
1888 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 13, NO. 4, APRIL 2014

When Users Interfere with Protocols:
Prospect Theory in Wireless Networks using

Random Access and Data Pricing as an Example
Tianming Li and Narayan B. Mandayam, Fellow, IEEE

Abstract—Game theoretic models have found widespread use
in the analysis and engineered system design of radio resource
management algorithms for a wide variety of systems such as
cellular, ad hoc and sensor networks. The fundamental principle
behind such models and much of game theory has been the
reliance on Expected Utility Theory (EUT). Motivated by the
increasing amount of end-user control afforded in programmable
radio devices, we envision a scenario where end-user actions
essentially “interfere” with the underlying engineered system
design. As an exemplary scenario, we consider in this paper
wireless random access where players follow the precepts of
Prospect Theory (PT), a theory developed by Kahneman and
Tversky to explain real-life decision making that often deviates
from the behavior expected under EUT. Specifically, we con-
sider a game where selfish players adjust their transmission
probabilities over a random access channel under throughput
rewards, delay penalties and energy costs. By analyzing the
Nash Equilibrium achieved, we prove under mild conditions that
deviations from EUT results in degradation of system throughput
while increasing delay and energy consumption. Finally, we
consider a data pricing model and study the impact of end-
user decision-making (i.e., players service choices) at the NE on
wireless network performance.

Index Terms—Prospect theory, game theory, data pricing,
wireless networks, random access.

I. INTRODUCTION

S INCE the early works in [1]–[5], game theory has emerged
as a powerful tool for the analysis and design of radio

resource management algorithms for wireless systems and
networks. As detailed in recent surveys on game theoretical
studies of various aspects of wireless communication networks
[6] and [7], a great deal of meaningful insights have been
gained into a wide range of problems and engineered system
solutions have emerged for a variety of systems such as
cellular, ad-hoc mesh, sensor and WiFi networks. All these
works, including much of traditional game theory (going back
to von Neumann and Morgenstern [8]) rely on the precept that
users follow expected utility theory (EUT), where decision-
making is guided strictly by accepted notions of utility, always
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rational and uninfluenced by real-life perceptions. This is a
very sound assumption that governs the engineered system
design of such systems when the actions of end-users do not
interfere with such design. Moreover, there is ample evidence
of the success of this approach as seen by the phenomenal
growth of wireless system and network deployments along
with their overarching applications and societal benefits.

On the other hand, the advent of easy to use, smart and
programmable radio devices is resulting in the ability of end-
users to control devices with a greater degree of freedom
than ever. While current radio technologies and associated
communication protocols are still for the most part agnostic
to the decision- making of end-users, it is conceivable that
in the future, users could make decisions that influence the
underlying design of various algorithms and impact the per-
formance of the overall system. These decisions could range
from choices of access control to cooperation to selection
of dynamic pricing plans. Other common examples of end-
user actions include repeated refreshing of a browser under
a delayed video stream or slowly loading web link. More
sophisticated examples include modifying drivers of radio
cards and associated protocols such as is increasingly be-
coming possible with the advent of programmable cognitive
and smart radio devices. Even from a system perspective, the
ever increasing capacity crunch faced by service providers is
driving the migration of wireless data services in the future
towards dynamic spectrum access and dynamic pricing based
options, there by exposing the overall design of the network to
the decisions of end-users based on their monetary perceptions
of the value of the service. Further, there is ample evidence
(anecdotal and otherwise) that decision making in real- life is
often guided by perceptions that deviate from the precepts of
EUT.

Motivated by these emerging wireless networking scenarios,
we turn to Prospect Theory (PT) [9], a Nobel prize winning
theory developed by Kahneman and Tversky that explains real-
life decision- making and its deviations from EUT behavior.
While the main ideas and models behind early PT were
developed based on responses/decisions of players involving
monetary transactions (prospects), the behavioral deviations
from EUT are general enough that they have widespread
application in many areas [10]–[13]. We believe that under-
standing the role of PT in wireless systems and networks,
that are increasingly becoming user-centric is important. It
is often recognized that a measurement of user satisfaction
must be included in the assessment of the efficiency of the
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network as a whole [14]. It has also been revealed that
service repurchase intention among mobile Internet users
was significantly positively related to “experienced value”
and “satisfaction” [15]. While these findings highlight the
importance of emphasizing user-experience when defining and
assessing quality of service, traditionally, improvement in
network service has followed a bottom-up approach, assuming
that optimization of performance at the engineering design
level will translate directly into an improved user experience.

As a first step in this direction, we consider an exemplary
radio resource management problem where users follow PT
and compare and contrast it to the case when users follow
EUT. Specifically, we consider a random access game where
selfish players adjust their transmission probabilities over a
collision channel according to rewards received for successful
transmission but also incur energy and delay costs. In the
initial work [16], we only considered a 2-player homogeneous
wireless random access game with 0/1 collision channel. In
this paper, we significantly extend the work by studying and
comparing both 2-player homogeneous and heterogeneous
games where general random access channel model can be
applied, i.e., the packet reception probability can range within
[0, 1]. Furthermore, we also extend the investigation to a N-
player homogeneous game. Our extended results prove the
correctness of our findings in [16] in a much more general
fashion, i.e., the deviation from EUT results in degradation of
system throughput, increased delay and energy consumption.
Moreover, we study the impact of end users’ deviation from
EUT in a more practical scenario, i.e., data pricing. Under
the basic setting as in the wireless random access network, a
2-tier data pricing network is studied under two different data
pricing schemes( UBP and TBP ).

While the random access scenario considered here does
not exactly reflect the time-scale or granularity of end-user
decision making, it never the less serves as a useful illustration
to open up this new line of investigation. There is a gap
between the random access model used here and practical
role of PT in the real world. However, we believe this
exemplary model can get rid of the unnecessary complexities
of real wireless systems at the very initial stage of this new
research and thus help us identify the possible impact of
end-user behaviors on wireless systems in a clear fashion.
Moreover, this simple wireless random access model actually
captures the essence of some real-life wireless communication
scenarios. Notable examples of end-user decision making as
it relates to transmission probabilities are: the decision to
access cellular data services when the network may already
be congested; the decision to utilize a Wi-Fi service at an
airport depending on the usage fee and relative importance of
immediate data communications; and the decision to utilize
high speed data services even though the battery levels may
be very low. The random access model used in this paper
may not exactly describe the above scenarios, however, it is
actually a reasonable abstraction of the transmit choices made
by the end user since it focuses on the probability of a user’s
data transmission.

The rest of the paper is organized as follows. An extensive
related work review is provided in section II. In section III,
a brief introduction to Prospect Theory is provided. Wireless

random access games are formulated in section IV among
selfish players under both the EUT and PT models. In section
V, the impact of any player’s deviation from EUT on the
individual player’s and system performance is numerically
and analytically studied in a 2-player heterogeneous wireless
random access game. The scenario where both players follow
either only PT or only EUT is further studied as 2-player
homogeneous PT game and EUT game, respectively in section
VI. In section VII, a N-player homogeneous game where all
the users follow either only PT or only EUT is discussed.
We build on the work in the previous sections and use PT
in section VIII to study a 2-tier data pricing network. The
performance variations due to the deviation of end-user deci-
sion making from EUT are observed and analytically studied.
We conclude in section IX. A list of important notations is
provided in Table II for the readers’ convenience.

II. RELATED WORK

As mentioned in section II, the advances in smart and
programmable radio devices have provided the end users
with a greater degree of control [17]–[19]. As a result, the
understanding of end users’ real-life decisions are becoming
of paramount importance in designing and managing current
and future wireless networks. Prospect Theory (PT) is well
known to be able to explain real-life decision making and thus
becomes a candidate tool to address this need. Though histor-
ically, PT has been developed based on monetary transactions,
it has been successfully applied to various fields as mentioned
in the above section, such as [10]–[13]. Game theory has also
been a powerful tool to describe the interactions among end
users in wireless networks as some exemplary works can be
found in [1]–[5], [20], [21]. The game theoretical approach
heavily relies on the precept that users follow Expected
Utility Theory (EUT). In [22], the authors have provided basic
characterizations of non-cooperative games where players may
follow PT for decision making.

As indicated in section I, research is needed to identify
how resource allocation mechanisms impact the value of that
resource to users and conversely, how end-user actions impact
resource allocation. The end users’ subjective perception over
the received service and their behaviors have more and more
significant influence on the design, operation and performance
of communication networks and systems [23]. The authors in
[24] explore the possible usage of psychology in the field of
autonomous networks and systems. They claim that the end
users’ behaviors and preferences can have direct impact over
the operation and design of the such systems. They used PT as
a possible candidate to model end users’ preferences. In [25],
the authors identify the importance of the end users’ behaviors
and preferences and proposed a “local community networking
system with ad hoc networking technology”. Moreover, they
used Prospect Theory to model the end users’ behaviors in
such a relaying network environment.

Though the above works have conceptually mentioned the
need for Prospect Theory in communication networks and
systems, a more in-depth technical and quantitative study
on this topic is needed. Therefore, we select an exemplary
wireless random access model as a starting point to identify
the impact of end users’ decisions on the wireless networks
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with the help of PT. The work in [2] is one of first works
that applies game theory to wireless random access and power
control. Specifically, the authors applied game theory to a sim-
plified Aloha system. In [26], a more detailed game-theoretical
study was provided on an Aloha system. The authors in
[27] have investigated the probabilities of retransmission in
a distributed manner under both cooperative model and non-
cooperative game model in a slotted Aloha system. In [28], the
authors have performed an extensive study on the end users’
transmission probabilities at the equilibrium of a random
access network considering end users’ throughput rewards,
energy costs and delay penalties. Data pricing in wireless
networks has been extensively studied under EUT models,
examples of which can be found in [5], [29]–[32] and therein.

III. BACKGROUND: PROSPECT THEORY

Expected Utility Theory (EUT) [8] has been a fundamental
part of modern economics. It provides an approach to evaluate
a prospect L [9], i.e., a contract that will yield M different
outcomes oi, i = 1, ...,M and each outcome occurs with
probability pi, ∀i = 1, ..,M where

∑
i=1,...,M pi = 1. EUT

determines that the prospect is evaluated as

uEUT (L) =
∑

i=1,...,M

piv
EUT (oi), (1)

i.e., the expected value of all possible outcomes. vEUT (·) is a
value function of the outcomes and it is often assumed to be
concave in EUT. However, in Prospect Theory (PT) [9] that
was postulated by Kahneman and Tversky, extensive experi-
ments and measurements suggest that in decision-making in
real life, the prospect L is evaluated as

uPT (L) =
∑

i=1,...,M

w(pi)v
PT (oi). (2)

This valuation is significantly different from EUT in the
following two ways.

(1) Probability Weighting Effect: It is revealed in PT that
people use their subjective probabilities w(pi) rather
than objective probabilities pi to weigh the values of
possible outcomes. Moreover, people tend to over-weigh
low probability outcomes and under-weigh moderate and
high probability outcomes. Based on the experimental
results, an original form for the probability weighting
function was proposed in [33]. While there have been sev-
eral efforts to identify appropriate probability weighting
functions, in this paper, we will use the one identified by
Prelec [34] that captures the over-weighting and under-
weighting of probabilistic outcomes as follows (see Fig.
1):

w(p) = exp(−(− ln p)α), 0 < α ≤ 1, (3)

where α is the parameter which reveals how a person’s
subjective evaluation distorts the objective probability
and a smaller α describes a more curved probability
weighting function. From Fig. 1, we can see that the
probability weighting function has several features [34]:
(1) It is asymmetrically reflected at a point, i.e., 1/e,
where w(1/e) = 1/e; (2) It is concave if 0 ≤ p < 1/e
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Fig. 1. Probability Weighting Function. The curve shows the probability
weighting effects when α = 0.5. The straight line represents the objective
probability.
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Fig. 2. Framing Effects in Prospect Theory. A generic value function is
shown about reference point 0.

and convex if 1/e ≤ p ≤ 1; (3) w(p) > p if 0 ≤ p < 1/e
and w(p) ≤ p if 1/e ≤ p ≤ 1.

(2) Framing Effect: PT [9] states that in decision-making
in real life, the value of an outcome is determined
by considering the relative gains or losses regarding a
reference point. PT also proposes that the value function
should be a concave function of gains and a convex
function of losses with the convex part usually having
a steeper slope. In other words [9], ”losses looms larger
than gains.” The framing effects can be demonstrated in
Fig. 2.

It has been consistently observed that EUT fails to interpret
people’s real-life decisions that could be well explained by
PT, e.g., the famous Allais’ paradox. In [9], the authors
provided a variation of the Allais’ paradox as in Table I.
There were two problems in the experiment and for each
problem, the respondents were asked to choose between two
prospects (A or B). For example, in Table I, the respondent
had two prospects in problem 1. If she chose A, she would
win 2500 dollars with probability 0.33 or 2400 dollars with
probability 0.66 or nothing with probability 0.01. If she
chose B, she would win 2400 dollars for sure. In [9], it
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TABLE I
AN EXAMPLE OF EUT VIOLATION

�������Problem
Prospect

A B

1 $2500 with probability 0.33 $2400 with certainty
$2400 with probability 0.66
$0 with probability 0.01

2 $2500 with probability 0.33 $2400 with probability 0.34
$0 with probability 0.67 $0 with probability 0.66

was found that a majority of the respondents (61 per cent)
chose B for problem 1 and A for problem 2. According to
EUT, a respondent would evaluate a prospect, e.g., problem
1A, as the expectation of all the prospect’s outcomes, e.g.,
0.33vEUT (2500) + 0.66vEUT (2400) + 0.01vEUT (0). Thus,
a preference of 1B over 1A implies 0.33vEUT (2500) +
0.66vEUT (2400) + 0.01vEUT (0) < vEUT (2400) that is
equivalent to 0.34vEUT (2400) > 0.33vEUT (2500). Mean-
while, the choice of 2A over 2B implies 0.34vEUT (2400) <
0.33vEUT (2500). These two results produce a paradox. This
observation as well as numerous other ones are used in [13] to
illustrate the situations where EUT fails to accurately describe
people’s real-life decisions. However, PT can successfully
explain the decisions the respondents made in the above exper-
iment. Given zero is the reference point, α = 0.5 and vPT (·)
is linear, it can be easily identified that w(0.33)vPT (2500)+
w(0.66)vPT (2400) + w(0.01)vPT (0) < w(1)vPT (2400) and
w(0.34)vPT (2400) < w(0.33)vPT (2500) are established si-
multaneously. Unlike the framing effect shown in Fig. 2, in
this paper we apply PT by assuming a linear value func-
tion towards the outcomes of communication activities, i.e.,
vPT (x) = ax where a ≥ 0 is a constant. Note that, x is the
gain or loss relative to fixed reference point zero, i.e., values
are framed about the reference point zero.

IV. A WIRELESS RANDOM ACCESS GAME

In this paper, we consider a time slotted wireless random
access network with N = |N | selfish players accessing a
single access point. Each player is assumed to have a saturated
packet queue and able to transmit one packet in a time slot
[28]. Given any time slot, there is a subset J ⊆ N of players
that transmit packets to the base station simultaneously while
players in J c ⊆ N decide to wait. For player i ∈ J , let pi|J
be the probability that the base station captures her packet.
Note that, player i’s transmission probability is denoted as pi.
For a successful packet delivery, a player obtains a unit reward
ci ≥ 0 while incurring a unit energy cost ei ≥ 0. However, if
a player i ∈ J fails to deliver her packet to the base station,
she incurs a unit energy cost ei ≥ 0 and a unit delay penalty
di ≥ 0. If she decides to not transmit (wait), i.e., i ∈ J c, she
also incurs a unit delay penalty di ≥ 0.

All the players have the same pure strategy set, i.e., Ai =
{t, nt}, i ∈ N , where the strategy t denotes transmission and
nt denotes wait (no transmission). The pure strategy profile
of all N players in a time slot can be represented as a vector
a = [ai]∀i∈N ∈ A where A = A1 × A2 × ... × AN is
the set of all possible pure strategy profiles. For any given
a ∈ A, let J (a) ⊆ N denote the set of players who trans-
mit. Each transmission generates two possible outcomes with
probabilities for each player i ∈ J (a), i.e., a successful packet

delivery with probability pi|J (a) ∈ [0, 1] or a packet delivery
failure with probability 1− pi|J (a). Note that, the successful
packet delivery probability pi|J (a) is actually determined by
the underlying channel model, e.g., path loss, AWGN and
rayleigh. The exact channel model adopted is not crucial in
this model and thus pi|J (a) is assumed to be available for
each player. If the player i does not transmit, i.e., i ∈ J (a)c,
she gets a delay penalty di. Thus, if we assume a linear
value function, then a player evaluates the possible outcomes
associated with an arbitrary pure strategy profile as follows:

vi|a =

{
pi|J (a)(ci − ei) + (1 − pi|J (a))(−ei − di) ai = t

−di ai = nt.

(4)

Under this setting, we will consider random access games with
2 types of players: (a) players who follow the precepts of EUT
and (b) players who follow the precepts of PT. We will refer
to these players as EUT players and PT players, respectively.
Further, depending on the player composition, two types of
wireless random access games are possible: (1) homogeneous
game and (2) heterogeneous game. A homogeneous game
consists of either only EUT players or only PT players. The
heterogeneous games must simultaneously have both PT and
EUT players, i.e., some players are PT players and others are
EUT players. Furthermore, under linear value function and
framing about 0, the PT and EUT players have identical value
functions over a pure strategy profile, i.e., vEUT

i|a = vPT
i|a =

vi|a. We assume each player may adopt a mixed strategy, i.e.,
player i will transmit a packet in a time slot with probability
pi ∈ [0, 1] and wait with probability 1− pi. A mixed strategy
vector of all players can be represented as p = [p1, p2, ..., pN ]
where pi is the i-th player’s transmission probability. An EUT
player’s utility can be represented as,

uEUT
i (p) =

∑
a∈A

⎛
⎝ ∏

j∈J (a)

pj
∏

k/∈J (a)

(1− pk)vi|a

⎞
⎠ , (5)

where J (a) is the set of players who transmit in the
time slot, i.e., aj = t, ∀j ∈ J (a). Note that, the prob-
ability that a specific pure strategy profile a is chosen is∏

j∈J (a) pj
∏

k/∈J (a)(1 − pk) and vi|a is the corresponding
value for player i as defined in (4).

A PT player knows that the strategy profile a will occur
with probability

∏
j∈J (a) pj

∏
k/∈J (a)(1 − pk). However, she

cannot objectively evaluate this probability and this makes her
utility function fundamentally different from that of an EUT
player as discussed in section II. A PT player’s subjective
utility can be formally defined as:

uPT
i (p) =

∑
a1∈A,a1i=t

SP (a1)vi|a1
+ (1− pi)(−di). (6)

Note in the above, the player i subjectively determines
that a1 will be chosen with probability SP (a1) =

piwi

(∏
j∈J (a1)\{i} pj

∏
k∈J c(a1)

(1− pk)
)

, where a1 ∈ A

denotes the pure strategy profiles where the i-th player trans-
mits, i.e., a1i = t, and wi(·) is the i-th player’s probability
weighting function. Similarly, she weighs outcomes of a2 with
SP (a2) = (1 − pi)wi

(∏
j∈J (a2)

pj
∏

k∈J c(a2)\{i}(1− pk)
)
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where a2 ∈ A denotes the pure strategy profiles where she
chooses to wait, i.e., a2i = nt. Note that, we assume a
PT player only nonlinearly transforms other players’ strategy
probabilities rather than her own since a person is able to
choose her own strategy probability objectively.

For the i-th player, she plays the random access game by
solving an optimization problem as follows:

max
pi

ui(pi, p−i), (7)

where ui(·) can be either EUT utility (5) or PT utility (6) and
p−i represents the collection of all other players’ transmission
probabilities. A list of important notations is list in Table II.

V. A 2-PLAYER HETEROGENEOUS WIRELESS RANDOM

ACCESS GAME

In our earlier work [16], a 2-player homogeneous wireless
random access game with linear value function was studied
using a simple 0-1 random collision channel model for random
access. Here, we investigate a 2-player heterogeneous wireless
random access game with linear value function for a general
random access channel. We extensively study the differences
between a 2-player homogeneous EUT game and a 2-player
heterogeneous game . In the following, we use i to denote the
player we refer to and j to denote her opponent. According to
(5) and (6), the utility functions of an EUT and a PT player
can be specified as follows, for i = 1, 2:

uEUT
i (p) =pipjvi|{t,t} + pi(1− pj)vi|{t,nt}

+ (1 − pi)(−di), (8)

uPT
i (p) =piwi(pj)vi|{t,t} + piwi(1 − pj)vi|{t,nt}

+ (1 − pi)(−di), (9)

where vi|{t,t} = pi|{i,j}(ci−ei)+(1−pi|{i,j})(−ei−di), i =
1, 2 is the value the i-th player assigns for the pure strategy
{t, t}, i.e., both players transmit. vi|{t,nt} = pi|{i}(ci − ei) +
(1 − pi|{i})(−ei − di), i = 1, 2 denotes the value the i-th
player assigns for the pure strategy profile {t, nt}, i.e., only
the i-th player transmits. Note that, the first element in a pure
strategy profile is always the referred player’s strategy. pi|{i,j}
and pi|{i} denote the i-th player’s successful packet delivery
probabilities given that her opponent player j also transmits
or not, respectively. pi and pj represent the transmission
probabilities of the i-th player and her opponent, respectively.
Under the game setting, players’ communication performance
are compared for three metrics, namely average throughput,
average energy and average delay. They can be calculated as
follows, for i = 1, 2:

Ti(p) = pipjpi|{i,j} + pi(1− pj)pi|{i} (10)

Ei(p) = pi (11)

Di(p) = pipj(1− pi|{i,j}) + pi(1 − pj)(1 − pi|{i}) + (1 − pi)
(12)

A. The Existence and Uniqueness of Mixed NEs of a Hetero-
geneous Game and a Homogeneous EUT game

The performance of players and system in (10) - (12) can
only be meaningfully evaluated at Nash Equilibrium (NE)

TABLE II
NOTATIONS REFERENCE TABLE

Notations Interpretations
N Set of players
a A pure strategy profile vector of all players
p A mixed strategy profile vector of all players, i.e. {pi}

J {a} Set of players choosing transmission given a
vi|a The value i-th player obtains given a
pi The i-th player’s transmission probability

pi|J (a) The i-th player’s successful package delivery probability given J (a)
wi(·) The i-th player’s probability weighting function

uEUT
i (·) The i-th EUT player’s utility
uPT
i (·) The i-th PT player’s utility

vi|{t,nt} The i-th player’s value when she transmits and her opponent stays quite
pi|{i,j} The i-th player’s package reception probability when both players transmit

TABLE III
PLAYERS’ VALUES TOWARDS PURE STRATEGY PROFILES
��������Player 1

Player 2
t nt

t (v1|{t,t}, v2|{t,t} ) (v1|{t,nt},−d2)
nt (−d1, v2|{t,nt} ) (−d1,−d2)

[35]. In the following, the mixed NE characteristics of a het-
erogeneous game and a homogeneous EUT game are studied.
The players’ utilities associated with pure strategy profiles can
be compactly described in table III. Note that, if the strategy
profile {t, t} where both players transmit is more preferred
by player i than the strategy where player i does not transmit,
i.e., vi|{t,t} ≥ −di, i = 1, 2, it is also true that vi|{t,nt} > −di
since the profile {t, nt} generates less interference to player
i’s transmission and thus more preferred than the strategy
profile {t, t}. As a result, player i will always transmit, i.e.,
pi = 1. Similarly, if −di ≥ vi|{t,nt} > vi|{t,t}, i = 1, 2,
player i will always not transmit by adopting pi = 0. In the
following, we exclude these two trivial scenarios by assuming
for i = 1, 2, vi|{t,t} < −di and vi|{t,nt} > −di. Furthermore,
in the following, no further discussion on the resulting two
trivial pure NEs, i.e., {t, nt}, {nt, t}, will be made either.

Theorem 1. There exists a unique mixed NE [pH
1, p

H
2] for a

heterogeneous game given vi|{t,t} < −di and vi|{t,nt} > 0
for i = 1, 2.

Proof: Without loss of generality, we assume player 1
is a PT player with utility function (9) and player 2 is an
EUT player with utility function (8). In this game, each
player, e.g., player i, i = 1, 2, will choose a probability
for transmission, e.g., pi ∈ Δ(Ai) = [0, 1] for t and thus
1 − pi for nt. It can be easily seen that the interval Δ(Ai)
is a nonempty compact convex subset of a Euclidian space
for i = 1, 2. Further, the PT player’s utility function in (9)
is linear in p1 ∈ Δ(A1). Given a fixed p2 (i.e., the EUT
player’s mixed strategy), we pick any feasible b1, f1, g1 ∈
Δ(A1) and uPT

1 (b1, p2) ≥ max{uPT
1 (f1, p2), u

PT
1 (g1, p2)}.

Then, uPT
1 (λf1 + (1 − λ)g1, p2) = λuPT

1 (f1, p2) + (1 −
λ)uPT

1 (g1, p2) < uPT
1 (b1, p2), ∀λ ∈ [0, 1]. Hence, the subset

of the PT player’s mixed strategies which yield less utility than
an arbitrary feasible mixed strategy b1 ∈ Δ(A1) is convex
and we have shown the PT player’s utility function is quasi-
concave in Δ(A1). Similarly, it can be easily shown that
the EUT player’s utility function uEUT

2 (p1, p2) is also quasi-
concave in Δ(A2). According to the Proposition 20.3 in [35],
at least one mixed NE exists in the heterogeneous game.
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At the mixed NE p∗ = [p∗1, p
∗
2], by definition, the PT player

should always obtain the identical utility by playing either
of the pure strategies, i.e., uPT

1 (1, p∗2) = uPT
1 (0, p∗2). Note

that, uPT
1 (1, p2) = w1(p2)v1|{t,t} + w1(1 − p2)v1|{t,nt} and

uPT
1 (0, p2) = −d1. If v1|{t,t} < 0 and v1|{t,nt} > 0, the PT

player assigns a negative value to a collision and a positive
value to an interference-free transmission. Then, it follows that

∂uPT
1 (1, p2)

∂p2
=

αw1(p2)(− ln(p2))
α−1

p2
v1|{t,t}

+
αw1(1− p2)(− ln(1− p2))

α−1

p2 − 1
v1|{t,nt} < 0. (13)

Therefore, uPT
1 (1, p2) is a strictly decreasing function of p2 ∈

[0, 1]. The points where the function uPT
1 (1, p2) intersects with

the horizontal line uPT
1 (0, p2) = −d1 are the solutions to the

equation uPT
1 (1, p2) = uPT

1 (0, p2) and thus the EUT player’s
mixed strategies at the mixed NE. Since uPT

1 (1, p2) has been
shown as a strictly decreasing function of p2 ∈ [0, 1], the
intersection point is unique and therefore the EUT player’s
mixed strategy (transmission probability) pH

2 at the mixed NE
is also unique. Meanwhile, the EUT player’s utility when she
always transmits, i.e., uEUT

2 (p1, 1), can be similarly shown as
a strictly decreasing function of p1 ∈ [0, 1]. Hence, the PT
player’s mixed strategy pH

1 at the mixed NE is also unique.
Furthermore, as mentioned earlier, vi|{t,t} < −di, i = 1, 2
and vi|{t,nt} > 0 > −di, i = 1, 2 ensure that neither of the
players would choose a pure strategy. Thus, a unique mixed
NE [pH

1, p
H
2] exists for the 2-player heterogeneous game.

Note that, the conditions in Theorem 1 are mild and intuitive
in that they reflect a communications scenario where a “pos-
itive” value (vi|{t,nt} > 0, i = 1, 2 ) results when only player
i transmits and a “negative” value (vi|{t,t} < −di, i = 1, 2)
results when the 2 players collide. Further, this negative value
is worse than when the player i does not transmit.

Corollary 2. There exists a unique mixed NE [pEUT
1 , pEUT

2 ]
for the homogeneous EUT game given vi|{t,t} < −di and
vi|{t,nt} > 0 for i = 1, 2.

Proof: The existence and uniqueness of the mixed NE for
the homogeneous EUT game can be established in the same
fashion as in the heterogeneous game.

Due to the analytical intractability of the probability weight-
ing function in equation (3), the mixed NE involving PT
players cannot be derived in closed form even for a 2-player
scenario. For example, in a 2-player homogeneous game, the
players’ transmission probabilities [p1, p2] at the mixed NE
can be derived by solving the following nonlinear equations:

exp(−(− ln p1)
α)v2|{t,t} + exp(−(− ln (1 − p1))

α)v2|{t,nt} = −d2
(14)

exp(−(− ln p2)
α)v1|{t,t} + exp(−(− ln (1− p2))

α)v1|{t,nt} = −d1.
(15)

Even though the above 2 equations are independent, owing
to the analytical intractability in arriving at closed form
solution, we use the numerical solvers in MATLAB to find
the transmission probabilities at the mixed NE in the rest of
the paper. In spite of the analytical intractability, we will prove
many intuitive properties of the mixed NE as will be seen in
the remainder of the paper.

B. A Heterogeneous Game: Consequence of Deviation from
EUT

A heterogeneous game consisting of one PT player and
one EUT player is considered and we will highlight the
consequences on the performance compared to a 2-player
homogeneous EUT game. The heterogeneous game can be
considered as a deviation from the homogeneous game as one
of the EUT players is replaced by a PT player who differs
from the EUT players in the homogeneous game only in the
probability weighting index α. We specifically study three
issues: (a) the impact on the performance of the EUT player in
the heterogeneous game, (b) the impact on the performance of
the whole system, and (c) the performance difference between
the PT and EUT players in the heterogeneous game. We
consider the following 3 scenarios for comparison: (1) Both
players are EUT (EUT game), (2) One EUT and one PT player
with α = 0.8, and (3) One EUT and one PT player with α =
0.5. For both the heterogeneous game and the homogeneous
EUT game, two players randomly access the channel with
pi|{i} = pj|{j} = 0.98, pi|{i,j} = pj|{i,j} = 0.05, i = 1, 2.
We begin with a special case where there is no delay penalty
for each player as c1 = c2 = c, e1 = e2 = e = 2, d1 = d2 =
d = 0. The system performances are studied and compared
as a function of c/e. Due to the symmetry here, the EUT
players in the homogeneous EUT game have the identical
strategy and performance at the mixed NE. We observed in
Fig. 3(a) that with the introduction of the PT player , the
EUT player transmits more aggressively in the heterogeneous
game than the EUT players in the homogeneous EUT game.
Note that, the PT player in the heterogeneous game under two
different scenarios chooses the same transmission probability
at the mixed NE since her opponent’s (the EUT player) utility
function stays unchanged. Within the heterogenous game, the
EUT player is more aggressive in transmission than the PT
player. Both the trends are more obvious as the PT player
deviates more from EUT (smaller α). Further, both the players’
transmissions under the 3 scenarios become more probable as
the unit throughput reward increases and finally converge to
transmission with probability 1 when vi|{t,t} = −d = 0, i =
1, 2 (c/e = 20). Note that, all the curves do not increase to 1
until c/e = 20 though in the figure, they are seen very close
to it before c/e = 20 .

In Fig. 3(b), it can be seen that the introduction of the PT
player actually causes the EUT player in the heterogeneous
game consume more average energy than the EUT players
in the homogeneous EUT game. Meanwhile, the PT player’s
consumed energy stays unchanged as explained in Fig. 3(a).
As a result, the players in the heterogeneous game consume
more sum energy in average than those in the homogeneous
EUT game. Moreover, a more deviated PT player causes an
increased sum average energy consumption.

Figure 4(a) shows that the introduction of the PT player
actually increases the EUT player’s average throughput com-
pared to the EUT players in the homogeneous EUT game.
However, the PT player herself suffers an obvious average
throughput degradation. Moreover, within the heterogenous
game, the PT player achieves an obviously less average
throughput than the EUT player. Further, as the PT player
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deviates more from EUT, the above trends are also more exag-
gerated. Note that, each player’s achieved average throughput
eventually decreases as the unit throughput reward increases
since players also transmit more aggressively and thus gener-
ate more collisions. The deviation of one player from EUT to
PT can also significantly impact the system level performance
as in Fig. 4(b). It can be observed that the players in a
heterogeneous game achieve less sum average throughput than
those in the homogeneous EUT game. As the PT player
deviates more from EUT, the heterogeneous game suffers an
even larger sum average throughput loss.

In Fig. 5, we study a heterogeneous game in a more general
setting where both unit throughput reward and unit delay
penalty are non-zero and varying. For comparison purpose,
we choose c1 = c2 = c, e1 = e2 = e = 2, d1 = d2 = d
and pi|{i} = pj|{j} = 0.98, pi|{i,j} = pj|{i,j} = 0.05 for both
players in both the heterogeneous game and the homogeneous
EUT game. The PT player’s probability weighting index is

α = 0.6. In Fig. 5(a), it can be seen that the introduction of
the PT player causes the EUT player of the heterogeneous
game transmit more aggressively than the EUT players in the
homogeneous EUT game. Within the heterogeneous game,
the EUT player is more aggressive than the PT player.
Both players’ transmission probabilities converge to 1 when
vi|{t,t} ≥ −di, i = 1, 2. In Fig. 5(b), the impact of the
PT player’s deviation on the average delay is shown. The
EUT player in the heterogeneous game suffers slightly less
average delay than the EUT players in the homogeneous EUT
game. However, within the heterogeneous game, the PT player
suffers more average delay than the EUT player. Further, the
deviation of the PT player also causes the heterogeneous game
suffer a larger sum average delay than the homogeneous EUT
game. In Fig. 5(c), it has been shown that more sum average
energy is consumed in the heterogeneous game than that in the
homogeneous EUT game. Fig. 5(d) has shown that the hetero-
geneous game suffers a sum average throughput degradation
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Fig. 5. A heterogeneous game (α = 0.6) and a homogeneous EUT game are compared where unit throughput reward and unit delay penalty are non-zero.

compared to the homogeneous EUT game. Moreover, the PT
player is shown to achieve less average throughput than the
EUT player within the heterogeneous game.

Therefore, together with the first set of numerical result this
subsection has demonstrated 3 main consequences of the PT
player’s deviation from EUT as listed below:

• (C1) The deviation of PT player causes the EUT player in
the heterogeneous game achieve more average through-
put, suffer less average delay but consume more average
energy than the EUT players in the homogeneous EUT
game.

• (C2) Within the heterogeneous game, the PT player
achieves less average throughput but suffers more average
delay. The EUT player consumes more average energy.

• (C3) The deviation of the PT player undermines the
overall system level performance in every aspect as the
heterogeneous game achieves less sum average through-
put, suffers more sum average delay and consumes more
sum average energy than the homogeneous EUT game.

C. Analytical Insights into Consequence C1 - C3

We will now prove the three main consequences (1), (2)
and (3) in subsection B under mild conditions. We begin with
the following Lemmas.

Lemma 3. Each player’s average throughput function (10) is
an increasing function of her own transmission probability
and a decreasing function of her opponent’s transmission
probability.

Proof: It can be easily verified that ∂Ti(p)
∂pi

= pjpi|{i,j}+
(1 − pj)pi|{i} > 0 and ∂Ti(p)

∂pj
= pipi|{i,j} − pipi|{i} < 0

since pi|{i} > pi|{i,j} that simply reflects the fact that player
i gets a higher successful packet delivery probability for a
collision-free transmission than a collision.

Lemma 4. Each player’s average delay function (12) is
a decreasing function of her own transmission probability
and an increasing function of her opponent’s transmission
probability.

Proof: This also follows the fact that pi|{i} > pi|{i,j}.

Lemma 5. If vi|{t,t} < 0, vi|{t,nt} > 0, there exists a
unique number pint ∈ (1/ρ, 1 − 1/ρ) (ρ denotes the Euler’s
number here) such that uPT

i (1, pint) = uEUT
i (1, pint). Further,

uPT
i (1, pj) ≤ uEUT

i (1, pj) and uPT
i (1, pj) is convex when

pj ∈ [0, pint). Meanwhile, uPT
i (1, pj) ≥ uEUT

i (1, pj) and
uPT
i (1, pj) is concave when pj ∈ [pint, 1].

Proof: Note that, uPT
i (1, 1/ρ) = wi(1/ρ)vi|{t,t}+wi(1−

1/ρ)vi|{t,nt} < 1/ρ × vi|{t,t} + (1 − 1/ρ) × vi|{t,nt} =
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uEUT
i (1, 1/ρ). This holds because vi|{t,t} < 0, vi|{t,nt} > 0

and the probability weighting function has the property that
wi(1/ρ) = 1/ρ and wi(1 − 1/ρ) < 1 − 1/ρ. Similarly,
we can show that uPT

i (1, 1 − 1/ρ) = wi(1 − 1/ρ)vi|{t,t} +
wi(1/ρ)vi|{t,nt} > (1 − 1/ρ) × vi|{t,t} + 1/ρ × vi|{t,nt} =
uEUT
i (1, 1 − 1/ρ). Thus, there must exist a point pint ∈

(1/ρ, 1 − 1/ρ) such that uPT
i (1, pint) = uEUT

i (1, pint) due
to the continuities of both uPT

i (1, pj) and uEUT
i (1, pj). We

define the difference function of the PT utility and the
EUT utility when the player always transmits as Δ(pj) =
uPT
i (1, pj) − uEUT

i (1, pj) = f1(pj)vi|{t,t} + f2(pj)vi|{t,nt}
where f1(pj) = wi(pj)−pj and f2(pj) = wi(1−pj)−(1−pj).
According to the definition of probability weighting function
(3) and from Fig. 1, it can be easily seen that the function
f1(pj) is a monotonically increasing function in [0, ε1(α)],
decreasing function in (ε1(α), 1− ε2(α)) and increasing func-
tion in [1 − ε2(α), 1]. Similarly, f2(pj) can be shown to be
a monotonically decreasing function in [0, ε2(α)], increasing
function in (ε2(α), 1 − ε1(α)) and decreasing function in
[1− ε1(α), 1]. Note that, ε1(α), ε2(α) ∈ (0, 1) depend on the
probability weighting index α and ε1(α) < ε2(α). Also, it can
be shown that ∂wi(pj)/∂pj = 1 when pj = ε1(α), 1− ε2(α).
The above properties can be shown in Fig. 6.

Moreover, for an arbitrary pj ∈ [0, ε1(α)), Δ(pj) < 0
since f1(pj) > 0, f2(pj) < 0, vi|{t,t} < 0 and vi|{t,nt} > 0.
Δ(pj) decreases further as pj approaches ε1(α) and then there
must be a point ζ1 ∈ [ε1(α), ε2(α)] where Δ(pj) begins
to increase. When pj ∈ [ε2(α), 1 − ε2(α)], Δ(pj) keeps
increasing further since df1(pj)/dpj < 0, df2(pj)/dpj > 0
and thus dΔ(pj)/dpj > 0. Note that, Δ(pint) = 0 and
this zero is unique due to the above construction. Hence,
we can deduct that uPT

i (1, pj) must lie below uEUT
i (1, pj)

and be convex when pj ∈ [0, pint) if we draw uPT
i (1, pj)

and uEUT
i (1, pj) together. At the other end, for an arbitrary

number pj ∈ [1− ε2(α), 1], we can show that Δ(pj) > 0. By
following a similar approach as in the previous scenario, we
can show that uPT

i (1, pj) > uEUT
i (1, pj) and uPT

i (1, pj) is
concave when pi ∈ [pint, 1]. The above characteristics can be
seen in Fig. 7.

Theorem 6. (Consequence (C1)) In a 2-player heterogeneous

game, at the mixed NE, the EUT player achieves more average
throughput, suffers less average delay and uses increased
average energy, compared to that in a 2-player homogeneous
EUT game if the PT player’s (player i) value function is such
that vi|{t,nt} > −ρdi + (1− ρ)vi|{t,t}.

Proof: In the homogeneous EUT game, the EUT player’s
(player j) transmission probability pEUT

j at the mixed NE can
be solved by setting uEUT

i (1, pj) = uEUT
i (0, pj) = −di.

From Lemma 5, when pj ∈ [pint, 1], uPT
i (1, pj) lies above

uEUT
i (1, pj) and is concave. If vi|{t,nt} > −ρdi + (1 −

ρ)vi|{t,t}, it can be easily shown that pEUT
j =

−di−vi|{t,nt}
vi|{t,t}−vi|{t,nt}

>

1 − 1/ρ. Correspondingly, the horizontal line uEUT
i (0, pj) =

−di must intersect uPT
i (1, pj) in the heterogeneous game

at pH
j where pH

j > pEUT
j (A graphical example can be found

in Fig. 7). Meanwhile, since the EUT player (player j)
in the heterogeneous game is identical to the EUT player
j in the homogeneous EUT game, it can be devised that
pH
i = pEUT

i . From Lemma 3, the EUT player’s (player j) average
throughput function Tj in (10) is an increasing function of
her own transmission probability and a decreasing function
of her opponent’s transmission probability. Thus, the EUT
player (player j) in the heterogeneous game achieves a larger
average throughput than in the homogeneous EUT game
due to her own transmission probability increase while her
opponent’s stays unchanged. Similarly, the decline in the EUT
player’s average delay in the heterogeneous can be explained
accordingly. However, due to the EUT player’s increasing
aggressiveness, she consumes more average energy in the
heterogeneous game.

Theorem 7. (Consequence (C2)) In a heterogeneous game,
if the PT player (player i) and the EUT player (player j)
only differ in the probability weighting index, i.e., αi < 1 and
αj = 1 and vi|{t,nt} > −ρdi+(1−ρ)vi|{t,t}, it can be shown
that pH

i < pH
j . In other words, the PT player transmits less

aggressively than the EUT player at the mixed NE. Further,
the EUT player achieves more average throughput and suffers
less average delay but consumes more average energy than
the PT player.

Proof: From Lemma 5, uPT
i (1, p) lies above uEUT

j (1, p)
and is concave when p ∈ [pint, 1]. Thus, by following a
similar approach in Theorem 6, it can be shown that the
PT player transmits less aggressively than the EUT player.
Correspondingly, the EUT player incurs more average energy
than the PT player in the heterogeneous game. Together with
Lemma 3 and 4, the claims regarding the players’ average
throughput and delay are also established.

Theorem 8. (Consequence (C3)) In a heterogeneous game,
at the mixed NE, if pH

i >
pj|{j}∑

i=1,2(pi|{i}−pi|{i,j})
for the PT

player, the two players achieve less sum average throughput,
suffer more sum average delay and consume more sum average
energy than those of the corresponding homogeneous EUT
game. In other words, the deviation of the PT player harms
the system performance in every aspect.

Proof: From Theorem 6, it is already known that in the
heterogeneous game, the PT player chooses an identical trans-
mission probability as the EUT players in the homogeneous
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EUT game as pH
i = pEUT

i . However, the EUT player in the
heterogeneous game becomes more aggressive than that in
the homogeneous EUT game as pH

j > pEUT
j . The two players’

sum average throughput, sum average delay and sum average
energy can be written as:

Ts = pipjpi|{i,j} + pi(1 − pj)pi|{i}
+ pipjpj|{i,j} + (1− pi)pjpj|{j} (16)

Ds = pipj(1 − pi|{i,j}) + pi(1− pj)(1 − pi|{i}) + 1− pi

+ pipj(1− pj|{i,j}) + (1− pi)pj(1− pj|{j}) + 1− pj (17)

Es = pi + pj . (18)

Then, it can be easily verified that if pi >
pj|{j}∑

i=1,2(pi|{i}−pi|{i,j})
, ∂Ts/∂pj < 0 and ∂Ds/∂pj > 0.

Therefore, the sum average throughput function and sum
average delay have been shown as a decreasing and
an increasing function of pj , respectively. Therefore, if
pH
i >

pj|{j}∑
i=1,2(pi|{i}−pi|{i,j})

, then the two players in the
heterogeneous game achieve less sum average throughput,
suffers more sum average delay and consume more sum
energy than that of the homogeneous EUT game due to the
increased aggressiveness of the EUT player.

VI. A 2-PLAYER HOMOGENEOUS PT WIRELESS RANDOM

ACCESS GAME

In the above section IV, we studied the scenario when
one player deviates from EUT in a 2-player wireless random
access game, i.e., a 2-player heterogeneous game. In this
section, a more general scenario where both players follow the
precept of PT is further analyzed. As in our earlier work [16], a
2-player homogeneous PT wireless random access game has
been studied under a 0/1 collision channel model. We now
extend this work by considering the homogeneous game under
a general collision channel model. Further, without loss of
generality, we assume that the two players, i.e., player 1, 2,
both follow the precepts of PT with probability weighting
indices 1 > α2 > α1 > 0. Thus, both players’ utility functions
should be described as in (9) and the two utility functions dif-
fer only in the probability weighting index. Similar to section
IV, we will compare the 2-player homogeneous PT game to

a benchmark, i.e., the corresponding 2-player homogeneous
EUT game. Note that, for player i = 1, 2, her value function
regarding a pure strategy profile stays the same with all value
functions being linear and about reference point 0 in both the
homogeneous PT and EUT games, i.e., vPT

i|{t,t} = vEUT
i|{t,t} =

vi|{t,t} and vPT
i|{t,nt} = vEUT

i|{t,nt} = vi|{t,nt}.

A. The Existence and Uniqueness of Mixed NEs of a Homo-
geneous PT Game

Before investigating the performance deviation of a 2-
player homogeneous PT game from the corresponding 2-
player homogeneous EUT game, we first address the existence
and uniqueness of the NE.

Theorem 9. There exists a unique mixed NE [pP
1, p

P
2] for a

homogeneous PT game given vi|{t,t} < −di and vi|{t,nt} > 0
for i = 1, 2.

Proof: The existence of the NE in a homogeneous PT
game can be proven by following the same argument in the-
orem 1. Furthermore, given the identical condition as before,
i.e., vi|{t,t} < −di and vi|{t,nt} > 0 for i = 1, 2, it can
be shown that ui(1, pj) is a decreasing function of pj for
i = 1, 2 as shown in (13). Since player j’s mixed strategy at
the NE is solved by equating ui(1, pj) = ui(0, pj) = −di and
ui(1, pj) is a strictly decreasing function, pHj must be uniquely
determined. Thus, the mixed NE [pP

1, p
P
2] is also unique.

B. A Homogeneous PT Game: More Consequences of Devi-
ation from EUT

In the following, we will compare the performance of the
2-player homogeneous game to that of the 2-player homoge-
neous EUT game. Specifically, we will study the following
issues: (1) Performance differences between two PT players
within the 2-player homogeneous PT game. (2) The difference
on the performance of the whole system between two games.
Without loss of generality, in the 2-player homogeneous PT
game, we assume α1 = 0.5 and α2 = 0.8. For both games, two
players randomly access the channel with pi|{i} = pj|{j} =
0.98, pi|{i,j} = pj|{i,j} = 0.05, i = 1, 2. We begin with a
special case where there is no delay penalty for each player
as c1 = c2 = c, e1 = e2 = e = 2, d1 = d2 = d = 0. The
system performances are studied and compared as a function
of c/e.

In Fig. 8(a), the PT players in the homogeneous PT game
are shown to transmit more aggressively than the EUT players
in the homogeneous EUT game. Note that, both the EUT
players have the same performance in the homogeneous EUT
game due to the same parameter setting. Further, it can be
observed that the PT player that deviates less from the EUT
(i.e., with choice of α = 0.8) transmits more aggressively in
the homogeneous PT game. As a result of the transmission
aggressiveness of the PT players at the NE shown in Fig.
8(a), the PT players consume more average energy than the
EUT players as shown in Fig. 8(b). Between the PT player,
the one with a larger probability weighting index (α = 0.8)
consumes more average energy than the other PT player. More
importantly, the deviation of the PT players from EUT costs
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Fig. 9. Average throughput comparison at individual player level and system level. Homogeneous PT game (α1 = 0.5, α2 = 0.8) and homogeneous EUT
games are studied and compared where no delay penalty is considered (d = 0).

the system more energy at the mixed NE compared to the
homogeneous EUT game.

In Fig.9(a), the throughput performance difference between
two PT players in the homogeneous game is shown. The PT
player that deviates less from EUT (α = 0.8) achieves more
average throughput than the one with a smaller probability
weighting index. On the system level, PT players in the
homogeneous PT game also incur sum throughput degrada-
tion compared to the homogeneous EUT game as shown in
Fig.9(b).

While the above results are for the case of no delay penalty,
we now study the performance deviation of the PT game in a
more general setting. Specifically, we consider a case where
unit throughput reward and unit delay penalty both vary while
the unit energy cost is fixed, i.e., c1 = c2 = c, e1 = e2 =
e = 2, d1 = d2 = d = d. For comparison, we choose
pi|{i} = pj|{j} = 0.98, pi|{i,j} = pj|{i,j} = 0.05, i = 1, 2
for PT players and EUT players in both games. In the
homogeneous game, we choose α1 = 0.5 and α2 = 0.8 so that
PT player 1 deviates more from EUT than PT player 2. In Fig.

10(a), a similar trend in to that in Fig. 8(a) can be observed.
The PT players in the homogeneous PT game transmit more
aggressively than the EUT players in the homogeneous EUT
game. Further, the PT player deviating less from EUT (with a
larger α) transmits more aggressively than the other one. The
difference in the transmission aggressiveness decreases as the
unit throughput reward and unit delay penalty increase. As
a result of the transmission aggressiveness of the PT players
at the mixed NE, Fig. 10(b) shows that the homogeneous PT
game suffers a sum average throughput degradation compared
to the homogeneous EUT game on the system level. This
degradation becomes less severe as the unit throughput reward
and unit delay penalty increase. Within the homogeneous PT
game, the PT player that deviates more from EUT (with a
smaller α) achieves less average throughput than the other one.
In Fig. 10(c), homogeneous PT game suffers a greater sum
average delay than the EUT game. Within the homogeneous
PT game, the PT player who deviates more from EUT (with
a smaller α) suffers a larger average delay than her opponent.
Fig. 10(d) shows that the deviation of the PT players of the
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Fig. 10. A homogeneous PT game (α1 = 0.5, α2 = 0.8) and a homogeneous EUT game are compared where unit throughput reward and unit delay
penalty are non-zero. In each figure, the order of plots are according to the order of the legends from top to bottom.

homogeneous PT game also consumes the system more aver-
age energy than that of the EUT game. Since average energy
is proportional to a player’s transmission aggressiveness, from
10(a), we can see that PT players in homogeneous PT game
consumes more average energy than EUT players in the EUT
game. Within the homogeneous PT game, the PT player who
deviates less from EUT consumes more average energy.

The above results shown in Fig. 8(a)- 10(b) captures the
behavior and performance deviation of the PT players in the
homogeneous PT game from the homogeneous EUT game.
Two distinct features on individual player and system levels
can be summarized as below:

• (C4) In the homogeneous PT game, the PT player that
deviates less from EUT (with a larger α) achieves more
average throughput and suffers less average delay than
the PT player who deviates more from EUT. However,
the PT player that deviates less from EUT consumes more
average energy.

• (C5) Similar to the observation from the heterogeneous
game in section IV, the deviation of both PT players in
the homogeneous PT game still hurts the overall system
performance in every aspect. The homogeneous PT game
achieves less sum average throughput but suffers more

average delay and incurs more average energy than the
homogeneous EUT game.

C. Analytical Insights into Consequence C4 - C5

In the following, we will analyze the above consequences
of the deviation of the homogeneous PT game from EUT. The
general idea and techniques used here are based on the results
in subsection C section IV. The following lemma describes the
features of the utility functions of the PT players when they
transmit with probability one.

Lemma 10. If vi|{t,t} = vj|{t,t} < 0, vi|{t,nt} = vj|{t,nt} >
0, there exists a unique number pint ∈ (1/ρ, 1−1/ρ) (ρ denotes
the Euler’s number here) such that uPT

i (1, pint) = uPT
j (1, pint).

Further, uPT
i (1, pj) ≤ uPT

j (1, pi) and uPT
i (1, pj) and

uPT
j (1, pi) are convex when pj , pi ∈ [0, pint), respectively.

Meanwhile, uPT
i (1, pj) ≥ uPT

j (1, pi) and uPT
i (1, pj) and

uPT
j (1, pi) are concave when pj , pi ∈ [pint, 1].

Proof: This lemma shows that when both PT players
transmit with probability one, the two PT players’ utility func-
tions have similar shape, i.e., first convex and then concave.
Further, the PT player with a smaller probability weighting
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index α has a utility function of larger curvature than the
other PT player that is a direct result from Fig. 1. Note
that, uPT

i (1, 1/ρ) = wi(1/ρ)vi|{t,t} + wi(1− 1/ρ)vi|{t,nt} <
wj(1/ρ)×vi|{t,t}+wj(1−1/ρ)×vi|{t,nt} = uPT

j (1, 1/ρ). This
holds because vi|{t,t} < 0, vi|{t,nt} > 0 and the probability
weighting function has the property that wi(1/ρ) = 1/ρ and
wi(1 − 1/ρ) < wj(1 − 1/ρ). Similarly, we can show that
uPT
i (1, 1 − 1/ρ) = wi(1 − 1/ρ)vi|{t,t} + wi(1/ρ)vi|{t,nt} >

wj(1−1/ρ)×vi|{t,t}+wj(1/ρ)×vi|{t,nt} = uPT
j (1, 1−1/ρ).

Thus, there must exist a point pint ∈ (1/ρ, 1 − 1/ρ) such
that uPT

i (1, pint) = uPT
j (1, pint) due to the continuities of both

uPT
i (1, pj) and uPT

j (1, pj). Similar to the proof of Lemma 5,
the rest of the lemma can be proven based on the definition
of probability weighting function (3) and from Fig. 1 and the
fact that both utility functions above are strictly decreasing
functions. The above properties can be seen in Fig. 6.

Theorem 11. (Consequence (C4)) In a 2-player homogeneous
PT game, the PT player i who deviates more from EUT
(with a smaller probability weighting index α) achieves less
average throughput, suffers more average delay but consumes
less average energy than the other PT player j. Further,
both PT players transmit more aggressively than the EUT
players of the corresponding homogeneous EUT game if
vi|{t,t} = vj|{t,t}, vi|{t,nt} = vj|{t,nt} and vi|{t,nt} > −ρdi +
(1− ρ)vi|{t,t}.

Proof: From Theorem 6, it can be shown that given
vi|{t,t} = vj|{t,t}, vi|{t,nt} = vj|{t,nt} and vi|{t,nt} > −ρdi +
(1− ρ)vi|{t,t}, at the mixed NE pP

i , p
P
j ∈ [pint, 1] and therefore

pP
i < pP

j and pP
i , p

P
j > pEUT

i = pEUT
j . Moreover, from Lemma

3 and 4, it can be concluded that player i achieves less
average throughput and suffers more average delay. However,
she employs less energy than player j since she transmits less
aggressively.

Theorem 12. (Consequence (C5)) Suppose the mixed NE of
the homogeneous EUT game [pEUT

i , pEUT
j ] is such that pEUT

i >
pj|{j}∑

i=1,2(pi|{i}−pi|{i,j})
. Then in a 2-player homogeneous PT

game, the two PT players achieve less sum average through-
put, suffer more sum average delay and consume more sum
average energy than those of the corresponding homogeneous
EUT game. In other words, the deviation of the PT players in
the homogeneous PT game harms the system performance in
every aspect.

Proof: From Theorem 8, it is shown that if pj >
pi|{i}∑

i=1,2(pi|{i}−pi|{i,j})
, ∂Ts/∂pi < 0 and ∂Ds/∂pi > 0. Now,

Consider a heterogeneous game derived from the homo-
geneous PT game where player j becomes an EUT player.
Then, pP

j = pH
j > pEUT

j and pP
i > pH

i since player j faces the
same opponent in the two games but player i faces different
opponents. Therefore, if pEUT

j >
pi|{i}∑

i=1,2(pi|{i}−pi|{i,j})
, it is

true that pP
j >

pi|{i}∑
i=1,2(pi|{i}−pi|{i,j})

. Then, from Theorem
8, sum average throughput and sum average delay will be
a decreasing and an increasing function of pi at the mixed
NEs, i.e., ∂Ts/∂pi < 0 and ∂Ds/∂pi > 0, respectively. Thus,
it can be concluded the homogeneous PT game achieves less
sum average throughput but suffers more average delay than
the heterogeneous game as pP

i > pH
i . Together with Theorem

8, the statement in the theorem can be shown.

VII. N-PLAYER HOMOGENEOUS GAMES

We further consider a N-player symmetric homogeneous
setting where all the players have identical utility functions
and experience the same channel conditions. Note that, the
N-player symmetric game reflects a realistic scenario where
every player has a collective (aggregated) view of the set of
the players in the game. Further, analyzing and evaluating the
perceptions of each of the other N − 1 players is beyond
the feasibility of a single end-user’s action. We now state the
following theorem.

Theorem 13. If each player’s utility function (6) is a strictly
decreasing function of her opponent’s transmission probability
and neither {t} nor {nt} is the pure dominant strategy for
each player, there exists a unique mixed NE for an N-player
homogeneous wireless random access game with symmetric
utility functions.

Proof: The existence of the mixed NEs can be established
by generalizing the results in Theorem 1. Since the game is
symmetric, all the players share the identical utility function,
i.e., uPT

i (·) = uPT
j (·), ∀i �= j. Further, each player will

choose the identical transmission probability at the mixed
NE. Otherwise, assuming there exists a mixed NE such as
p∗ = [p∗, ..., p∗i , ..., p

∗
j , ..., p

∗] and without loss of generality,
two players have different transmission probabilities, i.e., p∗i �=
p∗j , at the mixed NE, we have uPT

i (1,p∗
−i) �= uPT

j (1,p∗
−j).

However, this contradicts the symmetry condition where at
the mixed NE all the players’ utilities should be the same,
i.e., −di = −d, ∀i ∈ N . By following the same rationale, it
can be shown that at the mixed NE, each player’s transmission
probability must be equal. Next, we will show the uniqueness
of this symmetric mixed NE. Assuming p∗ = [p∗, ..., p∗]N×1

and p′ = [p′, ..., p′]N×1 are two different mixed NEs for the
game, we can establish that:

uPT
i (1,p∗

−i) = uPT
i (1,p′

−i) = −di, ∀i ∈ N , (19)

where p∗
−i and p′

−i denote the i-th player’s opponent trans-
mission probability vector, i.e., p∗

−i = [p∗](N−1)×1 and
p′
−i = [p′](N−1)×1. If p∗ < p′, it can be shown that

uPT
i (1,p∗

−i) > uPT
i (1,p′

−i) since uPT
i (·) is a strictly de-

creasing function of each i-th player’s opponent’s transmission
probability. If p∗ > p′, uPT

i (1,p∗
−i) < uPT

i (1,p′
−i). Thus, if

p∗ �= p′, (19) will not be established and a contradiction exists.
Then, the mixed NE of the N-player symmetric homogeneous
wireless random access game is shown to be unique. Note
that, an N-player symmetric homogeneous EUT game is just a
special case where every player’s probability weighting index
is 1.

In the following example, we compare the characteristics of
mixed NEs of 3-player homogeneous PT and homogeneous
EUT games where αi = 0.6, pi|{i} = 1 and pi|J (a) =
0, ∀J (a) \ {i} �= ∅, ∀i ∈ N . Further, we assume e = d = 2
and c varies as multiples of e. Note that, due to symmetry,
the three players in either PT or EUT games have identical
performance.

From Fig. 11, it can be observed that the players in the
homogeneous EUT game achieve higher individual and thus
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Fig. 11. Average throughput comparison between PT and EUT Games. All
the players in the each game have the same average throughput due to the
symmetry.

sum average throughput than that in the homogeneous PT
game. Moreover, the homogeneous PT game is also observed
to have larger individual and sum average delay and average
energy consumption than the homogeneous EUT game.

However, the uniqueness of the mixed NE can still be
established for the scenario where N = 3. Assuming p1 =
[p∗1, p

∗
2, p

∗
3] and p2 = [p′1, p

′
2, p

′
3] are two different mixed NEs,

it can be established that:

uPT
1 (1, p∗2, p

∗
3) = uPT

1 (1, p′2, p
′
3) = −d1 (20)

uPT
2 (p∗1, 1, p

∗
3) = uPT

2 (p′1, 1, p
′
3) = −d2 (21)

uPT
3 (p∗1, p

∗
2, 1) = uPT

3 (p′1, p
′
2, 1) = −d3. (22)

Without loss of generality, we can assume that p∗2 < p′2 and
p∗3 > p′3. To establish (21), it is necessary that p∗1 < p′1. Then,
(22) cannot be established since uPT

3 (p1, p2, 1) is a strictly
decreasing function of p1 and p2. Thus, (20) - (22) can be
simultaneously established only when p1 = p2.

VIII. END-USER DECISION MAKING IN A DATA PRICING

MODEL

The previous sections studied random access as an exem-
plary/illustrative model for PT. However, PT has a historic role
in monetary transactions and in keeping with this, we will use
a simple data pricing model to illustrate the effect of end-user
decision making and its impact on wireless network perfor-
mance. Specifically, we consider a model as shown in Fig. 12
where a Service Provider (SP) offers prices r = [r1, r2, ..., rN ]
for the N end users in the network. The N end users accept
the service offers with probability p = [p1, p2, ..., pN ]. We
consider two pricing schemes, namely Usage Based Pricing
(UBP) and Throughput Based Pricing (TBP). In each case, the
SP chooses its price vector r so as to maximizing its revenue
R(p).

In the UBP scheme, the SP charges the end users based on
their actual usage of the resources. In each time slot, if the
i-th end user chooses to transmit (accept the service offer),
the service provider will charge ri for the data service and on

Service 
Provider

Data
Service 

Network

End User 1 End User N

. . .

Fig. 12. A two-tier wireless data service pricing model.

average collect a revenue of:

Ru(p) =
∑
i∈N

ripi, (23)

where ripi represents the expected fee the service provider
can collect from the i-th end user.

In the TBP scheme, the SP is allowed to charge each end
user in each slot only if her transmission is successful. In each
time slot, if the i-th end user chooses to use the channel with
probability pi, then the fee will only be charged proportional
to her final throughput. In this case, the exact form of the
service provider’s revenue is given as:

Rt(p) =
∑
i∈N

ripiTi, (24)

where Ti =
∑

a∈A

(∏
j∈J (a) pj

∏
j∈J c(a)(1 − pj)pi|J (a)

)
is

the expected throughput of the i-th end user given she chooses
to transmit in this time slot.

From the end-user perspective, given the price announced
by the service provider, the end users decide to access the
data services via a wireless random access channel which can
be modeled as a game as shown in section IV. Their final
decisions on how to use the services, i.e., the transmission
probabilities, are reflected by the mixed NE of the corre-
sponding game. The resulting mixed NE, i.e., the transmission
probability vector p, and the price vector r determine the
operating point of the network. Therefore, the mathematical
model describing the end-user decision making is similar to
the wireless random access game described in the previous
sections. However, the end users’ value functions for a given
strategy vector as shown in Eq. (4) should be modified to
reflect the impact of pricing schemes on end users’ utilities.
Note that, the end users in the data pricing model are also
players in the underlying wireless random access game. For
the usage based pricing scheme, whenever the i-th end user
chooses to transmit in the time slot, she will be charged
by the service provider ri regardless of the success of the
transmission. Therefore, her value function given a strategy



1902 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 13, NO. 4, APRIL 2014

vector should be modified as follows:

vui|a = (25)⎧⎪⎨
⎪⎩
pi|J (a)(ci − ei − ri) + (1− pi|J (a))(−ei − di − ri)

if ai = t

−di if ai = nt,

where the notations carry the same physical meaning as in Eq.
(4). For the TBP scheme, the end user is charged only for her
throughput. No fee will be paid by the end user if the delivery
of her packet is not successful. Therefore, the i-th end user’s
value function is:

vti|a = (26)⎧⎪⎨
⎪⎩
pi|J (a)(ci − ei − ri) + (1 − pi|J (a))(−ei − di)

if ai = t

−di if ai = nt.

Note that in this setting, both PT and EUT players retain the
same value function as before. In other words, players in a
usage based pricing scheme have the same value function
as shown in Eq. (25) regardless of their preferences over
prospects, either PT or EUT. The same holds true for the
throughput based pricing scheme.

To study the impact of end-user decision-making, we con-
sider a 2-user scenario where a SP uses either a UBP or TBP
pricing scheme. The SP’s utility function in each case is given
as:

uu
sp(p) =

∑
i=1,2

ripi (27)

ut
sp(p) =

∑
i=1,2

ripi(pjpi|{i,j} + (1− pj)pi|{i}), (28)

where the j-th user refers to the i-th user’s opponent.
Under the UBP scheme, the end user’s value function when

she transmits is given as:
vui|{t,nt} = pi|{i}(ci − ei − ri) + (1− pi|{i})(−ei − di − ri)

(29)

vui|{t,t} = pi|{i,j}(ci − ei − ri) + (1− pi|{i,j})(−ei − di − ri).
(30)

Similarly, the value functions for the TBP scheme are as
follows:

vti|{t,nt} = pi|{i}(ci − ei − ri) + (1− pi|{i})(−ei − di)

(31)

vti|{t,t} = pi|{i,j}(ci − ei − ri) + (1− pi|{i,j})(−ei − di).

(32)

Further, the end user’s utility functions are given as follows:

uPT
i,u (p) = piwi(pj)v

u
i|{t,t} + piwi(1− pj)v

u
i|{t,nt}

(33)

+(1− pi)(−di)

uPT
i,t (p) = piwi(pj)v

t
i|{t,t} + piwi(1− pj)v

t
i|{t,nt}

(34)

+(1− pi)(−di)

uEUT
i,u (p) = pipjv

u
i|{t,t} + pi(1− pj)v

u
i|{t,nt} + (1 − pi)(−di)

(35)

uEUT
i,t (p) = pipjv

t
i|{t,t} + pi(1− pj)v

t
i|{t,nt} + (1 − pi)(−di)

(36)

where uPT
i,u (p) and uPT

i,t (p) denote a PT user’s utility function
under UBP and TBP schemes, respectively. Correspondingly,
uEUT
i,u (p) and uEUT

i,t (p) refer to an EUT player’s utility
functions under both the data pricing schemes, respectively.
Mathematically, an EUT user’s utility function can be con-
sidered as a special case of a PT user’s, i.e., the probability
weighting index α = 1. For each data pricing scheme, we
will consider 2 scenarios: (1) both end users are EUT users
(denoted as UBP-EUT or TBP-EUT) and (2) both end users
are PT users (denoted as UBP-PT or TBP-PT). In UBP the
SP maximizes Eq. (27) and end users maximize Eq. (35) or
Eq. (33). In TBP the SP maximizes Eq. (28) and end users
maximize Eq. (36) or Eq. (34).

A. Existence and Uniqueness of the Operating Point

According to the structure of the data pricing model, the
existence and uniqueness of the operating point is determined
by the relationship among service provider’s price and end
users’ utility functions. Furthermore, given a service provider’s
price vector r, the existence and uniqueness of the operating
point is equivalent to that of the mixed NE of the end-user
wireless random access game. Therefore, the conclusions on
the existence and uniqueness of the operating point can be
established as follows.

Theorem 14. There exists a unique operating point [r∗,p∗]
for the UBP with either PT end users or EUT end users if
vui|{t,nt} > 0 and vui|{t,t} < −di for i = 1, 2.

Proof: The scenarios where both users are EUT, i.e.,
UBP-EUT, can be mathematically considered as special cases
of the scenario where both end users are PT users. Thus, we
will establish the existence and uniqueness of the operating
point for UBP-PT and that of the other scenario follows. From
theorem 9, it can be shown that, for a fixed a pricing vector
r = [r1, r2], if vui|{t,nt} > 0 and vui|{t,t} < −di for i = 1, 2,
there exists a unique mixed NE [p∗1, p∗2] in the corresponding
end user level game, i.e, a homogeneous PT game. By apply-
ing Eq. (29) and Eq. (30) in the conditions, we can conclude
that if vui|{t,nt} = pi|{i}(ci − ei) + (1− pi|{i})(−ei − di) > ri
and pi|{i,j}(ci − ei) + (1 − pi|{i,j})(−ei − di) > ri − di,
there exists a unique operating point in UBP-PT. The same
argument holds true for UBP-EUT.

Theorem 15. There exists a unique operating point [r∗,p∗]
for the TBP with either PT end users or EUT end users if
vti|{t,nt} > 0 and vti|{t,t} < −di for i = 1, 2.

The proof of the above theorem follows using similar steps
as in the proof of theorem 14.

B. Impact and Influence of End-User Behavior on UBP

We begin by providing some analytical results on the UBP
scheme.

Lemma 16. An end user’s utility when she chooses to trans-
mit, i.e., uPT

i,u (1, pj) or uEUT
i,u (1, pj), is a decreasing function

of the charged price ri given a fixed pj .

Proof: Under the usage based pricing scheme, whenever
the end user chooses to transmit, she will be charged a
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unit price ri. A larger value of ri will result a less value
of the user’s utility. Moreover, given a fixed pj , it is true
that ∂uPT

i,u (1, pj)/∂ri = −(wi(pj) + wi(1 − pj)) < 0. In
particular, ∂uEUT

i,u (1, pj)/∂ri = −1 < 0. Thus, the statement
is established.

The above lemma 16 can provide us with some hint about
the influence of the price r to the transmission probabilities.
The transmission probabilities at the mixed NE are determined
by solving uPT

i,u (1, pj) = −di or uEUT
i,u (1, pj) = −di. Thus,

a decrease in the value of uPT
i,u (1, pj) or uEUT

i,u (1, pj) must
result in smaller transmission probabilities at the mixed NE.

Theorem 17. End users’ transmission probabilities p1, p2 will
be a decreasing function of the price r, i.e., end users will
choose a lower service utilization level if service provider
charges a larger price for both UBP-PT and UBP-EUT if
vui|{t,nt} > 0 and vui|{t,t} < −di for i = 1, 2.

Proof: End user i’s transmission probability pi at the
operation point can be determined by solving F(r, pi(r)) =
vuj|{t,nt}wj(1 − pi) + vuj|{t,t}wj(pi) + dj = 0. By differ-
entiating both sides with regard to r, it can be shown that
∂F/∂r + ∂F/∂pi · dpi/dr = 0. Finally, it is true that

dpi/dr =− (∂F/∂r)/(∂F/∂pi) (37)

=
wj(pi) + wj(1− pi)

vuj|{t,nt}∂wj(1− pi)/∂pi + vuj|{t,t}∂wj(pi)/∂pi
< 0,

where wj(pi)+wj(1−pi) > 0 and vuj|{t,nt}∂wj(1−pi)/∂pi+

vuj|{t,t}∂wj(pi)/∂pi < 0 as shown in theorem 14.

Lemma 18. PT users in UBP-PT will use the data service in
a less aggressive manner than the EUT users in UBP-EUT if
vui|{t,nt} > (1 + ρ)vui|{t,t} + ρdi, i = 1, 2.

Proof: The EUT users’ transmission probabilities in
UBP-EUT can be easily determined as pEUT

i = pEUT
j =

pEUT =
−d−vu

i|{t,nt}
vu
i|{t,t}−vu

i|{t,nt}
. From lemma 5, it can be shown that

uPT
i,u (1, pj) ≤ uEUT

i,u (1, pj) and uPT
i,u (1, pj) is convex when

pEUT < 1/ρ. As a result, the horizontal line uPT
i,u (0, pj) =

uEUT
i,u (0, pj) = −di must intersect with uPT

i,u (1, pj) at a point
pPT
j < pEUT

j = pEUT . Thus, the PT users will transmit
less aggressively than the EUT users in this scenario. Further,
pEUT < 1/ρ is equivalent to vui|{t,nt} > (1 + ρ)vui|{t,t} + ρdi.

Corollary 19. If vui|{t,nt} = vuj|{t,nt} and vui|{t,t} = vuj|{t,t},
the service provider will obtain larger revenue when facing
PT users (UBP-PT) than that when facing EUT users (UBP-
EUT) given vui|{t,nt} > −ρdi + (1 − ρ)vui|{t,t}. If vi|{t,nt} >
(1 + ρ)vi|{t,t} + ρdi, the trend is reversed and the service
provider will obtain more revenue from EUT users in UBP-
EUT.

Proof: The service provider’s revenue is defined as
uu
sp(p) =

∑
i=1,2 ripi. Thus, given the same r, the revenue

is totally determined by the transmission probabilities of end
users. Thus, with the results in theorem 11 and lemma 18, the
statement can be established.

Theorem 20. The service provider’s revenue collected from
UBP-EUT is a strictly concave function of price r. As a result,
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Fig. 13. Transmission probabilities at the operation point for UBP.

there exists a unique optimal operating point in UBP-EUT
where the service provider obtains the largest revenue.

Proof: The second order derivative of service provider’s
revenue from the i-th EUT user to the price can be de-
rived as ∂2(rpi)/∂r

2 = 2∂pi/∂r + d2pi/dr
2. Moreover,

pi =
−d−vu

j|{t,nt}
vu
j|{t,t}−vu

j|{t,nt}
. Thus, it can be easily shown that

∂2(rpi)/∂r
2 = 2/(vuj|{t,t}−vuj|{t,nt}) < 0. In other words, the

service provider’s revenue from the i-th user is a strictly con-
cave function of the price r and a unique optimal price can be
found by equating ∂(rpi)/∂r = pi+ r/(vuj|{t,t}− vuj|{t,nt}) =
0, i.e., r∗ = vuj|{t,nt}+dj . A similar conclusion can be drawn
for the revenue collected from the j-th user. Hence, given
vui|{t,nt} = vuj|{t,nt} and vui|{t,t} = vuj|{t,t}, a unique optimal
price can be obtained as r∗ = vuj|{t,nt} + dj = vui|{t,nt} + di.

While we do not have an analytical proof, we note that our
numerical simulations in Fig. 15 do indeed reveal the existence
of a unique optimal point for the case of UBP-PT.

We now discuss the analytical insights obtained from lemma
16, theorem 17, lemma 18, corollary 19 and theorem 20
along with some numerical results. Specifically, in UBP-PT,
we assume α1 = 0.5 and α2 = 0.8. For both UBP-EUT
and UBP-PT, two users randomly access the channel with
pi|{i} = pj|{j} = 0.98, pi|{i,j} = pj|{i,j} = 0.1, i = 1, 2.
We begin with a special case where there is no delay penalty
for each user as c1 = c2 = c = 20, e1 = e2 = e = 2, d1 =
d2 = d = 0 and the price charged varies, i.e., r1 = r2 = r.
As a result, vui|{t,nt} = vuj|{t,nt} and vui|{t,t} = vuj|{t,t}. The
system performances are studied and compared as a function
of r/e.

The qualitative argument in lemma 16 can be shown as in
the following figure. In Fig. 13, it can be seen that, in both
UBP-EUT and UBP-PT, end users’ transmission probabilities
at the operating point decreases as price r increases. Further,
as proven in theorem 11, PT users in UBP-PT transmit more
aggressively given vui|{t,nt} > −ρdi+(1−ρ)vui|{t,t}, vui|{t,nt} =
vuj|{t,nt} and vui|{t,t} = vuj|{t,t}. This indicates that the service
provider will expect a lower service utilization level if she
charges a larger price if vui|{t,nt} > 0 and vui|{t,t} < −di for
i = 1, 2. This argument holds true for both EUT user and PT
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Fig. 14. Sum average throughput at the operation point for UBP.

user scenarios and can be analytically proven in theorem 17.
Another interesting observation in Fig. 13 is that when the
price charged becomes relatively large, the PT users in UBP-
PT will choose a more conservative utilization of the data
services. In particular, there exists a transmission probability
where pEUT

i = pEUT
j = pPT

i = pPT
j = pint as shown lemma

5. This phenomenon can be analytically proven in lemma 18
using a similar approach to that used in theorem 11.

In Fig. 14, the sum average throughput of both users are
compared between UBP-EUT and UBP-PT. The result shows
that with usage based data pricing scheme, the deviation of PT
users from EUT still hurts the system performance in terms of
throughput. This is actually a direct result from theorem 12. In
Fig. 15, service provider’s revenues are shown for both UBP-
EUT and UBP-PT as she charges varying prices to the end
users. It can be seen that the service provider will achieve
greater revenues when users are PT, even while charging a
comparatively lower fee.

The important result from theorem 20 that is shown in Fig.
15 is the difference of optimal operating points between UBP-
PT and UBP-EUT. It can be seen that both UBP-PT and UBP-
EUT have unique optimal operating points. Meanwhile, the
optimal revenue collected from UBP-PT is slightly larger than
that from UBP-EUT. However, the optimal price charged in
UBP-PT is slightly smaller than that in UBP-EUT.

In conclusion, for UBP, the type of the underlying users will
influence system performance and service provider’s revenue.
First, a larger price will discourage the users from using the
data service for both UBP-EUT and UBP-PT. Second, the
deviation of PT users from EUT still degrades the system
sum average throughput under the data pricing scheme. Third,
under mild conditions as in corollary 19, the service provider
will gain more revenue in UBP-PT than that in UBP-EUT for
a small price. However, as the price increases, the trend will
be reversed. Finally, the service provider will find a unique
optimal price to collect the most revenue in both UBP-PT
and UBP-EUT. The optimal revenue collected from UBP-PT
is slightly larger than that in UBP-EUT and the the optimal
price in UBP-PT is slightly smaller than that in UBP-EUT.
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Fig. 15. Service provider’s revenue for UBP.

C. Impact and Influence of End-User Behavior on TBP

Unlike the UBP scheme, the throughput based pricing
scheme only charges the end users for successful transmis-
sions. In the following, we will compare the service provider’s
revenue and system performance between two scenarios, i.e.,
the end users are both PT (TBP-PT) and the end users are
both EUT (TBP-EUT).

In the UBP scheme, we have shown that a larger price
charged by the service provider will discourage the end users
from using the data services for both PT and EUT users. The
same argument can also be established for the TBP scheme
as in the following lemma 21 and theorem 22.

Lemma 21. An end user’s utility when she chooses to trans-
mit, i.e., uPT

i,t (1, pj) or uEUT
i,t (1, pj), is a decreasing function

of the charged price ri given a fixed pj .

Proof: Given a fixed pj , it is true that ∂uPT
i,t (1, pj)/∂ri =

−(pi|{i,j}wi(pj) + pi|{i}wi(1 − pj)) < 0. In particular,
∂uEUT

i,t (1, pj)/∂ri = −pi|{i,j}pj − pi|{i}(1 − pj) < 0. Thus,
the statement is established.

Theorem 22. End users’ transmission probabilities p1, p2 will
be a decreasing function of the price r, i.e., end users will
choose a lower service utilization level if service provider
charges a larger price for both TBP-PT and TBP-EUT.

Proof: Similar to the proof of theorem 17, it is true that

dpi/dr =
wj(pi)pi|{i,j} + wj(1− pipi|{i})

vt
j|{t,nt}∂wj(1− pi)/∂pi + vt

j|{t,t}∂wj(pi)/∂pi
< 0,

(38)

where wj(pi)pi|{i,j} + wj(1 − pi)pi|{i} > 0 and
vtj|{t,nt}∂wj(1−pi)/∂pi+ vtj|{t,t}∂wj(pi)/∂pi < 0 as shown
in theorem 15.

Theorem 23. If vti|{t,nt} = vtj|{t,nt} and vti|{t,t} = vtj|{t,t}, the
service provider will obtain a larger revenue when facing EUT
users (TBP-EUT) than that when facing PT users (TBP-PT).

Proof: From theorem 11 and 12, it is true that given
vti|{t,nt} > −ρdi + (1 − ρ)vti|{t,t}, vti|{t,nt} = vtj|{t,nt}
and vti|{t,t} = vtj|{t,t}, TBP-EUT will obtain a larger sum
average throughput than that in TBP-PT. Moreover, ut

sp(p) =
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Fig. 16. Transmission probabilities at the operation point for TBP.

∑
i=1,2 ripiTi = r

∑
i=1,2 piTi. Thus, the service provider

will obtain a larger revenue in TBP-EUT. Further, as shown
in lemma 5 and Fig. 16, as r increases, the revenue collected
will also increase until both TBP-PT and TBP-EUT arrive
at the same transmission probability, i.e., pint. Beyond this
point, the revenue collected will decrease and TBP-EUT still
generates more revenue than TBP-PT.

In the following, we discuss the analytical insights obtained
from lemma 22, theorem 23 and theorem 24 with some numer-
ical results. We assume α1 = 0.5 and α2 = 0.8. For both TBP-
EUT and TBP-PT, two users randomly access the channel with
pi|{i} = pj|{j} = 0.98, pi|{i,j} = pj|{i,j} = 0.1, i = 1, 2. We
begin with a special case where there is no delay penalty for
each user as c1 = c2 = c = 20, e1 = e2 = e = 2, d1 = d2 =
d = 0 and the price charged varies, i.e., r1 = r2 = r. As a
result, vti|{t,nt} = vtj|{t,nt} and vti|{t,t} = vtj|{t,t}. The system
performances are studied and compared as a function of r/e.

In Fig. 16, it can be observed that end users’ transmission
probabilities decrease as the price r increases in both TBP-
EUT and TBP-PT. Also, in TBP scheme, TBP-PT still suffers
a sum average throughput degradation due to PT users’ devi-
ation from EUT compared to TBP-EUT as shown in Fig. 17.
Moreover, in TBP scheme the service provider’s revenue is a
linear function of the sum average throughput. Thus, it can be
expected that the service provider will obtain a larger revenue
in TBP-EUT than TBP-PT for the same price r charged under
mild conditions shown in Fig. 18. This is analytically proven
in theorem 24.

In conclusion, for the throughput based pricing scheme, we
have the following results under mild conditions. First, end
users’ willingness to use the service will be discouraged by
a larger price for both TBP-PT and TBP-EUT. Second, TBP-
PT suffers a sum average throughput degradation compared to
TBP-EUT. As a result, the service provider obtains a larger
revenue in TBP-EUT than that in TBP-PT.

Finally, it is interesting to compare two pricing schemes,
namely UBP and TBP, for two scenarios (end users are both
PT or EUT). In Fig. 19, the revenues the service provider
obtains in UBP-PT, UBP-EUT, TBP-PT and TBP-EUT are
shown and compared. It can be seen that for all the four
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Fig. 17. Sum average throughput at the operation point for TBP.
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Fig. 18. Service provider’s revenue for TBP.

scenarios, the service provider can find an optimal price to
achieve the largest revenue. In general, the service provider
requires a smaller price to achieve the optimal operating point
in the UBP schemes than that in the TBP schemes. The
optimal revenues obtained in the four scenarios are similar.
In particular, in the TBP schemes, the service provider can
achieve the same optimal revenue regardless of the type of the
underlying users. This is a useful feature in pricing scheme
design since the service provider can employ the same pricing
policy without worrying about valuation preference of end
users. However, it should be emphasized that there are obvious
disparities between the revenues when the optimal price cannot
be applied. The service provider should also consider this
aspect when designing pricing policies.

IX. CONCLUSION AND DISCUSSION

Motivated by the increasing amount of end-user control
afforded in programmable radio devices, we have envisioned
a scenario where end-user actions essentially “interfere” with
the underlying engineered system design. In this paper, as
an exemplary scenario, we have considered a random access
game where players follow the precepts of Prospect Theory
(PT), a theory developed by Kahneman and Tversky to ex-
plain real-life decision making that often deviates from the
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Fig. 19. Service provider’s revenue comparison between UBP and TBP.

behavior expected under Expected Utility Theory (EUT). A
specific game where selfish players adjust their transmission
probabilities over a random access channel under throughput
rewards, delay penalties and energy costs has been considered.
By analyzing the Nash Equilibrium (NE) achieved in a 2-
player game, we have proved under mild conditions, that
deviations from EUT of any player results in degradation
of system throughput and increased delay and energy con-
sumption. We have also studied an N-player homogeneous
game with symmetric utility functions and observed similar
results at the NE. Finally, we have extended our study to the
scenario of data pricing, which is a more practical scenario
where end-users’ decisions are of paramount importance to
the operation of the network. Similar to the wireless random
access game, deviation of end users from EUT degrades the
system throughput performance under both pricing schemes
under consideration (UBP and TBP). Furthermore, it has been
shown that end users’ deviation from EUT also impacts the
service provider’s revenues. As a result, it would be a good
practice for the service provider to consider the effects of PT
in designing pricing schemes.

The results in this paper have only characterized the prop-
erties of the mixed NE under both EUT and PT settings. An
important aspect of wireless transmission in such networking
scenarios is the need for distributed algorithms that can be
used by the users in making decisions about transmission
probabilities. This future work will necessarily have to rely
on an algorithmic game theoretic formulation of the problems
considered here or consider heuristic distributed algorithms for
updating the transmission probabilities using local information
available to the end users. The second important aspect that
needs further study is the characterization of the probability
weighting functions (different from the parametric weighting
function used in this paper) that are specifically pertinent to
wireless device usage. This requires psychophysics experi-
ments involving real wireless users and devices and is a topic
for future study. A related issue is the design of algorithms
when there is uncertainty in characterizing the exact form of
the probability weighting function.
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