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Abstract

This work examines a novel heterogeneous dynamic spectrum access network where the primary

users (PUs) coexist with both underlay and interweave cognitive radios (ICRs); all terminals being

potentially equipped with multiple antennas. Underlay cognitive transmitters (UCTs) are allowed to

transmit concurrently with PUs subject to interference constraints, while the ICRs employ spectrum

sensing and are permitted to access the shared spectrum onlywhen both PUs and UCTs are absent.

We investigate the design of MIMO precoding algorithms for the UCT that increase the detection

probability at the ICRs, while simultaneously meeting a desired Quality-of-Service target to the underlay

cognitive receivers (UCRs) and constraining interferenceleaked to PUs. The objective of such a proactive

approach, referred to asprescient precoding, is to minimize the probability of interference from ICRs

to the UCRs and primary receivers due to imperfect spectrum sensing. We begin with downlink

prescient precoding algorithms for multiple single-antenna UCRs and multi-antenna PUs/ICRs. We

then present prescient block-diagonalization algorithmsfor the MIMO underlay downlink where spatial

multiplexing is performed for a plurality of multi-antennaUCRs. Numerical experiments demonstrate

that prescient precoding by UCTs provides a pronounced performance gain compared to conventional

underlay precoding strategies.
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I. INTRODUCTION

Dynamic spectrum access (DSA) is emerging as a promising solution to enable better utiliza-

tion of the radio spectrum, especially in bands that are currently under-utilized [1]. DSA partitions

wireless terminals into categories of primary (licensed) and secondary (cognitive radio) users,

where the primary users have priority in accessing the shared spectrum. Furthermore, the two

most prevalent classifications of secondary users are underlay cognitive radios and interweave

cognitive radios (ICRs), following the terminology of [2].The underlay paradigm mandates that

concurrent secondary and primary transmissions may occur only if the interference generated

by the underlay cognitive transmitters (UCTs) at the primary receivers (PRs) is below some

acceptable threshold. In contrast, ICRs are allowed to opportunistically use the spectrum only

when it is not occupied by a primary transmitter (PT) with priority. In the absence of standard

control channels or coordinated medium access between the primary and secondary users, the

ICRs must periodically sense the spectrum for the presence of PTs [1]–[3] and cease transmission

upon detection. Inevitably, imperfect ICR spectrum sensing due to channel fading and other

impairments will lead to unintentional interference at theunderlay cognitive receivers (UCRs)

and PRs.

Underlay and ICR networks have been studied separately in extensive detail for both single-

antenna and multiple-input-multiple-output (MIMO) terminals [1], [2]. The use of multiple

antennas in ICRs has been suggested for improved spectrum sensing capabilities by means of

receive diversity [4]-[10]. MIMO systems have also been investigated in the context of underlay

DSA networks, where multiple transmit antennas are used by UCTs for beamforming and to

control the interference to the PRs, assuming either complete or partial channel state information

(CSI) at the SU transmitter [11]-[15]. However, there is little if any prior work that examines

heterogeneous DSA networks withboth UCTs and ICRs attempting to coexist simultaneously

with primary users. Note that such a scenario is significantly different from hybrid secondary

users that are capable of both underlay and interweave cognition [16], [17].

Therefore, this work examines a fundamentally novel heterogeneous DSA network where the

primary users share their spectrum with both UCRs and ICRs; all terminals being potentially

equipped with multiple antennas. Specifically, we investigate the design of MIMO precod-

ing algorithms for a underlay downlink network with multiple UCRs and interweave radios.
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The heterogeneous DSA network presents a myriad of conflicting objectives for the underlay

transmitter, since it must mitigate the multi-user interference among its own UCRs, constrain

the interference leaked to PRs, and ensure that the detection probability of the ICRs is high

so as to preemptively avoid interference from them. Consequently, this paper is devoted to

the design of novel precoding algorithms, collectively referred to asprescient precoding, that

balance these competing objectives. The aim of prescient precoding is to reduce the probability of

interference due to imperfect spectrum sensing from ICRs tothe underlay and primary receivers,

while simultaneously meeting their QoS/interference temperature requirements. Therefore, our

contributions include the following:

• We introduce a novel heterogeneous DSA network with both underlay and interweave radios,

and demonstrate that existing underlay precoding schemes are highly suboptimal for such

networks.

• We design new prescient downlink precoding schemes of varying complexity for multiple

single-antenna UCRs and MIMO PRs/ICRs.

• We present prescient block-diagonalization algorithms for the MIMO UCR downlink chan-

nel when all UCRs are equipped with multiple antennas in addition to the PRs and ICRs.

• We demonstrate via numerical simulations that diverting resources from the UCRs to

increase the detection probability at the ICRs can significantly suppress unintentional ICR

interference.

The paper is organized as follows. Section II introduces themathematical model of the

DSA network and the spectrum sensing performance of the ICRs. Prescient downlink precoding

algorithms for the case of single-antenna underlay receivers are proposed in Section III. Sec-

tion IV outlines a prescient block-diagonalization algorithm for a MIMO downlink channel with

multi-antenna underlay receivers. Selected numerical examples are shown in Section V, and we

conclude in Section VI.

Notation: We will use CN (0,Z) to denote a circularly symmetric complex Gaussian distri-

bution with zero mean and covariance matrixZ, E{·} to denote expectation, vec(·) the matrix

column stacking operator,(·)T the transpose,(·)H the Hermitian transpose,(·)−1 the matrix

inverse,Tr(·) the trace operator,|·| the matrix determinant, andI an identity matrix of appropriate

dimension.
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II. M ATHEMATICAL MODEL

A. Signal and Network Model

Consider a downlink network with atu-antenna UCT,Ku single-antenna UCRs as its intended

destinations whereKu ≤ tu, K multi-antenna ICRs withrI antennas each, and a single PT-PR

pair with tp andrp antennas respectively, as depicted in Fig. 1. The scenario with multi-antenna

UCRs is presented in Sec. IV. Multiple PRs can be accommodated in the current model by

aggregating them into a single virtual PR.

Assuming linear precoding, the UCT downlink transmit signal at time indext is written as

x (t) =
Ku∑

k=1

wisu,i (t) = Wsu (t) , (1)

whereW ∈ Ctu×Ku =
[

w1 . . . wKu

]

is the precoding matrix whose columns represent

individual beamforming vectors, andsu (t) ∈ CKu×1 is the collection of i.i.d. underlay in-

formation symbols drawn from anM-ary phase-shift keying constellation with second-order

statisticsE
{
sus

H
u

}
= I. A power constraintTr

(
WWH

)
≤ P is imposed on the UCT signal.

Furthermore, the UCT designs its transmit signal so as to ensure that the detection probability at

the ICRs is satisfactory and the interference temperature at the PR remains below a pre-specified

thresholdξp, as explained in Sec. III.

Suppressing the time index, the received signal at UCRk in the absence of ICR interference

(i.e., with perfect spectrum sensing) is

yk = hkWsu + nk (2)

wherehk ∈ C1×tu is the corresponding complex channel vector from the UCT, and nk is a

circularly symmetric zero-mean complex Gaussian noise sample with varianceσ2
k which includes

interference from the PT.

We list below the major assumptions regarding the heterogeneous DSA network.

• We assume apartial CSI model at the UCT, which is defined to mean that the UCT always

has knowledge of the instantaneous realizations of all the downlink channels ({hk}Ku

k=1) and

UCT-PR ({hk}Kk=1) channels, but may know only the distribution of its channels to the ICRs

and the ICR-to-UCR channels.
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• The UCT has knowledge of the ICR transmit powers and the parameters of the spectrum

sensing scheme deployed at the ICRs, which in practice are likely to be pre-defined by

spectrum regulatory agencies.

• There is no coordination between the UCT and ICRs. The UCT andPRs have a limited

coordination in order to exchange CSI and tolerable interference limits.

• All ICRs are half-duplex, which precludes for example simultaneous data transmission and

spectrum sensing. We only consider in-band spectrum sensing; i.e., sensing is conducted

on the same band that is used for data transmission.

• The UCRs employ single-user decoding and treat all ICR/PT interference as noise. The

interference from the ICRs is assumed to be instantaneous, i.e., the processing delay due

to spectrum sensing is neglected.

B. ICR Spectrum Sensing

We assume that prior to transmitting, each ICR uses a binary hypothesis test based oñMrI

spatio-temporal samples to determine whether or not the band is occupied. Under the two

hypotheses, the signal received by theith ICR at timen is:

H0 : zi [n] = mi [n] , n = 0, . . . , M̃ − 1 (3a)

H1 : zi [n] = qi [n] +mi [n] , n = 0, . . . , M̃ − 1 (3b)

wheremi[n] ∼ CN (0, ǫ2i I) is temporally uncorrelated background Gaussian noise of known

variance andqi[n] represents the presence of a signal in the band. TheM̃rI complex samples

are composed of2M̃rI independent real and imaginary components [20]. We are onlyinterested

in the case whereqi[n] = {qi,1[n], . . . , qi,rI [n]} is due to the UCT and also possibly the PT, in

which case

qi,j [n] = fi,jWsu [n] + di,jsp [n] , j = 1, . . . , rI , (4)

where channelsfi,j ∈ C1×tu from the UCT anddi,j ∈ C1×tp from the PT are assumed to be

invariant over theM̃ samples, andsp ∈ Ctp×1 is the PT transmit signal with total powerPt.

A broad range of spectrum sensing algorithms with varying levels of complexity and requisite

a priori information have been proposed in the literature [4]-[10].On one hand, the optimal

matched-filter detector has the most prohibitive requirements for CSI and PT signal information,
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while on the other hand non-coherent energy detection is thesimplest possible detector since it

only requires an accurate estimate of the noise varianceǫ2i . A range of composite generalized

likelihood ratio tests (GLRT) and feature detectors lie in between these extremes. For this work,

we assume the ICRs employ non-coherent energy detection dueto its simplicity and the fact

that it is unnecessary to distinguish between the UCT and PT signals.

The test statistic and threshold test for the energy detector is given by [5]

Ti =

M̃−1∑

n=0

rI∑

j=1

|zi,j [n]|2; Ti

H1

≷
H0

λi (5)

whereλi is the detection threshold. We begin our development by analyzing the detection prob-

ability PD,i at ICR i assuming deterministic channels and signals from the UCT and PT. Under

the null hypothesisH0, we see from (3a) thatzi,j [n] ∼ CN (0, ǫ2i ), whereas under the alternative

hypothesisH1 we havezi,j [n] ∼ CN (µi,j [n] = fi,jWsu [n] + di,jsp [n], ǫ
2
i ). Therefore, the test

statisticTi is the sum of the squares of2M̃rI independent real Gaussian random variables and

thus follows aχ-squared distribution under both hypotheses:

Ti ∼ ǫ2i
2
χ2
2M̃rI

underH0

Ti ∼ ǫ2i
2
χ

′2
2M̃rI

(ρ) underH1

(6)

where the noncentrality parameterρ = ǫ−2
i

∑M̃−1
n=0

∑rI
j=1 |µi,j [n]|2 is a function ofW.

Since we have an even number of samples2M̃rI (real and imaginary components of each

sample), the false alarm probability follows immediately from the central chi-square cdf as [22]

PFA,i = e
−

λi

ǫ2
i

M̃rI−1∑

r=0

1

r!

(
λi

ǫ2i

)r

, (7)

whereλi = ǫ2iQ
−1
χ2
2M̃rI

(Pf) is chosen to satisfy a target false alarm ratePf , andQχ2
2M̃rI

(·) is the

complementary cdf of the central chi-square distribution.The detection probability is given by

PD,i = QM̃rI

(

√
ρ,

√

2λi

ǫ2i

)

, (8)

whereQM̃rI
(·, ·) is the generalized MarcumQ-function [25]. As the number of samples̃M

grows large,Ti approaches a Gaussian random variable in distribution by the central limit

theorem (CLT). Under hypothesisH1 the CLT yieldsTi ∼ N
(

ǫ2i M̃rI + ρ, ǫ4i M̃rI + 2ǫ2i ρ
)

and
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the corresponding detection probability

PD,i ≃ Q




λi − ǫ2i M̃rI − ρ

ǫi

√

ǫ2i M̃rI + 2ρ



 , (9)

whereQ (·) is the GaussianQ-function.

C. ICR Performance Prediction at UCT

The ability of the UCT to predict the spectrum-sensing performance of the ICRs is an important

ingredient of the prescient precoding paradigm. Under the partial CSI assumption, it is highly

unlikely that the UCT has knowledge of the PT-to-ICR channelrealizations and signals required

to compute (8) or (9). A more plausible scenario is that the UCT knows the realizations of its

channels{Fi} to the ICRs, and assumes the PT-to-ICR channels undergo Rayleigh fading with

distributiondi,j ∼ CN
(
0, σ2

d,iI
)
∀i, j.

Going one step further, the UCT may not have knowledge of the instantaneous realizations of

its channels to the ICRs either. In order to gauge the energy detection performance of the ICRs,

the UCT assumes a Rayleigh fading scenario such thatfi,j ∼ CN
(
0, σ2

f,iI
)
∀i, j, anddi,j ∼

CN
(
0, σ2

d,iI
)

as before. Furthermore, the UCT and PT signals are each assumed to be drawn

with uniform probability from a complexM-ary PSK constellation, and all channels, signals, and

AWGN samples are mutually independent. Given these assumptions, the ICR sampleszi,j [n] are

distributed as independent Gaussian random variables [5] for both hypotheses. The false-alarm

rate is clearly identical to that in (7) since it is channel-independent. UnderH1, E {zi,j [n]} = 0

and σ2
z,i , var {zi,j [n]} = 2σ2

f,iTr
(
WWH

)
+ 2Pttpσ

2
d,i + ε2i . Thus, Ti∼ σ2

z,i

2
χ2
2M̃rI

and the

corresponding average detection probability is

P̄D,i = e
−

λi

σ2
z,i

M̃rI−1∑

r=0

1

r!

(
λi

σ2
z,i

)r

. (10)

From the UCT’s perspective, a missed detection (Type II error) at any of the ICRs leads to

interference at the underlay receivers, and this phenomenon plays a pivotal role in the prescient

precoding principle. It will be useful to define the Bernoulli-distributed indicator functionFi as

Fi =







1 with probability (1− PD,i)

0 with probability (PD,i).
(11)
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Fi therefore models the likelihood that ICRi unintentionally causes interference to the underlay

and primary receivers, and is a function ofW via PD,i.

Clearly, it is in the UCT’s best interest to ensure that the probability of missed detection at

the ICRs is made as small as possible, or equivalently, that the probability of detection is made

as large as possible. To this end, we introduce the paradigm of prescient precoding in the next

section in order to improve the reliability of the underlay downlink.

III. PRESCIENT DOWNLINK PRECODING

It has been elegantly established that the capacity region of a conventional non-cognitive

multi-antenna downlink channel without structured interference is achieved through non-linear

dirty-paper coding, since all transmitted signals are known non-causally to the transmitter [29].

However, linear precoding schemes for the multiuser downlink have been extensively studied

due to their significantly lower complexity and near-capacity performance in certain regimes,

and thus we focus on linear transmit preprocessing at the UCT. By definition, the UCT must

limit the (instantaneous or average) interference it causes to the PR to a predefined thresholdξp:

Tr
(
NWWHNH

)
≤ ξp (12)

if the instantaneous channelN ∈ Crp×tu to the PR is known.

The signal at an arbitrary UCR inclusive of ICR interferencedue to missed detections can be

written as

yk = hkwksu,k +
Ku∑

j 6=k

hkwjsu,j

︸ ︷︷ ︸

intra - UCR interference

+
K∑

i=1

Fivk,isI,i

︸ ︷︷ ︸

ICR interference

+ nk, k = 1, . . . , Ku, (13)

wherevk,i ∼ CN
(
0, σ2

v,iI
)

andsI,i ∈ CrI×1 represent the(1× rI) interfering channel and signal

vector of powerPi from ICR i. We are interested in the characteristics of the aggregate ICR

interference power at thekth UCR, defined as

Ik (W) =

K∑

i=1

Fi ‖vk,i‖2 Pi. (14)

Taking the expectation of the ICR interference power in (14)with respect to indicator functions

{Fi}Ki=1 and the ICR-UCR channels{vk,i}Ki=1 yields

Īk (W) =

K∑

i=1

(1− PD,i)PirIσ
2
v,i. (15)
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The UCR SINR that can be computed at the UCT is then approximated as

γk =
|hkwk|2

∑Ku

j 6=k |hkwj |2 + Īk (W) + σ2
k

, k = 1, . . . , Ku, (16)

where the aggregate ICR interferenceĪk (W) is a function ofW via the spectrum-sensing

detection probabilities.

In the remainder of this section, we present several prescient design solutions forW that

provide a tradeoff between complexity and underlay downlink performance. The attribute of

“prescience” derives from the fact that the UCT anticipatesinterference at the PR from SUs due

to imperfect spectrum sensing and takes preemptive measures to avoid the same.

A. Direct UCR Sum Rate Maximization

A wide variety of choices forW for conventional non-cognitive and underlay-only downlink

channels have been explored in the literature. For example,a naı̈ve transmission scheme that

disregards ICR CSI and PR interference would be to apply a modified regularized channel

inversion (RCI) precoder [30], with

WCI =
1√
ζ
HH

u

(

HuH
H
u +

Ku

P
I

)−1

(17)

whereHu ,
[

hT
1 . . . hT

Ku

]T

, given the scale factorζ which is chosen as the smaller of the

two scaling factors required to preserve the UCT transmit power and PR interference temperature

constraints. However, the naı̈ve RCI precoder does not account for the potential ICR interference

Īk, which can severely degrade the underlay sum-rate performance whenĪk is the dominant term

of the denominator in (16). A more efficient usage of the side information available to the UCT

is a direct sum-rate maximization approach that exploits knowledge of the ICR channels:

max
W

Ku∑

k=1

log2 (1 + γk) (18a)

s.t. Tr
(
NWWHNH

)
≤ ξp (18b)

Tr
(
WWH

)
≤ P. (18c)

The above problem is novel since the co-channel ICR interference term in the SINR is a

function of the transmit signal itself. This is in sharp contrast with conventional single-cell

[27], multi-cell [28], and underlay-only [11]-[15] downlink beamforming problems where the
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co-channel interference is inevitably modeled as independent noise. While signal-dependent

interference is a well-studied problem in radar signal processing [24], in our case this dependence

manifests itself in a much more complicated and non-linear fashion involving exponential terms.

We are faced with a non-convex objective function with multiple non-linear constraints, and at

this point an analytical solution forW therefore appears to be intractable.

To solve the sum-rate maximization problem numerically, a gradient projection (GP) algorithm

can be used, which will converge to at least a locally-optimal stationary point. To compute the

gradient of the UCR sum rate, we define the leakage term

Lk,j =
∑

j 6=k

|hkwj|2 + Īk (W) + σ2
k, (19)

and compute∇W (Rs) =
[

∇T
w1

(Rs) . . . ∇T
wKu

(Rs)
]T

where

∇wk
(Rs) =

1

ln 2

(

1 +
|hkwk|2
Lk,j

)−1 2hH
k hkwkLk,j − |hkwk|2

(
∂Īk(W)
∂wk

)

(Lk,j)
2

+
∑

l 6=k

1

ln 2

(

1 +
|hlwl|2
Ll,m

)−1
(

−2hH
k hkwk − ∂Īl(W)

∂wk

)

(Ll,m)
2

(20)

∂Īk (W)

∂wk

= −
K∑

i=1

PirIσ
2
v,i

∂P̄D,i

∂wk

(21)

= −2σ2
f,iwk

σ2
z,i

e

(

−
λi

σ2
z,i

)

(
∑

r=0

λr
i

r!

(1− r)
(
σ2
z,i

)r+1

)

(22)

and the differential on the RHS of (21) is taken with respect to the average detection probability

in (10) which is computable at the UCT.

At the kth iteration of the GP process, the updated precoding matrixW(k) in the direction

of the gradient computed above will likely not satisfy the UCT transmit power and PR in-

terference temperature constraints. The projection step of the GP algorithm therefore projects

the iterateW(k) back onto the feasible constraint setΩ+(P, ξp), defined asΩ+(P, ξp) , {W |
Tr
(
WWH

)
≤ P,Tr

(
NWWHNH

)
≤ ξp}. Nominally, this would be achieved by determining a

feasibleW0 ∈ Ω+(P, ξp) that is closest toW(k) in terms of Frobenius norm, i.e., by minimizing

the squared distanced2
(
W0,W

(k)
)
= Tr

((
W0 −W(k)

)H (
W0 −W(k)

))

with appropriate
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constraints:

min
W0

d2
(
W0,W

(k)
)

(23a)

s.t. Tr
(
W0W

H
0

)
≤ P (23b)

Tr
(
NW0W

H
0 N

H
)
≤ ξp. (23c)

However, instead of numerically solving the above problem,a potentially suboptimal but much

simpler approach is to scaleW(k) such that both (23b) and (23c) are satisfied. This approach

is partly motivated by the observation that the solution to (23a) cannot satisfy both constraints

with equality for a general channelN 6= I, and one of the constraints is guaranteed to be an

inequality anyway.

A summary of the GP approach for underlay prescient sum rate maximization is shown in

Algorithm III-A, where the step sizessk andαk are chosen using well-defined criteria such as

Armijo’s rule [31, Sec. 2.3].

Algorithm III-A.1 Prescient Gradient Projection Method
Initialization:

Set iteration indexk = 0.

Initialize W(0) = [w
(0)
1 w

(0)
2 . . . w

(0)
Ku

].

Main Loop:

1. Calculate the gradient∇W(k) (Rs).

2. Choose an appropriate step sizesk. Let W
′(k) = W(k) + sk∇W(k) (Rs)

3. Let W̄(k) be the projection ofW
′(k) ontoΩ+(P, ξp), where

Ω+(P, ξp) , {W | Tr
(
WWH

)
≤ P,Tr

(
NWWHNH

)
≤ ξp}.

4. Choose appropriate step sizeαk. Let W(k+1) = W(k) + αk(W̄
(k) −W

(k)
i ).

5. k = k + 1. If
∥
∥vec

(
W(k) −W(k−1)

)∥
∥ < ǫ, stop; else go to step 1.

B. Algorithm Based on Convex Optimization

While the iterative algorithm described above returns at least a locally optimal prescient beam-

forming matrix, it is desirable to investigate designs based on simpler optimization procedures.

In this section, we investigate a suboptimal approach that maximizes the partial underlay SINR
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accounting for intra-UCR and PR interference, while makinga best-effort attempt to limit the

expected ICR interference by ensuring a minimum level of signal power leakage to them. We

first define the partial UCR SINRβk as

βk =
|hkwk|2

∑Ku

j 6=k |hkwj|2 + σ2
k

, k = 1, . . . , Ku, (24)

where the ICR interference term in the denominator of (16) isomitted. Then we pose the problem

of maximizing the minimum partial UCR SINR subject to a set ofconstraints{ηi}Ki=1 on the

total UCT signal power received by the ICRs, as follows:

max
W

min
k

βk (25a)

s.t.Tr
(
WWH

)
≤ P (25b)

Tr
(
WWHFH

i Fi

)
≥ ηi, i = 1, . . . , K (25c)

Tr
(
NWWHNH

)
≤ ξp (25d)

This can be posed as a convex optimization problem as follows. Let Jk , wkw
H
k , ∀k. Ap-

plying a change of variable and relaxing the rank-1 constraints onJk, we have the reformulation

max
{Jk}

Ku
k=1

t (26a)

s.t. t

(
∑

j 6=i

Tr
(
hH
i hiJj

)
+ σ2

i

)

− Tr
(
hH
k hkJk

)
≤ 0 (26b)

Tr
((∑Ku

k=1
σ2
s,iJk

)

FH
i Fi

)

≥ ηi, i = 1, . . . , K (26c)
∑Ku

k=1
Tr (Jk) ≤ P (26d)

Tr

(

N

(
Ku∑

k=1

Jk

)

NH

)

≤ ξp (26e)

t ≥ 0 (26f)

Jk � 0, k = 1, . . . , Ku. (26g)

In this case, however, dropping the rank constraints on{Ji}Ku

i=i still does not lead to a semidefinite

program (SDP), since theKu underlay SNR inequality constraints in (26b) are non-linear due

to the fact thatt is a variable. Therefore, a two-stage solution strategy is required where the
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outer-loop performs a one-dimensional bisection search over t, while the inner loop solves (26a)

for a given value oft, if feasible [32].

C. Combined Downlink and Multicast Beamforming

As an alternative suboptimal algorithm, we present an approach with a semi-analytical ex-

pression forW, motivated by the simple observation that the detection probability of the energy

detector in (8) increases monotonically with the received SNR at the SUs for a given false alarm

ratePFA,i. Consider the following two extreme cases for the choice ofW:

• Disregard ICRs, focus only on UCRs: If the UCT disregards thepresence of the ICRs and

focuses only on its intended receivers, a suitable choice for W is the RCI precoderWCI

given by (17).

• Disregard UCRs, focus only on ICRs: At this extreme, the UCT ignores its downlink users

and focuses only on improving the signal strength at the ICRs(particularly those that

could produce the most interference). This is similar to a MIMO multicast (MC) downlink

scenario, where priority is given to certain key users. A reasonable choice for the transmit

precoder in this case would maximize the weighted average ofthe SNRs at the ICRs:

WMC = argmax
W

K∑

i=1

PiNIσ
2
v,iTr

(
FiWWHFH

i

)
, (27)

where the weightPiNIσ
2
v,i measures the interference impact of theith ICR at the UCRs.

The solution to (27) is given by the dominant singular vectors of FH
S ΣgF

H
S scaled by

√
P ,

whereFS =
∑K

i Fi andΣg is a diagonal matrix with entriesPiNIσ
2
v,i, i = 1, · · · , K.

Given that the prescient precoding objective is to balance these two competing goals, a sensible

approach would be to chooseW as somelinear combination of the solutions:

Wl = αWCI + (1− α)WMC 0 ≤ α ≤ 1 , (28)

where the optimal value ofα ∈ [0, 1] that maximizes (18) can be found by a simple line search.

IV. M ULTI -ANTENNA UNDERLAY RECEIVERS

In this section we extend the prescient downlink precoding paradigm to the case of multi-

antenna UCRs with multiple data streams transmitted to each. For simplicity, assume that each

UCR is equipped withru antennas, although the proposed algorithms hold for unequal array
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sizes as long as the total number of receive antennas does notexceedtu. The extension to the

case where the UCT servestu spatial streams regardless of the total number of receive antennas

can be made using the coordinated beamforming approach [33], for example. The received signal

at UCRk is now

yk = HkWksu,k +
Ku∑

j 6=k

HkWjsu,j +
K∑

i=1

FiVk,isI,i + nk (29)

whereHk ∈ Cru×tu is the main channel,Wk ∈ Ctu×lk is the beamforming matrix applied to

signal su,k ∈ Clk×1 for userk, Fi is the ICR indicator function as before,sI,i is the ith ICR

signal over interfering channelVk,i ∈ Cru×rI , andnk ∼ CN (0, σ2
kI) is additive Gaussian noise.

The transmit covariance matrix for each UCR is given byQk = WkW
H
k . We adopt a prescient

block-diagonalization (PBD) strategy on the underlay downlink [33], [34] to completely eliminate

intra-UCR interference, as shown below.

In the first approach, the transmit covariance matrices{Qk}Ku

s=1 are computed jointly so as to

optimize the underlay system sum rate while subject to constraints on the PR interference and

the minimum power leaked to the ICRs. The proposed PBD schemeis described mathematically

as

max
Q1,...,QKu

Ku∑

k=1

log2
∣
∣I+HkQkH

H
k

∣
∣ (30a)

s.t. HkQjH
H
k = 0, ∀k 6= j (30b)

Tr
(

N
(∑Ku

k=1
Qk

)

NH
)

≤ ξp (30c)

Tr
(

Fi

(∑Ku

k=1
Qk

)

FH
i

)

≥ ηi ∀i (30d)

Tr
(∑Ku

k=1
Qk

)

≤ P (30e)

Qk � 0, k = 1, . . . , Ku. (30f)

Note that this is not equivalent to direct maximization of the UCR sum rate since the ICR

interference is not included in the objective function. However, this decoupling renders the

problem convex since the objective function is jointly concave and all constraints are linear in

{Qk}, and the leakage constraintsηi can be adjusted appropriately to diminish the probability

of missed detections at the ICRs.
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As an alternative PBD strategy, it is possible to separatelydesign the precoding and power

allocation matrices per user in a two-step process. Let

H−k =
[

H1 · · · Hk−1 Hk+1 · · · HKu

]

represent the overall UCR downlink channel excluding thekth user. First, a closed-form solution

for the unit-power precoding matrix of userk is obtained from the nullspace ofH−k. For example,

from the SVDH−k = U−kΣ−k

[

V−k,1 V−k,0

]H

, the last(tu − lk) right singular vectors

contained inV−k,0 can be used to constructWk [33]. However, unlike the conventional BD

algorithm, the power allocated over thelk spatial modes of userk is now no longer obtained via

waterfilling. Letrank(HkWk) = rk for userk’s effective channel, and assumelk = rk. Consider

the SVD of userk’s effective channelHkWk = UkΣkV
H
k whereΣk = diag (ǫk,1, . . . , ǫk,rk) is a

rk×rk diagonal matrix, and defineΛk = diag (λk,1, . . . , λk,rk) to be the power allocation matrix.

The overall downlink power allocation matrix is thereforeΛu = blkdiag (Λ1, . . . ,ΛKu
). The PR

interference and ICR signal power constraints are accommodated in the power allocation step

based on a numerical optimization:

max
Λu

Ku∑

k=1

lk∑

m=1

log2
(
1 + ε2k,mλk,m

)
(31a)

s.t.
∑rp

c=1

∑Ku

k=1

∑lk

m=1
‖ncwk,m‖22 λk,m ≥ ξp (31b)

∑rI

n=1

∑Ku

k=1

∑lk

m=1
‖fi,nwk,m‖22 λk,m ≥ ηi, i = 1, . . . , K, (31c)

∑Ku

k=1

∑lk

m=1
‖wk,m‖22 λk,m ≤ P (31d)

wherenc is the cth row of N, fi,n is thenth row of Fi, andwk,m is themth column ofWk.

The leakage and power constraints (31b)-(31d) are equivalent to (30c)-(30f). This is a convex

program since the objective function is concave and all constraints are linear in{λk,i}, and can be

efficiently solved using interior-point methods. It must benoted however that a separate design

of the underlay precoding and power allocation matrices is potentially suboptimal compared to

the joint design of (30).

V. SIMULATION RESULTS

In this section, we present the results of several numericalexperiments to verify the im-

provement in primary link performance provided by prescient beamforming. To avoid repetition,
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unless specified otherwise, all results in this section are based on the partial CSI model with

instantaneous CSI of the downlink and UCT-ICR links, and only statistical CSI of the ICR-to-

UCR links available to the underlay transmitter. Each channel realization for all terminals is

drawn from a zero-mean circularly symmetric complex Gaussian distribution, and all results are

averaged over 1000 channel realizations. The background AWGN variance at all receivers is

assumed to be unity, the primary antenna array sizes are fixedas tp = rp = 4 with PT transmit

powerPt = 10, and the PR interference cap is set toξp = 10. The convex programs are solved

numerically using thecvx MATLAB toolbox [35]. At the ICRs we set the transmit power to

Pi = 20dB, false alarm rate targetPFA,i = 10−3 ∀i, and sample size of̃M = 4. The prescient GP

algorithm is run 5 times for each set of channel realizationswith four random initializations and

an initialization based on the naı̈ve RCI precoder to reducethe likelihood of a local maximum;

the best-performing precoding solution is chosen as the result.

In Fig. 2, we first examine the energy detection receiver-operating-characteristic at an arbitrary

ICR for prescient GP precoding compared to RCI transmissionfor Ku = 3 single-antenna UCRs.

The UCT transmit power is fixed atP = 10dB with tu = 3 antennas, andK = 2 ICRs are

present withrI = 2 antennas each. We observe that prescient precoding provides a significant

improvement in energy detection performance for the entirerange ofPFA, and consequently

reduces the likelihood of ICR missed detections.

Sum rate results for the single-antenna UCR downlink versusUCT transmit power withtu =

Ku = K = 3, rI = 2 are shown in Fig. 3. The prescient schemes improve markedly upon

the naı̈ve RCI precoder since each ICR with a missed detection interferes with multiple UCRs.

The linear combination scheme is observed to be a very competitive alternative compared to

the computationally intensive GP solution. The SDP-based prescient scheme suffers from the

difficulty of optimally choosing leakage power thresholdsηi. The proposed prescient GP precoder

provides an increase of up to 7 (bits/s/Hz) in spectral efficiency compared to the RCI scheme,

which highlights the significant benefit of preemptively mitigating secondary user interference.

We now consider prescient versus conventional block-diagonalization schemes for the multi-

antenna UCR downlink withru = 2. In Fig. 4 the underlay sum rate is displayed as a function

of the UCT transmit power fortu = 8, Ku = 4, K = rI = 2. The greatest benefit of the PBD

schemes is observed at low to intermediate SNRs, while the sum rate of all three algorithms

gradually converge at high SNR. This is because the diversion of transmit power to the ICRs
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under PBD now has a greater penalty in terms of spatial multiplexing loss to the multi-antenna

UCRs.

Finally, Fig. 5 presents the PBD and BD underlay sum rates as the number of potentially

interfering ICRs increases, for fixed UCT powerP = 15dB. The relatively low combined

transmit power of the UCT and PT leads to a potentially significant number of missed detections

at the ICRs, and the expected ICR interference clearly worsens asK increases. This is especially

true for the conventional BD scheme, which suffers from a pronounced degradation in sum rate

since it neglects the sensing performance of the ICRs. An important implication of this outcome

is that the successful coexistence of UCRs and ICRs in a heterogeneous DSA network cannot

be assured merely by modifying the UCT precoding strategy; smarter ICR spectrum sensing

approaches must also be adopted.

VI. CONCLUSION

This work has examined a novel heterogeneous DSA network where the primary users coexist

with both underlay and interweave cognitive radios, all terminals being potentially equipped with

multiple antennas. We investigated the design of MIMO precoding algorithms and the underlay

transmitter in order to increase the detection probabilityat the ICRs, while simultaneously

meeting a desired Quality-of-Service target for the underlay receivers and constraining the amount

of interference leaked to the PUs. The objective of such a proactive approach, referred to as

prescient precoding, is to minimize the probability of interference from ICRs to the UCR and

PU receivers due to imperfect spectrum sensing. We presented three different downlink prescient

precoding algorithms for the case of multiple single-antenna UCRs and multi-antenna PUs/ICRs.

We then presented prescient block-diagonalization algorithms for the MIMO underlay downlink

where spatial multiplexing is performed for multiple multi-antenna UCR receivers. Numerical

experiments demonstrate that prescient precoding by the UCT preemptively mitigates missed

detections at the ICRs, and provides a significantly pronounced performance gain in underlay

sum rate compared to conventional precoding strategies. For future study, it is of interest to

design prescient user selection algorithms to accommodatescenarios where the number of UCRs

exceeds the number of UCT transmit antennas.
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Fig. 1. Cognitive radio network with a multi-antenna underlay transmitter,Ku underlay receivers, a single MIMO primary
receiver, andK spectrum-sensing multi-antenna interweave cognitive radios. The primary transmitter and ICR-to-PR interfering
links are not shown for clarity.
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