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Abstract

This paper investigates three open problems in random tearitfg based communication systems:
the scheduling policy with heterogeneous users, the clésad sum rate, and the randomness of
multiuser diversity with selective feedback. By employitng cumulative distribution function based
scheduling policy, we guarantee fairness among users dsawebbtain multiuser diversity gain in
the heterogeneous scenario. Under this scheduling frarkewlre individual sum rate, namely the
average rate for a given user multiplied by the number of 9)sier of interest and analyzed under
different feedback schemes. Firstly, under the full feetttsrheme, we derive the closed form individual
sum rate by employing a decomposition of the probability sitgnfunction of the selected user’s
signal-to-interference-plus-noise ratio. This techeidgi employed to further obtain a closed form rate
approximation with selective feedback in the spatial digi@m. The analysis is also extended to random
beamforming in a wideband OFDMA system with additional séde feedback in the spectral dimension

wherein only the best beams for the best-L resource bloakfeadrback. We utilize extreme value theory
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to examine the randomness of multiuser diversity incurnedddective feedback. Finally, by leveraging
the tail equivalence method, the multiplicative effect efestive feedback and random observations is

observed to establish the individual rate scaling.
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I. INTRODUCTION

In multi-antenna downlink systems, transmission straegvhich require less feedback re-
sources[[1]-+[4] to fully utilize multiuser diversity [5]/6], but with asymptotic sum capacity
comparable to dirty paper codingl [7]=]11], are favored. Tdea of random beamforming [12],
which satisfies the two aforementioned features has drawchrmierest in recent years [13]—
[19]. In the basic random beamforming strategy suggestfd®inthe transmitter withl/ transmit
antennas generatdg random orthonormal beams and requires each user to feedtmSK\NR
experienced by them for each beam. Then the transmittedstdseusers for transmission that
currently have the best channel for each random beam. [@edpt considerable literature on

this topic, there are three existing open problems:

1) How to address heterogeneous users with diverse larfge dtannel effects and the impact
on scheduling policy?

2) What is the closed form sum rate by eElamarformance analysis?

3) What is the effect of selective feedback, both spatial gpekctral, on the randomness of

multiuser diversity?

The first problem is related to a practical downlink systemtirsg with asymmetrically located
users having heterogeneous large scale channel effeatssn&ar-far effect was first treated in
[12] by observing that the system becomes interference mlated whenV/ is large enough. In
the largeM setting, the authors prove that users are asymptoticallipespable to be scheduled.
However, when) is finite and not increasing simultaneously with the numbleusers, the
greedy scheduling policy employed in_[12] can not maintaimniess among users. Also, if a
round robin scheduling policy was utilized, fairness camgbaranteed, but no multiuser diversity
gain could be achieved for capacity growth. Therefore, termdte scheduling policy is heeded
to maintain fairness while exploiting multiuser diversdy the same time. In this paper, the
cumulative distribution function (CDF)-based schedulpaicy [20] is leveraged and analyzed

in the random beamforming framework, wherein the user whage for a given beam is high

1We use the term exact to denote results valid for arbitratyfibite number of users as opposed to asymptotic results.
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enough but least probable to become higher is selected.ruinidescheduling policy, each user
can be equivalently viewed as competing with other userk thié same CDF, thus making the
study of individual user rate more relevant and interestimgn that of the sum rate. In this
paper, we develop the notion of individual sum rate, whicthesindividual user rate multiplied
by the number of users, in order to demonstrate the multidsersity gain with user growth
for a given user.

The second problem addresses exact system analysis, ndengiyng closed form expression
for the sum rate for arbitrary but finite humber of users. Nibtat even with full feedback,
wherein each user conveys back the signal-to-interferpheenoise ratio§INR) for M beams,
the closed form sum rate has not been derived. This is gartlak to the complicated form of
SINR and its interplay with multiuser diversity. In this work glproblem is tackled and solved by
a novel probability density function (PDF) decompositi@d] which decomposes and interprets
the selected userSINR. In [21], the homogeneous setting is considered and in tapgep the
technique is extended to the heterogeneous user settintharadosed form individual sum rate
is derived. The closed form result under full feedback heimsvaluating the system performance
and acts as the building block for exact analysis with seledeedback.

The third problem is concerned with standard selective ldaekl in the spatial dimension,
wherein each user feeds back H&R for the best beam among the beams and the corre-
sponding beam index. This selective feedback is fundarteridferent than full feedback in
two aspects. The first difference is the two-stage maxinurawith the first stage maximization
carried out by each user for feedback selection and the destaige maximization carried out
by the scheduler to perform user selection. Since the besh i selected by each user, the first
stage maximization is ove¥/ correlatedSINR. This correlation issue has been addressed in [22],
[23], and the CDF for the select&sINR at the user side is derived. In this paper, we propose
an approximation for the CDF and utilize it to derive closethi rate approximation. The other
fundamental difference is the number of tBENR values that the scheduler has to maximize
over for each beam. This number is fixed and equals the nunibesens in the full feedback
case. However, with selective feedback, it becomes a rargiantity. In other words, selective
feedback results in a random effect on the multiuser dityer3ihis effect was first observed
in [22]. In this paper, we investigate the randomness of ot diversity by extremes over

random samples and provide a rigorous argument on the rali@gc
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The third problem is further extended to include spectridiity by examining a wideband
OFDMA system, which groups the subcarriers into resouraels [24] to form the basic
scheduling and feedback unit. In order to save feedbackiresavhile not significantly degrading
the system performance, additional selective feedbackeénspectral dimension is necessary.
The effect of random beamforming in a wideband system is @egnin [25] by extensive
simulations, and further studied from a utility functionrgeective with the proportional-fair
scheduler in([26]. In[[27], analytical results on the asyotipt cluster size is provided. Apart
from the thresholding-based partial feedback strategj; [p8 best-L selective feedback strategy
[29] is appealing and utilized in practical systems such B8 [30]. In this paper, we employ
the best-L selective feedback strategy to investigate aentieamforming and the effect of
spectral dimension selective feedback, which calls for dditeonal maximization stage at the
user side to perform feedback selection. In this feedbackesty, only the best beams from
the bestL resource blocks along with the beam and resource block iadexXed back from
each user. In this paper, we first derive a closed form rateoappation with exact analysis,
i.e., valid for arbitrary but finite number of users. Therg ihfluence of the additional spectral
dimension selective feedback on the type of convergenewestigated with the technique of tail
equivalence. Moreover, the multiplicative effect of sélex feedback and random observations
is observed to establish the rate scaling.

To summarize, the main contributions of this paper are thléethe utilization of CDF-based
scheduling policy to address heterogeneous users witlonamgamforming, the obtained closed
form rate results with different selective feedback asdionp, and the asymptotic analysis on
the randomness of multiuser diversity incurred by selecteedback. These three contributions
analytically examine the raised open problems, and fosighdr understanding on random
beamforming with heterogeneous users and selective fekdbhe organization of this paper is
as follows. Sectiofill reviews the basic narrowband systesdehfor random beamforming. The
analysis for the full feedback case is carried out in Sedlijnrand for the spatial dimension
selective feedback in Sectidn]IV. Sectibn V provides the ehddr the wideband OFDMA
with random beamforming, and examines the effect of addiicpectral dimension selective

feedback on rate performance. Finally, Secfioh VI conduithe paper.
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II. SYSTEM MODEL

We consider a multi-antenna narrowband Gaussian downhakimel with X' single antenna
receivers and a transmitter equipped withantennas. A block fading channel model with coher-
ence intervall’ is assumed. The random beamforming strategy empléysndom orthonormal
vectorsg, € CM*! form =1,..., M, where thep,’s are drawn from an isotropic distribution
independently every’ channel uses [12]. Denoting,,(¢) as themth transmission symbol at

time ¢, the transmitted vector of symbols at timerepresented by(t) € CM*1, is given as

s() =Y ¢, (Osm(t), t=1,....T. (1)

Let y,(t) be the received signal at theh user, then

Uk(t) = Y /Prhl () (£)sm(t) + vi(t), 2)

whereh,;, € CM*! is the complex channel vector which is assumed to be knowheatetceiver,

v, IS the additive white noise, and the elementshgpfand v, are i.i.d. complex Gaussian with
zero mean and unit varian@&\/(0,1). Note that this channel assumption corresponds to the
Rayleigh fading assumption for the small scale channecefferom now on, the time variable

t will be dropped for notational convenience. The total traihigpower is chosen to beg, i.e.,
E[s's] = 1, and thus the received signal-to-noise raidlR) of userk is p;. In a practical
downlink setting, due to different locations of users, thegé scale channel effectg which
may consist of path loss and shadowing vary across usersn @) theSINR of the kth user

for the mth transmit beam can be computed as

hie,,*
M/ + 3 i ;2

Denote Z; ,, = SINRy,,, for notational simplicity. Then for a given beam, the Z ,,’s are

SINRy 1, = —1,..., M. 3)

independent across usetrsbut non-identically distributed due to differept. For a given user
k, the Z ,,,’s are identically distributed and correlated. Thus thenbéadexm can be dropped
in the expression for the PDF, which is computed.in [12] as

_M

e Pk M
fz,(x) = At <E(1+$)+M—1) u(z), 4)
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wherewu(-) is the Heaviside step function. The CDF 8f is shown in [12] to be

Py (z) = <1 - W) u(x). (5)

[1l. FuLL FEEDBACK ANALYSIS

This section is devoted to the analysis for the full feedbeake wherein each user feeds
back theSINR for M beams. Since under full feedback, all the beams are fed Ilaekorder
statistics for each beam is ovér independent random variables. Thus this case is well suited

for illustration of the scheduling policy and the derivatiof the individual sum rate.

A. Scheduling Policy and Individual Sum Rate

After receiving theSINR; ,,, from userk for beamm, the scheduler is ready to perform
user selection. In a homogeneous setting, selecting thewitde the largestSINR for a given
beam maintains fairness and obtains multiuser diversity. géhis system was analyzed in our
recent work [[21]. The work is now expanded to the more completerogeneous case. In a
heterogeneous setting, the greedy scheduling policy wbaldhighly unfair for finite M. The
round robin scheduling policy can maintain schedulingniass, but no multiuser diversity gain
can be obtained. The proportional-fair scheduling pol@ly [26] achieves the system fairness
in terms of system utility. However, under the scenario déiitbeam interference, the users’
rates are coupled under the proportional-fair scheduliolicyy This coupled effect makes it
very difficult, if not impossible, to develop further anatal resultg. Therefore, to tackle this
problem it is useful to consider alternate scheduling pedi¢chat decouple each user’s rate. In
this paper, we employ the CDF-based scheduling policy [@0fdirther analysis. According to
this policy, the scheduler will utilize the distribution tfe receivedINR, i.e., Fz, . It is assumed

that the scheduler perfectly knows the &)End it performs the following transformation [20]:

Zk,m = Fy (Zkm). (6)

2Note that extensive simulation results have been proviégarding the use of proportional-fair scheduling policydem
random beamforming in existing literature suchlas [26]. sy, the coupled effect of user’s rate prevents furthelyaizaand
it remains an open problem to theoretically understand ystem performance of proportional-fair scheduling policyder the
heterogeneous user setting with inter-beam interference.

3This is the only system requirement to conduct the CDF-baséeduling, and the CDF can be obtained by infrequent

feedback from users and learned by the system.
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The transformed random variab@,m is uniformly distributed ranging fron) to 1, and in-
dependent and identically distributed (i.i.d.) acrossraider a given beam. Denote’, as the

random variable representing the selected user for beatmen

k. = max ka, (7

u"L
wherel/,, denotes the set of users conveying feedback for bearm the full feedback case,
U] = K. After userk;, is selected pei (7), the scheduler utilizes the correspondj. ,, for
rate matching of the selected user. L¢t, be theSINR of the selected user for beam and

now consider the sum rate of the system defined as follows,

M
=E | log, (1+ X,,) (8)

m=1

From the aforementioned formulation, the sum rate can bgyated in the following procedure

R ME,. [/110g2 (1+F7 @ )) de}
KZ/ log,y(1 + t)d(Fy, (t) ij (9)

where (a) follows from the sufficient small probability thaultiple beams are assigned to the
same user; (b) follows from the change of variable= FZk:,L,7,L(t)’ the fair property of the

CDF-based scheduling, and the following definition fgr(e) with exponente € N :

Tile) & / loga(1 + 2)d(Fy, (1)) (10)

With the help of the CDF-based scheduling, each user feafdlas other users have the same
CDF for scheduling competition [20]. Therefore, each seate is independent of other users
making it possible to consider or predict individual usegge by only examining its own CDF.
It is clear that the scheduling policy is not only fair, bus@lacknowledges multiuser diversity
at the same time. If we denote the sum rate as the “macro” lavéérstanding of the system
performance, then the individual user rate can be seen dmihe” level understanding of the
system performance since this performance metric exantireesate for any specific user and
the sum rate can be directly computed from the individual wate from all the users. Thus,
under the CDF-based scheduling policy, each user’s ratebeagxamined separately and this

property serves as one building block for further analysib welective feedback.
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In order to demonstrate the multiuser diversity gain forhealividual user, we define the
individual sum rateRz;, for userk which is the individual user rat&; multiplied by the number
of users, as follows

R, 2 KRy = MJ(K). (11)

The definition of the individual sum rate under the CDF-baseteduling policy makes it
natural to examine the rate scaling for each user separatedly also provide a “micro” level
understanding of the sum rate scaling. Compared with theratenand the individual user rate
which can be treated as performance metrics, the notionddfidual sum rate can be regarded
as the analytic metric for further scaling analysis.

Note that in the homogeneous settitf,(¢) reduces ta7 () £ [ log,(1 + x)d(Fz(z))". It
is mentioned in previous works that the exact closed formjr'()f) is hard to obtain due to the
coupled effect oSINR and multiuser scheduling. In the sequel, the closed fornmesgon for
Jx(€) is obtained which is the key to computing the sum rate give@yThe main technique

is employing the following proposed PDF decomposition whieadily follows from [21].

Lemma 1. (PDF Decomposition) d(Fy, (z))¢ can be decomposed as

M(i+ 1z

2 e — 1\ (—1) e ok
d(Fy,(x 6@:0( Z )Hld L~ o o | (12)

With the help of this PDF decompositiofi, (¢) can be computed in closed form using standard

integration techniques whose expression is presenteceifotitowing theorem.

Theorem 1. (Closed Form of 7;)

Ti(€) = ﬁé (6 ; 1) (Z_Jrl)lz <M<;: 1>, (M—=1)(i+1)+ 1) , (13)

whereZ(a, 8) £ [° (1@+M dx whose closed form expression is presented in Appendix A.

Proof: The proof is given in AppendikJA. [ |
Remark: A few remarks are in order. Firstly, the analytically useRIDF decomposition
decouples the effect of multiuser diversity and random Weeming, which facilitates the
integration. The decomposition is general in that it can ppliad to other channel models,
though in this paper the simple Rayleigh channel model igrasd to obtain th&INR statistics

in (B). Secondly, the derived closed from results for theviddial sum rate and the sum rate
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only involve finite sums and factorials, which can readily dmnputed. Moreover, the derived
Jx(€) will be employed as a building block for rate computation ecton[IM and Section V
with selective feedback.

B. Individual Scaling Laws

With homogeneous setting, the asymptotic sum rate scaBngfiinterest and has been
established as// log, log, K [12] given theSINR statistics in [(5). It can be easily seen that
the multiuser diversity gain is linear with respect to thenter of transmit antennas. With
heterogeneous setting employing the CDF-based schedtiieggame technique can be applied
to obtain the asymptotic scaling for the individual sum r&eof userk. We now develop the
notion of individual rate scaling and state the individuzlshg laws under full feedback through

the following theorem.

Theorem 2. (Individual Scaling Laws Under Full Feedback)
K—oo M log, logy KK
Remark: It is seen from Theorernl 2 that users asymptotically folloe #ame scaling laws

~1. (14)

in the CDF-based scheduling policy. The large scale chagiffiett p, is not written explicitly
in (I4) since it is a constant inside th&; term. It should briefly be noted that the rate scaling
only measures the asymptotic trend wh€n— oo and thus can not accurately match the exact

performance for finite regions of.

IV. SELECTIVE FEEDBACK IN THE SPATIAL DIMENSION

This section examines selective feedback in the spatiakgion wherein each user only
conveys the best beam. This standard user side selectioire®ghe handling of correlated
random variables and the random effect on observationghadrie pursued in Sectién VA and
Section 1V-B.

A. Individual Sum Rate

With selective feedback, each user selects and feeds badkrtiestSINR amongM beams.
As discussed in Sectidnll, th&,,'s are correlated random variables givénThus simple

order statistics result can not be used to characterize dle=tedSINR at user side. Denote
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Yim=(k) = max Zy,, representing the select&NR for userk with m*(k) as the selected beam

index. Then according to the derivation in [22], [23], the EEDFf Y}, .-y is shown to be

M _ 2M=
_ [dl(x)]{t[e Pl (%)
Fyk,m*(k)(x) - (1 ZZ:; AZ(IE) U(ZIZ’), (15)
whered,(v) = 2000 4 () = d,(z) []2,(d.(z) — di(x)), and [] is the positive part of

the argument. Note that the distribution does not dependhenselected beam index*(k)
due to the identically distributed property across beant iandropped to simplify notation,
i.e., Fy, .., (¥) = Fy,(2). Using a similar procedure to that described in Secfiorlllafter

receiving feedback, the scheduler performs the transfitom#or user selection:

Vit = By Vi) - (16)

Compared with[(6), it is clear thaky, = F for the full feedback case. Denotg, as the

random variable representing the selected user for beanmen

ky = max Y/km*(k)a @an

m

whereld,, = {k : m*(k) = m} denotes the set of users conveying feedback for bear,, is

a set of random size and the probability mass function (PMiR) lme shown to be given by

1 K—7
(|| = 71) = (i) (%) (1-%) L 0<n<K (18)

Following the derivation in Sectioh 1lI4A, letX,, be the selecte&INR for beamm at the
scheduler side, then conditioned @f) and |i,,| = 7, the conditional CDF ofX,, can be
written asFx., i, un|=r (2) = (Fy,. . (2))™. By averaging over the randomness|&f, |, the
conditional CDF is expressed as

P =3 () (1) () o (19)

71=0

From (9) and[(111), the individual sum rate of ugers derived a@

R =M i (f) (%) (1 _ %)K_ /0 Tlogy(1 4+ 2)d(Fy, (£))". (20)

T1=1

“In this paper, it is assumed that if no user feeds BIBKR for a certain beam, that beam would be in scheduling outage

and would not contribute to rate calculation.
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Fig. 1. Comparison of the exact CDIFy, with the Fréchet upper bound and the negative associapiperibound for spatial

dimension selective feedback/ = 4, pr = 10 dB).

Due to the complicated form ofy,, the exact closed form expression for(20) is hard to
obtain. We now aim to provide an approximate expression Herdlosed form by examining
the property ofFy, and utilizing the established result in Section TlI-A. Riédhat Y, is the
maximization over) correlated random variables; ,,,, thus alternative approximation fdty,
would lead to rate approximation. One simple approach isswthe Fréchet upper bound [31]
for the Z; ,,’s. Since theZ, ,,’s are identically distributed across, the Fréchet upper bound
yields Fz, . This upper bound is very loose empirically tby, . One suitable approach is inspired
by the conjectured negative associated upper bound prdopog@2] to deal with the minimum
mean square error (MMSE) receiver. Our empirical evideihosvs that even with single antenna

receiver, theZ, ,,,’'s are negative associated [32], thus the upper bound peading the negative
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association property can be utilized to approximage, namely
Py, (2) = (Fy ()" (21)

Fig.[1 illustrates the bounds and the empirical CBF for M = 4, p, = 10 dB. It can be seen
that the proposed upper bound [inl(21) approximates the exactn [15) well, especially when
theSINR is large. By using the CDF approximation, the individual siate can be approximated

by a closed form expression presented in the following ¢anpl

Corollary 1. (Closed Form Approximation of Individual Sum Rate)

E/RN 1\ 1\ ™
D~ PAPP _ il _ =
R~ R, M; (T) <M) <1 M) Te(My). (22)
Proof: The proof is given in AppendikIB. [ |

In order to demonstrate the rate approximation in Corolryve conduct a numerical study
in Fig. 2 for different)/ and p;, with respect to the number of users. The ex&gtin (20) can
be calculated by numerical integration. It is observed (Bd) approximates the exact rate very

well, which makes the rate approximation valuable due teffisient computational form.

B. Individual Scaling Laws

The difficulty of dealing with rate scaling with selectiveeftback is two-fold. Firstly, due to
selective feedback of the best beam, the numbé&iMR to maximize over at the scheduler side
for each beam is a random quantity. This random effect isateftein the random sét,, in
Sectior IV-A. Secondly, the normalizing constants for bkshing the type of convergence [31],
[33] have to be obtained for a quantityother than the number of useksS in the full feedback
case. In[[22], the first issue was tackled by the Delta methodhis paper, we solve the first
issue by referring to the extremes over random samples,igabusly solve the second one by
using the normalizing constants theorem. The proof is pled/iin AppendiX B.

To examine the random effect on multiuser diversity, detioséesequence of random variables
km(K) as the number o8INR fed back for beamn with K users. It is easy to see tha,(K)
are binomial distributed with probability of succe%s Thus by the strong law of large numbers,
as K grows, the number o8INR fed back for each beam becom%s The following theorem

is called upon to deal with this random effect.
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Fig. 2. Comparison of the exact individual sum rate and th@pmated one for a given user with differeibf and p;, with
respect to the number of user®/(= 2,4, pr = 0 dB, 10 dB, 20 dB).

Theorem 3. (Extremes with Random Sample Sze [31], [34]) Let, as K — oo, “f,f) — ¢ in

probability, wherev is a positive random variable. Assume that there are segsene <
R, bk > 0 such that"fj%‘”f converges weakly to a nondegenerate distribution functiofihen,
as K — oo,

Hm P (Awx) < ax + bgz) = /Oo GY(x)dP(¥ < y). (23)

Therefore, if we denotd,..x) as the extreme order statistics of the recei%&dR for each
beam of a given usér, then from Theorernl 3, its CDF can be efficiently approximmyedFyk)%.
Combining this with the normalizing constants theorem inp&pdix[B yields the following

corollary.
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Corollary 2. (Individual Scaling Laws Under Spatial Dimension Selective Feedback)
Rk ' RQPP

=1 lim —————— = 1. 24
’ frees M log, log, K (24)

Proof: The proof is given in AppendixIB. [ |
Remark: The scaling for the exact ratg,, and approximated raté?pp differs in the factor
ﬁ The rate scaling foﬂ%ﬁp" does not have this factor because intuitively the exporiénn
the approximated CDFFy, (z))™ counteracts the reduction in the numberStfR values for
maximization, i.e.,%, due to selective feedback. We call this effect asriuttiplicative effect.
The detailed proof can be found in Appendik B. To draw furtmsights, we can think of the
exponent off,, (z) as thevirtual users. In the full feedback case, the exponent eqifal$n
the selective feedback case with the approximated CDF,xpenent asymptotically equals
by the aforementioned multiplicative effgcﬂ'he notion of virtual users and the multiplicative
effect will be investigated further with both spatial ancspal dimension selective feedback in

Section[V-C.

V. SELECTIVE FEEDBACK IN BOTH SPATIAL AND SPECTRAL DIMENSION

In this section, random beamforming is embedded in a widgl@FDMA system. The system
model is presented in Sectidbn V-A, the exact analysis ands$lyenptotic analysis are examined
in Section'V-B and Section VAC respectively.

A. System Model

The system model described in Sectidn Il is extended to anND&xBystem with NV resource
blocks. Each resource block is regarded as the basic s¢hgduld feedback unit. The random
beamforming strategy generaté$ orthonormal beamsp,, ,, for each resource block. Denote
sm.n @S themth transmission symbol at resource blackthen the received signagl. ,, for user

k at resource block can be expressed as
M

Yen = > VL@ nSmn + Vi, (25)

m=1

*Note that even though the scaling laws are the same for thefefediback and the selective feedback case, this metric
only measures the asymptotic performance wheis large. The exact rate performance is different due to éimelamness of

multiuser diversity and the scheduling outage event.
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Fig. 3. lllustration of the spatial and spectral dimensietestive feedback and the scheduling result in an OFDMAeswgst
(different colors denote different useks = 9, N = 5 resource blocks)M = 4 beams, the spectral dimension selective feedback

L=2).

whereH;,,, € CM*! is the frequency domain channel transfer function of ésarresource block
n with i.i.d. CN/(0, 1) elements. To facilitate analysiH, ,, is assumed to be i.i.d. across resource
blocks for a given user. This corresponds to the widely udedkifading approximation in the
frequency domair [35]/ [36] due to its simplicity and capipto provide a good approximation

to actual physical channels. The transmit power for a resoblock is assumed to be From
H, , P

M/t T s HL il

and is denoted byZ; ,, ,,, for notational simplicity. For a given use, the Z;, ,,,’'s are i.i.d.

(25), theSINR, ..., of userk at resource block for beamm is SINRg ,, .., =

across resource blocks for a given beamand for a given resource bloek the Z; ,, ,,,’s are
identically distributed and correlated across beams. TB& Gf Z; ,, ,, is given by F, () =

T (4x)M-1
property.

(1 A) u(z), where the index. andm can be dropped due to the identically distributed
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B. Individual SUum Rate

With the extra degrees of freedom in the spectral dimensidditional selective feedback at
each user side can be made possible by the following twedgdback selection. The first
stage selection is in the spatial dimension, where eachsedects the best beam with the largest
SINR for each of the resource block. This process is similar tondreowband feedback selection
discussed in Sectidn IVJA. L&t} ,, ., be the outcome of the first stage selection, thus filom (15),

__2Max
ZM [dZ(I)}fe Prh(@)

its CDF can be written a8y, (z) = (1 -3~ nED

u(x), where again the resource

block indexn and the beam index: can be dropped due to the identically distributed property
across resource blocks and beams. The second stage setswmtios in the spectral dimension,
where each user feeds back tBENR values of the besi resource blocks among the total
N resource blocks. LeW, ,, ,, denote the outcome of the second stage selection of usér
resource block: for beamm. Thus this random variable represents the seleStdiiR at the
user side, whose CDF is of interest for further analysiss kasy to see that for the case of full
feedback in the spectral dimension, i..= N, Fy, = Fy,. For the best-1 feedback case, i.e.,
L =1, Fy, = (Fy,)" due to the independent property Bf across resource blocks. For the

general best-L feedback case, utilizing the results in,[#83 CDF can be shown as
L-1
F () = Y &N, L O)(Fy, ()", (26)
=0

where¢, (N, L, () = 31 £21(Y) (0) (—1)". The two-stage feedback selection is demonstrated
in Fig.[3 with nine users denoted by different colors, fiveotgse blocks, and four beams. In
the illustrated example, we use best-2 spectral dimengedlfack, i.e.l. = 2.

After receiving feedback, the scheduler performs the CBgeld scheduling by first conducting

the transformation on the receiv8iNR,
I/T/If,n,m = FWk<Wk,n,m) (27)

Denotek;, ,, as the random variable representing the selected useraatreesblockn for beam
m, then
k;m = max Wk,n,ma (28)

n,m

where U, ,,, denotes the set of users conveying feedback for bearat resource blocka.

Following the derivation in Sectidn IV4A, leX,, ,,, be the selecte8INR for beamm at resource
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block »n at the scheduler side. Then averaging over the randomneg$, of, the conditional

CDF conditioned ork; ,, can be written as

e S ()R ) () o

71=0 T
(29)
For further derivation(Fy, (x))™ is manipulated into the following form by the power series

expansion|([29],[[37]:

T2(L—-1)

(FWk(x))T2 = Z 52(N7L>T2v€)(FYk(x))NT2_Z> (30)

/=0
where
([ (&(N, L,0), (=0
min(¢,L—1 .
&N, L, 79, 0) = o S (7, 4 1) ) -
Xgl(NaLai)gz(N,L77'27€—Z')’ 1§€<7—2(L—1)

| (&(N,L,L—-1))7, (=m1(L—-1).

Following the same procedure as in Section IV-A, the indialdsum rate for usek can be

derived as

R 1 N M
Ry =+ SR\ logy (1+ Xpmlky,, = k)]
n=1 m=1

() () SO G ()

T1=1 To=1
To(L—1) 00
X Z & (N, L, 1, 0) / logy (1 4 2)d(Fy, (z))N™*. (32)
=0 0

In order to obtain the closed form rate approximation Rt the CDF approximation proposed
in (21) by the negative association property is utilized ppraximateFy,. The closed form

result is presented in the following corollary.

Corollary 3. (Closed Form Approximation of Individual Sum Rate)

K T K-m 71 T T —T

o K\ (1\" NN AN L\
~ App: - - 1 -~ o
i = 0 MZ() () () Z() (¥) (%)

To(L—1)

X Y &N, L7, ) T(M(N7y — 0)). (33)
=0
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Fig. 4. Comparison of the exact individual sum rate and the@pmated one for a given user with different spectral disien
selective feedback with respect to the number of users/(= 4, N = 10, pr = 10 dB, L = 1, 2,4, 10).

To understand the impact of spectral dimension selectigdldfack, we conduct a numerical
study assumingV = 10, M = 4. Fig.[4 plots the exact and approximated rate for different
underp, = 10 dB with respect to the number of users. It can be seen that wWieenumber of
users is small, there is a certain rate gap between seldegdback and full feedback. However,
the gap becomes negligible when the number of users ina@ehs&ig.[5, the performance is
observed for differenp, for K = 20. From the two figures, we can see that the proposed rate

approximation tracks the exact performance very well.

C. Individual Scaling Laws

We now examine the rate scaling with selective feedbackiih gpatial and spectral dimension.

In SectionIV-B with spatial dimension selective feedbaitle CDF of interest igy, and the
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Fig. 5. Comparison of the exact individual sum rate and the@pmated one for a given user with different spectral disien
selective feedbaclk with respect to differenp, (M =4, N =10, K =20, L = 1,2,4,10).

number ofSINR to maximize over at the scheduler side for each beam appee%h With
additional spectral dimension feedback, the CDH®f is of primary interest. To get a handle
on the randomness of multiuser diversity for this case, grageh similar to that in Section
V-Blcan be utilized. Let the sequence of random variablgs,(X) be the number oSINR
values fed back for beamn at resource block with K users. It is easy to see tha} ,,,(K)

are binomial distributed with probability of succeﬁ%’ﬁ. Therefore, by the strong law of large
numbers, ag< grows, the number BINR values fed back for each beam at each resource block
becomes%. Moreover, the convergence property of the sequengcg(k’) can be shown by

invoking the central limit theorem:

lim @(“"’W(K) L )iN(O L (1—i)), (34)

Koo K MN "MN MN
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Fig. 6. Comparison of the exact CDFyw, and its tail equivalence for different spectral dimensiefestive feedbackl
(M =4, N =10, pr =10dB, L = 1,2,4,10).

whered indicates convergence in distribution. By applying Theof the extreme order statistics
of the receivedINR for each beam at each resource block for a given kissan be efficiently
approximated b)(FWk)%.

Now the remaining problem is to examine the type of convergeaf Fyy,. Recall the
formulation of Fyy, as: Fiy, () = S0 &1(N, L, £)(Fy, (z))N~*. It is known thatFy, converges
weakly to the type3 Gumbel distribution. Due to the complicated form&f:, -, -), it is tedious
to directly check the conditions for proving the type of cergence. In order to investigate the
tail behavior ofFy, which dominates the type of convergence [33], the followaibequivalence

theorem is called upon.

Theorem 4. (The Tail Equivalence Theorem [38]) U(-) and V' (-) are distribution functions such
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that
. 1-U(x)
1 N S
s 1 — V(x)

If there exist normalizing constants, bx > 0 such thatV* (ax + bxz) — G(x), whereG(z)

—1. (35)

is non-degenerate, thén’ (ax + bxz) — G(x).

From Theoreni}4 one can infer that if two distribution funosaare tail equivalent, then they
belong to the domain of attraction of the same type. Emphpyiheoreni 44, a tail equivalent

formulation can be obtained fdry,, expressed in the following corollary.
Corollary 4. (Tail Equivalent CDF) Fyy, (z) is tail equivalent tof Fy, (z))N Xt &(N.LAL

Proof: The proof is given in Appendik]C. [ |
Fig.[8 compares the exact CDF and the corresponding tailvalguice for different selective
feedbackl underM = 4, N = 10, andp, = 10 dB. The tail equivalent CDF is observed to track

the exact one even whenis small, which supports and lends confidence in the powenetdil
equivalence theorem. Therefore, the tail equivalence &sl us study the type of convergence,

which is expressed in the following lemma.

Lemma 2. (Type of Convergence of Selective Feedback) Given the statistical property dfy, in

(A5), Fw, belongs to the domain of attraction of typeGumbel distribution.

Proof: The proof is given in Appendik]C. [ |
Having obtained the type of convergence fdy,, the rate scaling result can be derived by
referring to the normalizing constants theorem in Apper@lixThe individual rate scaling is

provided below.

Theorem 5. (Individual Scaling Laws Under Spatial and Spectral Dimension Selective Feedback)

i R
o S EaNLl e A GsETawionl, — ©
* M log, log, ‘ZZOM;V 2K * M log, log, £=0 Nl 2 K
(36)
Proof: The proof is given in Appendik]C. [ |
) (N-% (4 &1(N,.L.O0L
Remark: For the exact raté;, the ultimate equivalent CDF of interesti$, M ,

pGN—Zf;ol £1(N,L¢
1Y MN

thus the expone L K due to multiplicative effect can be seen as the virtual
users for scheduling competition. This exponent is for teeegal best-L spectral dimension

feedback. For the full feedbadk= N, since&; (N, N, ¢) equalsl for ¢ = N —1 and0 otherwise,
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the CDF becomesﬂ%. For the best-1 feedback = 1, since&; (N, 1,¢) is 1 for £ = 0 and0
otherwise, the CDF becomel@}ﬁlj. Intuitively, the best-1 feedback is asymptotically oim
due to the same number of virtual users. In other words, dveagh additional maximization
reduces the average number of variables for feedback, ittecacts this reduction by increasing
the exponent of the CDF. The number of virtual users is thé&ihig factor that dominates rate
scaling. For the approximated ralfé"’", since the approximated CDF compensates for the spatial

dimension selection by increasing the exponent, the rakngcdiffers by a factor ofi/.

VI. CONCLUSION

In this paper, an analytical approach is used to investitat@roblem of random beamforming
with heterogeneous users and selective feedback. Theofeteus user scenario corresponds to
the practical scenario of potentially different large scahannel effects for different users. We
leverage the CDF-based scheduling policy to decouple eaehisurate and thus theoretically
examine the individual user rate. We develop the notion dividual sum rate to analyze the rate
scaling for each individual user. We focus our analysis istork on theoretically understanding
the effect of selective feedback in both spatial and splediraensions. On the exact analysis
part, extensive numerical results show that our approxdregpression for the rate under selective
feedback is effective and provides an efficient expressiorcémputing the exact rate. On the
asymptotic analysis part, we develop the notion of virtusérs and the multiplicative effect to
explain the impact of selective feedback on rate scaling.f\kner discover that the limiting
factor for the rate scaling is the exponent for the ultima@FCof the selectebINR at the
scheduler side. The extension of this work from single amemsers to multiple antenna users
and more generally the investigation of a multicell MIMOgetwvith advanced receiver design

will be the subject of our future work.

APPENDIX A

Proof of Theorem[I: With the help of LemmallJ,(e) can be computed as

e—1 _1V1(i+1)w

(@) € e—1\(=1)" [ ek
e e = A

_ M@+

e—1 :
() € e—1\(-1) /OO e Pk
=— . d 37
In2 ; ( i ) i+ 1 ), (1+2) DG+ Z, (37)
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where (a) follows from applying Lemma 1; (b) follows fromégfration by parts. The closed form
result forZ(«, 5) in Theorem L can be computed in a recursive mariner [37] andesepted

as follows

| | 2
Z(o, B) = (8-1)! = (- (38)
e*Fi(a), pf=1

where E; (z) = f;o 8Tftalt is the exponential integral function of the first order/[39].

APPENDIX B

Proof of Corollary [I:

e @ g i (f) (%) (1 - %)Kﬂ /OOO logy (1 + 2)d(Fy, ()M
© lei: (i) (%) (1 - %)K_ (M), (39)

where (a) follows from the CDF approximation in {21); (b)léa¥s from the definition and

computation of.7; (¢).

Proof of Corollary (2 It is shown in [22] thatFy, belongs to the domain of attraction of type
3 Gumbel distribution[[33]. Thus if the number 8INR to maximize over for each beam is
fixed and equals the number of uséfs then the following equation hold%Enm(Fyk (arrc +
br.xx))® = U(x), wherel (z) = e=¢ " is the type3 Gumbel distributiong,.x andb,.x represent
the normalizing constants for user From Theoreml3, the number SINR to maximize over for
each beam approachgs Letc,.x andd,.x denote the normalizing constants for usemder the
selective feedback case. Then the following equation h%iﬁm(Fyk (ck;Kerk;Kx))% = U(x).

In order to obtairnc,.; anddy.x, the following theorem is called upon.

Theorem 6. (The Normalizing Constants Theorem [[31]) Let Fix(y) be a sequence of distribution

functions. Letay, bx > 0, ¢k, anddx > 0 be sequences of real numbers such that{as oo,
lim Fg(ax + bgx) = U(z), lim Fx(ck +dgx) =V (z) (40)

for all continuity pointsz of the limits, whereU(z) and V(x) are nondegenerate distribution
functions. Then, agd — oo, the limits: limg—g = B # 0, lim <25 = A are finite, and
V(z) = U(A+ Bux).
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The spatial dimension selective feedback case possessdgllittwing situation in Theorem
B: Fx(z) = (Fy, ()%, ax = arr, bx = bk, cx = crk, dg = dpx, U(z) = ¥(z), and
V(x) = (¥(x))™. The sequence afy.x has been derived in [12] agj.x = px log, K — pip(M —
1) log, log, K +0(1). A suitable choice oby.x for type 3 is gx(br.x ), Whereg,(x) is the growth

AlFZk

fz, (z
Solving (¥(x))™ = U(A+ Bx) yields A = — log M, B = 1. Therefore, by referring to Theorem

function for usert defined byg(x) . Thus a suitable sequencebjsix = py, for all K.
B, the normalizing constants can be derived tochg: = py, log, 2 —p;, (M —1) log, log, K+o(1),
andd.x = p, for all K. Then by employing the Corollary A.1. in_[12], the individuate for
userk, namelyz;, scales as\/ log, log, £,

Regarding the approximated ra@pp, since the approximated CDF by negative association is
(Fz,(z))™ and the number o§INR to maximize over approachées, we have}éi_r)noo(FZk (Ch:i +
dyrc) )M ar = I}i—Enoo(FZk(Ck:K +dp.xx))® = ¥(x). Thus the normalizing constants x = a.x,

anddy.x = by, which enables the approximated raté™ to scale as\/ log, log, K,

APPENDIX C

Proof of Corollary 4 Given Theorenil4, the following equality holds:

im E[ 0 £1<N7L7£)(Fyk(x)>N_é
T = () ¥ T

@ 1 Z;—Ol & (N, L, O)(N — 0)(Fy, (z))N 1y (2) 0, )

#2 (N = 30 G, L, 0)0) (Fy () V- Eico @OLOELf, ()
where (a) follows from the L'Hospital’s rule; (b) followsdm the fact thagg 0 Y& (N, L) = 1.

Proof of Lemma [Z Fy, with statistics in [(Ib) belongs to the domain of attractidntype
3. It can be shown that for any distribution functidi(z) which converges weakly to the
limiting distribution, then its exponent fornk“(x) has the same type of convergence![31],
(Fy, (z))N 220 6 (V-LOL phelongs to the domain of attraction of tyge Then by Theorenil4,
Fy, belongs to the domain of attraction of type

Proof of TheoremB: A procedure similar to that used in proving Corollaly 2 carubed here.
Since the number AINR to maximize over for each beam at each resource block apmpeeac
%, and Fy, belongs to the domain of attraction of tyge the following equation holds:

I%im (Fw, (ck;K—l—dk;Kx))% = U(x). By referring to the tail equivalence theorem, the equivale
—00
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KL(N-S It e (v,L,00)

equation is:I}im (Fy, (cp:x + di.g)) MN = U(z). Applying Theorenl 5 yields
—00

L—-1
the normalizing constants;.x = px log, KL(N_Z@(}V&(N’L’M — pr(M —1)log, log, K + o(1),

KL(N-Y7 ) €1(N,L,0)0)
MN '

For the approximated ratéﬁp" using the approximated CDF, (z))™ for Fy,, the following
KLIN-SF ) e (v,,00)

equation hoIds:I}im (Fz, (ck:x + di:r)) N = U(z). Using the same line of
—00

anddy.x = p,. for all K. Therefore,R;, scales as\/ log, log,

KL(N-Y7 g €1(N,L,0)0)
& :

arguments R scales as\/ log, log,
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