators a 54(m) 55(m)
The Clifford algebra oveR is generated by the generators in ((m),—1)((m),—2) 2—(m),
~; satisfying the following property: ) ((731) =) 2 ;
An +1 " (m)y—
¥+ = —20i1 (17) ((m)4((m),—3)) (m)
. . . dn + 2 > - .
The above equation can be split in two equations: nts (((m)4_2)§(m)4_3))4 3_(2,”)4
v o= -1 (18)
vy = =i Vi # (19) See Appendix A for proof.

In [2], the question about the maximum number of unitariProposition 2. The rate of the proposed FGD codes is equal
representations of the Clifford generators has been tlghigu to one complex symbol per channel use regardless of the
addressed and it has been proven that2forx 2¢ matrices number of transmit antennas.

there are exactla + 1 unitary matrix representations of the See Appendix B for proof.

Examples of the rate-1 FGD codes for 4,8 and 16 transmit
antennas are given in Talle]IV.



TABLE |

DIFFERENT CASES FORA
a A
tn | GITe R O A [ R [T R 1 < by <o < i < af
1 | IR R O A T2 R TT Ry, 1< < o < b <a
an+2 | {TE0 L R O O T R R s 1< b <o < i <a
an+3 | [GIEEE R 0 (A0 T2 R Ry 1< by < o < o < )
TABLE Il
DIFFERENT CASES FORB3
a B
4dn {1T-, R} a§224 {jéB(m) [T R Rey ta+ 1<k <...<kpn<20a+ 1}
dn+1 “;123{j55(m)]_[;’:1RiH;’llei ca+1<k <...<kp<2a+1}
dn+2 | {T], R} a§;4{j55<m) [ R Ry, ca+ 1<k <...<kp<2a+1}
4n+3 agfg{jal;(m)m:lRiH;’;lei ta+ 1<k <...<kp<2a+1}

TABLE IV
EXAMPLES OF RATE-1 FGDCODES
TX Ql g2
4 LRy, R4y, R1R3R5 Ri,R3,R5,R2Ry
LRy, R4, Rg Ri,R3,R;5, R~
JR1R3RsR7 JR2R4R6R1
8 JR1R3R5R7R2 JR2R4R6R3
JR1R3R5R7R4 JR2R4ReR5
JR1R3R5R7Rg JR2R4ReR7
IRy, R4, Rg, Rsg Ri,R3,R5,R7, Rg
JR1R3R5R7Rg JR2R4R6Rg
RiR3R5R7R9R2 RoR4ReRsR1R3
RiR3R5R7R9oR4 RoR4ReRsR1R5
RiR3R5R7R9Rg R2R4ReRsR1R7
16 RiR3R;R7R9Rg RoR4RsRsR1Ryg
RiR3R5;R7R9R2R4 | RaR4R¢RsR3R5
RiR3RsR7RoR2Rs, | RoRyRsRsR3Ry
RiR3R;R7R9R2Rs | RaR4ReRsR3Rg
RiR3R;R7R9R4R6, | RoRsRsRsRsR7
RiR3R;R7R9R4Rs | RaR4ReRsRs5Rg
RiR3R5R7R9RsRs | RoR4RgRsR7Rg

IV. THE FOUR TRANSMIT ANTENNAS CASE

A. A new rate-1 FGD STBC for four transmit antennas
The Proposed rate-1 STBC denof¥d is expressed as:

Xl(s) =Ix1 + Roxs + Ryzs + RiR3Rsx4+

(23)
Rizs + R3szg + Rszr + RoRyxs.

According to Definition 3., the proposed cod&X; is FGD
with g =2,n =ng = 4 andgl =g =3 such asn; ; =
1, i =1,2, j = 1,2,3. Therefore, the worst-case decoding
complexity order i2v/M. However, the coding gain &K, is
equal to zero, and in order to achieve full-diversity, weores
to the constellation stretchinig [18] rather than the cdlaten
rotation technique, otherwise the symbols inside eachmgrou
will be entangled together which in turns will destroy the-G
structure of the proposed code and causes a significanasere
in the decoding complexity.

The full diversity code matrix takes the form &f {24) where

s = [z1,...,z5] and k is chosen to provide a high coding
gain. The term H% is added to normalize the average

transmitted power per antenna per time slot.

Proposition 3. Taking & = \/g ensures the NVD property
for the proposed code with a coding gain equal to 1.

See Appendix C for proof.

In this section, a special attention is given to the casewf foFor illustration purposes, a comparison between reguldr an
transmit antennas. The proposed rate-1 FGD code arises assthetched 16-QAM constellation points is depicted in Eig 1

direct application oProposition 1.in the case of four transmit where the dark dots denote the regular 16-QAM constellation
antennas. Setting = 2, we haveg; = {I, Ry, R4, R1R3R5}

{R1,R3,Rs5, RoRy4}. It is worth noting that the
above choice of weight matrices guarantees an equal average >
transmitted power per transmit antenna per time slot.

and G,

points whereas the red squares denote the stretched 16-QAM
constellation points with stretching factér= , /3.

B. The proposed rate-2 code

The proposed rate-2 code deno®€d is simply obtained by
multiplexing two rate-1 codes by means of a unitary matrix.



x1 + ikxs a9 +ikxg x3 +ikxry —ikxy — a8
2 —x9 +ikxg x1 —tkrs —tkxry —x8 —x3— ikx7
Xa(s) = 1+ k2 | —x3 +ikxy ikxy +x8 21 — ikxs To + ikxg (24)

tkxy + xg x3 —ikxy —xzo +ikxg a1 + ikxs

Q instead of evaluating the ML metria/® times, the sphere
decoder needs onyM 45 ML metric evaluations.
A rate-3/2 code that will be denoted;,, may be easily
J . . . obtained by puncturing the rate-2 proposed codé ih (25), and
may be expressed as:

X3/2 (Il,...,xu) =X (Zl,...,Ig) +

me o LY L . (30)
6'7%th1 (.%'97 .. 71‘12) Uopt
I
"o " & o™
V. NUMERICAL AND SIMULATION RESULTS
In this section, we compare our proposed codes to similar
] n n |

. . . . low-complexity STBCs existing in the literature in terms of
worst-case decoding complexity, Peak-to-Average PowdoRa
(PAPR), average decoding complexity, coding gain, and bit
error rate (BER) performance over quasi-static Rayleiglnig
channels. One can notice from Taljlé V that the worst-case
decoding complexity of the proposed rate-1 code is half that
of [24] and [23]. The worst-case decoding complexity of the
Mathematically speaking, the rate-2 STBC is expressed asProposed rate-3/2 code is half that of the punctured rate-3/
_ P.Srinath-S.Rajan codé [26] and is smaller by a factor of
Xz (21, 216) = Xy (@1, ., 28) +/°Xy (w9,...,216) U \/1/2 than the rate-3/2 S.Sirianunpiboat al. code [25].
) o (25)_ The worst-case decoding complexity of our rate-2 code i§ hal
whereU and ¢ are chosen in order to maximize the codingnat of the rate-2 P.Srinath-S.Rajan codel [26] and smajjer b
gain. It was numerically verified for QPSK constellationtthay factor ofv/M /2 than the rate-2 T.P. Ren coe¢ al. [27].
taking Uopt = jR1 and ¢opr = tan™' (3) maximizes the  simulations are carried out in quasi-static Rayleigh fgdin
coding gain which is equal to 1. _ channel in the presence of AWGN for 2 receive antennas. The
To decode the proposed code, the receiver evaluates i detection is performed via a depth-first tree traversahwi
QR decomposition of the real equivalent channel maiix jnfinjte initial radius sphere decoder. The radius is update
@©). Thanks to the FD structure of the proposed rate-2 cogfenever a leaf node is reached and sibling nodes are visited
with K = 8,k = 8,n1 = ny = 4, the corresponding upper-according to the simplified Schnorr-Euchner enumerati@h [2

Fig. 1. regular ¢) versus stretcheds] 16-QAM constellation points

triangular matrixR. takes the form: From Fig.[2, one can notice that the proposed rate-1 code
A B loses about 0.6 dB w.r.t to Md.Khan-S.Rajan rate-1 code [24]
R = 0 C (26)  while offering similar performance to M.Sinnokrot-J.Barr

) _ rate-1 code[[23] at0—3 BER for several spectral efficiencies
where B € R®*® has no special structur€; € R%*8 is an namely 2,4, and 6 bpcu.

upper triangular matrix ana € R*** takes the form: From Fig.[3, one can notice that the proposed rate-3/2 code
[z 0 0 =z 0 0 0 O] loses about 0.6 dB w.r.t the punctured P.Srinath-S.Rajde co
O =z 0 = 0 0 0 0 [26] while it gains about 0.4 dB w.r.t S.Sirianunpiboenal.
O 0 =z = 0 0 0 0 code [25] atl0—3 BER for several spectral efficiencies namely
0 0 0 =« 0 0 0 O 3,6, and 9 bpcu. Moreover, from Figs 4(&), 4(b), and]4(c) one
A= o 0 0 0 =z 0 0 =z (27) can easily verify that the proposed rate-3/2 code mainitsns
o 0 0 0 0 =z 0 = lower average decoding complexity for the considered sakect
o 0 0 0 0 0 =z = efficiencies while the average decoding complexity of the
0O 0 O 0 0O 0 0 =z S.Sirianunpibooret al. code increases with the size of the
wherez indicates a possible non-zero position. For each vaIHgderlymg constellation.

From Fig.[5, one can notice that the proposed rate-2 code

of (xg,...,x16), the decoder scans independently all possiblleSes about 0.8 dB w.r.t the P.Srinath-S.Rajan code [26kwhi
values ofzr, andzs, and assigns to them the corresponding 6o ' o ’ '

. ) . ’ gaining about 0.25 dB w.r.t T.P. Rest al. code [27] at10—3
ML estimates of the rest of symbols via hard slicers accardi . oo . .
. ER. From Fig.[®, it is easily noticed that our proposed
o equations(28) an{P9) at the top of the next page where code is decoded with lower average decoding complexit
denote the entries of the upper-triangular maRixTherefore, 9 9 piexity



M| (&4, 29,...,416) = sign(z;) x min[|2 round (z; — 1) /2) + 1|,\/M7 1], i=1,2,3 (28)
M| (&5, &9, ..., 416) = sign(z;) x min[|2 round (z; — 1) /2) + 1|, VM — 1], j=5,6,7 (29)

where:

16 16
zi = <y§r¢,4i:4 - Z Ti,kj?k> [rii, 1=1,2,3, z; = (y; =T8T — Z ijkik> /Ti5s J=5,6,7

k=9 k=9
TABLE V
SUMMARY OF COMPARISON IN TERMS OF WORSTCASE COMPLEXITY, MIN DET AND PAPR
Code Worst-case Min det (= v/¢) PAPR (dB)
complexity for QAM constellations QPSK | 16QAM | 64QAM
The proposed rate-1 code 24/ M 1 0 25 3.7
M.Sinnokrot-J.Barry code [23] AV M 7.11 0 25 3.7
Md.Khan-S.Rajan codé [24] 4V M 12.8 5.8 8.3 9.5
The proposed rate-3/2 code 2M?5 1 (verified for 4-QAM) 3 5.6 6.7
S.Sirianunpibooret al. code [25] M3 N/A 5.4 8 8.4
P.Srinath-S.Rajan rate-3/2 codel[26] 4M?® 12.8 4 6.5 7.7
The proposed rate-2 code 2M%5 1 (verified for 4-QAM) 2.8 5.3 6.5
P.Srinath-S.Rajan code [26] 4AMED 12.8 (verified for 4/16-QAM)| 2.8 5.3 6.5
Tian Peng Reret al. rate-2 code|[27] M> N/A 4 7 7.66
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1078 E 1071 ¢
1072 E 10-2
E 1073 E E 1073
—4 L | I
10 E 1 1071
1075 F = [
E g 1070 -
=P== Proposed rate-1 code |- | =i S.Sirianunpibooret al. code
L == M.Sinnokrot-J.Barry code . Proposed rate-3/2 code
10~6 | | =@= MdKhan-S Rajan code § | | =@= P.Srinath-S.Rajan rate-3/2 co
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 W5 6 s 10 12 14 16 15 20 22 21 26 25 30
SNR per receive antenna SNR per receive antenna
Fig. 2. BER performance for»42 system Fig. 3. BER performance for>42 system

than T.P. Renet al. code [27] over the entire SNR rangethe fact that the maximum number of visited nodes is related
while it maintains its lower average decoding complexitytw. to the worst-case decoding complexity which is lower in our

P.Srinath-S.Rajan code [26] in the low SNR region. proposed codes.
Next, we considered a more practical scenario whehme-
out sphere decodef [21] is employed. In fact, the tree-based VI. CONCLUSIONS

search is terminated if a predetermined limit on the numiber o
visited nodes is exceeded and the sphere decoder returns
current codeword estimation. In F[d. 7 we fixed a threshold

50, 500, 5000 nodes count at 3, 6, and 9 spectral efficienc
respectively. It can be verified that our rate-3/2 proposstec

outperforms the punctured P.Srinath-S.Rajan code [261lzad

S.Sirianunpiboomet al. code [25] at high SNR for 3 and 6 bpcu
spectral efficiencies. In Fid] 8 the threshold is fixed at 10

nodes count. One can easily verify that the proposed co

outperforms the P.Srinath-S.Rajan code [26] and the T.R.

et al. code [27] code at high SNR. This can be justified by

In the present paper we have proposed a systematic ap-
fach for the construction of rate-1 FGD codes for an
bitrary number of transmit antennas. This approach when
5?§plied to the special case of four transmit antennas eesult

a new rate-1 FGD STBC that has the smallest worst-case de-
coding complexity among existing comparable low-compiexi
STBCs. The coding gain of the proposed FGD rate-1 code
as then optimized through constellation stretching. Nest
%\naged to increase the rate to 2 by multiplexing two rate-
codes through a unitary matrix. A compromise between
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0
Rl have:

moreover, it is easy to prove that:

modd le{ki,... kmn}
meven ¢ {ki,....,kn}
meven le{ky,...,.kn}
modd ¢ {ki,..., kn}

It is easy to see thal;\. AU G2\B is the set of weight matrices
for the Complex Orthogonal Design (COD) faf transmit
antennas. Thus we need only to prove that ¢he and G,

AR,
R,A = (32)

—AR,

BER

ol TrReet e  coue satisfy [10). Towards this end l&, € A, B; € B, C € G\ A,
I I andD € G,\B. Let a = 4n, we have according to Tablg II:
10—5 Il Il Il Il Il Il Il Il a
0 2 4 6 8 10 12 14 16 18 .
SNR per receive antenna Bl =] 1_[ Ri (33)
1=1

Fig. 8. BER performance for»42 system with time out sphere decoder and Bm/2+1 is given by [3%#) at the top of the next page.
Consequently, fron(31):

complexity and throughput may be achieved through punc- B” = -B, vBe B (35)
turing the proposed rate-2 code which results in a new loynd from [32) one has:
complexity rate-3/2 code. The worst-case decoding conitglex

H H
of the proposed codes is lower than their STBC counterparts B7C+C"B=0, VBeB. (36)
in the literature. On the other hand from Tablé | we have:
According to the simulations results, the proposed rate- 2041
1 code loses about 0.6 dB w.r.t to Md.Khan-S.Rajan rate-1 A= n R; (37)
code [24] while offering similar performance to M.Sinnokro i—at1l

J.Barry rate-1 code[[23] at0—* BER for several spectral g A, is given by [38) at the top of the next page. From
efficiencies namely 2,4, and 6 bpcu. The proposed rate-(ﬁ@), it follows that:

code loses about 0.6 dB w.r.t the punctured P.Srinath-8rRa

code [26] while it gains about 0.4 dB w.r.t S.Sirianunpiboon Al = A (39)
et al. code [25] at10—3 BER for several spectral efficiencies AH _ A, m even (40)
namely 3,6, and 9 bpcu. Moreover, the proposed rate-3/2 m —A,, modd

code maintains its lower average decoding complexity fer thnq from (32), we obtain:
considered spectral efficiencies. . o

The proposed rate-2 code loses about 0.8 dB w.rt the A"D+D"A =0,vAec A (41)
P.Srinath-S.Rajan code [26] while gaining about 0.25 dBtW.Ejnglly, from Egs [3R),[(33),[134)[(37), and {38)we get:
T.P. Renet al. code [27] at1l0—3 BER . Our proposed code is " "
decoded with lower average decoding comlexity than T.P. Ren A"B+B"A =0, VAc A BeB. (42)

et al. code [27] over the entire SNR range while it maintaing remains to prove that the proposed weight matrices are

its lower average decoding complexity w.r.t P.Srinathe§aR |inearly independent oveR. Towards this end recall from

code [26] in the low SNR region. [29] that if {M}, : k = 1,..., 2a} are pairwise anti-commuting
Next, we considered a more practical scenario whei®e  matrices that square to a scalar, then the set:

out sphere decoder is employed. Our rate-3/2 proposed code 2%

outperforms the punctured P.Srinath-S.Rajan code [261lznd Bye ={I}Uu{My:k=1,..., 2a}mg2

S.Sirianunpibooet al. code [25] at high SNR for 3 and 6 bpcu m -

spectral efficiencies.The proposed rate-2 code outpesftim {n My, : 1<k <...<kp< 2a}

P.Srinath-S.Rajan code [26] and the T.P. Re¢ral. code [27] =1

code at high SNR. This can be justified by the fact that thgyms a basis oM. overC. Consequently, the sBb. U jBs.
maximum number of visited nodes is related to the worst-Cagms a basis oveR. Thanks to the properties of the matrix
decoding complexity which is lower in our proposed codes gpresentations of Clifford algebra generat@rs (22), tteos
matrices defined if(43) forms a basis.bf;. overR:
APPENDIXA

Proof: From the properties of the matrix representa-
tions of the Clifford algebra generators ovBr (22), it is m m
straightforward to prove that for a matriA € Moa, if {H Ry [ [Re i 1<k <...<kn <20
A=T][" R : 1<k <...<kn<2a+1, then we i=1 i=1 (43)

(LI} U{Ry, iRy - k =1,...,2a} %3_12
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B _ il RIS Ry, a+1<ki<...<kp<2a+1, m=dn, n #0 (34)
m/2+1 H?:lRiH?llei a+1<ki<...<k,<2a+1 m=4n"+2
I RIS Ry, 1<k <...<km<a, m=dn', n' #0
A - H?g:llRinﬁlei 1<ki<...<kp<a m=4n"+1, n' #0 (38)
T TR RIS R, 1<ki<...<kp<a, m=4n'+2
G RIT Ry, 1<ki<...<km<a, m=dn' +3
But from (20), one has: Similarly, for « odd, we have:
2a+1 a—2 a—2
—a— a+1 a a
[] R = %/ ' @4 B- Y ( . )= ( )+()
! , ) ) 1—1 )
i=1 1=1,3,... i=1,3...
which reduces for the case af= 4n to: =3 /a a=2 s a=2 /.
-5 ()2 ()-2() e
H Rq/ — ijIQa- (45) ]:0,2... 121,3... =0
. ai (a) 2° — (a+1)
= = —a .
In what follows, we will express the proposed weight masice l

interms ofR,;,i = 1, 2,. .., 2a thanks to[(4b). Readily, the set
Go\B becomes{Ra.1, ..., Raa, +5 [, R, |. After some
manipulations, the setd in Table[l and in Table[Il may R=1. (53)
be re-written as in[(46) and_(47) respectively at the top
the next page. Now it can be easily verified tldatu G, is
a subset of the basis i {43). The proofs for other cases of

Finally, using these relations, we get:

Qffhus concluding the proof. ]

follow similarly and are therefore omitted. ] APPENDIXC
Proof: The proposed code is 2-group decodable
APPENDIX B and the corresponding two sub-codes will be

denoted by X = X 0,0,0,0) and
Proof: The rate of the proposed FGD codes for the casg  _ X(OyO OIO s, 25, T (igl)’xti)’ x;’\’/;‘g e’m;/ ’ar21biguity

of 2* transmit antennas may be expressed as: The coding gaindx is equal to the minimum Coding Gain
~ 2a+2+ A+ |B] Distance (CGD)[[30], or mathematically:

oM ) ”
However form Tabléll, regardless afwe have: 0x = g;l'sn det((X(s) —X(sh)" (X(s) - X(s/))>
a=2 ;N a=2 ) ss'eC COD(X(s),X(s"))
Al =1+ ; (Z) = ;0 (Z) =2"—(a+1) (49 = min [det((X(as) | (54)
On the other hand, from Tabld I, we have foreven: whereAs = s — s/, AC is the vector space spanned hg.

Thanks to the quasi-orthogonality structure one has [31]:

= fa+1 = a a
Bt 2 ( ) S (20)+ () Ox = min{ox,, oxu} (59

i=2,4,. 2,4.
=3 /4 a=2 /. The coding gain of the first sub-code is expressed as:
=1+ >, i) > ) , A7
1=1,3 1=2,4 _ 2 2 2 2 2
272 ) . 0x, = [(A:z:l + Az5 + Azg — k Ax4) <—1 n k2>] (56)
=1+ <>= ( =2%—(a+1)
=1 ! =0 ! Choosingk = % the above expression becomes:
(50) \
where we used the recursion identity: Sx, = (5Aaf + 5Aa3 + 5Aa8 — 3Ax}) ( 2
! 5 1+2
—1 -1 5
(-Go)-() e &)
o where Az; = 2n;, n; € Z. Consider the Diophantine

guadratic equation below:
5(X7P+ X2+ X3)-3X7, X1,X0,X3,X,€Z  (58)

In order to find a solution we resort to the following theorem
[32]:
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A={i RZ}:;ilQ {szA(am)+1ani:1<k1<...<km<a} (46)
i=1 i=1
LIRS 0 L s TTRT TR, 0t 1< _
B {gllRl}m_M{g ERZERki.a+1\k1<...<km\2a
1= 1= Z:n (47)
a—1 Op(a+1—m)+1 . < <
mijgé{j ERki.a+1\k1<...<km\2a
Theorem 1. The equation: Consider the Diophantine quadratic equation below:
f(x) = a1a} + aga3 + azxi + agxf = 0. (59) 3(X2 + X§ + XZ) —5X§, X5, X6, X7, Xg€Z  (68)

is solvable in rational integers iff
a;,t =1,...,4 are such that:
if ajasasaqs = 1 (mod 8), then we

ay + a2 + a3z + a4
conditions if ajacasay 2,3,5,6,7 (mod 8). In the
caseajasaszas = 4 (mod8) anda; = a; = 0 (mod2) then
if Ta1azazas =1 (mod8) it is required that:

the coefficientdt is easy to verify fromTheorem 1.that the above equation
equals 0 iff X5 = Xg = X7 = Xg=0as—-3x3x3x5H=

require 1 (mod8) with 3 +3+3 —5 =4 = +4 (mod8).

0 (mod 8). There are no However, we have:

3(XZ+XZ+X2)-5X2| =1, V(X5, Xg, X7, Xg) # 0 (69)
The above inequality holds for instance by takidg =

1 1 1,5, 0, X¢ = X7 = Xg = 1. By noting that the nominator in
st gatasta=g (a3ai —1) (mod8).  (60) expression[{87) is a special case of the Diophantine equatio
No conditions are required if: (@8) asAx; = 2n;, n; € Z, i =5,6,7,8, then thanks to the
) above inequality we have:
—ajagazas = 3,5,7 (Mod8) (61) 24
477 0x, = (4/5)" —— =1 (70)
Consequently equatiof (58) equals to 0Xff = X, = X5 = (8/5)
X4 = 0, this follows directly from the above theorem a8 x  and thuséx = 1. m
5x5x5=1(mod8) with5+5+5—-3 =12 = +4 (mod8).
Moreover, one has: REFERENCES

5(X7+ X2+ X3) —3X7 # +1. (62) M
Otherwise, we must have: 2
3X7 = +1 (mod5) (63)

which cannot be true, since the quadratic residues modulg]
5 are 0,1 and 4[[33], thu8X? = 0,43 or + 2 (mod 5). ]
Therefore, we can write:

5(XT+X5+X35)—-3X7| =2, V(X1, Xo, X3, X4) #0 (64) 5]
The above equality holds for many cases, take for instance
X1 = Xo = 1,X3 = X4 = 0. It is worth noting that the [6]
numerator of the expression {57) is a special case of the Dio-
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The coding gain of the second sub-code is expressed as:

(8]
El

;=16
(8/5)

9 4
O0xyy = [(sz:vg + kQAx% + kQAgc% - A:C%) (m) [10]

6)
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4
(3Az2 + 3Ax% + 3A22 — 5Ax3) 2
(SXII = 5 3 . [12]
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