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Abstract—Spectrum sensing receives much attention recently
in the cognitive radio (CR) network research, i.e., secondary
users (SUs) constantly monitor channel condition to detect the
presence of the primary users (PUs). In this paper, we go beyond
spectrum sensing and introduce the PU separation problem, which
concerns with the issues of distinguishing and characterizing PUs
in the context of collaborative spectrum sensing and monitor
selection. The observations of monitors are modeled as boolean
OR mixtures of underlying binary sources for PUs. We first
justify the use of the binary OR mixture model as opposed to
the traditional linear mixture model through simulation studies.
Then we devise a novel binary inference algorithm for PU
separation. Not only PU-SU relationship are revealed, but PUs’
transmission statistics and activities at each time slot can also
be inferred. Simulation results show that without any prior
knowledge regarding PUs’ activities, the algorithm achieves high
inference accuracy even in the presence of noisy measurements.

I. INTRODUCTION

With tremendous growth in wireless services, the demand
for radio spectrum has significantly increased. However, spec-
trum resources are scarce and most of them have been already
licensed to existing operators. Recent studies have shown that
despite claims of spectral scarcity, the actual licensed spec-
trum remains unoccupied for long periods of time [?]. Thus,
cognitive radio (CR) systems have been proposed [11], [2]], [3I]
in order to efficiently exploit these spectral holes, in which
licensed primary users (PUs) are not present. CRs or secondary
users (SUs) are wireless devices that can intelligently monitor
and adapt to their environment, hence, they are able to share
the spectrum with the licensed PUs, operating when the PUs
are idle.

One key challenge in CR systems is spectrum sensing,
i.e., SUs attempt to learn the environment and determine the
presence and characteristics of PUs. Spectrum sensing can be
done at SUs individually or cooperatively [4]], [5], with or
without the assistance of infrastructure supports such as dedi-
cated monitor nodes and cognitive pilot channel (CPC) [6]], [[7],
[8l], [9]]. Energy detection is one of the most commonly used
method for spectrum sensing, where the detector computes
the energy of the received signals and compares it to a certain
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threshold value to decide whether the PU signal is present or
not. It has the advantage of short detection time but suffers
from low accuracy compared to feature-based approaches such
as cyclostationary detection [2], [3l]. From the prospective of
a CR system, it is often insufficient to detect PU activities in a
single SU’s vicinity (“is there any PU near me?”). Rather, it is
important to determine the identity of PUs (“who is there?”) as
well as the distribution of PUs in the field (“where are they?”).
We call these issues the PU separation problem.

To motive the need for PU separation, let us consider the
following scenarios:

o Multiple SUs cooperatively infer the activities of PUs,
some of which may be observable to only a subset of
SUs. In this case, the SUs need to identify the PU-
SU adjacency relationships. Blindly assuming all PUs
are observable to all SUs will lead to inferior detection
results.

« Dedicated monitors are employed for spectrum sensing.
There exists redundancy in monitors’ observations due to
common PUs across multiple monitors. Such redundancy
can be reduced by judiciously selecting a subset of moni-
tors to report their spectrum sensing results. Furthermore,
some monitors can be put to low-power modes for energy
conservation.

Clearly, PU separation is a more challenging problem com-
pared to node-level PU detection. The conventional wisdom
suggests that sophisticated methods such as feature-based
detection are necessary. On the contrary, we find that through
cooperation among monitors or SUs, not only accuracy of
energy detection can be improved as been demonstrated in
several existing work [10], [4], [5], but also PUs can be
identified using solely binary information (due to thresholding
in energy detection). The key to this surprising result is a
binary inference framework that models the observations of
SUs and monitors as boolean OR mixtures of underlying
binary latency sources for PUs. It allows us to exploit the
correlation structure among distributed binary observations.
We develop an iterative algorithm, called Binary Independent
Component Analysis (bICA), to determine the underlying
latent sources (i.e., PUs) and their active probabilities. In
bICA, no prior information regarding the PUs’ activities or
observation noise is assumed. Given m monitors or SUs, up



to 2™ — 1 PUs can be inferred resulting in great efficiency.
Evaluation results show effectiveness of bICA under practical
settings.

Contributions: In this paper, we make the following contri-
butions toward the design of a binary inference framework for
PU separation in cognitive radio networks:

« We introduce the PU separation problem with cooperative
SU inference model and discuss its importance on CR
systems.

« We provide a stochastic analysis on the difference be-
tween linear and binary PU energy detection models.
Results from the study imply that using just binary
observations from SUs has comparable accuracy with
using a linear model, while incurring much less overhead.

o We apply bICA to solve the PU separation problem
without any assumption on the noise model or prior
knowledge on the PU activities. We furthermore consider
the inverse problem of inferring the detailed PUs’ activi-
ties given the SUs’ observations and the inferred model.

The rest of the paper is organized as follows. In Section [}
the observation model is introduced. A comparison between
the linear and binary energy model and brief overview of
related work are also presented. In Section we present the
bICA algorithm to determine the statistics of PU activities and
the inference algorithm to decide which set of PUs are active.
Formulation and solution to the inverse problem under noisy
measurements are presented in Section Evaluation results
are detailed in Section |V| followed by an overview of related
work is provided in Section [V]] followed by conclusions in
Section

II. MODEL AND PRELIMINARY

Consider a slotted system in which the transmission activ-
ities of n PUs are modeled as a set of independent binary
variables y with active probabilities P(y). The binary ob-
servations due to energy detection at the m monitor nodes
(for the remaining of the paper, we do not distinguish monitor
nodes and SUs) are modeled as an m-dimension binary vector
X = [21,72,...,2,])T with joint distribution P(x). It is
assumed that presence of any active PU surrounding of a
monitor leads to positive detection. An unknown binary mixing
matrix G, xn is used to represent the relationship between
the observable variables in x and the latent binary variables
iny = [y1,%2,...,yn]T as follows:

zi =\ (95 Ayy), i=1,...,m, 1)
j=1

where A is Boolean AND, V is Boolean OR, and g;; is the
entry on the ith row and the jth column of G. For ease of
presentation, we introduce a short-hand notation as
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In essence, g;; encodes whether monitor 7 can detect the
transmission of PU j. For a monitor ¢, the energy detection
returns 1 when the monitor can detect one or more active PUs.

x=GQRYy.

Y1 Y2 Y3 Y4

02

X1 X2 X3 Xa X5

Fig. 1: A sample network scenario with number of SUs m = 5,
number of PUs n = 4 and its bipartite graph transformation. White
circles represent PUs, black circles represent SUs and dashed lines
illustrate SUs’ monitor range.

G can be seen as the adjacency matrix of an undirected bi-
partite graph G = (U,V, E), where U = {x1,22,...,Zm}
and V' = {y1,y2,...,yn}. An edge e = (z;,y;) exists if
gi; = 1. Illustration of a sample network scenario and its
bipartite graph is presented in Figure [T}

Consider an m x T matrix X, which is the collection of T'
realizations of vector x. The goal of bICA is to determine
the distribution of the latent independent random variables
y and the binary mixing matrix G from X, such that X
can be decomposed into the mixing of realizations of y.
From G and y, we can identify the PUs and additionally
infer PUs’ activities at different time slots. Note that in ,
measurement noise is not explicitly modeled, rather, is treated
as independent sources.

A. Why Binary Inference?

In this section, we motivate the use of a binary inference
framework by considering an alternative linear mixing model.
In the linear model, at each time slot, the received signal power
at each monitor can be modeled as a linear combination of
the transmitted signal power from active PUs. More specifi-
cally, Let v = [v1,v2,...,v,]T, 2 = [21,22,...,2,)7, and
n = [ny,n2,...,nm|7 be the random vectors corresponding
to the received, transmitted signal power and the Gaussian
noise respectively, and H is the m x n unknown channel gain
matrix. Both large-scale path loss with propagation loss factor
« and small-scale fading following the Rayleigh distribution
are considered in this model. The received signal power is a
linear mixture of the transmitted signal power and the noise:

3)

n; is a random variable with mean p,;. If v can be ob-
served directly, classical linear independent component analy-

v=Hz+n.
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Fig. 2: False alarm and miss detection probability. Threshold 7 is set
at 5dB.

sis (ICA) [IL1] can be applied to determine H and z. However,
this method suffers from three problems. First, z;’s have to
be non-Gaussian to be recoverable. Second, the channel gain
matrix H tends to vary over time. Lastly, communicating
the realizations of z to a centralized server for inference
incurs higher overhead compared to its binary counter part
x. Furthermore, when only the binary quantized values of v
are observable (i.e., x), ICA is not longer suitable due to the
non-linearity of the quantization function.

Next, we compare accuracy of the binary OR mixture model
against a quantized version of the above linear model, namely,
x' = U(v — 1), where U(-) is a step function defined as
U(r) =1if r > 0, U(r) = 0 otherwise, and 7 is a pre-set
threshold. We are interested to see the degree of “information
loss” due to the OR approximation. In the simulation, 10
monitors and n PUs are deployed in a 500x500 square meter
area with n varying from 5 to 20. Locations of PUs are
chosen arbitrarily with the restriction that no two PUs can
be observed by the same set of monitors. The PUs’ transmit
power levels are fixed at 20mW, the noise floor is -95dbm, and
the propagation loss factor is 3. The SNR detection threshold
for the monitors is set to be 5dB (above the noise floor). The
value is chosen so that the false alarm probability (PU’s are
reported while none exists) is less than 10%. Elements of the
binary mixing matrix G are either 1 or 0, depending on the
received signal for one respective PU only. In other words,
gi; = 1 if the ith SU can detect transmissions from the jth
PU. The PUs’ activities are modeled as a two-stage Markov
chain with transition probabilities uniformly distributed over
(0,1). We run the simulation for T" = 5,000 slots and obtain
the observations X and X; for the binary OR and linear
mixing model, respectively. Figure [2| shows the false alarm
and miss detection probability in the binary OR model using
the results from the linear mixing model as the ground truth.
From Figure [2] we see the two models have very close
performance. We also experiment the case in which the initial
phases of PU’s transmitted signal vary in [0, 27], and have
similar observations.

To this end, we conclude that the binary model is a good
approximation of the quantized linear model. As will be

demonstrated later, efficient algorithms can be devised for the
PU separation problem under the binary model.

III. BINARY INFERENCE FRAMEWORK

In this section, we first discuss the identifiability of binary
independent sources for the PUs from OR mixtures observed
at the monitors, and then present an inference algorithm
that determines the unknown mixing matrix and underlying
sources.

A. Identifiability

For an m-dimension binary random vector x, the number
of different realizations is 2. From the data matrix X,
distribution of x can be estimated in a non-biased manner as
the number of observations goes to infinity. We can initialize
n = 2™ — 1 and G matrix of dimension m x (2™ — 1)
with rows being all possible binary combinations of length n
(with exception of the all-0 entry). This results in a complete
bipartite graph, in which an edge exists between any two
vertices in U (the set of monitors) and V' (the set of signal
sources), respectively. For a random variable y; € V, its
neighbors in U is given by the non-zero entries in g; (i.e., the
jth column of matrix G). Thus, at most 2™ — 1 independent
components can be identified.

Define p; a P(y; = 1). Let the set

n

Y(x)=qy| \/ (9i5 Ny;) = 4, Vi
=1
Therefore,
P(x) = PlyeY()=Tyeyp PY)
_ 2m—1 1—y; (4)
= Zer(x) =1 P (L—p) %,

where P(y) is the joint probability of y. The last equality
holds due to the independence of y;’s.

Given the distribution of random vectors x € {0,1}"™,
2™ — 1 independent equations can be obtained from (@) due
to the OR mixture model in (I). Since there are 2™ — 1
unknowns (i.e., p;,I = 1,...,2™ — 1), their values can be
explicitly determined. Clearly, ambiguity exists if two or more
independent sources have the same set of neighbors in U
(or equivalently, identical columns in G). In this case, binary
information is insufficient to distinguish these sources.

The set of equations in ) are polynomials of sum product
forms, which are difficult to solve. This necessitates the design
of specialized algorithms. In the rest of the paper, abusing the
notation a bit, we denote G the m x (2™ — 1) adjacency
matrix for the bipartite graph G’ = (U, V', E’), where U =
{z1,29,...,2m}and V' = {y1,92,...,y2m_1} (i.e. the set of
all possible uniquely identifiable latent sources). Furthermore,
we arrange G in the order such that g5, = 1 if (I < k) =1,
for k =0,...,m — 1, where < is the bit shift to the left. If
the resulting p; = 0 for some [, this implies the corresponding
column g; can be removed from G. For an example, consider



the network scenario with m = 3, the initialized G matrix
will be:

1010101
G=1]01100 1 1],
0001111

with rows corresponding to 3 monitors and columns corre-
sponding to 7 identifiable PUs.

B. Inference algorithm

Before proceeding to the details of the proposed algorithm,
we first present a few related technical lemmas as follows.
Lemma 1: Consider a set x = [v1,Z2,...,75 1,757
generated by the data model in (I), i.e., 3 binary independent
sources y, s.t., x = G ® y. The conditional random vector
Xz,=0 = [T1,%2,...,7h 1]z, = 0]T corresponds to the
vector of the first h — 1 elements of x when z;, = 0. Then,
Xz—0 = G @y, where G = G.; on—1 (i.e. the first
2"=1 columns of G) and P(y, = 1) = Py = 1) for
I=1,...,2"1
Proof: We first derive the conditional probability distri-
bution of the first A — 1 observation variables given x; = 0,

P(x17x27 <oy Th—1 ‘ Th = 0)
= P(z1,22,...,xp_1 | 2 = 0)P(xp, = 0)
2h 1
_ > T
yeY (x) =1

= > I »x

Vi on-1 €Y (% ) Im=0

) ] A-m)

gh1=1

Yy =0,Ygn =1
&)
since P(zp = 0) = H (1 —p;), we have
gni=1
73(171,.12, ey Th—1 | T = O)
2}1_1
- ) II ehvia—ppt—
yeY (Xipon) =1
- Z H pl(L—p)' Y
Yi,..on-1 €Y (X1, po1) =0
y = 0,Ygn =1
(6)

Clearly, by setting P(y; = 1) = P(y, = 1) for I =
1,...,2"=1 the above equality holds. In the other word,
the conditional random vector X, —g = G @y for G =
G:717_“72h—1. |

The above lemma establishes that the conditional random
vector X, —o can be represented as an OR mixing of oh—1
independent components. Furthermore, the set of the indepen-
dent components is the same as the first 2"~! independent
components of x (under proper ordering).

Consider a sub-matrix of data matrix X, X ?hfl)xT’ where
the rows correspond to observations of x1,xo,...,x,—1 for
t=1,2,...,T such that z5; = 0. Define X (,_1)7, which
consists of the first A — 1 rows of X. Suppose that we
have computed the bICA for data matrices X ?hfl)xT and

X (h—1)x7- From Lemma we know that X?h—l)xT is real-
ization of OR mixtures of independent components, denoted
by y9,._.. Furthermore, Ply9, .(l) = 1] = P(y, = 1) for
I = 1,...,2" 1. Clearly, X (n—1)xT is realization of OR
mixtures of 2"~! independent components, denoted by yon_1.
Additionally, it is easy to see that the following holds:

Plyatn— 1)(1) 1]
=1-[1=P(y% (1) = DIl = P(Yryor-1 = 1)]
=1—(1=p)1 = pryon-1),

where [ =1,... ,2’“1. Therefore,

P = Plys.()=1), I=1,...,2m1,
1—P(Yon-1()=1 _
P = 1o ppydien D=2 2
_ Flan=1Az;20,¥i€[1...h—1])
Poh-ir = [ii on ggon—1_y (A=p1)
(7)

The last equation above holds because realizations of x where
(rx, = 1 while z; = 0;Vi € {0,...,k —1}) are generated
from OR mixtures of y,x—1’s only. Define F(A) as the
frequency of event A. To this end, we have the following
iterative algorithm as illustrated in Algorithm [T}

When the number of monitors m = 1, there are only
two possible unique sources, one that can be detected by the
monitor, denoted by [1]; and one that cannot, denoted by [0].
Their active probabilities can easily be calculated by counting
the frequency of (z; = 1) and (21 = 0) (lines [I] - B). If
m > 2, we apply Lemma [I] and to estimate p and G
through a recursive process. We invoke FINDBICA on two
sub-matrices X ?m_l)xT and X (;,_1)x7 computed from X
to determine p; om-1 and p| ..., then infer pom-1,1 om
as in (7) (lines[6]—[8). Finally, p, and its corresponding column
g in G are pruned in the final result if p, < e (lines [9] - [TT).

Algorithm 1: Incremental binary ICA inference algorithm

FindBICA (X)

input : Data matrix X ,,x7r

init :n=2"-1;

pr=0h=1,....n

G = m x (2™ — 1) matrix with rows corresponding all possible
binary vectors of length m;

€ = the minimum threshold for p to be considered a real
component;

1 if m =1 then
2 p1 = F(z1 =0);

p2 = ]‘—(LE1 = 1);

else
4 P1.gm-1 = FindBICA (X{,, 1yxr);
5 P om—1 = FindBICA (X (n_1)xT);
6 for [ =2,...,2" 1 do
1—
7 L pl+2m 1 = ]. - ii
]:(tnl_l/\xb_o Vig[l...m—1]) .

8 B Pom—141 = I, om_; am—1l1 1-p)’
9 for h=1,...,2™ do
10 if (pn <€)V (pn = 0) then
11 L prune p, and corresponding columns g ;

12 output: p and G




Computation complexity: Let S(m) be the computation time
for finding bICA given X, x7. From Algorithm (1| we have,

S(m) =2S(m —1)+ 2™, (8)

where ¢ is a constant. It is easy to verify S(m) = cm2™.
Therefore, Algorithm (1| has an exponential computation com-
plexity with respect to m. This is clearly undesirable for large
m’s. However, we notice that in practice, correlations among
x;’s exhibit locality, and matrix G tends to be sparse. Instead
of using a complete bipartite graph to represent G, the degree
of vertices in V' (or the number of non-zero elements in gy)
tends to be much less than m. More specifically, for every pair
of monitors ¢ and k, we compute the covariance between their
observations:

Zt Lt Tt Zf T4t Z? Tt 9)
T T T
If cov(i, k) < €, where € is a small value (e.g., the upper
confidence bound of cov(i, k) estimate), we can remove the
corresponding columns in G and elements in y.

cov(i, k) =

IV. THE INVERSE PROBLEM

Now we have the mixing matrix G,,x, and the active
probabilities P(y), given observation X,,.r, the inverse
problem concerns inferring the realizations of the latent vari-
ables Y ,, x . Extracting multiple PUs’ activities from the OR
mixture observations is a challenging but important problem in
cognitive radio networks. Interesting information, such as the
PU channel usage pattern can be inferred once Y is available.
The SUs will then be able to adopt better spectrum sensing and
access strategies to exploit the spectrum holes more effectively.

Recall that n is the number of PUs (latent variables). Denote
y; a binary variable for the ith latent variable. Let x = G®Yy.
We assume that the probability of observing X given x

depends on their Himming distance d(x, X) = . | X; — x;],
and P(x|X) = pf!(x’X)u - pe)m—d(X,X)’ where p. is

the error probability of the binary symmetric channel. To
determine y, we can maximize the posterior probability of
y given X derived as follows,

P{X|y}P
Plyix) = HERGE
P{X|y}P{y}
P{X}
P{X X|y}P{y}
P{X}
P{XX}P{y}
P{X

ITZ, P{X il }HJ 1 P{ui}

R

I, p"

|(1—pe)t =12~ X [n_ p¥i(1py)1ws

P{X}

where x G ®y. (a) and (b) are due to the deter-
ministic relationship between x and y. Recall that z;
\/?:1 (9ij Nyj),i = 1,...,m. With M is a “large enough”
constant, we can use big-M formulation [12] to relax the
disjunctive set and convert the above relationship between x
and y into the following two sets of conditions:

< Z;Lzlgijyﬁ Vi=1,...,m.
n .
> 1YY, Vi=1....m

Ly

M - (10)

Here, since E;;l 9i;y; < n, we can set M = n. Finally,
taking log on both sides and introducing additional auxiliary
variable a; = |X; — x;|, we have the the following integer
programming problem:

max . Z [a; log pe + (1 — ;) log(1 — pe)]
R
+ 2051 [(1 = y;)log (1 — pj) +y; log py]
n
S.t. x; Szgijyj’ Vi=1,...,m,
j=1
n-xizzgijyj7 Vi=1,...,m,
=1
OéiEXi—J?i, Vi—l, ,m,
O‘izxith Vi = yeeey MYy
aiaxi,yj:{071}a Vi ]-a' 7maj:1a'

LM

(1)
This optimization function can be solved using ILP solvers.
Note that p. can be thought of the penalty for mismatches
between z; and X;.

Zero Error Case: If X is perfectly observed, containing no
noise, we have p. = 0 and o; = x; — X; = 0, or equivalently,

= X;. The integer programming problem in (1)) can now
be simplified as:

max. —y;)log (1 —p;) + y; log p;]

n
Zgzjy]aVZ_l m,

n-X; >Zguy]7V7f—1 m,

y; = {0, 1} Vj—l

H'M:

s.t.
(12)

Clearly, the computation complexity of the zero error case is
lower compared to (I1)). It can also be used in the case where
prior knowledge regarding the noise level is not available.

V. EVALUATION

In this section, we first introduce the performance metrics,
and then present evaluation results on a synthetic data set
varying the number of PUs.

A. Performance metrics

We denote by p and G the inferred active probability of
PUs and the inferred mixing matrix, respectively.

1) Structure Error Ratio: This metric indicates how ac-
curate the mixing matrix is estimated. It is defined by the
Hamming distance between G and G divided by its size.

ﬁ Z?:l dH(gia g’L)

To estimate Hg however, two challenges remain: First, the
number of inferred independent components may not be
identical as the ground truth. Second, the order of independent
components in G' and G may be different.

7oA

a, (13)



Algorithm 2: Bipartite graph matching algorithm

MatchPG (G, G, p)
input : Groxn, Gy Prxas (n <h < 2™)
it  : Guxin =05 Plus = 0; Caxa = 0;
fori=1,...,n do
for j=1,...,7 do
if g; = O then
| ey =d"(gi,05) x m;
else
| iy =d"(9:,9):

BOW N -

wm

A = BipartiteMatching (C);
for:=1,...,n do
ﬁnd i such that a;; = 1;

RN Y

11 Prune é/: G
12 Prune p":
13 output: an

To solve the first problem, we can either prune G or
introduce columns into G to equalize the number of com-
ponents (n = n, where n is the number of columns in é).
For the second problem, we propose a matching algorithm
that minimizes the Hamming distance between G and G by
permuting the corresponding columns in G.

Structure Matching Problem: A naive matching algorithm
needs to consider all 7! column permutations of G, and
chooses the one that has the minimal Hamming distance to G.
This approach incurs an exponential computation complexity.
Next, we first formulate the best match as an ILP problem.
Denote the Hamming distance between column g; and g; as
cij > 0. Define a permutation matrix A, ., with a;; = 1
indicating that the ¢th column in G is matched with the jth
column in G. The problem now is to find a permutation
matrix such that the total Hamming distance between G and
G (denoted by d” (G, G)) is minimized. We can formulate
this problem as an ILP as follows:

n n
E E cijaij

i=1 j=1
n

S.t. Zaij = ].,
i=1
n
Zaij = 1,

aij:O,lw,j:l,...,n

min .
a

(14)

The constraints ensure the resulting A is a permutation ma-
trix. This problem can be solved using ILP solvers. However,
we observe that the ILP is equivalent to a maximum-weight
bipartite matching problem. In the bipartite graph, the vertices
are positions of the columns, and the edge weights are the
Hamming distance of the respective columns. If we consider
d*(g;, 9;), the Hamming distance between column g; and §;,
to be the “cost” of matching g; to g;, then the maximum-
weight bipartite matching problem can be solved in O(n?)

i - .
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Fig. 3: From top to bottom: inferrled matrix G with 18 inferred
components, transformed matrix G with only 10 components re-

maining (8 noisy ones were removed), original G and difference
A/
matrix between G and G . Black dot = 1 and white dot = 0.

running time [13]], where n is the number of vertices. The
algorithm requires G and G to have the same number of
columns.

One greedy solution is to prune G by selecting the top
n components from G, which have the highest associated
probabilities p; since they are the most likely true components.
However, when T is small and/or under large noise, we
may not have sufficient observations to correctly identify
components in G with high confidence. As a result, true
components might have lower active probabilities comparing
to the noise components. To address the problem, we instead
keep a larger n and introduce n — n artificial components into
G. These components will be represented by zero columns
in G. While matching the inferred columns in G to the
columns in G, clearly an undesirable scenario occurs when we
accidently match a column in G to an additive zero column
in G. This happens when an inferred column §; is sparse (i.e.
having a very small Hamming distance to the zero column).
To avoid the incident, we multiply the cost of matching any
column in G to a zero column in G by m. This eliminates the
case in which a column ¢; is matched with a zero column in
G, since it is more expensive than matching with another non-
zero column g;. We can now select the best n candidates in G,
which yields a reduced mixing matrix G’ of size m x n, and
elements in active probability vector p’ will also be selected
accordingly. The solution to the structure matching problem
is detailed in Algorithm [2]

In the algorithm, lines [T] - [3] build the input weight matrix
C'x7, for the bipartite matching algorithm. If g; is a zero
column, ¢;; will be scaled by m to avoid the matching between
column g; and g; (line E[) The bipartite matching algorlthm
finds the optimal permutation matrix A to transform G into el
that is “closest” to G (hnes 6] - @ We are only interested in
the first n columns of G and P’ (as they most likely represent
the true PUs). Therefore, G’ and p’ are pruned in lines |11| -

IKi|



As an example, the inferred result of a random network
with n = m = 10 is given in Figure 3| Non-zero entries and
zero entries of G, G, and G are shown as black and vaite
dots, respectively. The entry-wise difference matrix |G—G | is
given in the bottom graph. Gray dots in the difference matrix
indicate identical entries in the inferred G and the original G
and black dots indicate different entries (and thus errors in the
inferred matrix). In this case, only the first row (corresponding
to the first monitor x1) contains some errors.

2) PU Active Probability Error Ratio: Prediction error in
the inferred active probabilities of PUs is measured by the root
mean square error ratio between p’ and p, defined as follows:

= A

P = 15)

Z?zl(ﬁ’rpi)?/Z?:l pi
n n :

PU active probability error ratio can be interpreted as the
fraction of the inferred active probability that deviates from
the true values.

3) Miscount in the number of PUs: Accuracy of the
inference algorithm can also be assessed by evaluating the
difference between the number of inferred PUs 7 and the
real number of PUs n in the system. Clearly, with a smaller
threshold value ¢ in Algorithm[I] the number of inferred PUs 7
may increase. In the subsequent experiments, we fix € = 0.01
and evaluate the changes in n as the real number of PUs
increases from 5 to 20.

4) PU Activity Error Ratio: After applying FINDBICA in
Algorithm [I] on the measurement data of length T" to obtain
G and p, realizations of the hidden causes (i.e. PUs) can
be computed by solving the maximum likelihood estimation
problem in (TI). We define

1 T H A
nT Zi:l d (yu yi)7
where y; is the ¢’th column of Y. Similar to ﬁg, this metric
measures how accurately the PUs’ activity matrix is inferred

by calculating the ratio between the size of y and the absolute
difference between y and y.

g, 2 (16)

B. Experimental results

For evaluation, we consider the same simulation scenario
as in Section [[I-A] where 10 monitors are randomly deployed
to monitor n PUs using a single channel. Algorithms are
implemented in Matlab, and all experiments are conducted
on a workstation with an Intel Core 2 Duo T5750@2.00GHz
processor and 2GB RAM. Noise is introduced by randomly
flip a bit in the observation matrix X from 1 to 0 (and vice
versa) at probability e. e is set at 0%, 2%, and 5% in our
simulations. All presented results are averages of 50 runs
with different initializations. In the experiments, we vary the
number of PUs n and the number of observations 7.

1) Varying the number of PUs: In the first set of exper-
iments, we fix the sample size 7' = 10,000 and vary the
number of PUs from 5 to 20 to study its impact on the accuracy
of our method. Experiment results over 50 runs for each PU
setting are shown in Figure 4] In absence of noise, we observe
that the inferred mixing matrix G is mostly correct even for
a large number of PUs (Figure [fa)). As the number of

PUs increases, errors in the inferred active probabilities and
the inferred number of PUs tend to increase though within
10% and 0.65 as shown in Figure Elkb) and (c). Recall that
the PUs are ordered based on their respective columns in
G. Therefore, errors in G may have a cascading effect on
PU active probability error ratio since we may compare the
wrong pair of PUs as a result. Performance of the algorithm
tends to degrade with more noises. In particular, as shown in
Figure @), more components are inferred compared to the
ground truth. This is because when the noise probability p, is
greater than the threshold value, some noise components are
erroneously introduced.

The errors in determining the set of active PUs are shown
in Figure }d). We can see again that the proposed algorithm
achieves remarkable accuracy at zero-noise level. Prediction
error on Y is only 1% for 5 PUs, and gradually increases up
to 5% for 20 PUs. At 2% and 5% noise levels, performance
degrades as the prediction error goes up to about 10%. Noise
has two effects on the solution to the inverse problem. First, the
inferred mixing matrix and active probability can be erroneous.
Second, no maximum likelihood estimator guarantees to give
the exact result when the problem is under or close to being
under-determined with noisy measurements. In fact, we have
experimented with the case in which G and p are both known,
the results are similar. This implies that the main source
of errors in solving the inverse problem comes from the
problem itself being under-determined or close to being under-
determined.

Finally, as shown in Figure [d{e), the computation time of
proposed algorithms is negligible, mostly under 0.2 second
without noise. With noise, computation time increases but
is similar at the two noise levels (differing by less than 0.5
second). The presence of noise may introduce noise compo-
nents and render the estimation of correlation (in Equation (9))
inaccurate. Thus, higher processing time entails.

2) Varying the size of observations T: In the second set of
experiments, we fix the number of PUs n = 10 and study the
impact of the observation size 7". A small 7' (and thus insuf-
ficient observations) would lead to higher uncertainty while
a large T incurs higher computation overhead. Furthermore,
if T is too small, some PUs may never be active in the
trace, making them impossible to be inferred. It is therefore
interesting to investigate the effect of 7" on the accuracy and
computation overhead of the proposed algorithm.

Experiment results over 50 runs for each observation size
are shown in Figure [5] As expected, the structure error ratio
and the PU active probability error ratio reduce significantly
as T increases from 50 to 1,000 (Figure Eka) and (b)). If we
further increase 7" from 1,000 to 10,000, the performance gain
is somewhat marginal. However, the computation time grows
considerably since it takes longer to process the observations
(Figure [3[e)). From Figure [5(c) and (d), we also see that
the miscount of PUs and the PU activity error ratio are not
sensitive to the sample size T, but are more affected by the
noise level.
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VI. RELATED WORK

Independent component analysis (ICA) has been studied in
the past as a computational method for separating a multivari-
ate signal into additive subcomponents supposing the mutual
statistical independence of the non-Gaussian source signals.
Most ICA methods assume linear mixing of continuous sig-
nals [L1]. A special variant of ICA, called Boolean Indepen-
dent Component Analysis (BICA), considers boolean mixing
(e.g., OR, XOR etc.) of binary signals. Existing solutions to
BICA mainly differ in their assumptions of prior distribution of
the mixing matrix, noise model, and/or hidden causes. In [14],
Yeredor considers BICA in XOR mixtures and investigates
the identifiability problem. A deflation algorithm is proposed
for source separation based on entropy minimization. In [14]]
the number of independent random sources K is assumed
to be known. Furthermore, the mixing matrix is an K-by-

K invertible matrix. In [15]], infinite number of hidden causes
following the same Bernoulli distribution are assumed. Re-
versible jump Markov chain Monte Carlo and Gibbs sampler
techniques are applied. In contrast, in our model, the hidden
causes may follow different distribution and the mixing matrix
tends to be sparse. Streich et al. [16] study the problem
of multi-assignment clustering for boolean data, where the
observations either from a signal following OR mixtures or
from a noise component. The key assumption made in this
work is that the elements of matrix X are conditionally
independent given the model parameters. This greatly reduces
the computational complexity and makes the scheme amenable
to gradient descent optimization solution. This assumption is
in general invalid. In [17]], the problem of factorization and de-
noise of binary data due to independent continuous sources
is considered, which follow beta distribution. Finally, [15]]



consider under-presented case of less sensors than sources
with continuous noise, while [17] and [16] deal with over-
determined case, where the number of sensors is much larger.
In this work, we consider primarily the under-presented cases
encountered in data networks.

There exists a large body of work on blind deconvolution
with binary sources in the context of wireless communica-
tion [18], [19]. In time-invariant linear channels, the output
signal x(k) is a convolution of the channel realizations a(k)
and the input signal s(k), k = 1,2,..., K as follows:

L
z(k)=> al)s(k—1),k=1,...,K. (17)
1=0
The objective is to recover the input signal s. Both stochastic
and deterministic approaches have been devised for blind
deconvolution. As evident from (I7)), the output signals are
linear mixtures of the input sources in time, and additionally
the mixture model follows a specific structure.

Literature on boolean/binary factor analysis (BFA) is also
related to our work. The goal of BFA is to decompose a
binary matrix X ,,x7 into A,,xn ® Byxr With ® being the
OR mixture relationship as defined in (I). We use the same
notation of m, n, and T to illustrate the relationship between
BFA and bICA. X in BFA is often called an attribute-object
matrix providing m-dimension attributes of 7" objects. A and
B are the attribute-factor and factor-object matrices. All the
elements in X, A, and B are either O or 1. n is defined
to be the number of underlying factors and is assumed to
be considerably smaller than the number of objects 7. BFA
methods aim to find a feasible decomposition minimizing n.
Frolov et al. study the problem of factoring a binary matrix
in a series of papers [20], [21], [22] using Hopfield neural
networks. This approaches are based on heuristics and do
not provide much theoretical insight regarding the properties
of the resulting decomposition. More recently, Belohlavek et
al. propose a matrix decomposition method utilizing formal
concept analysis [23[]. The paper claims that optimal decom-
position with the minimum number of factors are those where
factors are formal concepts. It is important to note that even
though BFA assumes a similar disjunctive mixture model to
our problem, the objective is different. While BFA tries to
find a matrix factorization so that the number of factors are
minimized, bICA tries to identify independent components.
One can easily come up an example, where the number of
independent components (factors) is larger than the number
of attributes, while BFA always finds factors no larger than
the number of attributes.

VII. CONCLUSIONS

In this paper, we introduced the PU separation problem
for cognitive radio networks and argue its relevance in col-
laborative spectrum sensing and monitor resource allocation.
We demonstrated that a binary mixing model is sufficient to
characterize the behavior of energy detectors in presence of
multiple PUs, and devised a binary inference framework to
resolve the PU separation problem. The results are somewhat
surprising that PUs can be accurately separated and identified

with only binary observations from the set of monitors to
which they are observable. Simulation validation shows that
the PU-SU relationship as well as the PUs’ statistics and
activities can be estimated with high accuracy when the noise
is marginal.
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