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Towards Understanding the Fundamentals of
Mobility in Cellular Networks

Xingqin Lin, Radha Krishna Ganti, Philip J. Fleming and Jeffrey G. Andrews

Abstract—Despite the central role of mobility in wireless
networks, analytical study on its impact on network performance
is notoriously difficult. This paper aims to address this gapby
proposing a random waypoint (RWP) mobility model defined
on the entire plane and applying it to analyze two key cellular
network parameters: handover rate and sojourn time. We first
analyze the stochastic properties of the proposed model and
compare it to two other models: the classical RWP mobility model
and a synthetic truncated Levy walk model which is constructed
from real mobility trajectories. The comparison shows that
the proposed RWP mobility model is more appropriate for
the mobility simulation in emerging cellular networks, which
have ever-smaller cells. Then we apply the proposed model
to cellular networks under both deterministic (hexagonal) and
random (Poisson) base station (BS) models. We present analytic
expressions for both handover rate and sojourn time, which have
the expected property that the handover rate is proportional
to the square root of BS density. Compared to an actual BS
distribution, we find that the Poisson-Voronoi model is about as
accurate in terms of mobility evaluation as hexagonal model,
though being more pessimistic in that it predicts a higher
handover rate and lower sojourn time.

I. I NTRODUCTION

The support of mobility is a fundamental aspect of wireless
networks [1], [2]. Mobility management is taking on new
importance and complexity in emerging cellular networks,
which have ever-smaller and more irregular cells.

A. Background and Proposed Approach

As far as cellular networks are concerned, typical questions
of interest include how mobility affects handover rate and
sojourn time. Handover rate is defined as the expected number
of handovers per unit time. It is directly related to the network
signaling overhead. Clearly, the handover rate is low for large
cells and/or low mobility, but smaller cells are necessary to
increase the capacity of cellular networks through increased
spectral and spatial reuse. Thus, analytic results on handover
rate will be useful for network dimensioning, and in order
to understand tradeoffs between optimum cell associations
and the undesired overhead in session setup and tear downs.
Sojourn time is defined as the time that a mobile resides
in a typical cell. It represents the time that a BS would
provide service to the mobile user. In the case of a short
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sojourn time, it may be preferable from a system-level view
to temporarily tolerate a suboptimal BS association versus
initiating a handover into and out of this cell. This concept
is supported in 4G standards with a threshold rule [3], but it
is fair to say that the theory behind such tradeoffs is not well
developed. Though handover rate is inversely proportionalto
expected sojourn time, their distributions can be significantly
different, which motivates us to study them separately in this
paper.

To explore the role of mobility in cellular networks, par-
ticularly handover rate and sojourn time, mobility modeling
is obviously a necessary first step. In this paper, we focus
on RWP mobility model originally proposed in [4] due to its
simplicity in modeling movement patterns of mobile nodes.
In this model, mobile users move in a finite domainA. At
each turning point, each user selects the destination point
(referred to as waypoint) uniformly distributed inA and
chooses the velocity from a uniform distribution. Then the user
moves along the line (whose length is called transition length)
connecting its current waypoint to the newly selected waypoint
at the chosen velocity. This process repeats at each waypoint.
Optionally, the user can have a random pause time at each
waypoint before moving to the next waypoint. In this classical
RWP mobility model, the stationary spatial node distribution
tends to concentrate near the center of the finite domain and
thus may be inconvenient if users locate more or less uniformly
in the network [5]. Another inconvenience is that the transition
lengths in the classical RWP mobility model are of the same
order as the size of the domainA, which seems to deviate
significantly from those observed in human walks [6].

To solve the inconveniences mentioned above, we propose
a RWP mobility model defined on the entire plane. In this
model, at each waypoint the mobile node chooses 1) a random
direction uniformly distributed on[0, 2π], 2) a transition length
from some distribution, and 3) a velocity from some distribu-
tion. Then the node moves to the next waypoint (determined by
choice 1 and 2) at the chosen velocity. As in the classical RWP
mobility model, the node can have a random pause time at
each waypoint. Note that human movement has very complex
temporal and spatial correlations and its nature has not been
fully understood [7], [8]. It is fair to say that none of the
existing mobility models are fully realistic. The motivation of
this work is not to solve this open problem. Instead, we aim
to propose a tractable RWP mobility model, which can be
more appropriate than the classical RWP mobility model for
the study of mobility in emerging cellular networks, so thatit
can be utilized to analyze the impact of mobility in cellular
networks to provide insights on network design.
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After presenting the proposed mobility model, we analyze
its associated stochastic properties and compare it to two other
models: the classical RWP mobility model and a synthetic
truncated Levy walk model [6] which is constructed from real
mobility trajectories. The comparison shows that the proposed
model is more appropriate for the mobility simulation in
emerging cellular networks. Then the proposed RWP mobility
model is applied to cellular networks whose BSs are modeled
in two conceptually opposite ways. The first is the traditional
hexagonal grid, which represents an extreme in terms of
regularity and uniformity of coverage, and is completely
deterministic. The second is to model the BS locations as
drawn from a Poisson point process (PPP), which creates a set
of BSs with completely independent locations [9], [10]. Under
the PPP BS model, the cellular network can be viewed as a
Poisson-Voronoi tessellation if the mobile users are assumed
to connect to the nearest BSs. As one would expect, most
actual deployments of cellular networks lie between these
two models, both qualitatively – i.e. they are neither perfectly
regular nor perfectly random – and quantitatively, i.e. theSINR
statistics and other statistical measures are bounded by these
two approaches [11]. Thus, both models are of interest and we
apply the proposed RWP mobility model to cellular networks
under both models. Analytic expressions for handover rate and
sojourn time are obtained under both models, some of which
are quite simple and lead to intuitive interpretations.

In some aspects the proposed RWP mobility model is simi-
lar to the random direction (RD) mobility model. Though the
classical RD mobility model does not have a non-homogenous
spatial distribution as in the classical RWP mobility model,
its transition lengths are still of the same order as the size
of the simulation area, which seems to deviate significantly
from those in human walks [12]. This inconvenience may be
solved by a modified RD mobility model [13], in which the
transition length distribution is co-determined by the velocity
distribution and moving time distribution. This may complicate
the theoretical analysis in this paper. This motivates us to
propose a mobility model with transition length distribution
directly specified. Besides, transition length data seems to be
more readily available than moving time data in many real
data sets [6], [8]. Thus, it might be easier to use the proposed
RWP mobility model when fitting the mobility model to real
mobility trajectories.

Before ending this subsection, it is worth mentioning
the many trace-based mobility models [14]–[24]. One main
drawback of trace-based mobility models is that, due to the
differences in the trace acquiring methods, sizes of trace
data, and data filtration techniques, mobility model built on
one trace data set may not be applicable to other network
scenarios. Moreover, trace-based mobility models are often
not mathematically tractable (at least very complicated),pre-
venting researchers from analytically studying the performance
of various protocols and/or getting quick informative results in
mobile networks. In contrast, random synthetic models, includ-
ing random walk, the classical and the proposed RWP, Gauss-
Markov, etc., are generic and more mathematically tractable.
In addition, some aspects of some random synthetic models
(including the proposed RWP model) can be fitted using traces,

as done in [19]. Nevertheless, trace-based mobility models
are more realistic and scenario-dependent, which is crucial to
perform reliable performance evaluation of mobile networks.
Hence, both random and trace-based synthetic models are
important for the study of mobile networks. In particular, when
evaluating a specific protocol in mobile networks, researchers
can utilize random synthetic models for example the proposed
RWP model to quickly get informative results. Meanwhile,
researchers can build specific scenario-dependent trace-based
model by collecting traces if possible. Then based on the
constructed trace-based model researchers can further perform
more extensive and reliable evaluation of the protocol beyond
just using random synthetic models.

B. Related work

The proposed RWP model is based on the one originally
proposed in [4]. Due to its simplicity in modeling movement
patterns of mobile nodes, the classical RWP mobility model
has been extensively studied in literature [5], [25]–[27].These
studies analyzed the various stochastic mobility parameters,
including transition length, transition time, direction switch
rate, and spatial node distribution. When it comes to applying
the mobility model to hexagonal cellular networks, simulations
are often required to study the impact of mobility since the
analysis is hard to proceed [2], [3]. Nonetheless, the effects of
the classical RWP mobility model to cellular networks have
been briefly analyzed in [26] and a more detailed study can
be found in [28]. However, as remarked above, the classical
RWP model may not be convenient in some cases. In contrast,
we analyze and obtain insight about the impact of mobility
under a hexagonal model through applying the relatively clean
characterization of the proposed RWP model, as [28] did
through applying the classical RWP model.

The application of the proposed RWP mobility model to
cellular networks modeled as Poisson-Voronoi tessellation re-
quires stochastic geometric tools, which are becoming increas-
ingly sophisticated and popular [29]–[32]. As far as mobility
is concerned, [33] proposed a framework to study the impact
of mobility in cellular networks modeled as Poisson-Voronoi
tessellation. In particular, the authors proposed a Poisson line
process to model the road system, along which the mobile
users move. Thus, the mobility pattern in [33] is of large scale
while the RWP mobility model in this paper is of small scale.
Our study can be viewed as complementary to [33]. For exam-
ple, our result indicates that if cells decrease in size suchthat
the BS density per unit area is increased by 4 times, then the
handover rate would be doubled. Note that recent work showed
that the PPP model for BSs was about as accurate in terms of
SINR distribution as the hexagonal grid for a representative
urban cellular network [11]. Interestingly, we find that this
observation is also true for mobility evaluation, though the
Poisson-Voronoi model yields slightly higher handover rate
and lower sojourn time and thus is a bit more pessimistic than
the hexagonal model (which is correspondingly optimistic).

We briefly summarize the contributions of this work: 1) We
propose a tractable RWP mobility model which overcomes
some inconveniences of the classical RWP mobility model and
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is more appropriate for mobility study in cellular networks.
2) We obtain analytical results for handover rate and sojourn
time in cellular networks. Though a specific transition length
distribution is assumed, the analysis in this paper is quite
general and can be extended to any other transition length
distribution which has finite mean. 3) We connect the mobility
results for the two conceptually opposite models of cellular
networks: hexagonal and Poisson-Voronoi tessellation.

II. PROPOSEDRWP MOBILITY MODEL ON INFINITE

PLANES

We describe the proposed RWP mobility model in this
section. As in the description of the classical RWP model
(see, e.g., [5]), the movement trace of a node can be
formally described by an infinite sequence of quadruples:
{(Xn−1,Xn, Vn, Sn)}n∈N , wheren denotes then-th move-
ment period. During then-th movement period,Xn−1 denotes
the starting waypoint,Xn denotes the target waypoint,Vn

denotes the velocity, andSn denotes the pause time at the way-
point Xn. Given the current waypointXn−1, the next way-
point Xn is chosen such that the included angle between the
vectorXn −Xn−1 and the abscissa is uniformly distributed
on [0, 2π] and the transition lengthLn =‖ Xn −Xn−1 ‖ is
a nonnegative random variable. The selection of waypoints is
independent and identical for each movement period.

Though there is a degree of freedom in modeling the
random transition lengths, we focus on a particular choice in
this paper. Specifically, the transition lengths{L1, L2, ...} are
chosen to be independent and identically distributed (i.i.d.)
with cumulative distribution function (cdf)

P (L ≤ l) = 1− exp(−λπl2), l ≥ 0, (1)

i.e., the transition lengths are Rayleigh distributed. Velocities
Vn are i.i.d. with distributionPV (·). Pause timesSn are also
i.i.d. with distributionPS(·). This selection bears an interesting
interpretation: Given the waypointXn−1, a homogeneous PPP
Φ(n) with intensityλ is independently generated and then the
nearest point inΦ(n) is selected as the next waypoint, i.e.,
Xn = argminx∈Φ(n) ‖ x−Xn−1 ‖ .

Under the proposed model, different mobility patterns can
be captured by choosing differentλ’s. Largerλ statistically
implies that the transition lengthsL are shorter. This further
implies that the movement direction switch rates are higher.
These mobility parameters may be appropriate for mobile
users walking and shopping in a city, for example. In contrast,
smallerλ statistically implies that the transition lengthsL are
longer and the corresponding movement direction switch rates
are lower. These mobility parameters may be appropriate for
driving users, particularly those on the highways. This intuitive
result can also be observed in Fig. 1, which shows4 sample
traces of the proposed RWP model.

III. STOCHASTIC PROPERTIES OF THEPROPOSEDRWP
MOBILITY MODEL

In this section, we first study the various stochastic proper-
ties of the proposed RWP mobility model. Stochastic prop-
erties of interests include transition length, transitiontime,
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Fig. 1. Sample traces of the proposed RWP mobility models. The transition
lengths are statistically shorter with larger mobility parameterλ, and vice
versa.

direction switch rate, and the spatial node distribution. We then
perform simulation to compare the proposed RWP mobility
model to the classical RWP mobility model and a synthetic
Levy Walk model proposed in [6], which is constructed from
real mobility trajectories.

A. Transition length

We definetransition length as the Euclidean distance be-
tween two successive waypoints. In the proposed model, the
transition lengths can be described by a stochastic process
{Ln}n∈N whereLn are i.i.d. Rayleigh distributed with

E[L] =
1

2
√
λ
. (2)

Note that the transition lengths are not i.i.d. in the classical
RWP mobility model. Indeed, a node currently located near the
border of the finite domain tends to have a longer transition
length while a node located around the center of the finite
domain statistically has a shorter transition length for the next
movement period. As a result, it is difficult to obtain the
probability distribution for each random transition length.

Nevertheless, the random waypointsXn are i.i.d. in the
classical RWP mobility model, which is obvious since they
are selected uniformly from a finite domain and independently
over movement periods. This property forms the basis for the
analysis of the classical RWP mobility model (see, e.g., [5],
[25]). In contrast, the waypoints in our proposed model are
not i.i.d. but form a Markov process.

B. Transition time

We definetransition time as the time a node spends during
the movement between two successive waypoints. We denote
by Tn the transition time for the movement periodn. Then
T = L/V where we omit the period indexn sinceTn are i.i.d..
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DenoteV ∈ R as the range of the random velocityV . Given
any velocity distributionPV (·), the probability distribution of
T is given as follows.

Proposition 1.The cdf of the random transition timeT is given
by

P (T ≤ t) = 1−
∫

V
exp(−λπv2t2) dPV (v), t ≥ 0. (3)

The proof of Prop. 1 is omitted for brevity. As a specific
application of Prop. 1, the following corollary gives closed
form expressions for transition times under two types of
velocity distributions.

Corollary 1. 1) If V ≡ ν whereν is a positive constant, the
pdf of transition timeT is

fT (t) = 2πλν2te−λπν2t2 , t ≥ 0. (4)

2) If V is uniformly distributed on[vmin, vmax], the pdf of
transition timeT is

fT (t) =
g(vmin)− g(vmax)

(vmax − vmin)t
, t ≥ 0, (5)

whereg(x) , xe−λπt2x2

+
1

λ1/2t
Q(

√
2πλtx) is non-

increasing, andQ(x) =
1√
2π

∫ ∞

x

e−
u2

2 du.

Next, we derive the mean transition time. Instead of apply-
ing the cdf ofT , we notice that

E[T ] = E[
L

V
] = E[L]E[

1

V
]

= E[L]

∫

V

1

v
dPV (v) =

1

2
√
λ

∫

V

1

v
dPV (v). (6)

From (6), we can easily obtain that, ifV ≡ ν,

E[T ] =
1

2ν
√
λ
, (7)

and, if V is uniformly distributed on[vmin, vmax],

E[T ] =
ln vmax − ln vmin

2
√
λ(vmax − vmin)

. (8)

From (8), it is clear thatvmin > 0 is required to ensure finite
expected transition time.

C. Direction switch rate

In this subsection, we study thedirection switch rate, which
is the inverse of the time between two direction changes and
thus characterizes the frequency of direction change and is
also a mobility parameter of interest [5]. To this end, we first
introduce theperiod time, the time a node spends between two
successive waypoints. In particular, period timeTp is the sum
of the pause time and the transition time, i.e.,Tp = T + S,
whereS denotes the random pause time. Then the direction
switch rate denoted byD is defined to be the inverse of
the period time:D = 1/Tp, whose probability distribution
is described in the following proposition.

Proposition 2.The cdf of the direction switch rateD is given

by

P (D ≤ d) =

∫

S

∫

V
exp

(

−λπv2
(d− s)2

d2

)

dPV (v) dPS(s),

(9)

whereS ∈ R denotes the range of the random pause time.

We omit the proof of Prop. 2 for brevity. Given the distri-
butions of velocity and transition time, i.e.,PV (v) andPS(s),
the distribution of direction switch rateD can be found by
Prop. 2.

D. Spatial node distribution

In this subsection, we study thespatial node distribution. To
this end, letX0 andX1 be two successive waypoints. Given
X0, we are interested in the probability that the moving node
resides in some measurable setA during the movement from
X0 to X1. We first derive the spatial node distribution given
in the following theorem with the assumption that the mobile
node does not have pause time.

Theorem 1.Assume thatSn ≡ 0, ∀n, and thatX0 is at the
origin. Then the spatial node distribution betweenX0 andX1

is characterized by the pdff(r, θ) given by

f(r, θ) =

√
λ

πr
exp(−λπr2). (10)

Proof: See Appendix A.
The physical interpretation off(r, θ) is as follows. Let

dA(r, θ) be a small area around the point(r, θ) given in polar
coordinate. Then the probabilityP (dA(r, θ)) that the moving
node resides in some measurable setA during the movement
from X0 to X1 is approximately given by

P (dA(r, θ)) ≈ f(r, θ) · |dA(r, θ)|, (11)

where|dA(r, θ)| denotes the area of the setdA(r, θ). Also, as
noted in the proof in Appendix A,f(r, θ) can be regarded as
the ratio of the expected proportion of transition time in the
setdA(r, θ) to |dA(r, θ)|.

Now let us consider the case where the mobile node has
random pause timeS, characterized by the probability measure
PS(·). In this case, the spatial node distribution is given in the
following theorem.

Theorem 2.Assume thatX0 is at the origin. Then the spatial
node distribution betweenX0 andX1 is characterized by the
pdf f̃(r, θ):

f̃(r, θ) = p ·
√
λ

πr
exp(−λπr2) + (1− p) · λ exp(−λπr2),

(12)

wherep =
E[T ]

E[T ] + E[S]
is the expected proportion of transi-

tion time fromX0 to X1.

Proof: Note that the pause timeS is independent of both
X andV . Besides, the non-static probabilityp is the expected
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proportion of the time that the nodei is moving, i.e.,

p = lim
n→∞

∑n
m=1 tm

∑n
m=1(tm + sm)

=
E[T ]

E[T ] + E[S]
. (13)

The pdf f̃(r, θ) is the weighted superposition of two indepen-
dent components as [27]:

f̃(r, θ) = p · f(r, θ) + (1− p) · fX1(r, θ), (14)

where f(r, θ) is the spatial node distribution without pause
time and is given in Theorem 1 , andfX1

(r, θ) denotes the
spatial distribution of the waypointX1 and is given in Lemma
1. Pluggingf(r, θ) andfX1

(r, θ) into (14), the expression (12)
follows.

E. Model comparison

In this section, we perform simulations to study the dif-
ference between the proposed RWP mobility model and the
classical one. For validation, we also compare them to a
synthetic truncated Levy walk model [6], which is constructed
from real mobility trajectories. Thus, we indirectly compare
the two RWP mobility models to real human walks. In
the truncated Levy walk model, transition lengths have an
inverse power-law distribution:PL(l) ∼ 1

l1+α , 0 < α < 2.
The pause times also have an inverse power-law distribution:
PS(s) ∼ 1

s1+β , 0 < β < 2.
We simulate the movement of a mobile node under the

three mobility models, respectively. The simulation area is a
1000×1000 grid.1 Since the main assumption in the proposed
model is the Rayleigh distributed transition lengths, we first
compare the statistics of transition lengths under the three
mobility models. The results are shown in Fig. 2, where
λ is chosen such that the proposed RWP mobility model
has the same mean transition length as that of Levy walk
model. As shown in Fig. 2, transition lengths of the classical
RWP mobility model are statistically much larger than those
of Levy walk model. In contrast, transition lengths of the
proposed RWP mobility model match those of Levy walk
model better, especially in the low transition length regime.
However, the proposed RWP mobility model lacks the heavy
tail characteristic of the Levy walk model. This mismatch in
the high transition length regime gradually diminishes asα
increases.

We next compare the statistics of direction switch rate under
the 3 mobility models. The results are shown in Fig. 3, whereλ
is chosen such that the proposed RWP mobility model has the
same mean transition length as that of Levy walk model. The
pause time distribution used in the 2 RWP mobility models are
the same power-law distribution as that used for pause time
distribution in the Levy walk model. As expected, the classical
RWP mobility model has much lower direction switch rate in
all the 3 subplots than the Levy walk model. In contrast, the
difference in direction switch rate between the proposed RWP
mobility model and Levy walk model is moderate whenβ
is large. Whenβ is small, e.g.,β = 0.1, the statistics of the

1Note that, though the proposed RWP mobility model is defined on the
entire plane for analytical tractability, in a simulation one has to deal with the
boundary issue. Here we use reflection method.
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Fig. 2. Simulated statistics of transition lengths:V ≡ 1 andβ = 1.

direction switch rate of the proposed RWP mobility model are
almost indistinguishable from those of the Levy walk model.

The above comparison shows that the proposed RWP model
is more flexible for mobility simulation in future cellular
networks which have ever-smaller cells than the classical RWP
model. In particular, some aspects of the proposed RWP model
can be directly or indirectly fitted using traces, while the
classical RWP model is fixed. Nevertheless, the comparison
does not imply that the statistical difference between the
proposed RWP and Levy walk model are non-significant.
Also, we do not claim that the proposed RWP model can
fully represent human walks. Also, human walks are not Levy
walks even though the Levy walk model is constructed from
real mobility trajectories. Indeed, human walks have complex
temporal and spatial correlations and its nature has not yet
been fully understood [7]. It is fair to say that none of the
existing mobility models can fully represent human walks.

Note that though many real mobility trajectories show that
transition lengths of human walks seem to have an inverse
power-law distribution, we do not choose it to model the
transition lengths in our proposed RWP mobility model. The
reason is that the mean transition length under inverse power-
law distribution is infinite. This will cause analytical problems,
e.g., the expected number of handovers in a movement period
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Fig. 3. Simulated statistics of direction switch rate:V ≡ 1 andα = 1.

becomes infinite. Nevertheless, the analysis in this paper can
be readily extended to any other transition length distribution
which has finite mean.

IV. A PPLICATIONS TOHEXAGONAL MODELED CELLULAR

NETWORKS

In this and the next section, we study the impact of
mobility on important cellular network parameters, particularly
handover rate and sojourn time, using the proposed RWP
mobility model. We focus on hexagonal cellular networks in
this section.

A. Handover Rate

We assume the typical mobile user is located at the origin.
Then the expected number of handovers during one movement
period can be computed as

E[N ] =

∞
∑

n=1

n

∫

Cn

P (dA(r, θ)), (15)

whereP (dA(r, θ)) is the probability distribution of the way-
point densityfX1

(r, θ) given in Lemma 1 andCn denotes
the area covered by then-th layer neighbouring cells. Now
we formally define the handover rate.

Definition 1. The handover rate is defined as the expected num-
ber E[N ] of handovers during one movement period divided
by the expected period time. Mathematically, handover rateis
given byH = E[N ]/E[Tp].

Note thatE[Tp] = E[T ] + E[S] where E[T ] has been
given in Prop. 1 andE[S] can be determined from the pause
time distribution. However, exact computation ofN by (15)
is tedious. Thus, we propose the following approximation
formula

E[N ]app=

∞
∑

n=1

n

∫ 2π

0

∫ (2n+1)R

(2n−1)R

fX1
(r, θ)rdrdθ, (16)

whereR =
√

C/π with C being the hexagonal cell size. In
other words, we approximate then-th neighbouring layer by a
ring with inner radius(2n− 1)R and outer radius(2n+1)R.
This approximation captures the essence of (15) and allows us
to derive closed form results onE[N ] and the corresponding
lower and upper bounds.

Proposition 3.Let d be the side length of the hexagonal
cell andλ the mobility parameter. The approximation of the
expected number of handovers during one movement period is
given by

E[N ]app=

∞
∑

n=0

exp

(

−3
√
3

2
(2n+ 1)2λd2

)

, (17)

and is bounded asE[N ]Lapp≤ E[N ]app≤ E[N ]Uapp where

E[N ]Lapp ,

√

π

6
√
3λd2

Q

(√

3
√
3λd2

)

, (18)

E[N ]Uapp ,

√

π

6
√
3λd2

(

1−Q

(√

3
√
3λd2

))

. (19)

Moreover, the difference△Napp(λd
2) between the upper bound

and lower bound is a strictly increasing function ofλd2

and is within the range(0, 1). In particular,△Napp(λd
2) →

0 asλd2 → ∞, and△Napp(λd
2) → 1 asλd2 → 0.

Proof: See Appendix B.
Using Prop. 3, the approximate handover rate can be

computed asHapp = 1
E[Tp]

· E[N ]app and is bounded as
HL

app ≤ Happ ≤ HU
app, whereHL

app =
1

E[Tp]
· E[N ]Lapp, H

U
app =

1
E[Tp]

· E[N ]Uapp. As the size of the cells in cellular networks
becomes smaller, higher handover rates are expected. In this
regard, it is interesting to examine the asymptotic property of
handover rate as in Corollary 2.

Corollary 2. Assume that any of the following asymptotic
conditions holds: 1)d → 0 with fixedλ; 2)λ → 0 with fixedd;
3) λd2 → 0. Then the asymptotic approximate handover rate is
given by

Happ∼
1

E[T ] + E[S]

√

π

6
√
3λ

1

2d
. (20)

Though derivation by (15) is not tractable, theexact han-
dover rate in hexagonal model can be obtained using a
generalized solution of Buffon’s needle [34] as in the following
Proposition.

Proposition 4.Let d be the side length of the hexagonal
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cell andλ the mobility parameter. The expected number of
handoversE[N ] during one movement period is given by

E[N ] = E[T ] · 4
√
3

3π

E[V ]

d
. (21)

The handover rateH = E[N ]/E[Tp] is then given by

H =
E[T ]

E[T ] + E[S]
· 4

√
3

3π

E[V ]

d
. (22)

Proof: See Appendix C.
We remark that the insights obtained by either approximate

or exact approach are the same. Let us consider the simplified
RWP mobility model where the mobile nodes do not have
pause time and constant velocity, i.e.,V ≡ ν, the asymptotic
handover rate in Corollary 2 can be further simplified as

Happ∼
√

π

6
√
3

ν

d
, (23)

and the exact handover rateH is given by

H =
4
√
3

3π

ν

d
, (24)

which is consistent with the one given in [35]. Note that the
hexagonal cell sizesH is given by 3

√
3d2/2 in hexagonal

tiling. So (23) can be written asHapp ∼
√

π
4

ν√
sH

. Similarly,

the exact method yieldsH = 4
π

√√
3
2

ν√
sH

. Both results imply
that handover rate is inversely proportional to the square
root of cell size sH . In other words, if we deploy more
small cells and increase the BS density say by 4 times in
current cellular network, we would expect the handover rate
to be roughly increased by 2 times. Interestingly, the mobility
parameterλ does not play a role, while the velocity and the
cell size affect the handover rate in a trade-off manner. Fig. 4
compares the number of handovers obtained by simulation to
the counterparts evaluated by analytic formula (17) and (21)
respectively. It is shown that the exact analytic result closely
matches the simulation while the approximation approach
tends to underestimate the real number of handovers.

B. Sojourn Time

Sojourn time is defined as the expected duration that the
mobile node stays within a particular serving cell. For brevity,
we only consider the simplified RWP mobility model where
the mobile nodes do not have pause time and constant velocity,
i.e., V ≡ ν. Then sojourn time in any cell with coverage area
C can be computed as

ST = E[T ] ·
∫

C
P (dA(r, θ)), (25)

whereP (dA(r, θ)) is the probability distribution of the spatial
node densityf(r, θ) given in Theorem 1. For brevity, we only
focus on the sojourn time in the cell where the connection is
initiated during one movement period in the sequel.

Assuming the mobile node is co-located with its currently
associated BS at the origin, the sojourn time can be computed
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Fig. 4. Handover in hexagonal model by analysis and simulation with velocity
ν ≡ 1 and no pause time.

as

ST = E[T ] · 4
√
λ

π
(

∫ d/2

0

∫

√
3d/2

0

f(x, y)dydx

+

∫ d

d/2

∫ −
√
3x+

√
3d

0

f(x, y)dydx), (26)

where f(x, y) = exp(−λπ(x2 + y2))/
√

x2 + y2. However,
no closed form result is available for (26), though it can
be evaluated using numerical methods. We provide explicit
formulas for the lower and upper bounds of (26) in Prop. 5,
whose proof is omitted for brevity.

Proposition 5.The sojourn timeST can be bounded asSL
T ≤

ST ≤ SU
T where

SL
T , E[T ] · (1− 2Q(

√

3

2
πλd)), (27)

SU
T , E[T ] · (1 − 2Q(

√
2πλd)). (28)

Assuming thatE[T ] is finite2, ST tends to0 since both
the lower boundSL

T and upper boundSU
T tend to0 asd → 0.

This is an intuitive result. So cellular networks with smallcells
need to be equipped with fast algorithms. Otherwise, other
handover strategies may be needed if the sojourn time in a
cell is shorter than the time needed to complete the handover
procedure. The analysis of the impact of mobility parameter
λ is more involved. To obtain insight, consider the constant
velocity case which yields the following result.

Proposition 6.Assume thatV ≡ ν. Then asλ → 0, sojourn
timeST ∼ αd/ν, whereα ∈ (

√
3
2 , 1) is a constant.

Proof: See Appendix D.
From Prop. 6, we observe the interesting fact that sojourn

time converges toαd/ν as the mobility parameterλ goes
to zero. Then what matters is the velocity: Sojourn time is

2This is true for both the case with constant velocity and the case with
uniformly distributed velocity on[vmin, vmax], as shown in Section III-B.



8

inversely proportional to the velocity. Also, we can expressST

asST ∼
√

2
3
√
3
1
ν ·

√
sH where recall thatsH is the hexagonal

cell size. This shows that sojourn time is proportional to the
square root of cell size, which is contrary to the asymptotic
result for handover rate.

V. A PPLICATIONS TOPOISSON-VORONOI MODELED

CELLULAR NETWORKS

In this subsection, we apply the proposed RWP mobility
model to analyze handover rate and sojourn time in cellular
networks modeled by Poisson-Voronoi tessellation [32], [36].
We first give a brief description on Poisson-Voronoi tessella-
tion. Consider a locally finite setφ = {xi} of pointsxi ∈ R

2,
referred to as nuclei. The Voronoi cellCxi(φ) of pointxi with
respect toφ is defined as

Cxi
(φ) = {y ∈ R

2 :‖ y − xi ‖2 ≤ ‖ y − xj ‖2, ∀xj ∈ φ}.
Let ǫx be the Dirac measure atx, i.e., forA ∈ R

2, ǫx(A) = 1
if x ∈ A, and 0 otherwise. Then the spatial point process
Φ can be written asΦ =

∑

i ǫxi
, and the Poisson-Voronoi

tessellation is defined as follows [36].

Definition 2. For a spatial Poisson point processΦ =
∑

i ǫxi

onR
2, the union of the associated Voronoi cells, i.e.,V(Φ) =

⋃

xi∈Φ Cxi
(Φ), is called Poisson-Voronoi tessellation.

In cellular networks modeled by a Poisson-Voronoi tessel-
lation, the BSs are the nuclei distributed according to some
PPP Φ in R

2. Besides, each BSxi serves mobile users
which are located within its Voronoi cellCxi(Φ). The latter
assumption is equivalent to the hypothesis of the nearest BS
association strategy. In the sequel, we also assume that thePPP
Φ modeling the BS positions is homogeneous and its intensity
is denoted byµ.

A. Handover Rate

Assume that the mobile node is located at the origin and let
X0 andX1 be two successive waypoints. Conditioned on the
position ofX1 and a given realization of the Poisson-Voronoi
tessellation, the number of handovers equals the number of
intersections of the segment[X0,X1] and the boundary of the
Poisson-Voronoi tessellation. Then we can obtain the expected
number of handovers by averaging over the spatial distribution
of X1 and the distribution of Poisson-Voronoi tessellation.
This is the main idea used in proving Prop. 7.

Proposition 7.Let µ be the intensity of the homogeneously
PPP distributed BSs andλ the mobility parameter. The expected
number of handoversE[N ] during one movement period is
given by

E[N ] =
2

π

√

µ

λ
. (29)

The handover rateH = E[N ]/E[Tp] is then given by

H =
1

E[T ] + E[S]

2

π

√

µ

λ
. (30)

Proof: See Appendix E.

If we assume no pause time and constant velocityν, H in
Prop. 7 can be simplified as

H =
4

π
ν
√
µ, (31)

which is consistent with the one given in [37]. In Poisson-
Voronoi tessellation with the nuclei being homogeneous PPP
Φ of intensityµ, the expected value of the sizesP of a typical
Voronoi cell is given bysP = E[|Co(Φ)|2] = 1/µ [29], where
Co(Φ) is the typical cell and|Co(Φ)|2 denotes the area of
Co(Φ). So if we assume no pause time and constant velocity

ν, H in Prop. 7 can be simplified asH =
4

π
ν/

√
sP , which

implies that the handover rate is inversely proportional tothe
square root of the cell size. This is consistent with the results
in the hexagonal model.

Fig. 5 illustrates that the analytical result (29) matches the
simulation result quite well. Also, we compare the handover
rate of Poisson-Voronoi model, exact and approximate han-
dover rate of hexagonal model in Fig. 6 as a function BS
intensity. They all indicate that handover rate grows linearly
with the square root of the BS’s intensity

√
µ. We further eval-

uate the three types of analytic results on handover, i.e., Prop.
3, Prop. 4 and 7 by simulating the proposed RWP mobility
model using the real-world data of macro-BS deployment in a
cellular network, provided by a major service provider. Recall
that we assume each BS serves the mobile users located within
its Voronoi cell. A handover occurs when the mobile crosses
the cell boundary. Thus, only the BS location data are relevant
in the simulation. There are 400 BSs which are distributed in
a relatively flat urban area. These 400 BSs roughly occupy a
105×90 km area. We normalize the network size to be 1×1. So
µ = 400 in the Poisson-Voronoi model, while the side lengthd
in hexagonal model is determined through3

√
3d2/2 = 1/400.

The results are shown in Fig. 7. It can be seen that the
Poisson-Voronoi model is about as accurate as the hexagonal
model in predicting the number of handovers. Meanwhile,
the approximate analytic result underestimates the numberof
handovers.

B. Sojourn Time

Unlike the hexagonal model, (25) is not sufficient for
computing the sojourn time in Poisson-Voronoi tessellation
modeled cellular networks. Indeed, assuming that the mobile
user is located at the origin, the sojourn time in the cell
involves an additional source of randomness - the Poisson-
Voronoi tessellation. So even averaging over the spatial node
distribution sojourn time is still a random variable. In the
sequel, we aim to characterize the probability distribution of
this sojourn time. To this end, we first introduce the concept
of contact distribution. Consider a random closed setZ and a
convex compact test setB containing the origino. Then the
contact distribution is defined as [29]

HB(r) = P (Z ∩ rB 6= ∅|o /∈ Z), r ≥ 0. (32)

In this paper, we are particularly interested in a special case:
the linear contact distribution functionHl(r) with the test set
B being a segment of unit lengthl. Since Poisson-Voronoi
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time. They all imply that the handover rate grows linearly with

√
µ.

tessellation is isotropic, the orientation of this segmentl is not
important. For Poisson-Voronoi tessellation modeled cellular
network, the random closed setZ of interest is the union of
all cell boundaries∪xi∈Φ∂Cxi

(Φ), where∂Cxi
(Φ) denotes the

boundary of the cellCxi
(Φ).

With a slight abuse of notation, letCo(Φ) denote the Voronoi
cell containing the origino. We can further simplifyHl(r) as
follows:

Hl(r) = 1− P (Z ∩ rl = ∅)
1− P (o ∈ Z)

= 1− P (rl ⊆ Co(Φ)). (33)

The last equality follows because 1) the origino is contained
in the interior ofCo(Φ) almost surely and thusP (o ∈ Z) = 0
whereZ = ∪xi∈Φ∂Cxi

(Φ), and 2) the event{Z ∩ rl = ∅} is
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Fig. 7. Evaluation of handover by an actual macro-BS deployment with
velocity ν ≡ 1, no pause time and normalized BS’s intensityµ = 400.
Poisson-Voronoi model is about as accurate in terms of handover evaluation
as hexagonal model.

equivalent to that{rl ⊆ Co(Φ)}. Now we are in a position to
characterize the sojourn timeST .

Proposition 8.Let µ be the intensity of the homogeneously
PPP distributed BSs andλ the mobility parameter. The pdf of
sojourn timeST is given by

fST (t) =
1

2
√
λE[T ]

exp

(

1

2
(Q(−1)(

1

2
(1− t

E[T ]
)))2

)

hl (x) ,

(34)

where E[T ] is the expected transition time,x =
1√
2πλ

Q(−1)(12 (1− t
E[T ])) andhl(r) is given by

hl(r) = 4πµ2

∫ π

0

∫ π−α

0

r3
sin2 α sinβ

sin4(α+ β)
b0(β)

exp(−µV2(r, α, β))dβdα, r ≥ 0, (35)

whereV2(r, α, β) = πρ2(a0(α) + a1(α)) + π(r2 + ρ2 −
2rρ cosα)(a0(β) + a1(β)) with ρ = r sin β

sin(α+β) , a0(θ) = 1− θ
π ,

anda1(θ) = sin 2θ
2π , andb0(β) =

(π−β) cosβ+sin β
π .

Proof: By Theorem1, we have

ST (r) = E[T ]

∫ 2π

0

∫ r

0

√
λ

πx
exp(−λπx2)xdxdα

= E[T ] · (1− 2Q(
√
2πλr)).

Clearly,FST (t) = 0 if t < 0, andFST (t) = 1 if t ≥ E[T ]. If
0 ≤ t < E[T ],

FST (t) = P (ST ≤ t) = P (E[T ] · (1− 2Q(
√
2πλr)) ≤ t)

= P

(

0 ≤ r ≤ 1√
2πλ

Q(−1)(
1

2
(1 − t

E[T ]
))

)

= Hl

(

1√
2πλ

Q(−1)(
1

2
(1 − t

E[T ]
))

)

=

∫ 1√
2πλ

Q(−1)( 1
2 (1− t

E[T ]
))

−∞
hl(r)dr.
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Taking the derivative with respect tot for both sides yields
(34). The closed form expression ofhl(r) in (35) has been
given in [38]. This completes the proof.

Using the previous results for expected transition time, the
pdf of the sojourn time under different velocity distributions
can be derived from Prop. 8. Note that the distribution of
the sojourn time is instrumental in studying the ping-pong
behavior for mobility enhancement in cellular networks [3].
Though a closed form expression is not available, the pdf of
the sojourn time given in Proposition 8 only involves a double
integral, which is tractable for efficient numerical evaluation.
We plot the pdf of sojourn time in Fig. 8 for illustration. As
expected, the smallerµ is, the more likely the mobile node
stays longer within the cell. This is intuitive since a smaller
µ implies larger cell sizes on average. As a result, it is less
likely that the mobile node would move out of the cell.

We also compare the analytic result about sojourn time in
the Poisson-Voronoi model to its deterministic counterpart in
the hexagonal model in Fig. 9. It is shown that the analytic
result in the Poisson-Voronoi model is more conservative and
yields smaller mean sojourn times than its counterpart in the
hexagonal model. Besides, we can see that the upper and lower
bounds of the sojourn time in hexagonal model are pretty tight.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we study the critical mobility issue in cellular
networks. To this end, we first propose a tractable RWP
mobility model defined on the entire plane. The various
properties of the mobility model are carefully studied and
simple analytical expressions are obtained. Then we utilize this
tractable mobility model to analyze the handover rate and so-
journ time in cellular networks. The analysis is carried outfor
cellular networks under both hexagonal and Poisson-Voronoi
models. We derive closed form expressions and/or bounds for
the performance metrics in question. These analytical results
are instrumental for mobility management in cellular networks.
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Fig. 9. Comparison of sojourn time in hexagonal tiling and Poisson-Voronoi
tessellation with velocityν ≡ 1. Hexagonal model yields larger sojourn time
than that of Poisson-Voronoi model. Besides, the upper and lower bounds for
hexagonal model are tight.

Note that the proposed RWP mobility model represents the
real movement of mobile nodes in a simplified manner. Thus,
it does not capture some other mobility characteristics such
as temporal and spatial dependency of the mobility pattern.It
is desirable to extend the current model further to incorporate
these extra mobility characteristics while maintaining a certain
degree of tractability. It would be rather interesting (and
challenging) to characterize the intuitive tradeoff between the
complexity and tractability of the mobility models. Besides,
it is also interesting to evaluate the performance of the many
wireless protocols by applying the proposed tractable model
in theory and/or simulation.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their valuable comments and suggestions, which helped
the authors significantly improve the quality of the paper.

APPENDIX

A. Proof of Theorem 1

We first derive the pdf of the random waypointX1 =
(R1,Θ1) as follows:

fX1
(r, θ) = lim

∆r→0

P (R1 ≤ r +∆r) − P (R1 ≤ r)
∫ 2π

0

∫ r+∆r

r xdxdφ

= lim
∆r→0

exp(−λπr2)− exp(−λπ(r +∆r)2)

2πr∆r

= lim
∆r→0

2πλ(r +∆r) exp(−λπ(r +∆r)2)

2πr
= λ exp(−λiπr

2).

This result is summarized in Lemma 1 for ease of reference.
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Lemma 1.GivenX0 is at the origin, the pdf of the random
waypointX1 = (R1,Θ1) is given by

fX1(r, θ) = λ exp(−λπr2). (36)

We next derive the pdf of the spatial node distribution. The
main technique of the following proof is inspired by [26],
which is also adopted in [25]. Consider a small setdA located
at (r, θ). Let ~L1 denote the vectorX1 −X0 and |~L1| = L1.
Then the pdf of the spatial node distribution can be interpreted
as the ratio of the expected proportion of transition time inthe
setdA to the area|dA|, i.e.,

f(r, θ) =
E[|~L1 ∩ dA|/V ]

E[L1/V ]|dA| =
E[|~L1 ∩ dA|]
E[L1]|dA|

, (37)

where the second equality follows from the independence of
V and the waypoints. Note that

E[|~L1 ∩ dA|]
|dA| =

∫∞
r

fX1
(x, θ)xdxdθ ·∆l

r · dθ ·∆l

=

∫∞
r

λ exp(−λπx2)xdx

r
=

1

2πr
exp(−λπr2), (38)

where∆l denotes the length of the small intersection if~L1

intersectsdA, and we apply Lemma 1 in the second equality
in (38). The first equality in (38) can be explained through Fig.
10 as follows. The intersection of|~L1 ∩dA| is ∆l if X1 is in
the shaded area and0 otherwise. Noting that the probability of
the event thatX1 is in the shaded area is

∫∞
r

fX1
(x, θ)xdxdθ,

we have

E[|~L1 ∩ dA|] = ∆l ·
∫ ∞

r

fX1
(x, θ)xdxdθ. (39)

This and|dA| = r · dθ ·∆l give the desired equality. So

f(r, θ) =
exp(−λπr2)

2πrE[L1]
=

√
λ exp(−λπr2)

πr
, (40)

where we use the result thatE[L1] = 1/2
√
λ in the last

equality. This completes the proof.

B. Proof of Proposition 3

From Lemma 1,fX1
(r, θ) = λ exp(−λπr2). We compute

E[N ]app as follows.

E[N ]app=

∞
∑

n=1

n

∫ 2π

0

∫ (2n+1)R

(2n−1)R

λ exp(−λπr2)rdrdθ

=

∞
∑

n=1

n
(

exp(−π(2n− 1)2R2λ)− exp(−π(2n+ 1)2R2λ)
)

=
∞
∑

n=0

exp(−π(2n+ 1)2R2λ)

SubstitutingR =

√

C

π
=

4
√
27d√
2π

, we obtain

E[N ]app=

∞
∑

n=0

exp

(

−3
√
3

2
(2n+ 1)2d2λ

)

.

Then the lower boundNL
approx is derived as follows.

E[N ]app≥
∫ ∞

0

exp

(

−3
√
3

2
(2x+ 1)2d2λ

)

dx

=

√

π

6
√
3λd2

Q

(√

3
√
3λd2

)

, E[N ]Lapp.

The upper boundE[N ]Uapp can be derived in a similar manner.

For the remaining proof, denotet =
√

3
√
3λd2. Note that

t > 0. Then the difference△Napp = E[N ]Uapp− E[N ]Lapp can
be compactly written as

√

π
2
1
t (1 − 2Q(t)) which we denote

by g(t). We claimg(t) is strictly decreasing whent > 0. To

see this, defineh(t) =
√

2
π t exp(− t2

2 ) + 2Q(t) − 1 whose

derivative is “−
√

2
π t

2 exp(− t2

2 )” which is strictly negative
when t > 0, implying h(t) is strictly decreasing whent > 0.
Meanwhile,h(0) = 0. So h(t) < 0 when t > 0. Now it is

clear that the derivative ofg(t) given byg(1)(t) =

√

π

2

h(t)

t2
is

strictly negative whent > 0. Thus,g(t) is strictly decreasing
when t > 0. Besides,

lim
t→0

√

π

2

1

t
(1− 2Q(t)) = lim

t→0
exp(− t2

2
) = 1,

lim
t→∞

√

π

2

1

t
(1− 2Q(t)) = 0.

The desired results follow by further observingt is a strictly
increasing continuous function ofλd2.

C. Proof of Proposition 4

We use (generalized) argument for Buffon’s needle problem
in this proof. Consider the typical node located in areaA of
size|A| and cell boundariesBA of length|BA|. Then the prob-
ability that this node crosses the small boundary∆b within a
small time interval∆t is ∆p = 1

|A| ·∆b·ν∆tE[| sinΘ|], where
Θ is uniformly distributed on[0, 2π] (following from our
mobility model) and thusE[| sinΘ|] = 2

π . So the probability
that this node crossesBA is p(A) = ∆p · |B|

∆b = 2
π

|BA|
|A| · ν∆t.

Thus, conditioned on moving, the handover rate

H⋆ = lim
|A|→∞

p(A)

∆t
=

2

π
ν · lim

|A|→∞

|BA|
|A|

=
2

π
ν · 9d

9
√
3d2/2

=
4
√
3

3π

ν

d
.

Correspondingly,E[N ] = E[H⋆] · E[T ] =
4
√
3

3π

E[V ]

d
· E[T ]

andH =
E[T ]

E[T ] + E[S]

4
√
3

3π

E[V ]

d
.

D. Proof of Proposition 6

Applying the general expression (26) forST yields

ST =
4

πν
f(ξxd, ξyd)·

∫ d/2

0

∫

√
3d/2

0

dydx+

∫ d

d/2

∫ −
√
3x+

√
3d

0

dydx,
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Fig. 10. A geometric illustration for the proof of Prop. 1

which equals

=
3
√
3

2π

exp(−λπ(ξ2xd
2 + ξ2xd

2))
√

ξ2x + ξ2x

d

ν
, (41)

where (ξx, ξy) are a pair of constants in the regionA :=

{(x, y) : x ∈ [0, 1], y ∈ [0,
√
3
2 ] if x ∈ [0, 1

2 ) andy ∈
[0,

√
3(1 − ξx)] if x ∈ [ 12 , 1]}, and in the last equality we

use E[T ] = 1

2ν
√
λ

derived for constant velocity case in
Section III, and mean value theorem for integrals. Then,
limλ→0 ST = 3

√
3

2π
1√

ξ2x+ξ2x

d
ν . Next we give bounds on the

constantα := 3
√
3

2π
1√

ξ2x+ξ2x
. Using the bounds given in Prop.

5,

lim
λ→0

SL
T = lim

λ→0

1− 2Q
(
√

3
2πλd

)

2ν
√
λ

= lim
λ→0

√
3

2

d

ν
exp(−3

4
πd2λ) =

√
3

2

d

ν
. (42)

Similarly, limλ→0 S
U
T = d/ν. Since these bounds are strict,

we conclude thatα ∈ (
√
3
2 , 1).

E. Proof of Proposition 7

This proposition can be proved by following the proof of
Prop. 4. Nevertheless, we provide an alternative proof here.
To this end, we first introduce some terminologies for ease
of exposition. Consider the setx(k) consisting of arbitrary
k distinct points inΦ on R

2. Without loss of generality,
we assumex(k) = {x1, ...,xk}. Then if the intersection
F(x(k)|Φ) = ∩k

i=1Cxi
(Φ) 6= ∅, then F(x(k)|Φ) is called a

(3 − k)-facet. Now letΦk be the set of all configurations
x(3−k) ⊆ Φ. That is, the intersection of the Voronoi cells
associated with any configurationx(3−k) ∈ Φk is a k-facet.
For each configurationx(3−k) = {x1, ...,x3−k} ∈ Φk, we
associate a pointzx(3−k)(Φ) called “centroid” such that for all
y ∈ R

2, z(x(3−k) + y|Φ+ y) = y + z(x(3−k)|Φ). Note that
there are several degrees of freedom in choosing the centroids.
We refer to [36] for more details.

Consider the intersection of the Poisson-Voronoi tessellation
with a fixed lineL. Without loss of generality, we assume
thatL contains the origin. Then the nonempty sectional cells
C̄xi

(Φ) = Cxi
(Φ) ∩ L satisfy that (i)L = ∪xi∈ΦC̄xi

(Φ),
and (ii) ri(C̄xi(Φ)) ∩ ri(C̄xj (Φ)) = ∅, ∀i 6= j where ri(·)
denotes the relative interior [36]. So the sectional cellsC̄xi

(Φ)

constitute a tessellation ofL, denoted byVL(Φ). Now consider
the intersectionFL(x

(2)|Φ) = F(x(2)|Φ) ∩ L which can be
either empty or a singleton. Clearly,FL(x

(2)|Φ) is the0-facet
of tessellationVL(Φ) if FL(x

(2)|Φ) is nonempty. Now let
ΦL

0 = {x(2) = {x1,x2} ∈ Φ1 : FL(x
(2)|Φ) 6= ∅} which

parametrizes the0-facets ofVL(Φ). Then the intensity of the
0-facets ofVL(Φ) is well defined as

µL
0 =

E[
∑

x(2)∈ΦL
0
χ{zL(x

(2)|Φ) ∈ BL}]
|BL|1

, (43)

whereχ{·} is indicator function taking value1 if the event
in its argument is true and0 otherwise,zL(x

(2)|Φ) is the
centroid of the0-facets ofVL(Φ), BL ⊆ L is any arbitrary
Borel set and|BL|1 is the volume ofBL with respect toR.

Without loss of generality, assume thatX0 is at the origin.
Let L := L(X0,X1) be the line containingX0 and X1,
andBL the interval[X0,X1]. Then conditioned on the next
waypointX1 = (r, θ), the expected number of handovers can
be computed as

E[N |X1 = (r, θ)] = E[
∑

x∈∪xi∈Φ∂Cxi
(Φ)∩L

χ{x ∈ BL}]

= E[
∑

x(2)∈ΦL
0

χ{zL(x
(2)|Φ) ∈ BL}] (44)

= µL
0 |X0 −X1|1 =

4r
√
µ

π
, (45)

where ∂Cxi
(Φ) in (44) denotes the boundary of the cell

Cxi
(Φ). The equality in (44) follows by choosing the centroids

zL(x
(2) as follows: for anyx(2) ∈ ΦL

0 , choose the singleton
F(x(2)|Φ) ∩ L as the centroidzL(x

(2)|Φ) of the 0-facets
of VL(Φ). The equality in (45) follows from (43). The last
equality follows sinceµL

0 = 4
√
µ/π for Poisson-Voronoi

tessellation with intensityµ [36]. Then handover rate can be
computed as follows:

H =
E[N ]

E[T ]
=

E[E[N |X1 = (r, θ)]]

E[T ]

=
1

E[T ]

∫ 2π

0

∫ ∞

0

E[N |X1 = (r, θ)]fX1(r, θ)rdrdθ

=
1

E[T ]

∫ 2π

0

∫ ∞

0

4r
√
µ

π
λ exp(−λπr2)rdrdθ

=
1

E[T ]

4Γ(32 )

π
3
2

√

µ

λ
(46)

=
1

E[T ]

2

π

√

µ

λ
. (47)

where in (46) we use Lemma 1, and in (47) we apply the
result that

∫∞
0 rα−1 exp(−γπrβ) dr = Γ(α/β)

βγα/β for α, β, γ > 0.
PluggingE[T ] yields the desired results.
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