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Abstract— In this paper, we contribute to the theoretical
understanding, the design, and the performance evaluationof
multi–source multi–relay network–coded cooperative diversity
protocols. These protocols are useful to counteract the spectral
inefficiency of repetition–based cooperation. We provide agen-
eral analytical framework for analysis and design of wireless
networks using the Demodulate–and–Forward (DemF) protocol
with binary Network Coding (NC) at the relays and Cooperative
Maximal Ratio Combining (C–MRC) at the destination. Our
system model encompasses an arbitrary number of relays which
offer two cooperation levels: i) full–cooperative relays, which
postpone the transmission of their own data frames to help the
transmission of the sources via DemF relaying and binary NC;
and ii) partial–cooperative relays, which exploit NC to transmit
their own data frames along with the packets received from the
sources. The relays can apply NC on different subsets of sources,
which is shown to provide the sources with unequal diversity
orders. Guidelines to choose the packets to be combined,i.e.,
the network code, to achieve the desired diversity order are
given. Our study shows that partial–cooperative relays provide
no contribution to the diversity order of the sources. Theoretical
findings and design guidelines are validated through extensive
Monte Carlo simulations.

Index Terms— Cooperative Diversity, Relaying, Network Cod-
ing, Cooperative Maximal Ratio Combining, Performance Analy-
sis, Diversity Analysis, Unequal Error Protection Network Codes.

I. I NTRODUCTION

RELAYING and distributed cooperation have recently
emerged as potential candidate technologies for many

future wireless applications and standards [1]. Fundamental
design objective of these systems is to maximally protect
the transmission of some network nodes (usually known as
sources) while minimizing: i) the extra bandwidth demanded
to accomplish this protection; and ii) the resources of the
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network nodes (usually known as relays) willing to help
the sources [2]. Early transmission protocols for cooperative
diversity were mainly based on the repetition coding principle
with transmissions over orthogonal channels [3], [4]. The main
limitation of these protocols is that the diversity gain comes
at the cost of low spectral efficiency. Motivated by these
considerations, during the last few years many solutions have
been proposed to overcome, at least in part, the throughput
reduction of repetition–based orthogonal relaying protocols.
Some examples are distributed space–time coded protocols [5],
non–orthogonal protocols [6], successive relaying protocols
[7], [8], shifted successive relaying protocols [9], two–way
relay protocols [10], and cognitive cooperation [11]. Advan-
tages and disadvantage of these cooperative diversity protocols
are discussed in [2].

More recently, a new family of cooperative diversity pro-
tocols has been introduced to overcome the throughput limi-
tations of repetition–based protocols, while still keeping their
affordable implementation complexity. They are today known
as network–coded cooperative diversity protocols, as they
exploit the emerging concept of Network Coding (NC) [12] for
a better diversity and throughput tradeoff [13]. Some examples
where the achievable diversity of network–coded cooperative
diversity protocols is studied are [14]–[19] for erasure channel
models and [20]–[23] for error channel models. These papers
have all shown that NC can be especially beneficial to improve
the spectral efficiency of multi–user cooperative networks,
where the available relays must simultaneously serve many
independent sources. For example: i) in [14] and [16], it
is shown that NC–aided cooperative protocols are useful to
overcome the accurate frequency and timing synchronization
requirements of distributed space–time coded protocols; ii) in
[17], it is shown that network–coded cooperation provides a
better diversity–multiplexing tradeoff than distributedspace–
time coded, repetition–based, and selection relaying protocols;
iii) in [20] and [22], it is shown that NC can reduce the number
of channel uses from2NS to NS + 1 in multiple–access
single relay networks withNS sources, while still achieving
second–order diversity for every source; and iv) in [23], itis
shown that, in a multi–source multi–relay network setup, the
network code can be adequately chosen to provide each source
a different diversity order, and, thus, a different robustness to
multipath fading. A comprehensive state–of–the–art survey of
advantages and disadvantages of these protocols is available
in [23].

Motivated by these potential advantages of network–coded
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cooperative diversity protocols against repetition–based coop-
erative diversity protocols, in the present paper we contribute
to the theoretical understanding and the design of multi–source
multi–relay cooperative networks with generic binary NC and
non–identically distributed fading over all the wireless links. In
our system model,NS sources are assumed to broadcast, in
orthogonal time–slots, their data to the availableNR relays
and to the single destination. The relays first demodulate
and then perform NC on the estimated data by applying
a Demodulate–and–Forward (DemF) relaying protocol [24],
[25]. More specifically, NC is applied to all received packets
regardless of correct or incorrect data demodulation (error
channel model). Each relay can apply a different binary encod-
ing vector to the received packets, thus being able to apply NC
only on the packets received from a subset of sources. In the
present paper, it is shown that this degree of freedom enables
the sources to achieve unequal diversity orders, which can
be useful for application to heterogenous networks [26] and
green communications [27]. From our analytical framework,
guidelines for the design of network codes to allow each
source to achieve the desired distributed diversity order are
derived.

Two classes of relay nodes are considered in the present
paper: full–cooperativeand partial–cooperativerelays. The
relays in the first class are willing to help the sources by de-
laying the transmission of their own data frames. These relays
demodulate the packets received from the sources and then
apply binary NC on a subset of received packets. The relays
in the second class are willing to relaying the packets received
from the sources if and only if the transmission of their data
frames is not delayed. To this end, these relays demodulate the
packets received from the sources and then apply binary NC
on both a subset of these received packets and the first packet
available in their own buffer. Thus, full–cooperative relays
transmit only redundant bits, while partial–cooperative relays
transmit, on the same channel use, redundant bits and new
information packets. As a consequence, partial–cooperative
relays entail no reduction of the network rate. The investigation
of how these two classes of relays contribute to the diversity
order of each source is motivated by the recent results in
[28] and [29], where partial–cooperative relays are shown to
be useful to avoid dedicated resources to forward only the
packets of the sources, as well as to reduce the transmission
delay of their own data frames. However, in [29] the impact
of partial–cooperative relays on the achievable diversityof the
sources is not explicitly investigated. Furthermore, our study
is motivated by [12] and [30], where, to achieve the network
capacity, all network nodes are assumed to encode the data
available in their buffers with the incoming data transmitted
from other nodes. However, [12] and [30] focus their attention
on the solvability of the NC problem, and, on the other hand,
diversity is not investigated. Finally, we mention that thedata
frames available in the buffers of the partial–cooperativerelays
can be the data frames received, in proceeding time–slots,
from other (than theNS of the cooperative network) sources.
Understanding how the partial–cooperative relays contribute
to the diversity order of theNS sources is important to
understand whether they can help these sources without being

dedicated network elements. Finally, the destination combines
all the packets received from sources and relays by using
a generalized Cooperative Maximal Ratio Combining (C–
MRC) receiver [22], [24], which accounts for both the DemF
relaying protocol and the binary encoding vectors used at the
relays. For analytical tractability, it is assumed that sources
and relays use binary modulation,i.e., Binary Phase Shift
Keying (BPSK). Even though this assumption might seem
restrictive, it is worth mentioning that BPSK modulation is
currently used in many wireless standards, such as WiMax
(Worldwide Interoperability for Microwave Access) and LTE
(Long Term Evolution) for control channels. Furthermore,
it is commonly used for first analytical investigations of
very complex communication systems. The generalization of
mathematical framework and analytical diversity assessment to
non–binary modulations and non–binary encoding vectors is
currently under investigation. Some comments are provided
throughout the manuscript. Some preliminary Monte Carlo
simulation results are available in [31]. Furthermore, recent
simulation results including channel coding are availablein
[32]–[35]. In particular, recent results in [35] have shownthat
channel coding does not contribute to the diversity order of
the sources if the channel is assumed to be quasi–static over
all the wireless links.

The main findings of our analysis can be summarized as
follows: i) the diversity order of each source is given by the
separation vector [36] of the distributed network code, and
linear block codes with Unequal Error Protection (UEP) prop-
erties [37] can be used as network codes even in the presence
of demodulation errors at the relays; ii) only full–cooperative
relays contribute to the diversity order of the sources. On the
other hand, partial–cooperative relays contribute neither to the
diversity order nor to the coding gain of the sources, irre-
spective of the binary encoding vectors; iii) properly designed
(deterministic) binary network codes provide greater diversity
orders than random binary network codes, which achieve
only first–order diversity; iv) the C–MRC receiver provides
error performance very close to the Maximum–Likelihood
(ML) optimum receiver, but with reduced signal processing
complexity; v) the C–MRC receiver with BPSK modulation
is shown to satisfy the so–called uniform error property [38],
which greatly simplifies the analysis of the error performance
and the design of binary network codes with UEP properties;
and vi) compared with repetition–based cooperative relaying,
network–coded cooperative diversity protocols are shown to
achieve a larger range of diversity orders for the same number
of total channel uses.

Finally, we emphasize that compared with state–of–the-
art papers, which investigate the design and the analysis of
network–coded cooperative diversity protocols under an error
channel model [20]–[23], the novelty and contributions of the
present paper are as follows: i) in [20]–[22], the analysis is
restricted to a single relay node that combines the packets of
all the sources. In the present paper, we consider an arbitrary
number of relays, each of them using a different encoding
vector to selectively applying NC on the packets received
from the sources according to the desired diversity order. In
particular, the system model in [20], [22] can provide only
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second–order diversity, while our system model guaranteesa
larger range of diversity orders for each source. Furthermore,
two classes of relays are considered, and their role on the
end–to–end diversity is discussed; and ii) in [23], a different
and sub–optimal demodulator is investigated, as well as only
full–cooperative relays are considered. In the present paper,
we show that the C–MRC receiver not only provides better
performance than the demodulator in [23], but it also needs
lower signal processing complexity.

The remainder of the present paper is organized as follows.
In Section II, system model, transmission protocol, and C–
MRC receiver are introduced. In Section III, the error per-
formance of network–coded cooperative diversity protocols
is studied, and an asymptotically–tight analytical framework
is developed. In Section IV, the diversity order is studied
and guidelines for network code design are given. Further-
more, the role played by full– and partial–cooperative relays
is discussed. In Section V, numerical results are shown to
substantiate our analytical derivation and findings. Finally,
Section VI concludes this paper.

II. SYSTEM MODEL AND TRANSMISSION PROTOCOL

A multi–source multi–relay network withNS sources (St

for t = 1, 2, . . . , NS), NR relays (Rq for q = 1, 2, . . . , NR),
and a single destination (D) is considered. Transmissions of
sources and relays occur in orthogonal time–slots. In time–
slot Tt, the sourceSt broadcasts its data packet toD and to
the NR relays. This transmission (broadcast) phase lastsNS

time–slots. The signals received atRq and D are yStRq
=

√

ESt
hStRq

xSt
+nStRq

andyStD =
√

ESt
hStDxSt

+nStD,
respectively, where: i)xSt

= 1− 2bSt
is the BPSK–modulated

signal transmitted bySt; ii) bSt
∈ {0, 1} is the bit emitted

by St, iii) ESt
is the transmitted energy per bit ofSt; iv)

hXY is the fading coefficient from nodeX to nodeY , which
is a circular symmetric complex Gaussian Random Variable
(RV) with zero mean and varianceσ2

XY

/

2 per real dimension
(Rayleigh fading). Independent but non–identically distributed
(i.n.i.d.) fading is considered; and v)nXY is the complex
Additive White Gaussian Noise (AWGN) at the input of node
Y and related to the transmission from nodeX . The AWGN is
independent and identically distributed (i.i.d.) with zero mean
and varianceN0/2 per real dimension.

Upon reception ofyStRq
in time–slot Tt, the relayRq

applies ML–optimum demodulation:

b̂
(Rq)
St

= argmin
b̃St∈{0,1}

{

∣

∣

∣yStRq
−
√

ESt
hStRq

(

1− 2b̃St

)∣

∣

∣

2
}

(1)
whereb̂(Rq)

St
denotes the estimate ofbSt

at Rq.
After NS time–slots,Rq takes turn transmitting, in time–slot

TNS+q, a data packet toD. This transmission (relaying) phase
lastsNR time–slots. Two classes of relays are considered:full–
cooperativeand partial–cooperativerelays. Full–cooperative
relays transmit a linear combination of the data packets
received from a subset of sources and delay the transmission
of their own data packets. Partial–cooperative relays transmit a
linear combination of the data packets received from a subset
of sources and the first available data packet in their own

buffer. Thus, full–cooperative relays transmit only redundant
data packets (parity bits), while partial–cooperative relays
transmit redundant and new data packets. Among theNR

relays,NFC
R and NPC

R act as full– and partial–cooperative
relays, respectively, withNFC

R +NPC
R = NR. The sets of full–

and partial–cooperative relays are denoted byNFC
R andNPC

R ,
respectively. It is worth noticing that in our system model the
relays do not listen, in the relaying phase, to the transmission
of other relays. In other words, relay–to–relay transmissions
are neglected in our protocol, and, thus, in our performance
and diversity analysis. This makes our communication protocol
sub–optimal. In fact, the parity bits transmitted by the relays
may be exploited by other relays to provide better estimatesof
the data transmitted from the sources. This option is, however,
beyond the scope of this paper and its analysis is postponed
to future research.

Let x̂(NC)
Rq

= 1− 2b̂
(NC)
Rq

be the BPSK–modulated signal

transmitted fromRq in time–slot TNS+q, and b̂
(NC)
Rq

be the
network–coded bit estimated atRq. This latter coded bit
is defined asb̂(NC)

Rq
= gS1Rq

b̂
(Rq)
S1

⊕ gS2Rq
b̂
(Rq)
S2

⊕ . . . ⊕
gSNS

Rq
b̂
(Rq)
SNS

⊕ gRqRq
bRq

, where: i)⊕ denotes exclusive OR

(XOR) operations; ii)gRq
=
[

gS1Rq
, gS2Rq

, . . . , gSNS
Rq

]

is
the 1 ×NS binary encoding vector atRq [12], with gStRq

∈
{0, 1}; iii) bRq

is the data available in the buffer ofRq;
and iv) gRqRq

= 0 if Rq ∈ NFC
R , while gRqRq

= 1 if
Rq ∈ NPC

R . Full–cooperative relays are allowed to transmit
their own data packets in the first available time–slot at the
end of the cooperation (broadcast–plus–relaying) phase, which
lasts NS + NR time–slots. Thus, the signal received atD

is yRqD =
√

ERq
hRqDx̂

(NC)
Rq

+ nRqD, where ERq
is the

transmitted energy per bit ofRq.
In our system model, Channel State Information (CSI) is

available at the receiver but not at the transmitter. Thus,
a uniform energy allocation scheme at the sources and at
the relays is assumed. In formulas,ESt

= Em for t =
1, 2, . . . , NS , ERq

= Em if Rq ∈ NPC
R , andERq

= Em/2
if Rq ∈ NFC

R for q = 1, 2, . . . , NR. This energy allocation
scheme takes into account that full–cooperative relays must
split their available energy to help the sources and to transmit
their own data at the end of the cooperation phase.

A. Diversity Combining at the Destination

Upon reception of all signalsyStD and yRqD in time–
slotsTt andTNS+q, respectively,D jointly estimates the data
transmitted from the sources and theNPC

R relays. The data of
the NFC

R relays is transmitted at the end of the cooperation
phase,i.e., from time–slotTNS+NR+1. Since the data of the
full–cooperative relays is independent of the data transmitted
by the sources and by the partial–cooperative relays, it canbe
estimated individually, without loss of optimality, by using a
demodulator similar to (1). Demodulation of full–cooperative
relays is not considered in the present paper, as it can be
found in textbooks [39]. Let̂b(D)

S and b̂
(D)
R be 1 × NS and

1×N
(PC)
R vectors whose entries areb̂(D)

St
for t = 1, 2, . . . , NS

and b̂(D)
Rq

for Rq ∈ N (PC)
R andq = 1, 2, . . . , NR, respectively.
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Λ(ML)
(

b̃S , b̃R

)

=

NS
∏

t=1

exp






−

∣

∣

∣yStD −
√

ESthStD

(

1− 2b̃St

)∣

∣

∣

2

N0







×

NR
∏

q=1






P

(NC)
Rq

exp






−

∣

∣

∣yRqD +
√

ERqhRqD

(

1− 2b̃
(NC)
Rq

)∣

∣

∣

2

N0






+
(

1− P
(NC)
Rq

)

exp






−

∣

∣

∣yRqD −
√

ERqhRqD

(

1− 2b̃
(NC)
Rq

)∣

∣

∣

2

N0













(3)

P
(NC)
Rq

= Pr
{

gS1Rq b̂S1
⊕ gS2Rq b̂S2

⊕ . . .⊕ gSNS
Rq b̂SNS

⊕ gRqRq bRq 6= gS1Rq bS1
⊕ gS2Rq bS2

⊕ . . .⊕ gSNS
Rq bSNS

⊕ gRqRq bRq

}

(a)
= Pr

{

gS1Rq b̂S1
⊕ gS2Rq b̂S2

⊕ . . .⊕ gSNS
Rq b̂SNS

6= gS1Rq bS1
⊕ gS2Rq bS2

⊕ . . .⊕ gSNS
Rq bSNS

}

(b)
=

NS
∑

t=1







gStRqQ
(√

2γStRq

)

NS
∏

r=t+1

[

1− 2gSrRqQ
(√

2γSrRq

)]







(c)
≈

NS
∑

t=1

gStRqQ
(√

2γStRq

)

(4)

More specifically,̂b(D)
S andb̂(D)

R denote the estimates atD of
the information bits,bS andbR, actually transmitted from the
NS sources and theNPC

R relays. The vectorsbS andbR have
similar definition aŝb(D)

S andb̂(D)
R , respectively. By assuming

an ML–optimum diversity combiner, they can be computed as:
{

b̂
(D)
S , b̂

(D)
R

}

= argmax
b̃St∈{0,1}, t=1,2,...,NS

b̃Rq∈{0,1}, Rq∈N
(PC)
R

{

Λ(ML)
(

b̃S , b̃R

)}

(2)
where b̃S and b̃R are 1 × NS and 1 × N

(PC)
R vectors

whose entries arẽbSt
and b̃Rq

, respectively, andΛ(ML) (·, ·)
is shown in (3) at the top of this page, whereb̃(NC)

Rq
=

gS1Rq
b̃S1⊕gS2Rq

b̃S2⊕. . .⊕gSNS
Rq

b̃SNS
⊕gRqRq

b̃Rq
, b(NC)

Rq
=

gS1Rq
bS1 ⊕ gS2Rq

bS2 ⊕ . . . ⊕ gSNS
Rq

bSNS
⊕ gRqRq

bRq
is

the network–coded bits atRq in the absence of demod-

ulation errors, andP (NC)
Rq

= Pr
{

b̂
(NC)
Rq

6= b
(NC)
Rq

}

is the
probability thatRq forwards a wrong network–coded bit to
D, which is shown in (4) at the top of this page, where:
i) γStRq

=
∣

∣hStRq

∣

∣

2
(ESt

/N0) is an exponential RV with
parameterγ̄StRq

= σ2
StRq

(ESt
/N0) and probability den-

sity function fγStRq
(ξ) =

(

1
/

γ̄StRq

)

exp
(

−ξ
/

γ̄StRq

)

; ii)

Q (x) =
(

1
/√

2π
) ∫ +∞

x
exp

(

−t2
/

2
)

dt is the Q–function; iii)
(a)
= follows because the data of the partial–cooperative relays

are not affected by demodulation errors; iv)
(b)
= follows from

[23, Proposition 1]; and v)
(c)≈ holds for high Signal–to–Noise–

Ratio (SNR), where
∏NS

r=t+1

[

1− 2gSrRq
Q
(
√

2γSrRq

)]

→
1.

Even though ML–optimum, the diversity combiner in (3)
is computationally complex. Thus, similar to [22] and [24],
low–complexity diversity combiners are needed. We consider
a low–complexity diversity combiner that is best known as
C–MRC [24], and provide the main steps of its derivation for
the specific transmission protocol under analysis. According to
[24, Section II–B], the C–MRC can be derived by regarding
P

(NC)
Rq

in (4) as the error probability of an equivalent point–

to–point, rather than multipoint–to–point, channel withb(NC)
Rq

at its input andb̂(NC)
Rq

at its output. In formulas,P (NC)
Rq

≈
∑NS

t=1 gStRq
Q
(
√

2γStRq

)

≈ Q
(
√

2γeqRq

)

, whereγeqRq
is
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Fig. 1. Mean and standard deviation of the error function in (6). Setup:
i) gStRq = 1 for t = 1, 2, . . . , NS ; and ii) channel fading is i.i.d. with
σ2
StRq

= 1 for t = 1, 2, . . . , NS .

the SNR of the point–to–point equivalent channel atRq. γeqRq

can be obtained as:
NS
∑

t=1

gStRq
Q
(√

2γStRq

)

(a)

≥ max
t=1,2,...,NS

{

Q
(√

2g−1
StRq

γStRq

)}

(b)
= Q

(√

2 min
t=1,2,...,NS

{

g−1
StRq

γStRq

}

)

(5)

where: i)
(a)

≥ holds because the Q–function is a non–negative

function; and ii)
(b)
= holds because the Q–function is monoton-

ically decreasing. Thus, fromP (NC)
Rq

≈ Q
(
√

2γeqRq

)

, we ob-

tainγeqRq
= mint=1,2,...,NS

{

g−1
StRq

γStRq

}

, which is an expo-

nential RV with parameter̄γeqRq
=
(

∑NS

t=1 gStRq
γ̄−1
StRq

)−1

.

We note thatg−1
StRq

= ∞ if gStRq
= 0. This implies that

b̂St
is not network–coded at relayRq, and, thus, the related

demodulation error probability has no impact in (5).



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 5

Λ(C−MRC)
(

b̃S , b̃R

)

=

NS
∑

t=1

∣

∣

∣yStD −
√

ESt
hStD

(

1− 2b̃St

)∣

∣

∣

2

N0
+

NR
∑

q=1

λRq

∣

∣

∣yRqD −√ERq
hRqD

(

1− 2b̃
(NC)
Rq

)∣

∣

∣

2

N0
(8)

PEP(c → c̃|h) = Pr
{

Λ(C−MRC)
(

b̃S , b̃R

)

< Λ(C−MRC) (bS ,bR)
∣

∣

∣h
}

= Pr
{

∆(C−MRC) (c, c̃) < 0
∣

∣

∣h
}

(a)
=

2NR−1
∑

m=0

Pr
{

∆(C−MRC) (c, c̃) < 0
∣

∣

∣ Em,h
}

Pr {Em|h}

(b)
=

2NR−1
∑

m=0

[

1

2πj

∫ δ+j∞

δ−j∞

En

{

exp
(

−s∆(C−MRC) (c, c̃| Em,h)
)}

s
ds

]

Pr {Em|h}

(9)







E(ok)
m =

{

b̂
(NC)
Rq

= b
(NC)
Rq

∣

∣

∣
m = 20µ0 + 21µ1 + . . .+ 2NR−1µNR−1 and µq−1 = 0 for q = 1, 2, . . . , NR

}

E(nok)
m =

{

b̂
(NC)
Rq

6= b
(NC)
Rq

∣

∣

∣m = 20µ0 + 21µ1 + . . .+ 2NR−1µNR−1 and µq−1 = 1 for q = 1, 2, . . . , NR

} (10)

The accuracy of the bound in (5) is studied in Fig. 1 as a
function ofNS and SNR. In particular, Fig. 1 shows mean and
standard deviation of the error function defined as follows:

Error =

NS
∑

t=1

gStRq
Q
(√

2γStRq

)

−Q

(√

2 min
t=1,2,...,NS

{

g−1
StRq

γStRq

}

)

≥ 0

(6)

Figure 1 clearly shows that (5) is increasing tight with
the SNR, and, thus, it is useful for high–SNR analysis,e.g.,
to study the diversity order. Furthermore, we note that, as
expected, the accuracy of the bound decreases with the number
of network–coded sources. The error function forNS = 1 is
not shown as it would be equal to zero.

By using the same arguments as in [24, Section II–C], the
C–MRC with binary NC at the relays is:
{

b̂
(D)
S , b̂

(D)
R

}

= argmin
b̃St∈{0,1}, t=1,2,...,NS

b̃Rq∈{0,1}, Rq∈N
(PC)
R

{

Λ(C−MRC)
(

b̃S , b̃R

)}

(7)
with Λ(C−MRC) (·, ·) shown in (8) at the top of this page,
where λRq

= min
{

γeqRq
, γRqD

}/

γRqD, and γRqD =
∣

∣hRqD

∣

∣

2 (
ERq

/

N0

)

is an exponential RV with parameter
γ̄RqD = σ2

RqD

(

ERq

/

N0

)

. In what follows, we use the

notationx̃St
= 1− 2b̃St

and x̃Rq
= 1− 2b̃

(NC)
Rq

.

It is worth noticing that the C–MRC in (8) is different
from and less computationally complex than the two–step
demodulator in [23, Eq. (6)]. In Section V, it is shown that the
C–MRC in (8) also outperforms the two–step demodulator in
[23, Eq. (6)]. Furthermore, the C–MRC in (8) is similar to the
diversity combiner in [22, Eq. (4)]. The difference is that (8)
accounts for arbitrary binary encoding vectors, and, thus,each
relay can apply NC on a different subset of packets received
from the sources.

III. A SYMPTOTIC END–TO–END ERROR PERFORMANCE

OF C–MRC

In this section, the end–to–end error performance of the C–
MRC in (8) is studied. The analytical development comprises
two steps: i) first, the Average Pairwise Error Probability
(APEP) is introduced and computed in Section III-A; and ii)
then, the Average Bit Error Probability (ABEP) of the data
transmitted from the sources and the partial–cooperative relays
is estimated in Section III-B and in Section III-C, respectively.

A. Computation of the Average Pairwise Error Probability

Let c =
[

bS1 , bS2, . . . , bSNS
, b

(NC)
R1

, b
(NC)
R2

, . . . , b
(NC)
RNR

]

be
the actual bits transmitted from theNS sources and theNR

relays, and̃c =
[

b̃S1 , b̃S2 , . . . , b̃SNS
, b̃

(NC)
R1

, b̃
(NC)
R2

, . . . , b̃
(NC)
RNR

]

be the hypothesis in (8). Codewordsc and c̃ are 1 × (NS +
NR) binary vectors, and their entries arecp and c̃p for
p = 1, 2, . . . , NS + NR. The APEP is the probability of
detecting̃c in lieu of c under the assumption that they are the
only two codewords possibly being transmitted. In formulas,
APEP(c → c̃) = Eh {PEP (c → c̃|h)}, where: i) EX {·}
is the expectation operator computed over the RVX ; ii)
h is a short–hand that denotes all channel gains; and iii)
PEP(c → c̃|h) is the PEP conditioned upon channel fading.
From (8),PEP(c → c̃|h) is given in (9) at the top of this

page, where: i)∆(C−MRC) (c, c̃) = Λ(C−MRC)
(

b̃S , b̃R

)

−
Λ(C−MRC) (bS ,bR); ii) Em, with m = 20µ0 + 21µ1 + . . .+
2NR−1µNR−1 and µq−1 ∈ {0, 1} for q = 1, 2, . . . , NR,
denotes the joint event that the relays with indexq such that
µq−1 = 0 transmit correct bits,i.e., b̂

(NC)
Rq

= b
(NC)
Rq

, and
the relays with indexq such thatµq−1 = 1 transmit wrong
bits, i.e., b̂(NC)

Rq
6= b

(NC)
Rq

. In formulas,Em = E(ok)
m ∪ E(nok)

m

shown in (10) at the top of this page; iii)
(a)
= follows from

the total probability theorem by taking into account the2NR

independent demodulation eventsEm at theNR relays; iv)
j =

√
−1 is the imaginary unit; v)n is a short–hand to denote
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Pr {Em|h} =







































NR
∏

q=1

(

1− P
(NC)
Rq

)

≈
NR
∏

q=1

(

1−
NS
∑

t=1
gStRq

Q
(
√

2γStRq

)

)

if m = 0

NR
∏

q=1
P

(NC)
Rq

≈
NR
∏

q=1

(

NS
∑

t=1
gStRq

Q
(
√

2γStRq

)

)

if m = 2NR − 1

≈
NR
∏

q=1
µq−1=0

(

1−
NS
∑

t=1
gStRq

Q
(
√

2γStRq

)

)

×
NR
∏

q=1
µq−1=1

(

NS
∑

t=1
gStRq

Q
(
√

2γStRq

)

)

if 0 < m < 2NR − 1

(11)

∆(C−MRC) (c, c̃| Em,h) =

NS
∑

t=1

(

4γStDd2St
+ 4

√
γStDdSt

Re
{

η∗StD

})

+

NR
∑

q=1

λRq

(

4γRqDd
(m)
Rq

+ 4
√
γRqDdRq

Re
{

η∗RqD

})

(12)

M∆(C−MRC) (s| c, c̃, Em,h) =

NS
∏

t=1

[

exp
(

−4γStDd2St
s
)

exp
(

4γStDd2St
s2
)]

×
NR
∏

q=1

[

exp
(

−4λRq
γRqDd

(m)
Rq

s
)

exp
(

4λ2
Rq

γRqDd2Rq
s2
)]

(13)

all AWGNs atD; and vi)
(b)
= follows from the inverse Laplace

transform [40, Eq. (5)] withδ defined in [40, Sec. 2].

From (4) and the independence of the demodulation out-
comes at the relays,Pr {Em|h} in (10) is explicitly given
in (11) shown at the top of this page. From (8) and
some algebra,∆(C−MRC) (c, c̃| Em,h) in (9) can be sim-
plified as shown in (12) at the top of this page, where: i)
Re {·} is the real part operator; ii)∠ (·) denotes the phase
of a complex number; iii)(·)∗ is the complex conjugate
operator; iv) η∗StD

=
(

n∗
StD

∠hStD

)/√
N0 and η∗RqD

=
(

n∗
RqD

∠hRqD

)/√
N0; v) dSt

= b̃St
− bSt

∈ {−1, 0, 1}
and dRq

= b̃
(NC)
Rq

− b
(NC)
Rq

∈ {−1, 0, 1}; and vi) d(m)
Rq

=

b̂
(NC)
Rq

dRq
=
∣

∣

∣b̃
(NC)
Rq

− b
(NC)
Rq

∣

∣

∣ ∈ {0, 1} if µq−1 = 0 andd(m)
Rq

=

b̂
(NC)
Rq

dRq
= −

∣

∣

∣b̃
(NC)
Rq

− b
(NC)
Rq

∣

∣

∣ ∈ {−1, 0} if µq−1 = 1.

From (12), M∆(C−MRC) (s| c, c̃, Em,h) =
En

{

exp
(

−s∆(C−MRC) (c, c̃| Em,h)
)}

in (9) reduces
to (13), shown at the top of this page, by using the identity
En {exp (−KRe{η∗XY })} = exp

(

K2
/

4
)

[40, Eq. (19)].

Finally, by inserting (13) in (9), the APEP can be re–written
as shown in (14) at the top of the next page, whereγγγSR

and γγγRD are short–hands to denote all channels from the
NS sources to theNR relays, and from theNR relays to
D, respectively. For high–SNR,Ft (·, ·) andG (s| c, c̃, Em) =
∏NR

q=1 Gq (s| c, c̃, Em) can be computed in closed–form as
shown in Appendix I. The final result is:

Ft (s| c, c̃) ≈ [4γ̄StDs (1− s)]
−|b̃St−bSt | (15)

andGq ( ·| ·, ·, ·) andI (·; ·) are given in (16) and (17), respec-

tively, at the top of the next page, and
(a)
= follows form [39,

Eq. (5A.9)].
From (15)–(17),M̄∆(C−MRC) ( ·| ·) in (14) can be written as

shown in (18) at the top of the next page. From (15)–(17),
Lm (c, c̃) = (2πj)

−1 ∫ δ+j∞

δ−j∞
M̄∆(C−MRC) (s| c, c̃, Em) s−1ds

in (14) can be computed by using either the residues theorem
via the computation of the positive poles of̄M∆(C−MRC) ( ·| ·)
[40, Eq. (6)] or the Gauss–Chebyshev quadrature rule withδ
being chosen equal to one–half of the smallest real part of the
non–negative poles of̄M∆(C−MRC) ( ·| ·) [39, Sec. 9B.2], [40,
Eq. (10)]. The residues theorem is to be preferred for simple
network topologies (with one or two relays) and specific
network codes that result in expressions ofM̄∆(C−MRC) ( ·| ·)
with simple poles. In this case, the integral expression of
I (·; ·) in (17) is more convenient to be used compared to
its closed–form expression. The reason is that closed–form
expressions ofLm (·, ·) can be obtained by first applying the
residues theorem and then computing the integral in (17).
An example is given in Appendix II, where it is shown that
our framework coincides with [22, Eq. (32)] for single–relay
network–coded cooperative networks with encoding vector
gR1 = [1, 1, . . . , 1]. Another example is available in [41,
Table I] for one–source two–relay networks. On the other
hand, the Gauss–Chebyshev quadrature rule is an efficient
single–integral numerical method that can be used for generic
network topologies and binary encoding vectors. Its accuracy
and convergence speed depend onδ, which, from [39, Sec.
9B.2], [40, Eq. (10)] and by direct inspection of (18), can be
chosen as follows:

δ =



































1/2 if m = 0

1/2 if m 6= 0 and
NR
∑

q=1
µq−1=1

∣

∣

∣b̃
(NC)
Rq

− b
(NC)
Rq

∣

∣

∣ = 0

1/8 if m 6= 0 and
NR
∑

q=1
µq−1=1

∣

∣

∣b̃
(NC)
Rq

− b
(NC)
Rq

∣

∣

∣ 6= 0

(19)
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









































APEP (c → c̃) =
2NR−1
∑

m=0

(

1
2πj

∫ δ+j∞

δ−j∞

M̄
∆(C−MRC) ( s|c,c̃,Em)

s
ds
)

M̄∆(C−MRC) (s| c, c̃, Em) = Eh {M∆(C−MRC) (s| c, c̃, Em,h) Pr {Em|h}} =
NS
∏

t=1
Ft (s| c, c̃)× G (s| c, c̃, Em)

Ft (s| c, c̃) = EγStD

{

exp
(

−4γStDd2St
s
)

exp
(

4γStDd2St
s2
)}

G (s| c, c̃, Em) = E{γγγSR,γγγRD}

{

NR
∏

q=1

[

exp
(

−4λRq
γRqDd

(m)
Rq

s
)

exp
(

4λ2
Rq

γRqDd2Rq
s2
)]

× Pr {Em|γγγSR}
}

(14)

Gq (s| c, c̃, Em) ≈











[

(

4γ̄eqRq
s
)−1

+
(

4γ̄RqDs (1− s)
)−1 −

(

4γ̄eqRq

)−1 I (s;µq−1 = 0)
]

∣

∣

∣b̃
(NC)
Rq

−b
(NC)
Rq

∣

∣

∣

if µq−1 = 0
(

4γ̄eqRq

)−1
[I (s;µq−1 = 1)]

∣

∣

∣b̃
(NC)
Rq

−b
(NC)
Rq

∣

∣

∣

if µq−1 = 1
(16)

I (s;µq−1) =
4

π

∫ π/2

0

(

1

sin2 (θ)
+ 4 (−1)µq−1 s

)−1

dθ
(a)
=















(2s)
−1

[

1−
√

(1 + 4s)
−1

]

if µq−1 = 0 and s > − (1/4)

− (2s)
−1

[

1−
√

(1− 4s)
−1

]

if µq−1 = 1 and s < 1/4

(17)

M̄∆(C−MRC) (s| c, c̃, Em) ≈
NS
∏

t=1

[4γ̄StDs (1− s)]−|b̃St−bSt | ×
NR
∏

q=1, µq−1=1

(

4γ̄eqRq

)−1
[I (s;µq−1 = 1)]

∣

∣

∣b̃
(NC)
Rq

−b
(NC)
Rq

∣

∣

∣

×
NR
∏

q=1, µq−1=0

[

(

4γ̄eqRq
s
)−1

+
(

4γ̄RqDs (1− s)
)−1 −

(

4γ̄eqRq

)−1 I (s;µq−1 = 0)
]

∣

∣

∣b̃
(NC)
Rq

−b
(NC)
Rq

∣

∣

∣

(18)

B. Computation of the Average Bit Error Probability of the
Sources

From (14) and (18), the ABEP of the sources can be com-
puted by applying the Union–Bound method [39, Sec. 13.1.3].
Let b = [bS ,bR] and b̃ =

[

b̃S , b̃R

]

be 1×
(

NS +N
(PC)
R

)

binary vectors defined according to Section II-A. Then, by
assuming equiprobable transmitted bits, the ABEP ofSt is:

ABEP
(UB)
St

≤ 2
−
(

NS+N
(PC)
R

)

∑

b

∑

b̃

|dSt
|APEP (c → c̃)

(a)
=
∑

b̃

b̃St
APEP(0 → c̃)

(20)

where |dSt
| =

∣

∣

∣b̃St
− bSt

∣

∣

∣ ∈ {0, 1}, which is introduced in
(12), takes into account that a wrong decoded codeword,i.e.,
c 6= c̃, does not necessarily result in a bit error,i.e., bSt

6= b̃St
,

for St.

The equality in
(a)
= , which greatly reduces the computational

complexity, deserves some comments and a proof. First of

all,
(a)
= holds for communication systems that satisfy the so–

called uniform error property [38],i.e., the error probability is
independent of the transmitted codeword, and, thus, without

loss of generality, the zero codeword,i.e., c = 0, can be
assumed to be transmitted. As described in [38], the uniform
error property does not depend only on the linearity of the
network code, but it also depends on the code, the modulation,
the demodulator, and the fading channel. The validity of
the uniform error property for our system model can be
proved by direct inspection of (18). More specifically, for a
given pair(c, c̃), (18) uniquely depends on: i) the number of
distinct binary digits betweenc and c̃; and ii) the position
where these binary digits are different. The latter property
originates from the considered arbitrary network topology
and the i.n.i.d assumption of channel fading. LetJP (c, c̃) =
{p| |c̃p − cp| = c̃p ⊕ cp = 0, p = 1, 2, . . . , NS +NR} and
J̄P (c, c̃) = {p| |c̃p − cp| = c̃p ⊕ cp = 1, p = 1, 2, . . . , NS +NR}
be the sets ofNP and NS + NR − NP positions where
c and c̃ are equal and different, respectively. By direct
inspection and under the assumption of linear network
codes, it can be verified thatJ (c, c̃) = J (0, c̃⊕ c) and
J̄ (c, c̃) = J̄ (0, c̃⊕ c) for every pair (c, c̃). Furthermore,
since the network code is assumed to be linear,c̃⊕ c still
belongs to the codebook. This allows us to affirm that the
communication system under analysis satisfies the uniform

error property and, thus,
(a)
= in (20) can be used to compute

the ABEP of the sources.
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Ω(PC)
q =

{

c̃| b̃Rq
= c̃NS+q ⊕

(

gS1Rq
b̃S1 ⊕ gS2Rq

b̃S2 ⊕ . . .⊕ gSNS
Rq

b̃SNS

)

= 1, Rq ∈ N (PC)
R , wH (c̃) = 1

}

(22)







































































M̄∆(C−MRC) (s|0, c̃, Em) = M̄∆(C−MRC) (s| c̃, Em) = (Em/N0)

−






w

(S)
H

(c̃)+w

(

R,E
(ok)
m

)

H
(c̃)+card

(

E
(nok)
m

)







Ψ( s| c̃, Em)

Ψ (s| c̃, Em) = [s (1− s)]−w
(S)
H

(c̃)
NS
∏

t=1

(

4χStσ
2
StD

)−b̃St ×

[

− (2s)−1

(

1−

√

(1− 4s)−1

)]w

(

R,E
(nok)
m

)

H
(c̃) NR

∏

q=1
µq−1=1

(

4σ2
eqRq

)−1

×

NR
∏

q=1
µq−1=0

[

(

4σ2
eqRq

s
)−1

+
(

4χRqσ
2
RqD

s (1− s)
)−1

−
(

4σ2
eqRq

)−1
(2s)−1

(

1−

√

(1 + 4s)−1

)]b̃
(NC)
Rq

(24)

C. Computation of the Average Bit Error Probability of the
Partial–Cooperative Relays

With arguments similar to (20) and using the uniform error
property, the ABEP ofRq ∈ N (PC)

R is:

ABEP
(UB)
Rq

≤
∑

b̃

b̃Rq
APEP(0 → c̃)

≈
∑

c̃∈Ω
(PC)
q

APEP(0 → c̃)
(21)

whereΩ(PC)
q is defined in (22) shown at the top of this page,

and wH (c̃) =
∑NS+NR

p=1 c̃p is the Hamming weight of̃c.

More specifically,Ω(PC)
q is the set of possible codewords with

unit Hamming weight and̃bRq
= 1 for Rq ∈ N (PC)

R . The
reason why only codewords with unit Hamming weight are
considered is that the diversity order of partial–cooperative
relays is equal to one. Even though this is intuitive from the
working operation of our transmission protocol, a formal proof
of the diversity order of partial–cooperative relays is postponed
to Section IV-C.

By construction, the setΩ(PC)
q contains, at the most, theNS

codewords̃c(t) = [0, · · · , 0, 1, 0, . . . , 0] for t = 1, 2, . . . , NS

where only thet–th entry is non–zero, and the codeword
c̃(q) = [0, · · · , 0, 1, 0, . . . , 0] where only the(NS+q)–th entry
is non–zero. It is worth noticing that̃c(q) is always present in
Ω

(PC)
q , while the presence of̃c(t) for t = 1, 2, . . . , NS depends

on the codebook,i.e., the network code. To account for this,
we introduce the indicator variableξ(t) for t = 1, 2, . . . , NS,
such thatξ(t) = 1 if c̃(t) is in the codebook andξ(t) = 0 if c̃(t)

is not in the codebook. Accordingly, (21) can be re–written as
follows:

ABEP
(UB)
Rq

≤
NS
∑

t=1

ξ(t)APEP
(

0 → c̃(t)
)

+APEP
(

0 → c̃(q)
)

(a)≈
NS
∑

t=1

ξ(t) (4γ̄StD)
−1

+
[

(

4γ̄RqD

)−1
+
(

4γ̄eqRq

)−1
]

(23)

where
(a)≈ is proved in Appendix III by using the residues

theorem to compute (14).
From (23), the ABEP of the partial–cooperative relays can

be bounded as
(

4γ̄RqD

)−1
+
(

4γ̄eqRq

)−1 ≤ ABEP
(UB)
Rq

≤
∑NS

t=1 (4γ̄StD)
−1

+
(

4γ̄RqD

)−1
+
(

4γ̄eqRq

)−1
. Thus, two con-

clusions can be drawn: i)ABEP(UB)
Rq

≥
(

4γ̄RqD

)−1
for every

network topology, network codes, and fading channels. Since
ABEP0 ≈

(

4γ̄RqD

)−1
is the high–SNR approximation of the

error probability of a single–hop transmission fromRq to D
[39], it follows that the partial–cooperative relays undergo a
performance loss, compared to single–hop transmission, which
is the price they pay for helping the sources; and ii) this
performance loss decreases for good source–to–relay channels,
since in this casēγ−1

eqRq
→ 0, while it increases with the

number of sources that are network–coded at the relay. In
Section IV-A and in Section IV-D, we investigate whether this
performance loss is offset by a better diversity order and/or
coding gain for the sources.

IV. D IVERSITY ANALYSIS AND NETWORK CODE DESIGN

The objective of this section is threefold: i) to study the
diversity order of sources and partial–cooperative relays; ii)
to provide design criteria for binary network codes such that,
in addition to having a solvable NC problem, the diversity
order of each source can be assigned individually (unequal
error robustness to multipath fading); and iii) to summarize
relevant performance trends that can be inferred from our
analytical framework. A byproduct of our diversity analysis
is a simplified expression of the ABEP of the sources.

A. Achievable Diversity Order

We introduce the notationESt
= χSt

Em and ERq
=

χRq
Em. With the equal energy allocation policy described in

Section II, we haveχSt
= 1, χRq

= 1 if Rq ∈ N (PC)
Rq

,

and χRq
= 1/2 if Rq ∈ N (FC)

Rq
. By assumingc = 0

according to the uniform error property in Section III-B,
M̄∆(C−MRC) ( ·| ·) in (18) simplified to (24) shown at the top of

this page, where: i)σ2
eqRq

=
(

∑NS

t=1 gStRq
χ−1
St

σ−2
StRq

)−1

; ii)

w
(S)
H (c̃) =

∑NS

t=1 b̃St
is the Hamming weight of the systematic

bits of c̃, i.e., the bits transmitted from the sources; iii)
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













Gd (c̃, Em)
(a)
= w

(S)
H (c̃) + w

(R,E(ok)
m )

H (c̃) +

(

w
(R,E(nok)

m )
H (c̃) + w̄

(R,E(nok)
m )

H (c̃)

)

(b)
= w

(S)
H (c̃) + w

(R)
H (c̃) + w̄

(R,E(nok)
m )

H (c̃)

Gd (c̃)
(c)
= minEm

{Gd (c̃, Em)} = minEm

{

w
(S)
H (c̃) + w

(R)
H (c̃) + w̄

(R,E(nok)
m )

H (c̃)

}

(d)
= w

(S)
H (c̃) + w

(R)
H (c̃)

(25)

ABEP
(UB)
St

≈ ABEP
(SV)
St

= (Em/N0)
−SV(St)

∑

b̃, b̃St=1, wH(c̃)=SV(St)

2NR−1
∑

m=0

(

(2πj)
−1
∫ δ+j∞

δ−j∞

Ψ(s| c̃, Em) s−1ds

)

(27)

w
(R,E(ok)

m )
H (c̃) =

∑NR

q=1, µq−1=0 b̃
(NC)
Rq

and w
(R,E(nok)

m )
H (c̃) =

∑NR

q=1, µq−1=1 b̃
(NC)
Rq

are the Hamming weights of the parity
bits of c̃, i.e., the bits transmitted from the relays forwarding a
correct and an incorrect network–coded bit, respectively.Also,

w
(R)
H (c̃) = w

(R,E(nok)
m )

H (c̃) + w
(R,E(ok)

m )
H (c̃) =

∑NR

q=1 b̃
(NC)
Rq

is

the Hamming weights of all parity bits; and iv)card
(

E(nok)
m

)

is the cardinality ofE(nok)
m , i.e., the number of relays that

transmit an incorrect network–coded bit.

From (24), it follows that the diversity order of the
APEP linked to M̄∆(C−MRC) ( ·| c̃, Em) depends oñc and
Em, and it is equal to Gd (c̃, Em) = w

(S)
H (c̃) +

w
(R,E(ok)

m )
H (c̃)+card

(

E(nok)
m

)

[42]. Since the diversity order,

G
(Z)
d , of node Z =

{

St, Rq ∈ N (PC)
Rq

}

is determined by
the APEP with the smallest decaying exponent, we have
G

(Z)
d = minc̃,Em

{

Gd (c̃, Em)| b̃Z = 1
}

. The conditioning

upon b̃Z = 1 originates from (20) and (21), which show that
the APEP contributes to the ABEP ofZ if and only if b̃Z = 1.

Let w̄
(R,E(nok)

m )
H (c̃) = card

(

E(nok)
m

)

− w
(R,E(nok)

m )
H (c̃) be the

complement ofw
(R,E(nok)

m )
H (c̃). Then, Gd (·, ·) simplifies to

(25) shown at the top of this page, where: i)
(a)
= follows

from card
(

E(nok)
m

)

= w
(R,E(nok)

m )
H (c̃) + w̄

(R,E(nok)
m )

H (c̃); ii)
(b)
= follows from w

(R)
H (c̃) = w

(R,E(nok)
m )

H (c̃) + w
(R,E(ok)

m )
H (c̃);

iii) in
(c)
= , the minimum is computed only with respect toEm

for a fixed codeword̃c; and iv)
(d)
= follows from the fact that

w̄
(R,E(nok)

m )
H (c̃) ≥ 0 by definition. Thus, from (25):

G
(Z)
d = min

c̃

{

Gd (c̃)| b̃Z = 1
}

= min
c̃

{

w
(S)
H (c̃) + w

(R)
H (c̃)

∣

∣

∣ b̃Z = 1
}

(a)
= min

c̃

{

wH (c̃)| b̃Z = 1
}

(b)
= SV(Z)

(26)

where: i)
(a)
= originates from the definition of Hamming weight

of c̃, i.e., wH (c̃) = w
(S)
H (c̃) + w

(R)
H (c̃); and ii)

(b)
= follows

from [43, Def. 1] withSV(Z) denoting the so–called separation
vector (SV) of Z. Let a codebookC = {c̃}, SV(Z) is the
minimum Hamming weight among the codewords of the
codebook with̃bZ = 1.

In summary, from (26) two main conclusions can be drawn:
i) the C–MRC in (8) provides nodeZ with a diversity order
equal toSV(Z); and ii) by properly choosing the codebook
and, thus, the network code, each node can achieve a different
diversity order, which provides it with a different robustness to
multipath fading and flexibility for improved energy efficiency
[27]. In Section IV-C, we provide guidelines to design the
network code such that the sources can achieve the desired
diversity order.

B. Simplified Average Bit Error Probability of the Sources

The analysis of the diversity order in Section IV-A allows
us to simplify the ABEP in (20). In fact, for networks with
a large number of sources and partial–cooperative relays the
number of codewords can be very large, which results in the
computation of many APEPs. Since, for high–SNR, the ABEP
(20) is dominated by the APEPs with decaying exponent
SV(St), then (20) can be simplified to (27) shown at the top of
this page, where only the codewords resulting in a bit error for
the sources,i.e., b̃St

= 1, and providing the smallest decaying
exponent with the SNR,i.e., SV(St), are retained.

C. Network Code Design for Cooperative Diversity

In Section IV-A, it is proved that sources and partial–
cooperative relays achieve a diversity order equal to the
separation vector of the codebook (network code). This result
is relevant from thesystem analysispoint of view. In this
section, we look into two importantsystem designissues: i) to
construct the network code such that the sources have a desired
separation vector; and ii) to understand which relays contribute
to the diversity order of the sources. The first design problem is
relevant because a bigger separation vector could be assigned
to sources either subject to deeper fading conditions or having
less residual energy [26], [27]. The second design problem
is important because nodes that contribute to the diversity
order of none of the sources provide a marginal contribution
to their end–to–end performance, and, thus, they may be
excluded from the relaying phase to reduce the cooperation
overhead. In our implementation, this decision is made during
the initialization phase, before actual data transmission, and,
thus, these excluded nodes will be allowed to transmit the data
available in their own buffers in the next available time–slot.
More specifically, three situations can arise for these nodes:
i) they will act as sources and will transmit their data to the
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destination; ii) they will act as sources and will ask other nodes
to act as relays on their behalf for performance improvement;
and iii) they will act as relays for other sources for which
they can effectively contribute to their performance. As far as
this latter case is concerned, a possible scenario is as follows.
To better understand, we anticipate that partial–cooperative
relays do not contribute to the diversity order of the sources,
while full–cooperative relays do contribute. Accordingly, some
partial–cooperative relays may agree to act as full–cooperative
relays for other sources, from which they may have received
special incentives for cooperation. In other words, the relays
may decide their level of cooperation depending on the sources
that ask for cooperation.

Since the diversity order coincides with the separation vec-
tor of the codebook, it follows that it is uniquely determined
by the generator matrix,G(NC), of the network code. Note
that this is not true, in general, for the coding gain [42].
In fact, it also depends on the demodulation errors at the
relays and the fading channels. In particular,G(NC) is an
(

NS +N
(PC)
R

)

× (NS +NR) matrix such thatc = bG(NC).
By direct inspection of the transmission protocol in Section
II, G(NC) can be constructed as the block matrix as follows:

G(NC) =

[

INS×NS
G(PC) G(FC)

0
N

(PC)
R

×NS
I
N

(PC)
R

×N
(PC)
R

0
N

(PC)
R

×N
(FC)
R

]

(a)
=

[

I(
NS+N

(PC)
R

)

×
(

NS+N
(PC)
R

)

∣

∣

∣

∣

G(FC)

0
N

(PC)
R

×N
(FC)
R

]

(28)

where: i) In×n is an n × n identity matrix; ii) 0l×n is an
l × n all–zero matrix; iii) (·)T is the transpose operator; iv)
G(PC) is the NS × N

(PC)
R matrix whoseq–th column for

Rq ∈ N (PC)
Rq

is the encoding vectorgT
Rq

; and v)G(FC) is the

NS × N
(FC)
R matrix whoseq–th column forRq ∈ N (FC)

Rq
is

the encoding vectorgT
Rq

. In (28), it is implicitly assumed that
partial–cooperative relays transmit in time–slotsTNS+q for
q = 1, 2, . . . , N

(PC)
R , while full–cooperative relays transmit in

time–slotsTNS+q for q = N
(PC)
R +1, N

(PC)
R +2, . . . , NR. This

assumption is retained only for simplicity of writing. In fact,
the performance does not change with the transmission order
of the relays if the channels are quasi–static during the whole
cooperation phase,i.e., for NS + NR time–slots. By direct
inspection of (28), we notice thatG(NC) is in row–echelon

form. The identity in
(a)
= is obtained by applying elementary

row operations toG(NC) in order to get a reduced row–echelon
form.

From [36, Lemma 4] and [43, Eq. (4)], it is known that
the separation vector ofG(NC) can be directly inferred from
its relatedN (FC)

R × (NS +NR) parity–check matrixH(NC).
From (28),H(NC) is:

H(NC) =
[

(

G(FC)
)T

0T

N
(FC)
R ×N

(PC)
R

I
N

(FC)
R

×N
(FC)
R

]

(29)
where the rows of

(

G(FC)
)T

are the encoding vectors of the
full–cooperative relays.

By direct inspection ofH(NC), and from [36, Lemma 4]

and [43, Eq. (4)], the following considerations for the design
of the network code can be drawn:

• The diversity order ofSt is G
(St)
d = SV(St) = nct + 1,

wherenct is the least number of columns ofH(NC) whose
linear combination yields thet–th column ofH(NC). In other
words, St has diversity orderSV(St) if and only if the t–
th column ofH(NC) is linearly dependent on no fewer than
nct = SV(St) − 1 columns ofH(NC) [36, Lemma 4]. This
provides a clear criterion to choose the encoding vectors of
the full–cooperative relays, and, thus, the matrixG(FC) in
(28) and (29).
• Similar to the sources, the diversity order ofRq ∈ N (PC)

R

is G
(Rq)
d = SV(Rq) = ncNS+q + 1, wherencNS+q is the

least number of columns ofH(NC) whose linear combination
yields the(NS + q)–th column ofH(NC). Since the(NS +

q)–th column ofH(NC) is zero for q = 1, 2, . . . , N
(PC)
R , it

follows that ncNS+q = 0 and, thus,G(Rq)
d = SV(Rq) = 1

for all partial–cooperative relays. This confirms the analysis
in Section III-C.
• From (29), it follows that the partial–cooperative relays

do not contribute to the diversity order of the sources. In fact,
H(NC) is independent of the encoding vectors,i.e., the matrix
G(PC) in (28). Only the full–cooperative relays contribute to
the diversity order of the sources, and, by properly choosing
the encoding vectors inG(FC), the range of achievable
diversity orders ofSt is 1 ≤ SV(St) ≤ N

(FC)
R +1 [36, Lemma

5].
• In addition to the analytical derivation, it is interesting

to provide intuition about the result that partial–cooperative
relays do not contribute to the diversity order of the sources.
For simplicity, let us assume that there are no decoding errors
at the relays (i.e., the SNR of the source–to–relay links goes to
infinity). As far as diversity is concerned, this is the best–case
scenario. If the diversity order is equal to one in this case,
then it will be equal to one for every SNR of the source–
to–relays links. However, this no longer holds if the diversity
order is greater than one, since decoding errors at the relays
may reduce the diversity order. To start with, let us consider the
simplest case study with a single source and a single relay. The
relay acts as partial–cooperative, and, thus, it network–codes
the bit received from the source with its own bit. Accordingly,
the codewords of the codebook are: “00”, “01”, “10”, “11”
where the first bit is sent by the source and the second bit is
the XOR of the bits of source and relay. It is apparent that the
codebook contains all the possible codewords, and, thus, the
Hamming distance of the information bits can only be equal to
one. More in general, if all the relays are partial–cooperative,
i.e., the network rate is equal to one, the intuitive reason why
partial–cooperative relays do not contribute to the diversity of
the sources is that the codebook of the equivalent distributed
code contains all possible codewords of the universe set. As
a consequence, the Hamming distance of each information
bit can only be one. If the network rate is less than one,
i.e., some relays are full–cooperative and some others are
partial–cooperative, then providing an intuitive explanation is
more complicated and the equivalent codebook needs to be
investigated by direct inspection. Our understanding is that
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when a partial–cooperative relay network–codes its own bit
with the bits received from the sources the net effect is that
the transmitted network–coded bit no longer acts as a paritybit
because of the presence of the information bit of the partial–
cooperative relay. On the other hand, the transmitted network–
coded bit is an actual information bit, and, thus, the Hamming
distance of the equivalent code is reduced compared with
the case study where all the relays are full–cooperative. Our
research is currently devoted to understand whether partial–
cooperative relays can contribute to the diversity order of
the sources by increasing the Galois field and/or for some
modulation orders. We are particularly interested in system
setups with network rates less than one. In fact, if all relays
are partial–cooperative the equivalent codebooks may coincide
with the universe set for many choices of Galois field and
modulation order. If so, the diversity order of the sources will
never be greater than one.

From these considerations, the following design criterionfor
the network code is proposed. Let us consider a network with
NS sources requesting diversity orderG

(St)
d andN (FC)

R full–
cooperative relays. Partial–cooperative relays can be neglected
since they do not contribute toG(St)

d . Then,G(FC), i.e., the
encoding vectors of the full–cooperative relays, can be chosen
as the generator matrix of a systematic(NS + N

(FC)
R , NS)

linear block code with separation vectorSV(St) = G
(St)
d .

Known techniques for the construction of these codes, along
with the conditions for their existence for a given choice
of NS and NR, are available in the literature [36], [44].
Examples of such systematic codes are listed in [37, Table I]
for various network topologies and separation vectors. Among
the possible choices, an important case study is when each
source needs the largest separation vector,i.e., SV(St) =

N
(FC)
R + 1 for t = 1, 2, . . . , NS . This case study corresponds

to the design of the so–called Maximum Distance Separable
(MDS) codes [44, Ch. 11], which are known to attain the
Singleton bound [45]. From [44, Ch. 11, Corollary 7], it
follows that for NS ≥ 2, binary modulations, and binary
network codes the Singleton bound can be attained only for
single–relay networks. If more relays are available, non–binary
codes should be used to attain the Singleton bound. For a two–
source two–relay network with binary NC, this result has been
proved, using simulations, in [26] by considering all possible
choices of the encoding vectors. On the other hand, for single–
relay networks the possibility to attain the Singleton bound
for arbitrary Galois fields has been proved in [22]. In fact, the
network code used in [22] is an example of the the so–called
trivial MDS codes described in [44, Ch. 11, Problem 1] with
code type(n, n− 1, 2) andn = NS + 1.

D. Insights From the Analytical Framework

We close this section by providing some conclusions that
can be drawn from our analytical framework and can help the
understanding, the analysis, and the design of network–coded
cooperative networks.

C1) From the definition ofσ2
eqRq

in (24), it follows, as
expected, that the larger the number of network–coded sources
at each relay, the worse the performance. This result is in

agreement with [22] and [23], as well as with intuition.
Mathematically speaking, this originates from the fact that
increasing the number of network–coded sources results in
a larger probability,P (NC)

Rq
in (4), of transmitting an incorrect

network–coded bit. Thus, the matrix
(

G(FC)
)T

in (29) should
not only be designed to provide the desired diversity order,
but its rows should be as sparse as possible in order to
minimize the error accumulation problem at the relays, and,
thus, to improve the coding gain [42]. In general, the design
criterion on the diversity order has a more pronounced impact
on the end–to–end performance. Furthermore, the closed–
form expression ofσ2

eqRq
in (24) confirms that the error

accumulation problem at the relays is inversely proportional to
the quality of the source–to–relay links,i.e., σ2

StRq
. This result

is well–known for DemF–based relaying protocols [24], [25],
and it can be considered as a sanity check for our analytical
derivation.

C2) In Section IV-C, it is shown thatSV(St) ≥ 1 for
every choice of

(

G(FC)
)T

in (29). In particular,St enjoys
no diversity gain if and only ifSV(St) = 1, which implies
SV(St) = nct + 1 = 1 ⇒ nct = 0. This is possible if and
only if the t–th column of

(

G(FC)
)T

is all–zero, which, in
turn, implies thatSt is network–coded by none of the full–
cooperative relays. This result is expected and agrees with
intuition. In fact, if St is network–coded by none of the
full–cooperative relays this implies that it is only present in
the direct link, and, thus, the diversity order can only be
equal to one. This sanity check confirms the consistency of
our analytical derivation. In addition, and, more importantly,
it provides an interesting conclusion. It is sufficient thatat
least one entry of all columns of

(

G(FC)
)T

is non–zero
to guarantee that each source enjoys at least second–order
diversity, i.e., G(St)

d = SV(St) ≥ 2. In other words, if each
source is network–coded by at least one full–cooperative relay,
then its diversity order is at least equal to two regardless of
the specific choice of the network code, which can also be
randomly generated.

C3) Let us assume that theN (FC)
R full–cooperative relays

have the same encoding vector and that at least two of its
entries are non–zero,i.e., at least two sources are network–
coded. If the encoding vectors are all the same and only one
of its entries is non–zero, the system reduces to a cooperative
network without NC. This latter case study is considered in
C6) below. Under these assumptions, the sources that are
network–coded have diversity order two, while the sources that
are not network–coded have diversity order one. In fact, the
matrix

(

G(FC)
)T

in (29) has a number of all–one columns
equal to the sources that are network–coded, and the other
columns are all–zero. The all–zero columns are responsiblefor
the first–order diversity of the sources that are not network–
coded. On the other hand, the all–one columns, since linearly
dependent, are responsible for the second–order diversityof
the network–coded sources.

C4) Let us consider that theN (FC)
R full–cooperative relays

network–code the data received from all the sources. This
results in having an all–ones matrix

(

G(FC)
)T

in (29). Ac-
cordingly, its columns are linearly dependent and the diversity
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







ABEP
(SV)
St

≈ (Em/N0)
−SV(St) ∑

b̃S , b̃St
=1, wH(c̃(FC))=SV(St)

2NR−1
∑

m=0

(

(2πj)−1 ∫ δ+j∞
δ−j∞ Ψ

(

s| c̃(FC), Em
)

s−1ds
)

Ψ
(

s| c̃(FC), Em
)

= [s (1− s)]
−w

(S)
H

(

c̃
(FC)

) NS
∏

t=1

(

4χStσ
2
StD

)−b̃St

×

[

− (2s)−1

(

1−

√

(1− 4s)−1

)]w

(

R,E
(nok)
m

)

H

(

c̃
(FC)

)

NR
∏

q=1, Rq∈N
(FC)
R

, µq−1=1

(

4σ2
eqRq

)−1

×

NR
∏

q=1, Rq∈N
(FC)
R

, µq−1=0

[

(

4σ2
eqRq

s
)−1

+
(

4χRqσ
2
RqD

s (1− s)
)−1

−
(

4σ2
eqRq

)−1
(2s)−1

(

1−

√

(1 + 4s)−1

)]b̃
(NC)
Rq

(30)

order of each source isG(St)
d = SV(St) = 2.

C5) In [22], it is shown that one relay is sufficient for all
network–coded sources to achieve second–order diversity.The
diversity analysis in Section IV-C reveals that this encoding is
optimum from the diversity point of view. In fact, we have
proved that1 ≤ SV(St) ≤ N

(FC)
R + 1. If N

(FC)
R = 1,

then 1 ≤ SV(St) ≤ 2. In [22], it is proved thatG(St)
d =

SV(St) = 2, which is the best achievable diversity with
one full–cooperative relay. FromC3), it follows that multiple
relays can be useless, from the diversity point of view, if their
encoding vectors are all the same since diversity orders no
greater than two can be achieved. In the presence of multiple
relays, the encoding vectors should be carefully designed in
order to enjoy the benefits of cooperative diversity. The design
guidelines provided in Section IV-C are useful to this end.

C6) As mentioned in Section I, network–coded cooperation
is a generalization of repetition–based relaying. In particular,
the former reduces to the latter if there is only one non–zero
entry in each encoding vectorgRq

for Rq ∈ N (FC)
R . Thus,

the frameworks developed in the present paper,e.g., (27),
and the diversity analysis in Section IV-A can be applied to
repetition–based relaying as well. In this case, thet–th column
of
(

G(FC)
)T

in (29) has a number of non–zero entries equal
to the full–cooperative relays that forward the data received
from St. Let 0 ≤ N

(St)
R ≤ N

(FC)
R denote this number of

relays. Also, since each relay can forward the data of one
and only one source, it follows that the firstNS columns
of
(

G(FC)
)T

are independent of each other and thatnct =

N
(St)
R . Thus,G(St)

d = SV(St) = nct + 1 = N
(St)
R + 1. This

result is in agreement with state–of–the–art diversity analysis
of repetition–based relaying [24]. However, unlike [24], our
frameworks provide also an accurate estimate of the coding
gain.

C7) In Section III-C, it is proved that the partial–
cooperative relays undergo a performance loss, compared to
single–hop transmission, which can be interpreted as the price
they pay for helping the sources. Furthermore, in Section IV-C
it is shown that the partial–cooperative relays do not contribute
to the diversity order of the sources. Thus, a fundamental ques-
tion is whether the partial–cooperative relays are useful and
whether they should be exploited during the relaying phase.To
answer to this question, it is important to investigate the impact

that these nodes have on the coding gain of the sources. To this
end, let us consider two network topologies: 1) the first one
with NS sources,N (FC)

R full–cooperative relays, andN (PC)
R

= 0 partial–cooperative relays; and 2) the second one withNS

sources,N (FC)
R full–cooperative relays, andN (PC)

R partial–
cooperative relays. In both networks, the full–cooperative
relays have the same encoding vectors, while in the second
network theN (PC)

R partial–cooperative relays have arbitrary
encoding vectors. LetC1 andC2 denote the codebooks of the
two network topologies. In general,C1 6= C2. From Section
IV-C, it is known that, in both networks, the sources have the
same diversity order,i.e., SV(St)

1 = SV
(St)
2 = SV(St). From

(27), we know that for high–SNR the ABEP ofSt depends
only on the codewords̃c∗l ∈ Cl with SV

(St)
l = wH (c̃∗l ) =

w
(S)
H (c̃∗l ) + w

(R)
H (c̃∗l ) for l = 1, 2. For these codewords, the

constraintSV(St)
1 = SV

(St)
2 implies w

(S)
H (c̃∗1) = w

(S)
H (c̃∗2)

and w
(R)
H (c̃∗1) = w

(R)
H (c̃∗2), which stems from the fact that

both codebooks have, by construction, the same systematic
bits. In addition, we can writew(R)

H (c̃∗l ) = w
(R,FC)
H (c̃∗l ) +

w
(R,PC)
H (c̃∗l ), wherew(R,FC)

H (c̃∗l ) andw
(R,PC)
H (c̃∗l ) are the

contributions to the Hamming weight related to full– and
partial–cooperative relays, respectively. By construction: i)
w

(R,FC)
H (c̃∗1) = w

(R,FC)
H (c̃∗2), since in both networks the

full–cooperative relays use the same encoding vectors; and
ii) w

(R,PC)
H (c̃∗1) = 0, since in the first network there are

no partial–cooperative relays. In conclusion, the constraint
w

(R)
H (c̃∗1) = w

(R)
H (c̃∗2) implies w

(R,PC)
H (c̃∗2) = 0, which,

in turn, implies, for these codewords,b̃(NC)
q = 0 for Rq ∈

N (PC)
R . In other words, in the second network, the partial–

cooperative relays do not contribute to the Hamming weight
of the codewords̃c∗2 ∈ C2. FromΨ( ·| c̃∗2, ·) in (24), we notice
that the relays with̃b(NC)

q = 0 do not contribute to the coding
gain of the ABEP. Thus, the partial–cooperative relays do not
contribute to the coding gain of the sources.
In summary, our analytical study clearly shows that the
partial–cooperative relays contribute to neither the diversity
order nor to the coding gain of the sources. In addition,
these relays undergo a performance loss due to applying
NC on the data received from the sources. In conclusion,
our analysis reveals that only full–cooperative relays should
be used during the relaying phase. This result allows us
to further simplify the computation ofΨ( ·| ·, ·) in (24)
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and ABEP
(SV)
St

in (27). Since the partial–cooperative relays
contribute to neither the diversity order nor to the coding
gain, they can be completely neglected from the computation
of Ψ( ·| ·, ·) and ABEP

(SV)
St

. Thus, (24) and (27) simplify
as shown in (30) at the top of the previous page, where

c̃(FC) =

[

b̃S1 , b̃S2 , . . . , b̃SNS
, b̃

(NC)
R1

, b̃
(NC)
R2

, . . . , b̃
(NC)
R

N
(FC)
R

]

ac-

counts only for sources and full–cooperative relays. In other
words, in the high–SNR the performance of the sources is
determined by the sub–network containing only the sources
and the full–cooperative relays. The partial–cooperativerelays
can be neglected regardless of the binary encoding vectors
they use.
Finally, some remarks about the usefulness of partial–
cooperative relays are needed. In the present paper, we have
focused our attention on the contribution of these relays to
diversity order and coding gain. Our results have clearly
shown that these relays have a negligible contribution to
these performance metrics. However, other papers have shown
that partial–cooperative relays have many advantages, which
include energy efficiency, low transmission delay, as well
as the possibility to avoid dedicated network elements for
data relaying [29]. Furthermore, partial–cooperative relays are
always present in the general NC framework [12], [30]. As a
consequence, our framework has highlighted important perfor-
mance tradeoffs for different types of relays. Full–cooperative
relays seem to be more useful for diversity and end–to–end
performance. On the other hand, partial–cooperative relays
seem to be more useful for energy efficiency, higher rate,
and low transmission delay. How these tradeoffs are affected
by non–binary modulation and non–binary Galois field is
currently being investigated by the authors.

C8) So far, the encoding vectors at the relays have been
assumed to be fixed a priori,i.e., deterministic NC. This
implies that the encoding vectors must be agreed by relays
and destination before transmission. A different option isto
use random NC, which allows the relays to generate at random
the encoding vectors. This solution is suitable for distributed
implementations [46], [47]. However, random binary NC can-
not guarantee that the sources achieve a given diversity order
since there is no a priori structure on the network code. In fact,
in random binary NC the worst case scenario for the diversity
of sourceSt happens when none of the encoding vectors at
the relays includeSt, i.e., whengStRq = 0 for Rq ∈ N (FC)

R

andq = 1, 2, . . . , NR. In C2), it is shown that in this case the
sources have diversity order one. SinceSt is network–coded
in none of the relays, this implies that its error performance
is equal to the error probability of a single–hop transmission
multiplied by the probability thatgStRq = 0 for Rq ∈ N (FC)

R

and q = 1, 2, . . . , NR, i.e., 1
/

2N
(FC)
R . Thus, for high–SNR,

ABEP
(SV,random)
St

≈
(

1
/

2N
(FC)
R

)

[

4χSt
σ2
StD

(Em/N0)
]−1

.
As a result, random binary NC allows the sources to achieve
better end–to–end error performance than single–hop trans-
mission. Also, the performance gain increases withN

(FC)
R .

However, it does not help increasing the diversity order.

Finally, we would like to emphasize that the conclusions
drawn in the present paper depend in many cases on the

assumptions of binary modulation and binary NC. The im-
pact of non–binary modulation and non–binary NC on these
conclusions is currently being investigated by the authors.

E. Generalization to Non–Binary Modulation and Non–
Binary Network Code: Thoughts and Conjectures

Diversity analysis and related network code design dis-
cussed in the previous sections are applicable only to the
system setup with binary modulation and binary network
codes. In the present paper, these assumptions are retainedonly
for analytical tractability and to provide sound proofs about
the achievable diversity for generic network topologies and
realistic channel models over all the communications links.
In this section, we provide some thoughts (or conjectures)
about the impact of the Galois field on the expected diversity
order. The departing point of our thoughts moves from the
outcomes obtained in the binary case. We have shown that if
a proper demodulator at the destination is used, then classical
systematic linear block codes can be used as network codes.
More specifically, the design of diversity–achieving network
codes is equivalent to the design of linear systematic block
codes over fully– interleaved point–to-point links (see Section
IV-C and [23]). In other words, if the demodulator is well
designed to account for demodulation errors at the relays, then
network codes for distributed diversity can be constructedby
assuming ideal (error–free) source–to–relay links. In what fol-
lows, we call this demodulator, assuming that it exists for every
system setup, genie–aided detector. The two–step demodulator
in [23] and the C–MRC demodulator in Section II-A are two
practical examples of detectors for binary modulation and
binary network codes. Likewise, the C–MRC demodulator in
[22] for single–relay networks is another practical example
under the assumption that modulation order and Galois field
are the same, as well as that a MDS network code is used
[44, Ch. 11]. Let us now assume that such demodulator exists,
regardless of its computational complexity and network CSI
needed at the destination to counteract the error propagation
problem. Under these assumptions and if modulation order
and Galois field are the same, we expect that the results for
the binary case can be generalized to the non–binary case.
In particular, we conjecture that non–binary linear systematic
block codes can be used as diversity–achieving network codes.
This implies that existence conditions and code constructions
for equal (e.g., MDS code design) and unequal (based on the
separation vector) diversity apply. For example, from [44,Ch.
11, Corollary 7] and [45] this would imply that the Singleton
bound can be achieved for the design of MDS codes if the
size,q, of the Galois field of the network code (and, thus, the
modulation order) satisfies the inequalitiesq ≥ NS + 1 and
q ≥ N

(FC)
R + 1 if NS ≥ 2 andN

(FC)
R ≥ 2. This conjecture

is similar to the results recently obtained in [15], [17]–[19]
for the erasure channel model. On the other hand, the analysis
of the system setup where Galois field and modulation order
are different is more complicated to be conjectured since it
would need further assumptions on how modulation and NC
are mixed together. Formal proofs of these conjectures, as
well as the design of practical demodulators to obtain these
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Fig. 2. ABEP of a 2–source 2–relay network. Both relays are full–
cooperative. Performance comparison of three diversity combiners at the des-
tination: i) the ML–optimum demodulator in (3); ii) the two–step demodulator
in [23, Eq. (6)]; and iii) the C–MRC in (8). Setup: i) channel fading is i.i.d.
with σ2

0 = 1; and ii) the encoding vectors aregR1
= [1, 0], gR2

= [1, 1],
which yield SV(S1) = 3 and SV(S2) = 2. For clarity, only Monte Carlo
simulations are shown.

diversity gains for realistic source–to–relays links and for an
arbitrary number of sources and relays are currently being
investigated by the authors.

V. NUMERICAL AND SIMULATION RESULTS

In this section, analytical framework and findings are
validated through Monte Carlo simulations. For simplicity,
numerical examples for i.i.d. fading channels are described.
However, the framework has been verified for various channel
conditions. In all analyzed scenarios, we have obtained a good
accuracy for high–SNR. An example for i.n.i.d fading channels
is shown in Fig. 6. The encoding vectors are obtained, for
a given network topology and SV, from [37]. As far as the
analytical framework is concerned, the ABEP of the sources,
ABEP

(SV)
St

, is computed using (30) and the Gauss–Chebyshev
quadrature rule in [39, Sec. 9B.2], [40, Eq. (10)] withδ given
in (19). For completeness,ABEP(UB)

St
in (20) is shown as

well. It is obtained from (30) by neglecting the condition on
SV(St).

In Fig. 2, a network topology with two sources and two
relays is studied, and the ABEP of three diversity combinersis
compared. It can be observed that the C–MRC provides near–
ML performance with reduced signal processing complexity.
Furthermore, it provides, with lower implementation complex-
ity, better performance than the two–step demodulator in [23].
In fact, the weighting factors of the C–MRC are simpler to be
computed. Other network topologies with more sources and
relays have been studied, and the same performance trend as
in Fig. 2 has been observed in all analyzed case studies.

In Fig. 3 and Fig. 4, a network topology with two sources
and five relays is considered, and the analytical frameworks
are compared with Monte Carlo simulations. For high–SNR,
we observe a good accuracy. It is worth mentioning that,
unlike ABEP

(UB)
St

, ABEP(SV)
St

is not an upper–bound since
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C−MRC (S1)
C−MRC (S2)

Fig. 3. ABEP of a 2–source 5–relay network. All relays are full–cooperative.
The C–MRC in (8) is used at the destination. Setup: i) channelfading is i.i.d.
with σ2

0 = 1; and ii) the encoding vectors aregR1
= [1, 0], gR2

= [1, 0],
gR3

= [1, 1], gR4
= [1, 1], gR5

= [0, 1], which yield SV(S1) = 5,
andSV(S2) = 4. Markers show Monte Carlo simulations, solid lines show
ABEP

(UB)
St

, and dotted lines showABEP
(SV)
St

.

some codewords are not considered in the computation. How-
ever, ABEP(SV)

St
asymptotically (high–SNR) overlaps with

ABEP
(UB)
St

, as discussed in Section IV-B. The ABEP of the
partial–cooperative relays obtained from (23) is shown as well.
The figures confirm the correctness of the diversity analysisin
Section IV. More specifically, Fig. 4 shows the diversity order
degradation caused when two relays in Fig. 3 are no longer
full–cooperative but become partial–cooperative. The ABEP of
Fig. 4 coincides with that of the sub–network without partial–
cooperative relays. In Fig. 5 and Fig. 7, the same analysis is
conducted for a network topology with three sources and three
relays. Conclusions similar to Fig. 3 and Fig. 4 can be drawn.
Furthermore, Fig. 6 shows an example for i.n.i.d. fading by
assuming the same network topology and network code as
in Fig. 5. More specifically, the source–to–relay channels are
assumed to be of better quality than the other channels. We
observe a very good accuracy of our framework. In addition,
by comparing Fig. 5 and Fig. 6 we observe, as expected, that
the ABEP in Fig. 6 is better since error propagation is less
pronounced for this setup.

In Fig. 8, the ABEP of repetition–based cooperative relaying
and random binary NC is shown. A network topology with
three sources and three relays is investigated. Figure 8 confirms
that repetition–based cooperative relaying is a special case
of network–coded cooperation, and that our framework can
be used to provide good estimates of both diversity order
and coding gain. Also, Fig. 8 confirms the first–order di-
versity of random binary NC, as well as the accuracy of
ABEP

(SV,random)
St

computed in Section IV-D.
In Fig. 9 and Fig. 10, the ABEP of network–coded (NC) and

repetition–based (RepCod) cooperative diversity is compared
by assuming the same network topology (two sources and five
relays) and the same number of time–slots. Figure 9 and Fig.
10 show that, by properly choosing the encoding vectors, the
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C−MRC (S1)
C−MRC (S2)
C−MRC (R1)
C−MRC (R2)

Fig. 4. ABEP of a 2–source 5–relay network.R1 and R2 are partial–
cooperative relays, andR3, R4, andR5 are full–cooperative relays. The C–
MRC in (8) is used at the destination. Setup: i) channel fading is i.i.d. with
σ2
0 = 1; and ii) the encoding vectors aregR1

= [1, 0], gR2
= [1, 0],

gR3
= [1, 1], gR4

= [1, 1], gR5
= [0, 1], which yield SV(S1) =

SV(S2) = 3. As for the sources, markers show Monte Carlo simulations,
solid lines showABEP

(UB)
St

, and dotted lines showABEP
(SV)
St

. More

specifically,ABEP
(UB)
St

andABEP
(SV)
St

are computed by considering only
the sub–network with sources and full–cooperative relays.As for the partial–
cooperative relays, markers show Monte Carlo simulations,and dotted lines
are obtained from (23).
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C−MRC (S3)

Fig. 5. ABEP of a 3–source 3–relay network. All relays are full–cooperative.
The C–MRC in (8) is used at the destination. Setup: i) channelfading is
i.i.d. with σ2

0 = 1; and ii) the encoding vectors aregR1
= [1, 0, 1],

gR2
= [1, 1, 0], gR3

= [1, 0, 0], which yield SV(S1) = 4, andSV(S2) =
SV(S3) = 2. Markers show Monte Carlo simulations, solid lines show
ABEP

(UB)
St

, and dotted lines showABEP
(SV)
St

.

transmission protocol described in Section II is flexible enough
to accommodate various performance tradeoffs for the sources.
For example, the setup denoted by NC–3 outperforms the setup
denoted by RepCod–3. In fact, the ABEP ofS1 is almost
the same and the ABEP ofS2 is much better thanks to the
higher diversity order. This choice of the encoding vectorsis
convenient whenS1 needs high robustness to multipath fading.
On the other hand, the setup denoted by NC–2 appears to be
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Fig. 6. ABEP of a 3–source 3–relay network. All relays are full–cooperative.
The C–MRC in (8) is used at the destination. Setup: i) channelfading is
i.n.i.d. with σ2

0 = 1, σ2
StD

= σ2
RqD

= σ2
0 , and σ2

StRq
= (1000σ0)

2

for t = 1, 2, . . . , NS , q = 1, 2, . . . , NR, i.e., the source–to–relay links
are better than the other links; and ii) the encoding vectorsare gR1

=
[1, 0, 1], gR2

= [1, 1, 0], gR3
= [1, 0, 0], which yield SV(S1) = 4, and

SV(S2) = SV(S3) = 2. Markers show Monte Carlo simulations, solid lines
showABEP

(UB)
St

, and dotted lines showABEP
(SV)
St

.
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Fig. 7. ABEP of a 3–source 3–relay network.R1 is a partial–cooperative
relay, andR2 andR3 are full–cooperative relays. The C–MRC in (8) is used
at the destination. Setup: i) channel fading is i.i.d. withσ2

0 = 1; and ii)
the encoding vectors aregR1

= [1, 0, 1], gR2
= [1, 1, 0], gR3

= [1, 0, 0],
which yieldSV(S1) = 3, SV(S2) = 2, andSV(S3) = 1. As for the sources,
markers show Monte Carlo simulations, solid lines showABEP

(UB)
St

,

and dotted lines showABEP
(SV)
St

. More specifically, ABEP
(UB)
St

and

ABEP
(SV)
St

are computed by considering only the sub–network with sources
and full–cooperative relays. As for the partial–cooperative relay, markers show
Monte Carlo simulations, and dotted lines are obtained from(23).

useful when both sources require almost the same ABEP. In
fact, compared with NC–3 and RepCod–3, the performance
degradation ofS1 is tolerable, and the performance gain of
S2 is significant. Furthermore, NC–2 outperforms RepCod–1,
and it provides a good alternative to RepCod–2. In fact, the
big performance gain enjoyed byS2 is obtained with a small
performance loss forS1. Finally, it is apparent that random
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C−MRC (S1)
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C−MRC − Random NC (S1, S2, S3)

Fig. 8. ABEP of a 3–source 3–relay network. The relays use repetition–
based cooperation. The C–MRC in (8) is used at the destination. Setup: i)
channel fading is i.i.d. withσ2

0 = 1; and ii) the encoding vectors (only one
source is relayed) aregR1

= [1, 0, 0], gR2
= [1, 0, 0], gR3

= [0, 1, 0],
which yield SV(S1) = 3, SV(S2) = 2, and SV(S3) = 1. Markers show
Monte Carlo simulations, solid lines showABEP

(UB)
St

, and dotted lines show

ABEP
(SV)
St

. The figure shows also the ABEP when the relays generate at
random the binary encoding vectors: random binary NC. In this case, markers
show Monte Carlo simulations and dotted lines showABEP

(SV,random)
St

in
Section IV-D.
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NC−1 − SV=(2,2)
NC−2 − SV=(5,4)
NC−3 − SV=(6,2)
Random NC − SV=(1,1)
RepCod−1 − SV=(4,3)
RepCod−2 − SV=(5,2)
RepCod−3 − SV=(6,1)

Fig. 9. ABEP of a 2–source 5–relay network (sourceS1). All relays are
full–cooperative. The C–MRC in (8) is used at the destination. Channel fading
is i.i.d. with σ2

0 = 1. Various encoding vectors are considered to compare
network–coded (NC) and repetition–based (RepCod) cooperative diversity: i)
NC–1 with gR1

= gR2
= gR3

= gR4
= gR5

= [1, 0]; ii) NC–2 with
gR1

= gR2
= [1, 0], gR3

= gR4
= [1, 1], gR5

= [0, 1]; iii) NC–3 with
gR1

= [1, 1], gR2
= gR3

= gR4
= gR5

= [1, 0]; iv) RepCod–1 with
gR1

= gR2
= gR3

= [1, 0], gR4
= gR5

= [0, 1]; v) RepCod–2 with
gR1

= gR2
= gR3

= gR4
= [1, 0], gR5

= [0, 1]; vi) RepCod–3 with
gR1

= gR2
= gR3

= gR4
= gR5

= [1, 0]; and vii) Random NC with
binary encoding vectors generated at random. The separation vectors of both
sources are shown in the legend of the figure. For clarity, only Monte Carlo
simulations are shown.

binary NC is, in general, not a good solution, especially in
the high–SNR, because of the single–order diversity order.

In addition to the numerical examples depicted in Fig. 2–10,
the considerations in Section IV-D have been verified through
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NC−1 − SV=(2,2)
NC−2 − SV=(5,4)
NC−3 − SV=(6,2)
Random NC − SV=(1,1)
RepCod−1 − SV=(4,3)
RepCod−2 − SV=(5,2)
RepCod−3 − SV=(6,1)

Fig. 10. ABEP of a 2–source 5–relay network (sourceS2). All relays are
full–cooperative. The C–MRC in (8) is used at the destination. Channel fading
is i.i.d. with σ2

0 = 1. Various encoding vectors are considered to compare
network–coded (NC) and repetition–based (RepCod) cooperative diversity, as
described in the caption of Fig. 9. The separation vectors ofboth sources are
shown in the legend of the figure. For clarity, only Monte Carlo simulations
are shown.

Monte Carlo simulations. An example is NC–1 shown in Fig.
9 and Fig. 10, which confirmsC4) in Section IV-D. The other
results are not shown due to space limitations.

Finally, we would like to emphasize that in the present paper
many numerical results are given only as illustrative examples,
which are aimed at substantiating analytical derivations and
main findings. However, many other options are possible for
network code design, which depend on the application–specific
robustness to multipath fading requested by each source. In
particular, it is interesting to comment on how close to the
Singleton bound (full–diversity) the network codes considered
in this section are. From Section IV-C and Section IV-E,
we know that for binary network codes full–diversity can be
achieved by all the sources only for single–relay networks.
However, full–diversity may be achieved bysomesources. For
example, the maximum achievable diversity order is equal to
three in Fig. 2, six in Fig. 3, and four in Fig. 4 and Fig. 5.
Similar comments apply to the other figures, but comments
are here omitted for the sake of conciseness. The network
code in Fig. 2 is an example where the Singleton bound can
be achieved by at least one source. This network code can
be considered to be near–optimum since the second source
achieves, at least, second–order diversity. The network code
in Fig. 3 is an example where the Singleton bound is not
achieved by any sources, but they both have a quite high
diversity order. From [37, Table I, row 7], it follows that other
network codes are available to allow one source to achieve
full–diversity order equal to six. However, the price to pay
is that the diversity order of the other source is only equal
to two. Thus, even though the network code in Fig. 3 is not
strong enough to attain the Singleton bound for none of the
sources, it provides a good diversity–multiplexing tradeoff for
both sources. The network code in Fig. 4 offers a trade–off
similar to the network code in Fig. 3, where no source achieves
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Ft (s| c, c̃) = EγStD

{

exp
(

−4γStDd2St
s
)

exp
(

4γStDd2St
s2
)}

(a)
=

∫ +∞

0

exp
(

−4ζd2St
s
)

exp
(

4ζd2St
s2
)

[(1/γ̄StD) exp (−ζ/γ̄StD)] dζ

(b)
=
[

1 + 4γ̄StDd2St
s (1− s)

]−1 (c)≈ [4γ̄StDs (1− s)]
−|b̃St−bSt |

(31)
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





G (s| c, c̃, Em) =
NR
∏

q=1, µq−1=0
Gq (s| c, c̃, Em, µq−1 = 0)×

NR
∏

q=1, µq−1=1
Gq (s| c, c̃, Em, µq−1 = 1)

Gq ( s|c, c̃, Em, µq−1 = 0) = E{

γγγSRq
,γRqD

}

{

exp
(

−4λRqγRqDd2Rq
s
)

exp
(

4λ2
Rq

γRqDd2Rq
s2
)

(

1−
NS
∑

t=1
gStRqQ

(

√

2γStRq

)

)}

Gq ( s|c, c̃, Em, µq−1 = 1) = E{

γγγSRq
,γRqD

}

{

exp
(

4λRqγRqDd2Rq
s
)
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(

4λ2
Rq

γRqDd2Rq
s2
)

(

NS
∑

t=1
gStRqQ

(

√

2γStRq

)

)}

(32)


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Υ(s) = E{

γγγSRq
,γRqD

}

{
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(

−4min
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γeqRq
, γRqD

}

d2Rq
s
)

exp
(

4
(
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{

γeqRq
, γRqD

})2
γ−1
RqD

d2Rq
s2
)}

Γt (s) = E{

γγγSRq
,γRqD

}

{

exp
(

−4min
{

γeqRq
, γRqD

}

d
(m)
Rq

s
)

exp
(

4
(

min
{

γeqRq
, γRqD

})2
γ−1
RqD

d2Rq
s2
)

Q
(
√

2γStRq

)

}

(33)

full–diversity but both have diversity order equal to three. One
source could achieve full–diversity equal to four by using the
network code in [37, Table I, row 2]. However, the diversity
order of the other source is limited to two. Similar to Fig.
2, the network code in Fig. 5 allows at least one source to
obtain full–diversity. In conclusion, our numerical examples
clearly show that using NC allows cooperative networks to
achieve a wide range of diversity orders, which can be chosen
in agreement with the robustness to multipath fading requested
by each source. Furthermore, these diversity orders can be
achieved with the same number of time–slots, and, thus, the
same network rate.

VI. CONCLUSION

In this paper, we have contributed to the theoretical under-
standing of network–coded cooperative diversity protocols. We
have shown that these networks generalize repetition–based
cooperative relaying protocols, and that they can offer, by
properly choosing the encoding vectors at the relays, good
design flexibility to accommodate various performance and
rate tradeoffs. For a fixed network topology and desired end–
to–end diversity order, the encoding vectors can be constructed
from linear UEP block codes. By assuming the C–MRC at the
destination, an asymptotically–tight analytical framework for
arbitrary network topologies and binary encoding vectors is
developed, and its achievable diversity is studied analytically.
It is shown that the diversity order of each source coincides
with the separation vector of the distributed network code.The
framework accounts for two classes of relays,i.e., partial–
and full–cooperative, and it is shown that the former class
contributes to neither the diversity order nor to the diversity
gain of the sources. Thus, partial–cooperative relays are of no
use for binary network–coded cooperative diversity protocols.
Ongoing research is concerned with the analysis of these net-
works with non–binary modulations and non–binary encoding

vectors, as well as with the end–to–end code design over
more general fading channels (e.g., block–fading channels)
with channel coding [35], [48].

APPENDIX I
HIGH–SNR COMPUTATION OFFt ( ·| ·) AND G ( ·| ·) IN (14)

For high–SNR,Ft ( ·| ·) in (14) can be computed in closed–

form as shown in (31) at the top of this page, where: i) in
(a)
= ,

it is taken into account thatγStD is an exponential RV with

parameter̄γStRq
; ii)

(b)
= follows from [49, Eq. (3.310)]; and

iii)
(c)
= holds for high–SNR,i.e., γ̄StD ≫ 1. This concludes

the proof of (15).
In (14), let us consider the generic eventEm for

0 < m < 2NR − 1. The casesm = 0 and m = 2NR − 1
can be obtained with similar analytical steps. Then,G ( ·| ·)
in (14) can be re–written as shown in (32) at the top of this
page, where: i)γγγSRq

is a short–hand to denote all channels
from theNS sources toRq; and ii) it is taken into account
that d(m)

Rq
= d2Rq

if µq−1 = 0 andd(m)
Rq

= −d2Rq
if µq−1 = 1.

To compute (32) in closed–form, the expectationsΥ(·) and
Γ (s) =

∑NS

t=1 gStRq
Γt (s) shown in (33) at the top of this

page need to be studied. When computingΓt (·), we assume
gStRq

= 1 as only in this case it contributes toΓ (·).
Υ(·) can be computed in closed–form asΥ(s) = Υ1 (s)+

Υ2 (s). Υ1 (·) is shown in (34) at the top of the next

page, where: i) in
(a)
= , it is taken into account thatγRqD

and γeqRq
are exponential RVs with parametersγ̄RqD and

γ̄eqRq
; ii)

(b)
= follows from [49, Eq. (3.310)]; and iii)

(c)
=

holds for high–SNR,i.e., Em/N0 ≫ 1. Υ2 (·) is shown

in (35) at the top of the next page, where
(b)
= and

(c)
=

follow from considerations similar to (34). On the other

hand,
(a1)
= and

(a2)
= deserve further clarifications. In

(a1)
= , we
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Υ1 (s)
(a)
=

∫ +∞
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∫ ζeqRq
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−4ζRqDd2Rq
s
)

exp
(

4ζRqDd2Rq
s2
)

[(

1
/

γ̄RqD

)

exp
(

−ζRqD

/

γ̄RqD

)] [(

1
/

γ̄eqRq

)

exp
(

−ζeqRq

/

γ̄eqRq

)]

dζRqDdζeqRq

(b)
=
[

1 + 4γ̄RqDd2Rq
s (1− s)

]−1 [

1− γ̄RqD

/(

4γ̄RqDγ̄eqRqd
2
Rq

s (1− s) + γ̄eqRq + γ̄RqD

)] (c)
≈
[

4γ̄RqDs (1− s)
]−

∣

∣

∣b̃
(NC)
Rq

−b
(NC)
Rq

∣

∣

∣

(34)

Υ2 (s)
(a1)
=
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(

s; ζeqRq

)
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s
)
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1
/
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)
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(
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/
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dζeqRq
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≈

∫ +∞

0

{

∫ +∞

ζeqRq

(

1
/

γ̄RqD

)

exp
(

−ζRqD

/

γ̄RqD

)

dζRqD

}

exp
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−4ζeqRqd
2
Rq

s
)

(

1
/

γ̄eqRq

)

exp
(

−ζeqRq

/

γ̄eqRq

)

dζeqRq

(b)
=
[

1 + 4γ̄eqRqd
2
Rq

s+
(

γ̄eqRq

/

γ̄RqD

)

]−1 (c)
≈
[

4γ̄eqRq s
]−

∣

∣

∣b̃
(NC)
Rq

−b
(NC)
Rq

∣

∣

∣

(35)

Υ2 (s; ζeqRq) =

∫ +∞

ζeqRq

exp
[

4
(

ζ2eqRq

/

ζRqD

)

d2Rq
s2
]

(

1
/

γ̄RqD

)

exp
(

−ζRqD

/

γ̄RqD

)

dζRqD =

∫ 1/ζeqRq

0

g (x) f (x) dx (36)

Γt (s; θ) = E{

γγγSRq
,γRqD

}

{

exp
(

−4min
{

γeqRq , γRqD

}

d
(m)
Rq

s
)

exp
(

4
(

min
{

γeqRq , γRqD

})2
γ−1
RqD

d2Rq
s2
)

exp
(

−γStRq

/

sin2 (θ)
)

}

(a)
= E{

γγγSRq
,γRqD

}

{

exp
(

−4min
{

γStRq , γ
(\t)
eqRq

, γRqD

}

d
(m)
Rq

s
)

exp

(

4
(

min
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γStRq , γ
(\t)
eqRq

, γRqD

})2
γ−1
RqD

d2Rq
s2
)

exp

(

−
γStRq

sin2 (θ)

)}

(b)
= Γ

(1)
t (s; θ) + Γ

(2)
t (s; θ) + Γ

(3)
t (s; θ)

(37)

define f (x) =
(

γ̄RqDx2
)−1

exp
[

−1
/(

xγ̄RqD

)]

, g (x) =

exp
(

4ζ2eqRqd
2
Rq

s2x
)

, andΥ2 (·; ·) is given in (36) shown at
the top of this page. From these definitions, the high–SNR

approximation in
(a2)
= follows by noticing, with arguments

similar to [42, Fig. 1], that the behavior ofg (x) aroundx → 0
mainly determines the high–SNR behavior ofΥ2 (·). With this

in mind,
(a2)
= is obtained by replacingg (·) with its first–order

Taylor expansion,i.e., g (x → 0) ≈ 1.

Using the Craig representation of the Q–function [39, Eq.
(4.2)], we haveΓt (s) =

∫ π/2

0
Γt (s; θ) dθ, whereΓt (·; ·) is

defined in (37) at the top of this page, and: i)
(a)
= is obtained

by introducing γ
(\t)
eqRq

= minτ 6=t=1,2,...,NS

{

g−1
SτRq

γSτRq

}

,

which is an exponential RV with parameter̄γ(\t)
eqRq

=
(

∑NS

τ 6=t=1 gSτRq
γ̄−1
SτRq

)−1

; and ii)
(b)
= follows by decom-

posing Γt (·; ·) into the summation of three terms,i.e.,

Γ
(1)
t (·; ·) for min

{

γStRq
, γ

(\t)
eqRq

, γRqD

}

= γStRq
, Γ

(2)
t (·; ·)

for min
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γStRq
, γ

(\t)
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, γRqD

}

= γ
(\t)
eqRq

, and Γ
(3)
t (·; ·) for

min
{

γStRq
, γ

(\t)
eqRq

, γRqD

}

= γRqD. Similar to the compu-

tation of Υ(·), each of the three summands in
(b)
= can be

decomposed into the summation of two terms, and each of
them can be computed in closed–form and for high–SNR by
resorting the same analytical steps and approximations used
to computeΥ1 (·) and Υ2 (·). The details of the derivation
are here omitted due to space limitations. In particular, our
analysis has shown that, for high–SNR,Γ

(2)
t (·; ·) andΓ(3)

t (·; ·)
decay as(Em/N0)

−2, whileΓ
(1)
t (·; ·) decays as(Em/N0)

−1.

Thus,Γ(1)
t (·; ·) is the dominant term for high–SNR. In con-

clusion, we have:

Γt (s; θ) ≈ Γ
(1)
t (s; θ) ≈

[

γ̄StRq

(

1
/

sin2 (θ) + d
(m)
Rq

s
)]−1

(38)
Finally, by inserting (33)–(35), (37), and (38) in (32),G ( ·| ·)

in (14) can be obtained after some algebra and by taking into
account that

∏NR

q=1, µq−1=0

[

1−
(

4γ̄eqRq

)−1
]

→ 1 for high–
SNR. This concludes the proof.

APPENDIX II
HIGH–SNR ABEPOF SINGLE–RELAY NETWORKS

Let us consider the same system model as in [22] with
NS sources and one full–cooperative relay (NR = 1) with
encoding vectorgR1 = [1, 1, . . . , 1]. By direct inspection of
the codebook and from Section IV, we haveG

(St)
d = SV(St) =

2 for t = 1, 2, . . . , NS . Since there is just one relay, by using
G ( ·| ·) in (32), theAPEP (0 → c̃) in (14) simplifies as shown
in (39) at the top of the next page, where: i)̄M1 (s| c̃) =
∏NS

t=1 Ft (s| c̃); ii) M̄2 (s| c̃, E0) = G1 (s| c̃, E0, µ0 = 0); and
iii) M̄3 (s| c̃, E1) = G1 (s| c̃, E1, µ0 = 1).

From (27),ABEP(SV)
St

can be explicitly written as follows:

ABEP
(SV)
St

=

NS+1
∑

τ=1

APEP
(

0 → c̃(t,τ)
)

(40)

wherẽc(t,τ) denotes the codeword whose entries arec̃t = c̃τ =
1, and c̃p = 0 if p 6= t and p 6= τ for p = 1, 2, . . . , NS + 1.
This simplified expression ofABEP(SV)

St
originates from the

fact that c̃(t,τ) are the only codewords of the codebook with
wH

(

c̃(t,τ)
)

= 2.
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APEP (0 → c̃) = (2πj)
−1
∫ δ+j∞

δ−j∞

M̄1 (s| c̃)M̄2 (s| c̃, E0) s−1ds+ (2πj)
−1
∫ δ+j∞

δ−j∞

M̄1 (s| c̃)M̄3 (s| c̃, E1) s−1ds (39)
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(4/π)

∫ π/2

0
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(2πj)−1
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δ−j∞

s−2 (1− s)
(

sin−2 (θ) + 4s
)−1

ds

]

dθ

(a)
= (4/π)

∫ π/2

0

(

4 + sin−2 (θ)
)−1

dθ =
(

5−
√
5
)/
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(4/π)
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0
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(2πj)
−1
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s−2 (1− s)
(

sin−2 (θ)− 4s
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]

dθ

(b)
= (4/π)

∫ π/2

0

[

(

−4 + sin−2 (θ)
)−1

+ 16 sin4 (θ)
(

4− sin−2 (θ)
)−1
]

dθ = 1

(43)
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√
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APEP(0 → c̃) =

2NR−1
∑

m=0

(

(2πj)
−1
∫ δ+j∞

δ−j∞

M̄1 (s| c̃)M̄2 (s| c̃, Em)M̄3 (s| c̃, Em) s−1ds

)

(45)

By direct inspection, from (15)–(17) we can readily obtain:

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M̄1
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s| c̃(t,τ)
)

= (γ̄StDγ̄SτD)
−1

[4s (1− s)]
−2

M̄2

(
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= 1
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= (4γ̄eqR1)
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(41)

if 1 ≤ τ ≤ NS , and:
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− (4γ̄eqR1)
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[

(4/π)

∫ π/2

0

(

sin−2 (θ) + 4s
)−1

dθ

]

M̄3

(

s| c̃(t,NS+1), E1
)

= (4γ̄eqR1)
−1

×
[

(4/π)

∫ π/2

0

(

sin−2 (θ)− 4s
)−1

dθ

]

(42)
if τ = NS + 1.

By inserting (41) and (42) in (39), the APEPs can be com-
puted in closed–form. Due to space limitations, the detailsof
the derivation are omitted. However, the adopted methodology
is as follows: i) contour integrals are solved by using the
residues theorem in [40, Eq. (6)]; ii) the integrals in (41)
and (42) are computed only after solving the contour integrals
in (39), i.e., the order of integration is swapped; and iii) the
identities in (43) shown at the top of this page are used, where

the equalities in
(a)
= and

(b)
= follow from the residues theorem

in [40, Eq. (6)].

From (43) and some algebra, (40) simplifies to (44) shown
at the top of this page, which coincides with [22, Eq. (32)].

This concludes the proof.

APPENDIX III
HIGH–SNR ABEPOF PARTIAL –COOPERATIVE RELAYS

By using G ( ·| ·) in (32), the APEP (0 → c̃) in (14)
can be re–written as shown in (45) at the top of
this page, where: i)M̄1 (s| c̃) =

∏NS

t=1 Ft (s| c̃); ii)
M̄2 (s| c̃, Em) =

∏NR

q=1, µq−1=0 Gq (s| c̃, Em, µq−1 = 0); and

iii) M̄3 (s| c̃, Em) =
∏NR

q=1, µq−1=1 Gq (s| c̃, Em, µq−1 = 1).

From (45),APEP
(

0 → c̃(t)
)

in (23) can be computed as:

APEP
(

0 → c̃(t)
)

(a)≈ (2πj)
−1
∫ δ+j∞

δ−j∞

M̄1

(

s| c̃(t)
)

s−1ds

(b)≈ (2πj)
−1
∫ δ+j∞

δ−j∞

[

4γ̄StDs2 (1− s)
]−1

ds

(c)
= (4γ̄StD)−1

(46)

where: i)
(a)≈ follows by noticing that for high–SNR the domi-

nant addend in (45) ism = 0, and thatM̄2 (s| c̃, Em) = 1 for

everym sincew
(R,E(ok)

m )
H

(

c̃(t)
)

= 0 for everym; ii)
(b)≈ follows

from M̄1

(

s| c̃(t)
)

=
∏NS

t=1 Ft

(

s| c̃(t)
)

≈ [4γ̄StDs (1− s)]
−1

with the last approximation coming from (15); and iii)
(c)≈ is

obtained by applying the residues theorem [40, Eq. (6)].
Let q∗ be the partial–cooperative relay of interest. From

(45), APEP
(

0 → c̃(q
∗)
)

in (23) can be computed as shown
in (47) at the top of the next page because for high–SNR
there are only two dominant addends in (45): i)m = 0; and
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APEP
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δ−j∞

[

4γ̄Rq∗Ds2 (1− s)
]−1

ds

+ (2πj)
−1
∫ δ+j∞

δ−j∞

(

4γ̄eqRq∗

)−1

[

(4/π)

∫ π/2

0

(

sin−2 (θ)− 4s
)−1

dθ

]

s−1ds

(b)
=
(

4γ̄Rq∗D

)−1
+
(

4γ̄eqRq∗

)−1

(49)

ii) m = m∗ with Em∗ being the event thatRq∗ is the only
relay that forwards a wrong estimate of its network–coded bit
to D.

From (16), we haveM̄2

(

s| c̃(q∗), Em∗

)

= 1 and:


















































M̄2

(

s| c̃(q∗), E0
)

=
(

4γ̄eqRq∗
s
)−1

+
(

4γ̄Rq∗Ds (1− s)
)−1

−
(

4γ̄eqRq∗

)−1

[

(4/π)

∫ π/2

0

(

sin−2 (θ) + 4s
)−1

dθ

]

M̄3

(

s| c̃(q∗), Em∗

)

=
(

4γ̄eqRq∗

)−1

×
[

(4/π)

∫ π/2

0

(

sin−2 (θ)− 4s
)−1

dθ

]

(48)
Then, by inserting (48) in (47) we obtain

APEP
(

0 → c̃(q
∗)
)

shown in (49) at the top of this page,

where: i)
(a)
= takes into account that when applying the residues

theorem only the addends containing positive poles have a
non–zero contribution, while the others can be neglected

[40, Eq. (6)]; and ii)
(b)
= can be obtained by solving the first

integral as in (46), and the second integral by solving first the
contour integral. In particular, we have used the identities: 1)
(2πj)

−1 ∫ δ+j∞

δ−j∞

(

sin−2 (θ)− 4s
)−1

s−1ds = sin2 (θ), which
originates from the application of the residues theorem [40,
Eq. (6)]; and 2)(4/π)

∫ π/2

0 sin2 (θ) dθ = 1. From (46) and
(49), the proof is complete.
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