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Abstract

This paper investigates three open problems in random beamforming based communication systems:

the scheduling policy with heterogeneous users, the closedform sum rate, and the randomness of

multiuser diversity with selective feedback. By employingthe cumulative distribution function based

scheduling policy, we guarantee fairness among users as well as obtain multiuser diversity gain in

the heterogeneous scenario. Under this scheduling framework, the individual sum rate, namely the

average rate for a given user multiplied by the number of users, is of interest and analyzed under

different feedback schemes. Firstly, under the full feedback scheme, we derive the closed form individual

sum rate by employing a decomposition of the probability density function of the selected user’s

signal-to-interference-plus-noise ratio. This technique is employed to further obtain a closed form rate

approximation with selective feedback in the spatial dimension. The analysis is also extended to random

beamforming in a wideband OFDMA system with additional selective feedback in the spectral dimension

wherein only the best beams for the best-L resource blocks are fed back. We utilize extreme value theory

to examine the randomness of multiuser diversity incurred by selective feedback. Finally, by leveraging

the tail equivalence method, the multiplicative effect of selective feedback and random observations is

observed to establish the individual rate scaling.

Index Terms

This research was supported by Ericsson endowed chair funds, the Center for Wireless Communications, UC Discovery grant

com09R-156561 and NSF grant CCF-1115645.

Y. Huang was with Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA

92093-0407 USA. He is now with Qualcomm, Corporate R&D, San Diego, CA, USA (e-mail: yih006@ucsd.edu).

B. D. Rao is with Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA

92093-0407 USA (e-mail: brao@ece.ucsd.edu).

http://arxiv.org/abs/1303.0592v1


IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, TO APPEAR 2

Random beamforming, multi-antenna downlink channels, heterogeneous users, selective feedback,

individual sum rate, individual scaling laws, multiuser diversity

I. INTRODUCTION

In multi-antenna downlink systems, transmission strategies which require less feedback re-

sources [1]–[4] to fully utilize multiuser diversity [5], [6], but with asymptotic sum capacity

comparable to dirty paper coding [7]–[11], are favored. Theidea of random beamforming [12],

which satisfies the two aforementioned features has drawn much interest in recent years [13]–

[19]. In the basic random beamforming strategy suggested in[12], the transmitter withM transmit

antennas generatesM random orthonormal beams and requires each user to feed backtheSINR

experienced by them for each beam. Then the transmitter schedules users for transmission that

currently have the best channel for each random beam. Despite the considerable literature on

this topic, there are three existing open problems:

1) How to address heterogeneous users with diverse large scale channel effects and the impact

on scheduling policy?

2) What is the closed form sum rate by exact1 performance analysis?

3) What is the effect of selective feedback, both spatial andspectral, on the randomness of

multiuser diversity?

The first problem is related to a practical downlink system setting with asymmetrically located

users having heterogeneous large scale channel effects. This near-far effect was first treated in

[12] by observing that the system becomes interference dominated whenM is large enough. In

the largeM setting, the authors prove that users are asymptotically equiprobable to be scheduled.

However, whenM is finite and not increasing simultaneously with the number of users, the

greedy scheduling policy employed in [12] can not maintain fairness among users. Also, if a

round robin scheduling policy was utilized, fairness can beguaranteed, but no multiuser diversity

gain could be achieved for capacity growth. Therefore, an alternate scheduling policy is needed

to maintain fairness while exploiting multiuser diversityat the same time. In this paper, the

cumulative distribution function (CDF)-based schedulingpolicy [20] is leveraged and analyzed

in the random beamforming framework, wherein the user whoserate for a given beam is high

1We use the term exact to denote results valid for arbitrary but finite number of users as opposed to asymptotic results.
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enough but least probable to become higher is selected. Under this scheduling policy, each user

can be equivalently viewed as competing with other users with the same CDF, thus making the

study of individual user rate more relevant and interestingthan that of the sum rate. In this

paper, we develop the notion of individual sum rate, which isthe individual user rate multiplied

by the number of users, in order to demonstrate the multiuserdiversity gain with user growth

for a given user.

The second problem addresses exact system analysis, namelyderiving closed form expression

for the sum rate for arbitrary but finite number of users. Notethat even with full feedback,

wherein each user conveys back the signal-to-interference-plus-noise ratio (SINR) for M beams,

the closed form sum rate has not been derived. This is partially due to the complicated form of

SINR and its interplay with multiuser diversity. In this work, the problem is tackled and solved by

a novel probability density function (PDF) decomposition [21] which decomposes and interprets

the selected user’sSINR. In [21], the homogeneous setting is considered and in this paper, the

technique is extended to the heterogeneous user setting andthe closed form individual sum rate

is derived. The closed form result under full feedback helpsin evaluating the system performance

and acts as the building block for exact analysis with selective feedback.

The third problem is concerned with standard selective feedback in the spatial dimension,

wherein each user feeds back theSINR for the best beam among theM beams and the corre-

sponding beam index. This selective feedback is fundamentally different than full feedback in

two aspects. The first difference is the two-stage maximization with the first stage maximization

carried out by each user for feedback selection and the second stage maximization carried out

by the scheduler to perform user selection. Since the best beam is selected by each user, the first

stage maximization is overM correlatedSINR. This correlation issue has been addressed in [22],

[23], and the CDF for the selectedSINR at the user side is derived. In this paper, we propose

an approximation for the CDF and utilize it to derive closed form rate approximation. The other

fundamental difference is the number of theSINR values that the scheduler has to maximize

over for each beam. This number is fixed and equals the number of users in the full feedback

case. However, with selective feedback, it becomes a randomquantity. In other words, selective

feedback results in a random effect on the multiuser diversity. This effect was first observed

in [22]. In this paper, we investigate the randomness of multiuser diversity by extremes over

random samples and provide a rigorous argument on the rate scaling.
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The third problem is further extended to include spectral selectivity by examining a wideband

OFDMA system, which groups the subcarriers into resource blocks [24] to form the basic

scheduling and feedback unit. In order to save feedback resource while not significantly degrading

the system performance, additional selective feedback in the spectral dimension is necessary.

The effect of random beamforming in a wideband system is examined in [25] by extensive

simulations, and further studied from a utility function perspective with the proportional-fair

scheduler in [26]. In [27], analytical results on the asymptotic cluster size is provided. Apart

from the thresholding-based partial feedback strategy [28], the best-L selective feedback strategy

[29] is appealing and utilized in practical systems such as LTE [30]. In this paper, we employ

the best-L selective feedback strategy to investigate random beamforming and the effect of

spectral dimension selective feedback, which calls for an additional maximization stage at the

user side to perform feedback selection. In this feedback strategy, only the best beams from

the bestL resource blocks along with the beam and resource block indexare fed back from

each user. In this paper, we first derive a closed form rate approximation with exact analysis,

i.e., valid for arbitrary but finite number of users. Then, the influence of the additional spectral

dimension selective feedback on the type of convergence is investigated with the technique of tail

equivalence. Moreover, the multiplicative effect of selective feedback and random observations

is observed to establish the rate scaling.

To summarize, the main contributions of this paper are threefold: the utilization of CDF-based

scheduling policy to address heterogeneous users with random beamforming, the obtained closed

form rate results with different selective feedback assumptions, and the asymptotic analysis on

the randomness of multiuser diversity incurred by selective feedback. These three contributions

analytically examine the raised open problems, and foster further understanding on random

beamforming with heterogeneous users and selective feedback. The organization of this paper is

as follows. Section II reviews the basic narrowband system model for random beamforming. The

analysis for the full feedback case is carried out in SectionIII, and for the spatial dimension

selective feedback in Section IV. Section V provides the model for the wideband OFDMA

with random beamforming, and examines the effect of additional spectral dimension selective

feedback on rate performance. Finally, Section VI concludes the paper.
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II. SYSTEM MODEL

We consider a multi-antenna narrowband Gaussian downlink channel withK single antenna

receivers and a transmitter equipped withM antennas. A block fading channel model with coher-

ence intervalT is assumed. The random beamforming strategy employsM random orthonormal

vectorsφm ∈ CM×1 for m = 1, . . . ,M , where theφi’s are drawn from an isotropic distribution

independently everyT channel uses [12]. Denotingsm(t) as themth transmission symbol at

time t, the transmitted vector of symbols at timet, represented bys(t) ∈ CM×1, is given as

s(t) =
M
∑

m=1

φm(t)sm(t), t = 1, . . . , T. (1)

Let yk(t) be the received signal at thekth user, then

yk(t) =

M
∑

m=1

√
ρkh

†
k(t)φm(t)sm(t) + vk(t), (2)

wherehk ∈ CM×1 is the complex channel vector which is assumed to be known at the receiver,

vk is the additive white noise, and the elements ofhk and vk are i.i.d. complex Gaussian with

zero mean and unit varianceCN (0, 1). Note that this channel assumption corresponds to the

Rayleigh fading assumption for the small scale channel effect. From now on, the time variable

t will be dropped for notational convenience. The total transmit power is chosen to be1, i.e.,

E[s†s] = 1, and thus the received signal-to-noise ratio (SNR) of user k is ρk. In a practical

downlink setting, due to different locations of users, the large scale channel effectsρk which

may consist of path loss and shadowing vary across users. From (2), theSINR of the kth user

for themth transmit beam can be computed as

SINRk,m =
|h†

kφm|2
M/ρk +

∑

i 6=m |h†
kφi|2

, m = 1, . . . ,M. (3)

DenoteZk,m , SINRk,m for notational simplicity. Then for a given beamm, the Zk,m’s are

independent across usersk but non-identically distributed due to differentρk. For a given user

k, theZk,m’s are identically distributed and correlated. Thus the beam indexm can be dropped

in the expression for the PDF, which is computed in [12] as

fZk
(x) =

e
−M

ρk
x

(1 + x)M

(

M

ρk
(1 + x) +M − 1

)

u(x), (4)
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whereu(·) is the Heaviside step function. The CDF ofZk is shown in [12] to be

FZk
(x) =

(

1− e
−M

ρk
x

(1 + x)M−1

)

u(x). (5)

III. FULL FEEDBACK ANALYSIS

This section is devoted to the analysis for the full feedbackcase wherein each user feeds

back theSINR for M beams. Since under full feedback, all the beams are fed back,the order

statistics for each beam is overK independent random variables. Thus this case is well suited

for illustration of the scheduling policy and the derivation of the individual sum rate.

A. Scheduling Policy and Individual Sum Rate

After receiving theSINRk,m from userk for beamm, the scheduler is ready to perform

user selection. In a homogeneous setting, selecting the user with the largestSINR for a given

beam maintains fairness and obtains multiuser diversity gain. This system was analyzed in our

recent work [21]. The work is now expanded to the more complexheterogeneous case. In a

heterogeneous setting, the greedy scheduling policy wouldbe highly unfair for finiteM . The

round robin scheduling policy can maintain scheduling fairness, but no multiuser diversity gain

can be obtained. The proportional-fair scheduling policy [6], [26] achieves the system fairness

in terms of system utility. However, under the scenario of inter-beam interference, the users’

rates are coupled under the proportional-fair scheduling policy. This coupled effect makes it

very difficult, if not impossible, to develop further analytical results2. Therefore, to tackle this

problem it is useful to consider alternate scheduling policies that decouple each user’s rate. In

this paper, we employ the CDF-based scheduling policy [20] for further analysis. According to

this policy, the scheduler will utilize the distribution ofthe receivedSINR, i.e.,FZk
. It is assumed

that the scheduler perfectly knows the CDF3, and it performs the following transformation [20]:

Z̃k,m = FZk
(Zk,m). (6)

2Note that extensive simulation results have been provided regarding the use of proportional-fair scheduling policy under

random beamforming in existing literature such as [26]. However, the coupled effect of user’s rate prevents further analysis and

it remains an open problem to theoretically understand the system performance of proportional-fair scheduling policyunder the

heterogeneous user setting with inter-beam interference.

3This is the only system requirement to conduct the CDF-basedscheduling, and the CDF can be obtained by infrequent

feedback from users and learned by the system.
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The transformed random variablẽZk,m is uniformly distributed ranging from0 to 1, and in-

dependent and identically distributed (i.i.d.) across users for a given beam. Denotek∗
m as the

random variable representing the selected user for beamm, then

k∗
m = max

Um

Z̃k,m, (7)

whereUm denotes the set of users conveying feedback for beamm. In the full feedback case,

|Um| = K. After userk∗
m is selected per (7), the scheduler utilizes the corresponding Zk∗m,m for

rate matching of the selected user. LetXm be theSINR of the selected user for beamm and

now consider the sum rate of the system defined as follows,

R = E

[

M
∑

m=1

log2 (1 +Xm)

]

. (8)

From the aforementioned formulation, the sum rate can be computed in the following procedure

R
(a)≃MEk∗m

[
∫ 1

0

log2

(

1 + F−1
Zk∗m,m

(x)
)

dxK

]

(b)
=

M

K

K
∑

k=1

∫ ∞

0

log2(1 + t)d(FZk
(t))K =

M

K

K
∑

k=1

Jk(K), (9)

where (a) follows from the sufficient small probability thatmultiple beams are assigned to the

same user; (b) follows from the change of variablex = FZk∗m,m
(t), the fair property of the

CDF-based scheduling, and the following definition forJk(ǫ) with exponentǫ ∈ N+:

Jk(ǫ) ,

∫ ∞

0

log2(1 + x)d(FZk
(x))ǫ. (10)

With the help of the CDF-based scheduling, each user feels asif the other users have the same

CDF for scheduling competition [20]. Therefore, each user’s rate is independent of other users

making it possible to consider or predict individual user’srate by only examining its own CDF.

It is clear that the scheduling policy is not only fair, but also acknowledges multiuser diversity

at the same time. If we denote the sum rate as the “macro” levelunderstanding of the system

performance, then the individual user rate can be seen as the“micro” level understanding of the

system performance since this performance metric examinesthe rate for any specific user and

the sum rate can be directly computed from the individual user rate from all the users. Thus,

under the CDF-based scheduling policy, each user’s rate canbe examined separately and this

property serves as one building block for further analysis with selective feedback.
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In order to demonstrate the multiuser diversity gain for each individual user, we define the

individual sum rateR̂k for userk which is the individual user rateRk multiplied by the number

of users, as follows

R̂k , KRk = MJk(K). (11)

The definition of the individual sum rate under the CDF-basedscheduling policy makes it

natural to examine the rate scaling for each user separately, and also provide a “micro” level

understanding of the sum rate scaling. Compared with the sumrate and the individual user rate

which can be treated as performance metrics, the notion of individual sum rate can be regarded

as the analytic metric for further scaling analysis.

Note that in the homogeneous setting,Jk(ǫ) reduces toJ (ǫ) ,
∫∞

0
log2(1 + x)d(FZ(x))

ǫ. It

is mentioned in previous works that the exact closed form forJ (ǫ) is hard to obtain due to the

coupled effect ofSINR and multiuser scheduling. In the sequel, the closed form expression for

Jk(ǫ) is obtained which is the key to computing the sum rate given by(9). The main technique

is employing the following proposed PDF decomposition which readily follows from [21].

Lemma 1. (PDF Decomposition) d(FZk
(x))ǫ can be decomposed as

d(FZk
(x))ǫ = ǫ

ǫ−1
∑

i=0

(

ǫ− 1

i

)

(−1)i

i+ 1
d



1− e
−

M(i+1)x
ρk

(1 + x)(M−1)(i+1)



 . (12)

With the help of this PDF decomposition,Jk(ǫ) can be computed in closed form using standard

integration techniques whose expression is presented in the following theorem.

Theorem 1. (Closed Form of Jk)

Jk(ǫ) =
ǫ

ln 2

ǫ−1
∑

i=0

(

ǫ− 1

i

)

(−1)i

i+ 1
I
(

M(i + 1)

ρk
, (M − 1)(i+ 1) + 1

)

, (13)

whereI(α, β) ,
∫∞

0
e−αx

(1+x)β
dx whose closed form expression is presented in Appendix A.

Proof: The proof is given in Appendix A.

Remark: A few remarks are in order. Firstly, the analytically usefulPDF decomposition

decouples the effect of multiuser diversity and random beamforming, which facilitates the

integration. The decomposition is general in that it can be applied to other channel models,

though in this paper the simple Rayleigh channel model is assumed to obtain theSINR statistics

in (5). Secondly, the derived closed from results for the individual sum rate and the sum rate
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only involve finite sums and factorials, which can readily becomputed. Moreover, the derived

Jk(ǫ) will be employed as a building block for rate computation in Section IV and Section V

with selective feedback.

B. Individual Scaling Laws

With homogeneous setting, the asymptotic sum rate scaling is of interest and has been

established asM log2 log2K [12] given theSINR statistics in (5). It can be easily seen that

the multiuser diversity gain is linear with respect to the number of transmit antennas. With

heterogeneous setting employing the CDF-based scheduling, the same technique can be applied

to obtain the asymptotic scaling for the individual sum rateR̂k of userk. We now develop the

notion of individual rate scaling and state the individual scaling laws under full feedback through

the following theorem.

Theorem 2. (Individual Scaling Laws Under Full Feedback)

lim
K→∞

R̂k

M log2 log2K
= 1. (14)

Remark: It is seen from Theorem 2 that users asymptotically follow the same scaling laws

in the CDF-based scheduling policy. The large scale channeleffect ρk is not written explicitly

in (14) since it is a constant inside thelog term. It should briefly be noted that the rate scaling

only measures the asymptotic trend whenK → ∞ and thus can not accurately match the exact

performance for finite regions ofK.

IV. SELECTIVE FEEDBACK IN THE SPATIAL DIMENSION

This section examines selective feedback in the spatial dimension wherein each user only

conveys the best beam. This standard user side selection requires the handling of correlated

random variables and the random effect on observations, which are pursued in Section IV-A and

Section IV-B.

A. Individual Sum Rate

With selective feedback, each user selects and feeds back the largestSINR amongM beams.

As discussed in Section II, theZk,m’s are correlated random variables givenk. Thus simple

order statistics result can not be used to characterize the selectedSINR at user side. Denote
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Yk,m∗(k) = max
m

Zk,m representing the selectedSINR for userk with m∗(k) as the selected beam

index. Then according to the derivation in [22], [23], the CDF of Yk,m∗(k) is shown to be

FYk,m∗(k)
(x) =

(

1−
M
∑

ı=1

[dı(x)]
M
+ e

− 2Mx
ρkdı(x)

Aı(x)

)

u(x), (15)

wheredı(x) =
2(1−(M−ı)x)

M−ı+1
, Aı(x) = dı(x)

∏M
i 6=ı(dı(x) − di(x)), and [·]+ is the positive part of

the argument. Note that the distribution does not depend on the selected beam indexm∗(k)

due to the identically distributed property across beams and is dropped to simplify notation,

i.e., FYk,m∗(k)
(x) = FYk

(x). Using a similar procedure to that described in Section III-A, after

receiving feedback, the scheduler performs the transformation for user selection:

Ỹk,m∗(k) = FYk

(

Yk,m∗(k)

)

. (16)

Compared with (6), it is clear thatFYk
= FZk

for the full feedback case. Denotek∗
m as the

random variable representing the selected user for beamm, then

k∗
m = max

Um

Ỹk,m∗(k), (17)

whereUm = {k : m∗(k) = m} denotes the set of users conveying feedback for beamm. Um is

a set of random size and the probability mass function (PMF) can be shown to be given by

P(|Um| = τ1) =

(

K

τ1

)(

1

M

)τ1 (

1− 1

M

)K−τ1

, 0 ≤ τ1 ≤ K. (18)

Following the derivation in Section III-A, letXm be the selectedSINR for beamm at the

scheduler side, then conditioned onk∗
m and |Um| = τ1, the conditional CDF ofXm can be

written asFXm|k∗m,|Um|=τ1(x) = (FYk∗m,m
(x))τ1 . By averaging over the randomness of|Um|, the

conditional CDF is expressed as

FXm|k∗m(x) =
K
∑

τ1=0

(

K

τ1

)(

1

M

)τ1 (

1− 1

M

)K−τ1

(FYk∗m,m
(x))τ1 . (19)

From (9) and (11), the individual sum rate of userk is derived as4

R̂k = M

K
∑

τ1=1

(

K

τ1

)(

1

M

)τ1 (

1− 1

M

)K−τ1 ∫ ∞

0

log2(1 + x)d(FYk
(x))τ1 . (20)

4In this paper, it is assumed that if no user feeds backSINR for a certain beam, that beam would be in scheduling outage

and would not contribute to rate calculation.
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Fig. 1. Comparison of the exact CDFFYk
with the Fréchet upper bound and the negative association upper bound for spatial

dimension selective feedback (M = 4, ρk = 10 dB).

Due to the complicated form ofFYk
, the exact closed form expression for (20) is hard to

obtain. We now aim to provide an approximate expression for the closed form by examining

the property ofFYk
and utilizing the established result in Section III-A. Recall that Yk is the

maximization overM correlated random variablesZk,m, thus alternative approximation forFYk

would lead to rate approximation. One simple approach is to use the Fréchet upper bound [31]

for the Zk,m’s. Since theZk,m’s are identically distributed acrossm, the Fréchet upper bound

yieldsFZk
. This upper bound is very loose empirically forFYk

. One suitable approach is inspired

by the conjectured negative associated upper bound proposed in [22] to deal with the minimum

mean square error (MMSE) receiver. Our empirical evidence shows that even with single antenna

receiver, theZk,m’s are negative associated [32], thus the upper bound produced by the negative
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association property can be utilized to approximateFYk
, namely

FYk
(x) ≃ (FZk

(x))M . (21)

Fig. 1 illustrates the bounds and the empirical CDFFYk
for M = 4, ρk = 10 dB. It can be seen

that the proposed upper bound in (21) approximates the exactone in (15) well, especially when

theSINR is large. By using the CDF approximation, the individual sumrate can be approximated

by a closed form expression presented in the following corollary.

Corollary 1. (Closed Form Approximation of Individual Sum Rate)

R̂k ≃ R̂App

k = M
K
∑

τ1=1

(

K

τ1

)(

1

M

)τ1 (

1− 1

M

)K−τ1

Jk(Mτ1). (22)

Proof: The proof is given in Appendix B.

In order to demonstrate the rate approximation in Corollary1, we conduct a numerical study

in Fig. 2 for differentM andρk with respect to the number of users. The exactR̂k in (20) can

be calculated by numerical integration. It is observed that(22) approximates the exact rate very

well, which makes the rate approximation valuable due to itsefficient computational form.

B. Individual Scaling Laws

The difficulty of dealing with rate scaling with selective feedback is two-fold. Firstly, due to

selective feedback of the best beam, the number ofSINR to maximize over at the scheduler side

for each beam is a random quantity. This random effect is reflected in the random setUm in

Section IV-A. Secondly, the normalizing constants for establishing the type of convergence [31],

[33] have to be obtained for a quantityϑ other than the number of usersK in the full feedback

case. In [22], the first issue was tackled by the Delta method.In this paper, we solve the first

issue by referring to the extremes over random samples, and rigorously solve the second one by

using the normalizing constants theorem. The proof is provided in Appendix B.

To examine the random effect on multiuser diversity, denotethe sequence of random variables

κm(K) as the number ofSINR fed back for beamm with K users. It is easy to see thatκm(K)

are binomial distributed with probability of success1
M

. Thus by the strong law of large numbers,

asK grows, the number ofSINR fed back for each beam becomesK
M

. The following theorem

is called upon to deal with this random effect.
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Fig. 2. Comparison of the exact individual sum rate and the approximated one for a given user with differentM andρk with

respect to the number of users (M = 2, 4, ρk = 0 dB, 10 dB, 20 dB).

Theorem 3. (Extremes with Random Sample Size [31], [34]) Let, asK → ∞, κ(K)
K

→ ϑ in

probability, whereϑ is a positive random variable. Assume that there are sequences aK ∈
R, bK > 0 such thatΛK−aK

bK
converges weakly to a nondegenerate distribution functionG. Then,

asK → ∞,

limP
(

Λκ(K) < aK + bKx
)

=

∫ ∞

−∞

Gy(x)dP(ϑ < y). (23)

Therefore, if we denoteΛk:κ(K) as the extreme order statistics of the receivedSINR for each

beam of a given userk, then from Theorem 3, its CDF can be efficiently approximatedby (FYk
)

K
M .

Combining this with the normalizing constants theorem in Appendix B yields the following

corollary.



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, TO APPEAR 14

Corollary 2. (Individual Scaling Laws Under Spatial Dimension Selective Feedback)

lim
K→∞

R̂k

M log2 log2
K
M

= 1, lim
K→∞

R̂App

k

M log2 log2K
= 1. (24)

Proof: The proof is given in Appendix B.

Remark: The scaling for the exact ratêRk and approximated ratêRApp

k differs in the factor
1
M

. The rate scaling for̂RApp

k does not have this factor because intuitively the exponentM in

the approximated CDF(FZk
(x))M counteracts the reduction in the number ofSINR values for

maximization, i.e.,K
M

, due to selective feedback. We call this effect as themultiplicative effect.

The detailed proof can be found in Appendix B. To draw furtherinsights, we can think of the

exponent ofFZk
(x) as thevirtual users. In the full feedback case, the exponent equalsK. In

the selective feedback case with the approximated CDF, the exponent asymptotically equalsK

by the aforementioned multiplicative effect5. The notion of virtual users and the multiplicative

effect will be investigated further with both spatial and spectral dimension selective feedback in

Section V-C.

V. SELECTIVE FEEDBACK IN BOTH SPATIAL AND SPECTRAL DIMENSION

In this section, random beamforming is embedded in a wideband OFDMA system. The system

model is presented in Section V-A, the exact analysis and theasymptotic analysis are examined

in Section V-B and Section V-C respectively.

A. System Model

The system model described in Section II is extended to an OFDMA system withN resource

blocks. Each resource block is regarded as the basic scheduling and feedback unit. The random

beamforming strategy generatesM orthonormal beamsφm,n for each resource block. Denote

sm,n as themth transmission symbol at resource blockn, then the received signalyk,n for user

k at resource blockn can be expressed as

yk,n =
M
∑

m=1

√
ρkH

†
k,nφm,nsm,n + vk,n, (25)

5Note that even though the scaling laws are the same for the full feedback and the selective feedback case, this metric

only measures the asymptotic performance whenK is large. The exact rate performance is different due to the randomness of

multiuser diversity and the scheduling outage event.
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Fig. 3. Illustration of the spatial and spectral dimension selective feedback and the scheduling result in an OFDMA system

(different colors denote different usersK = 9, N = 5 resource blocks,M = 4 beams, the spectral dimension selective feedback

L = 2).

whereHk,n ∈ CM×1 is the frequency domain channel transfer function of userk at resource block

n with i.i.d. CN (0, 1) elements. To facilitate analysis,Hk,n is assumed to be i.i.d. across resource

blocks for a given user. This corresponds to the widely used block fading approximation in the

frequency domain [35], [36] due to its simplicity and capability to provide a good approximation

to actual physical channels. The transmit power for a resource block is assumed to be1. From

(25), theSINRk,n,m of userk at resource blockn for beamm is SINRk,n,m =
|H†

k,n
φm,n|

2

M/ρk+
∑

i6=m |H†
k,n

φi,n|
2
,

and is denoted byZk,n,m for notational simplicity. For a given userk, the Zk,n,m’s are i.i.d.

across resource blocks for a given beamm, and for a given resource blockn, theZk,n,m’s are

identically distributed and correlated across beams. The CDF of Zk,n,m is given byFZk
(x) =

(

1− e
− M

ρk
x

(1+x)M−1

)

u(x), where the indexn andm can be dropped due to the identically distributed

property.
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B. Individual Sum Rate

With the extra degrees of freedom in the spectral dimension,additional selective feedback at

each user side can be made possible by the following two-stage feedback selection. The first

stage selection is in the spatial dimension, where each userselects the best beam with the largest

SINR for each of the resource block. This process is similar to thenarrowband feedback selection

discussed in Section IV-A. LetYk,n,m be the outcome of the first stage selection, thus from (15),

its CDF can be written asFYk
(x) =

(

1−∑M
ı=1

[dı(x)]M+ e
− 2Mx

ρkdı(x)

Aı(x)

)

u(x), where again the resource

block indexn and the beam indexm can be dropped due to the identically distributed property

across resource blocks and beams. The second stage selection occurs in the spectral dimension,

where each user feeds back theSINR values of the bestL resource blocks among the total

N resource blocks. LetWk,n,m denote the outcome of the second stage selection of userk at

resource blockn for beamm. Thus this random variable represents the selectedSINR at the

user side, whose CDF is of interest for further analysis. It is easy to see that for the case of full

feedback in the spectral dimension, i.e.,L = N , FWk
= FYk

. For the best-1 feedback case, i.e.,

L = 1, FWk
= (FYk

)N due to the independent property ofYk across resource blocks. For the

general best-L feedback case, utilizing the results in [29], the CDF can be shown as

FWk
(x) =

L−1
∑

ℓ=0

ξ1(N,L, ℓ)(FYk
(x))N−ℓ, (26)

whereξ1(N,L, ℓ) =
∑L−1

i=ℓ
L−i
L

(

N
i

)(

i
ℓ

)

(−1)i−ℓ. The two-stage feedback selection is demonstrated

in Fig. 3 with nine users denoted by different colors, five resource blocks, and four beams. In

the illustrated example, we use best-2 spectral dimension feedback, i.e.,L = 2.

After receiving feedback, the scheduler performs the CDF-based scheduling by first conducting

the transformation on the receivedSINR,

W̃k,n,m = FWk
(Wk,n,m). (27)

Denotek∗
n,m as the random variable representing the selected user at resource blockn for beam

m, then

k∗
n,m = max

Un,m

W̃k,n,m, (28)

where Un,m denotes the set of users conveying feedback for beamm at resource blockn.

Following the derivation in Section IV-A, letXn,m be the selectedSINR for beamm at resource
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block n at the scheduler side. Then averaging over the randomness of|Un,m|, the conditional

CDF conditioned onk∗
n,m can be written as

FXn,m|k∗n,m
(x) =

K
∑

τ1=0

(

K

τ1

)(

1

M

)τ1 (

1− 1

M

)K−τ1 τ1
∑

τ2=0

(

τ1
τ2

)(

L

N

)τ2 (

1− L

N

)τ1−τ2

(FWk∗n,m,n,m
(x))τ2 .

(29)

For further derivation,(FWk
(x))τ2 is manipulated into the following form by the power series

expansion [29], [37]:

(FWk
(x))τ2 =

τ2(L−1)
∑

ℓ=0

ξ2(N,L, τ2, ℓ)(FYk
(x))Nτ2−ℓ, (30)

where

ξ2(N,L, τ2, ℓ) =



























(ξ1(N,L, 0))τ2, ℓ = 0

1
ℓξ1(N,L,0)

∑min(ℓ,L−1)
i=1 ((τ2 + 1)i− ℓ)

×ξ1(N,L, i)ξ2(N,L, τ2, ℓ− i), 1 ≤ ℓ < τ2(L− 1)

(ξ1(N,L, L− 1))τ2 , ℓ = τ2(L− 1).

(31)

Following the same procedure as in Section IV-A, the individual sum rate for userk can be

derived as

R̂k =
1

N

N
∑

n=1

E

[

M
∑

m=1

log2
(

1 +Xn,m|k∗
n,m = k

)

]

= M

K
∑

τ1=1

(

K

τ1

)(

1

M

)τ1 (

1− 1

M

)K−τ1 τ1
∑

τ2=1

(

τ1
τ2

)(

L

N

)τ2 (

1− L

N

)τ1−τ2

×
τ2(L−1)
∑

ℓ=0

ξ2(N,L, τ2, ℓ)

∫ ∞

0

log2(1 + x)d(FYk
(x))Nτ2−ℓ. (32)

In order to obtain the closed form rate approximation forR̂k, the CDF approximation proposed

in (21) by the negative association property is utilized to approximateFYk
. The closed form

result is presented in the following corollary.

Corollary 3. (Closed Form Approximation of Individual Sum Rate)

R̂k ≃ R̂App

k = M
K
∑

τ1=1

(

K

τ1

)(

1

M

)τ1 (

1− 1

M

)K−τ1 τ1
∑

τ2=1

(

τ1
τ2

)(

L

N

)τ2 (

1− L

N

)τ1−τ2

×
τ2(L−1)
∑

ℓ=0

ξ2(N,L, τ2, ℓ)Jk(M(Nτ2 − ℓ)). (33)
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Fig. 4. Comparison of the exact individual sum rate and the approximated one for a given user with different spectral dimension

selective feedbackL with respect to the number of users (M = 4, N = 10, ρk = 10 dB, L = 1, 2, 4, 10).

To understand the impact of spectral dimension selective feedback, we conduct a numerical

study assumingN = 10, M = 4. Fig. 4 plots the exact and approximated rate for differentL

underρk = 10 dB with respect to the number of users. It can be seen that whenthe number of

users is small, there is a certain rate gap between selectivefeedback and full feedback. However,

the gap becomes negligible when the number of users increases. In Fig. 5, the performance is

observed for differentρk for K = 20. From the two figures, we can see that the proposed rate

approximation tracks the exact performance very well.

C. Individual Scaling Laws

We now examine the rate scaling with selective feedback in both spatial and spectral dimension.

In Section IV-B with spatial dimension selective feedback,the CDF of interest isFYk
and the
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Fig. 5. Comparison of the exact individual sum rate and the approximated one for a given user with different spectral dimension

selective feedbackL with respect to differentρk (M = 4, N = 10, K = 20, L = 1, 2, 4, 10).

number ofSINR to maximize over at the scheduler side for each beam approaches K
M

. With

additional spectral dimension feedback, the CDF ofFWk
is of primary interest. To get a handle

on the randomness of multiuser diversity for this case, an approach similar to that in Section

IV-B can be utilized. Let the sequence of random variablesκn,m(K) be the number ofSINR

values fed back for beamm at resource blockn with K users. It is easy to see thatκn,m(K)

are binomial distributed with probability of successL
MN

. Therefore, by the strong law of large

numbers, asK grows, the number ofSINR values fed back for each beam at each resource block

becomesKL
MN

. Moreover, the convergence property of the sequenceκn,m(K) can be shown by

invoking the central limit theorem:

lim
K→∞

√
K

(

κn,m(K)

K
− L

MN

)

d→N
(

0,
L

MN

(

1− L

MN

))

, (34)
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Fig. 6. Comparison of the exact CDFFWk
and its tail equivalence for different spectral dimension selective feedbackL

(M = 4, N = 10, ρk = 10 dB, L = 1, 2, 4, 10).

whered indicates convergence in distribution. By applying Theorem 3, the extreme order statistics

of the receivedSINR for each beam at each resource block for a given userk can be efficiently

approximated by(FWk
)

KL
MN .

Now the remaining problem is to examine the type of convergence of FWk
. Recall the

formulation ofFWk
as:FWk

(x) =
∑L−1

ℓ=0 ξ1(N,L, ℓ)(FYk
(x))N−ℓ. It is known thatFYk

converges

weakly to the type3 Gumbel distribution. Due to the complicated form ofξ1(·, ·, ·), it is tedious

to directly check the conditions for proving the type of convergence. In order to investigate the

tail behavior ofFWk
which dominates the type of convergence [33], the followingtail equivalence

theorem is called upon.

Theorem 4. (The Tail Equivalence Theorem [38]) U(·) andV (·) are distribution functions such



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, TO APPEAR 21

that

lim
x→∞

1− U(x)

1− V (x)
= 1. (35)

If there exist normalizing constantsaK , bK > 0 such thatUK(aK + bKx) → G(x), whereG(x)

is non-degenerate, thenV K(aK + bKx) → G(x).

From Theorem 4 one can infer that if two distribution functions are tail equivalent, then they

belong to the domain of attraction of the same type. Employing Theorem 4, a tail equivalent

formulation can be obtained forFWk
expressed in the following corollary.

Corollary 4. (Tail Equivalent CDF) FWk
(x) is tail equivalent to(FYk

(x))N−
∑L−1

ℓ=0 ξ1(N,L,ℓ)ℓ.

Proof: The proof is given in Appendix C.

Fig. 6 compares the exact CDF and the corresponding tail equivalence for different selective

feedbackL underM = 4, N = 10, andρk = 10 dB. The tail equivalent CDF is observed to track

the exact one even whenx is small, which supports and lends confidence in the power of the tail

equivalence theorem. Therefore, the tail equivalence is used to study the type of convergence,

which is expressed in the following lemma.

Lemma 2. (Type of Convergence of Selective Feedback) Given the statistical property ofFYk
in

(15), FWk
belongs to the domain of attraction of type3 Gumbel distribution.

Proof: The proof is given in Appendix C.

Having obtained the type of convergence forFWk
, the rate scaling result can be derived by

referring to the normalizing constants theorem in AppendixB. The individual rate scaling is

provided below.

Theorem 5. (Individual Scaling Laws Under Spatial and Spectral Dimension Selective Feedback)

lim
K→∞

R̂k

M log2 log2
(N−

∑L−1
ℓ=0 ξ1(N,L,ℓ)ℓ)L

MN
K

= 1, lim
K→∞

R̂App

k

M log2 log2
(N−

∑L−1
ℓ=0 ξ1(N,L,ℓ)ℓ)L

N
K

= 1.

(36)

Proof: The proof is given in Appendix C.

Remark: For the exact ratêRk, the ultimate equivalent CDF of interest isF
(N−

∑L−1
ℓ=0

ξ1(N,L,ℓ)ℓ)L

MN
K

Yk
,

thus the exponent(N−
∑L−1

ℓ=0 ξ1(N,L,ℓ)ℓ)L

MN
K due to multiplicative effect can be seen as the virtual

users for scheduling competition. This exponent is for the general best-L spectral dimension

feedback. For the full feedbackL = N , sinceξ1(N,N, ℓ) equals1 for ℓ = N−1 and0 otherwise,



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, TO APPEAR 22

the CDF becomesF
K
M

Yk
. For the best-1 feedbackL = 1, sinceξ1(N, 1, ℓ) is 1 for ℓ = 0 and 0

otherwise, the CDF becomesF
K
M

Yk
. Intuitively, the best-1 feedback is asymptotically optimal

due to the same number of virtual users. In other words, even though additional maximization

reduces the average number of variables for feedback, it counteracts this reduction by increasing

the exponent of the CDF. The number of virtual users is the limiting factor that dominates rate

scaling. For the approximated ratêRApp

k , since the approximated CDF compensates for the spatial

dimension selection by increasing the exponent, the rate scaling differs by a factor ofM .

VI. CONCLUSION

In this paper, an analytical approach is used to investigatethe problem of random beamforming

with heterogeneous users and selective feedback. The heterogenous user scenario corresponds to

the practical scenario of potentially different large scale channel effects for different users. We

leverage the CDF-based scheduling policy to decouple each user’s rate and thus theoretically

examine the individual user rate. We develop the notion of individual sum rate to analyze the rate

scaling for each individual user. We focus our analysis in this work on theoretically understanding

the effect of selective feedback in both spatial and spectral dimensions. On the exact analysis

part, extensive numerical results show that our approximate expression for the rate under selective

feedback is effective and provides an efficient expression for computing the exact rate. On the

asymptotic analysis part, we develop the notion of virtual users and the multiplicative effect to

explain the impact of selective feedback on rate scaling. Wefurther discover that the limiting

factor for the rate scaling is the exponent for the ultimate CDF of the selectedSINR at the

scheduler side. The extension of this work from single antenna users to multiple antenna users

and more generally the investigation of a multicell MIMO setup with advanced receiver design

will be the subject of our future work.

APPENDIX A

Proof of Theorem 1: With the help of Lemma 1,Jk(ǫ) can be computed as

Jk(ǫ)
(a)
=

ǫ

ln 2

ǫ−1
∑

i=0

(

ǫ− 1

i

)

(−1)i

i+ 1

∫ ∞

0

ln(1 + x)d



1− e
−

M(i+1)x
ρk

(1 + x)(M−1)(i+1)





(b)
=

ǫ

ln 2

ǫ−1
∑

i=0

(

ǫ− 1

i

)

(−1)i

i+ 1

∫ ∞

0

e
−M(i+1)x

ρk

(1 + x)(M−1)(i+1)+1
dx, (37)
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where (a) follows from applying Lemma 1; (b) follows from integration by parts. The closed form

result forI(α, β) in Theorem 1 can be computed in a recursive manner [37] and is presented

as follows

I(α, β) =











(−1)β−1αβ−1eαE1(α)
(β−1)!

+
β−1
∑

i=1

(i−1)!
(β−1)!

(−1)β−i−1αβ−i−1, β ≥ 2

eαE1(α), β = 1

(38)

whereE1(x) =
∫∞

x
e−t

t
dt is the exponential integral function of the first order [39].

APPENDIX B

Proof of Corollary 1:

R̂App

k

(a)
=M

K
∑

τ1=1

(

K

τ1

)(

1

M

)τ1 (

1− 1

M

)K−τ1 ∫ ∞

0

log2(1 + x)d(FZk
(x))Mτ1

(b)
=M

K
∑

τ1=1

(

K

τ1

)(

1

M

)τ1 (

1− 1

M

)K−τ1

Jk(Mτ1), (39)

where (a) follows from the CDF approximation in (21); (b) follows from the definition and

computation ofJk(ǫ).

Proof of Corollary 2: It is shown in [22] thatFYk
belongs to the domain of attraction of type

3 Gumbel distribution [33]. Thus if the number ofSINR to maximize over for each beam is

fixed and equals the number of usersK, then the following equation holds:lim
K→∞

(FYk
(ak:K +

bk:Kx))
K = Ψ(x), whereΨ(x) = e−e−x

is the type3 Gumbel distribution,ak:K andbk:K represent

the normalizing constants for userk. From Theorem 3, the number ofSINR to maximize over for

each beam approachesK
M

. Let ck:K anddk:K denote the normalizing constants for userk under the

selective feedback case. Then the following equation holds: lim
K→∞

(FYk
(ck:K +dk:Kx))

K
M = Ψ(x).

In order to obtainck:K anddk:K, the following theorem is called upon.

Theorem 6. (The Normalizing Constants Theorem [31]) Let FK(y) be a sequence of distribution

functions. LetaK , bK > 0, cK , anddK > 0 be sequences of real numbers such that, asK → ∞,

limFK(aK + bKx) = U(x), limFK(cK + dKx) = V (x) (40)

for all continuity pointsx of the limits, whereU(x) andV (x) are nondegenerate distribution

functions. Then, asK → ∞, the limits: lim dK
bK

= B 6= 0, lim cK−aK
bK

= A are finite, and

V (x) = U(A +Bx).
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The spatial dimension selective feedback case possesses the following situation in Theorem

6: FK(x) = (FYk
(x))K , aK = ak:K, bK = bk:K , cK = ck:K , dK = dk:K, U(x) = Ψ(x), and

V (x) = (Ψ(x))M . The sequence ofak:K has been derived in [12] as:ak:K = ρk log2K−ρk(M−
1) log2 log2K+ o(1). A suitable choice ofbk:K for type3 is gk(bk:K), wheregk(x) is the growth

function for userk defined bygk(x) ,
1−FZk

(x)

fZk
(x)

. Thus a suitable sequence isbk:K = ρk for all K.

Solving(Ψ(x))M = Ψ(A+Bx) yieldsA = − logM , B = 1. Therefore, by referring to Theorem

6, the normalizing constants can be derived to be:ck:K = ρk log2
K
M
−ρk(M−1) log2 log2K+o(1),

anddk:K = ρk for all K. Then by employing the Corollary A.1. in [12], the individual rate for

userk, namelyR̂k scales asM log2 log2
K
M

.

Regarding the approximated ratêRApp

k , since the approximated CDF by negative association is

(FZk
(x))M and the number ofSINR to maximize over approachesK

M
, we have lim

K→∞
(FZk

(ck:K+

dk:Kx))
M K

M = lim
K→∞

(FZk
(ck:K + dk:Kx))

K = Ψ(x). Thus the normalizing constantsck:K = ak:K ,

anddk:K = bk:K , which enables the approximated rateR̂App

k to scale asM log2 log2K.

APPENDIX C

Proof of Corollary 4: Given Theorem 4, the following equality holds:

lim
x→∞

1−∑L−1
ℓ=0 ξ1(N,L, ℓ)(FYk

(x))N−ℓ

1− (FYk
(x))N−

∑L−1
ℓ=0 ξ1(N,L,ℓ)ℓ

(a)
= lim

x→∞

∑L−1
ℓ=0 ξ1(N,L, ℓ)(N − ℓ)(FYk

(x))N−ℓ−1fYk
(x)

(N −∑L−1
ℓ=0 ξ1(N,L, ℓ)ℓ)(FYk

(x))N−
∑L−1

ℓ=0 ξ1(N,L,ℓ)ℓ−1fYk
(x)

(b)
= 1, (41)

where (a) follows from the L’Hospital’s rule; (b) follows from the fact that
∑L−1

ℓ=0 ξ1(N,L, ℓ) = 1.

Proof of Lemma 2: FYk
with statistics in (15) belongs to the domain of attraction of type

3. It can be shown that for any distribution functionF (x) which converges weakly to the

limiting distribution, then its exponent formF ǫ(x) has the same type of convergence [31],

(FYk
(x))N−

∑L−1
ℓ=0 ξ1(N,L,ℓ)ℓ belongs to the domain of attraction of type3. Then by Theorem 4,

FWk
belongs to the domain of attraction of type3.

Proof of Theorem 5: A procedure similar to that used in proving Corollary 2 can beused here.

Since the number ofSINR to maximize over for each beam at each resource block approaches
KL
MN

, and FWk
belongs to the domain of attraction of type3, the following equation holds:

lim
K→∞

(FWk
(ck:K+dk:Kx))

KL
MN = Ψ(x). By referring to the tail equivalence theorem, the equivalent
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equation is: lim
K→∞

(FYk
(ck:K + dk:Kx))

KL(N−
∑L−1

ℓ=0
ξ1(N,L,ℓ)ℓ)

MN = Ψ(x). Applying Theorem 6 yields

the normalizing constants:ck:K = ρk log2
KL(N−

∑L−1
ℓ=0 ξ1(N,L,ℓ)ℓ)

MN
− ρk(M − 1) log2 log2K + o(1),

anddk:K = ρk for all K. Therefore,R̂k scales asM log2 log2
KL(N−

∑L−1
ℓ=0 ξ1(N,L,ℓ)ℓ)

MN
.

For the approximated ratêRApp

k using the approximated CDF(FZk
(x))M for FYk

, the following

equation holds: lim
K→∞

(FZk
(ck:K + dk:Kx))

KL(N−
∑L−1

ℓ=0
ξ1(N,L,ℓ)ℓ)

N = Ψ(x). Using the same line of

arguments,R̂App

k scales asM log2 log2
KL(N−

∑L−1
ℓ=0 ξ1(N,L,ℓ)ℓ)

N
.
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