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Abstract

In this paper, we consider a multiple-input multiple-output broadcast channel with limited feedback where

all users share the feedback rates. Firstly, we find the optimal feedback rate sharing strategy using zero-forcing

transmission scheme at the transmitter and random vector quantization at each user. We mathematically prove that

equal sharing of sum feedback size among all users is the optimal strategy in the low signal-to-noise ratio (SNR)

region, while allocating whole feedback size to a single user is the optimal strategy in the high SNR region. For

the mid-SNR region, we propose a simple numerical method to find the optimal feedback rate sharing strategy

based on our analysis and show that the equal allocation of sum feedback rate to a partial number of users is

the optimal strategy. It is also shown that the proposed simple numerical method can be applicable to finding the

optimal feedback rate sharing strategy when different pathlosses of the users are taken into account. We show that

our proposed feedback rate sharing scheme can be extended tothe system with stream control and is still useful

for the systems with other techniques such as regularized zero-forcing and spherical cap codebook.
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I. INTRODUCTION

In recent years, multiple-input multiple-output (MIMO) broadcast channel (BC) systems, constructed by

an access point with multiple antennas and many users, have been intensively studied [1]–[3]. In a MIMO

BC, multiple users are simultaneously served through independent user specific multiple data streams and

a multiplexing gainis attained as in point-to-point MIMO. The capacity region of the Gaussian MIMO

BC was derived in [3] where dirty paper coding (DPC) [4] is known to be a capacity achieving scheme.

Because DPC is hard to implement, many practical techniqueshave been proposed such as zero-forcing

precoding (channel inversion) [5] and Tomlinson-Harashima precoding [6]. In these schemes, multiuser

interference is pre-canceled at the transmitter with perfect channel state information at the transmitter

(CSIT).

CSIT can be obtained by reciprocity between uplink and downlink channels in time division duplexing

(TDD) systems and feedback from receivers in frequency division duplexing (FDD) systems. In FDD

systems, the amount of feedback information is in general limited and hence perfect CSIT is not available.

The accuracy of CSIT depends on both the type of feedback technique and the amount of feedback

overhead allowed. A popular feedback architecture is a codebook approach where an index of a codeword

in a predetermined codebook is fed back to the transmitter [7]. There have been many studies on the

performance of codebook based multi-user MIMO systems using various transmission schemes such as

zero-forcing (ZF) beamforming [8], block diagonalization(BD) [9], [10], and the unitary precoding [11].

In limited feedback environments, a key difference betweenMIMO BC and point-to-point MIMO is

the multiplexing gain achievability [7], [8]. In point-to-point MIMO, a full multiplexing gain is achievable

even with open-loop transmission. On the other hand, a full multiplexing gain cannot be achieved using

a finite amount of feedback information in a MIMO BC [8]. The multiplexing gain of MIMO BC rather

diminishes in the high signal-to-noise ratio (SNR) region due to imperfect orthogonalization resulting

from inaccurate CSIT. To maintain the multiplexing gain, itwas shown in [8], [9] that the feedback size

should linearly increase with SNR (in decibel scale).
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Since a large amount of feedback is a heavy burden on uplink capacity, many studies have been devoted

to increasing the efficiency of limited feedback. In [12], a feedback reduction technique has been proposed

using multiple antennas at the receiver. User selection in MIMO BC has been studied to reduce the amount

of uplink feedback [13]–[17]. In [14], random beamforming was generalized and semi-orthogonal user

selection was proposed. Also, it was shown that channel quality information as well as channel direction

information are necessary to obtain both the maximum multiplexing and diversity gains. In [16], a dual-

mode limited feedback system was proposed to switch betweensingle user and multiuser transmissions.

The authors in [17] investigated two partial feedback schemes for user scheduling.

In practical systems, the uplink capacity of control channels is typically limited and shared among

multiple users. A sum feedback rate constraint in space division multiple access (SDMA) was considered

in [18] but the amount of feedback information per user was held constant. In [19], the optimum feedback

size per user and the number of feedback users were investigated under a sum feedback rate constraint

assuming all users employ the same amount of feedback. Recently, strategies of feedback bit partitioning

between the desired and interfering channels proposed in [20] for a cooperative multicell system. InK-

user multiple-input-single-output (MISO) interference channel, the feedback rate control to minimize the

average interference power was proposed in [21].

In MIMO BC, the effects of different amounts of feedback sizeamong the users are studied in [22]–[25].

In [22], the feedback rate sharing strategy has been proposed to minimize the upper bound of sum rate

loss in correlated single-polarized and dual-polarized channels, respectively. The feedback rate sharing

strategies in the low and high SNR regions have been proposedin terms of the correlation coefficient. The

feedback rate sharing strategy to increase the sum rate was also proposed in [23] by considering users’

path losses, where the system performance was shown to be improved by changing feedback bit allocation

according to the path losses. However, when the path losses are similar, the feedback rate sharing strategy

in [23] is to equally share the sum feedback size regardless of SNR levels but it is not optimal in some

SNR regions. Also, the effects of path losses are canceled out in the high SNR region so that equal sharing
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of the sum feedback size is not optimal any more. The feedbackrate sharing strategy to minimize total

transmission power for given users’ outage probabilities was proposed in [24].

In this paper, we provide a new analytical framework for the feedback rate sharing strategy and

rigorously analyzed the effects of different amounts of feedback information among users by extending and

generalizing the results of [25]. The effects of feedback rate sharing on the achievable rate are investigated

in a MIMO BC with ZF beamforming at the transmitter and randomvector quantization (RVQ) [26] at

each user. We derive the optimal feedback rate sharing strategies according to various SNR regions. Our

analytical results prove the optimal feedback rate sharingstrategy in the low and the high SNR regions.

The feedback rate should be equally shared among all users inthe low SNR region while the whole

feedback rate should be allocated to a single user in the highSNR region. For the mid-SNR region,

we establish a simple numerical method for finding the optimal feedback sharing strategy based on our

analytical framework. Through the proposed numerical method, we find that to equally allocate whole

feedback size to a partial number of users is the optimal feedback rate sharing strategy. For the users

suffering different path losses, we show that the proposed numerical method can be applicable to finding

the optimal feedback rate sharing strategy. In the high SNR region, we prove that the effects of path

losses are canceled out and hence the optimal feedback strategy is to allocate the whole feedback size to

a single user with the highest SNR. Our proposed feedback rate sharing strategy derived from the system

with ZF beamforming and RVQ is also evaluated for the systemswith other techniques such as stream

control, regularized ZF transmission scheme and sphericalcap codebook model [14], [27]. Our numerical

results show that our proposed feedback rate sharing strategy is still valid for other configurations.

The rest of this paper is organized as follows. We describe the system model and formulate the problem

in Section II. The impacts of asymmetric feedback size amongusers are investigated in Section III. The

optimal sum feedback rate sharing strategy is derived in Section IV. The numerical results are shown in

Section V. Section VI concludes our paper.
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II. PROBLEM FORMULATION

A. System Model

Our system model is depicted in Fig. 1. We consider a MIMO BC with M transmit antennas and

K(= M) users having a single antenna. If the receiver has multiple antennas, each antenna can be

considered as an independent user, or receive combining discussed in [12] can be adopted. The received

signal at the userk becomes

yk =
√
γkh

†
kx + nk, k = 1, . . . , K,

whereγk is the path loss of thekth user,hk ∈ CM×1 is a channel vector whose entries are independent

and identically distributed (i.i.d.) circularly symmetric complex Gaussian random variables with zero mean

and unit variance,x ∈ C
M×1 is the transmit signal vector,nk is a complex Gaussian noise with zero

mean and unit variance, and the superscript† denotes conjugate transposition of a vector. WhenP is the

transmit signal power,x satisfies thatE[tr
(

xx
†
)

] = P . If users demand the same quality of service, the

propagation path losses need to be pre-compensated to yieldthe same average SNR at the receiver in

downlink. Thus, we firstly assume that the different propagation path losses for users are compensated by

the transmitter, i.e.,γ1 = γ2 = · · · = γK = 1. The open loop power control is also useful for preventing

waste of transmit power and avoiding extra interference to other users. Then, we extend our results to

different path loss scenarios in Section IV-D.

As a simple linear precoding scheme, we adopt a ZF beamforming scheme in which the data stream

for each user is aligned with its precoding vector. We denotethe precoding vector of thekth user asvk

such that‖vk‖ = 1 and then the transmit signalx becomesx =
∑K

k=1 vksk, wheresk is the data symbol

for the kth user. We assume that the transmitter has only channel direction information (CDI) so that the

feedback for power allocation can be saved. Therefore, the transmitter allocates equal power to users such

thatE|sk|2 = P/M . Also, we assume thatsk is chosen from a Gaussian codebook and the codeword block

length is sufficiently long so that it encounters all possible channel realizations for ergodicity. Obviously,

power adaptation can further increase the achievable rate but the power allocation using channel quality
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information (CQI) is a secondary problem when the number of transmit antennas is same as the number

of served users, i.e., full multiplexing [8]. In Section IV-F, we will consider the stream control where the

transmitter adaptively controls multiplexing gain and theserved users equally share total transmit power.

The received signal at thekth user using linear precoding becomes

yk = h
†
kvksk +

K
∑

i=1,i 6=k

h
†
kvisi + nk, k = 1, . . . , K. (1)

When the transmitter knows{h1, . . . ,hK} perfectly, the precoding vectors yield zero multiuser interfer-

ences, i.e.,
∑

i 6=k h
†
kvisi = 0; the received signal at thekth user becomes

yk = h
†
kvksk + nk, k = 1, . . . , K.

In most practical systems, however, the imperfect CSI is only available at the transmitter due to the

limited feedback budget. The userk quantizes its own channel,hk, and feeds the quantized CSI denoted

by ĥk to the transmitter. Then, the transmitter finds the precoding vectorsv1, . . . ,vK from the quantized

CSI, ĥ1, . . . , ĥK , instead of the perfect CSI,h1, . . . ,hK . Because of the quantization errors, the precoding

vectors obtained from the quantized CSI cannot perfectly mitigate the multiuser interference. The precoding

vector cannot be exactly picked in the null space of the otherusers’ channel vectors; the interference term

∑

i 6=k h
†
kvisi remains in the received signal.

At the transmitter, a quantized channel matrix defined byĤ , [ĥ1, . . . , ĥK ]
† is constructed with the

quantized CSI fed back from the users. Thekth normalized column vector of̂H−1 becomes the precoding

vector for thekth user,vk, where(·)−1 denotes the matrix inversion. Thus, we can decomposeĤ
−1 as

Ĥ
−1 = VΛ, whereV = [v1, . . . ,vK ] is a zero-forcing beamforming matrix such as‖vk‖2 = 1, and

Λ = diag(λ1, . . . , λK) is diagonal matrix whose elementλk ∈ R+ is the Euclidean norm of thekth

column ofĤ−1.

For the channel quantization, RVQ is considered at each user, which is widely used to analyze the

effects of quantization error and asymptotically optimal as the number of antennas goes to infinity [8],

[28]. Although the performance is suboptimal for a small feedback size, RVQ makes the analysis tractable



7

and provides insightful results. Furthermore, the overalltrends of RVQ generally agree with the trends of

other quantization models [14].

Using bk-bit RVQ at thekth user, the quantized CSI is obtained by

ĥk = argmax
w∈Wk

cos2(∠(hk,w)) = argmax
w∈Wk

|h†
kw|2,

whereWk = {wk,1, . . . ,wk,2bk} is a random vector codebook at thekth user consists of2bk randomly

chosen isotropicM-dimensional unit vectors. The quantization error denotedby Zk ∈ [0, 1] becomes

Zk = min
w∈Wk

sin2(∠(hk,w)) = sin2(∠(hk, ĥk)) = 1− |h̃†
kĥk|2, (2)

where h̃k = hk/‖hk‖. For an arbitrary codewordw ∈ Wk, |h̃†
kw|2 is a squared inner product of

two independent random vectors isotropic inCM , so follows the beta distribution1 with parameters

(M − 1, 1) [8], [28]. Consequently, a quantization error usingbk-bit RVQ, Zk, becomes the minimum

of 2bk independent beta distributed random variables with parameters (M − 1, 1). Correspondingly the

complementary cumulative density function (CDF) ofZk is given by [28]

Pr[Zk > z] =
(

1− zM−1
)2bk

. (3)

B. Feedback Rate Sharing Strategy

We assume anaveragefeedback size allocated for each user isb̄ so that the total feedback rate (i.e.,

the sum of all individual users’ feedback rates) becomesKb̄ bits per channel realization. Assuming the

feedback rate sharing among users, each user usesbk-bit feedback and the sum feedback rate constraint

becomes
∑K

k=1 bk = Kb̄. Since codebook size is typically a non-negative integer number of bits, we

restrict the average feedback size,b̄, as an positive integer, i.e.,b̄ ∈ Z+. For the same reason, we assume

the feedback size at thekth user,bk, as a non-negative integer, i.e.,bk ∈ {0} ∪ Z+ for k = 1, . . . , K,

1The probability density function of beta distributed random variableS with parameters (a, b) becomesfS(s) =
Γ(a+b)
Γ(a)Γ(b)

sa−1(1− s)b−1

[29, p.635].
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From individual feedback rates, a feedback rate sharing strategy can be expressed byK-dimensional

vector

b = [b1, . . . , bK ], (4)

and the sum feedback rate constraint becomes‖b‖1 = Kb̄ where‖ · ‖1 is the vector one norm.

From (1), we obtain the average sum rate as a function of transmit power,P , and the sum feedback

rate sharing strategy,b, denoted byR(P,b) given by

R(P,b) =

K
∑

k=1

E

[

log2

(

1 +
P
M
|h†

kvk|2

1 +
∑

i 6=k
P
M
|h†

kvi|2

)]

. (5)

Thus, we solve the following problem:

maximize
b=[b1,...,bK ]

R(P,b) (6)

subject to
K
∑

k=1

bk = Kb̄, (7)

bk ∈ {0} ∪ Z
+ k = 1, . . . , K. (8)

Note that the optimal sum feedback rate sharing strategy will be derived later and shown to be dependent

on the SNR value. Therefore, the feedback bits are reallocated each time when the SNR changes. In

practical scenarios, several allocation patterns can be constructed offline for typical SNR values and then

the transmitter can broadcast an appropriate allocation pattern using the current SNR.

III. I MPACTS OFASYMMETRIC FEEDBACK SIZES AMONG USERS

To find the optimal feedback rate sharing strategy, we first analyze the impact of asymmetric feedback

sizes among the users on the sum rate. For the simplicity, we define three random variables

Qk , ‖hk‖2, Xk , |h̃†
kvk|2, Yk ,

∑

i 6=k

|h̃†
kvi|2, (9)

whereQk is thekth channel gain,Xk is the squared inner product between thekth normalized channel

vector and thekth beamforming vector, andYk is the sum of the squared inner products between the
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kth normalized channel vector and the other beamforming vectors. Note thatXk is not affected by the

feedback size of thekth user sincevk is selected in the null space of{ĥi}i 6=k.

Using the quantization errorZk defined in (2), we can decomposeh̃k into h̃k =
√
1− Zkĥk +

√
Zkek

whereek is an unit vector such that|ĥ†
kek|2 = 0. The random variableYk becomes

Yk =
∑

i 6=k

∣

∣

∣

∣

(

√

1− Zkĥk +
√

Zkek

)†

vi

∣

∣

∣

∣

2

(10)

= Zk

∑

i 6=k

|e†kvi|2 (11)

= Zk ·Wk, (12)

where the random variableWk ,
∑

i 6=k |e
†
kvi|2 is the sum of the square of inner products between

the quantization error vectorek and the beamforming vectors of other users{vi}i 6=k. The independency

betweenZk and |e†kvi|2 is shown in [12] from the fact that the magnitude of the quantization error,Zk

is independent of the direction of quantization error,ek. Thus, we can easily find thatZk and Wk(=

∑

i 6=k |e
†
kvi|2) are independent. We start from the following lemma.

Lemma 1. The random variablesQk, Xk, Wk andZk have following properties.

1) Invariant with the feedback sizes,b1, . . . , bK , the distributions ofQk, Xk, andWk are identical for

all users, respectively, i.e.,

fQk
(q) = fQ1(q), fXk

(x) = fX1(x),

fWk
(w) = fW1(w), k = 2, . . . , K,

wherefQk
(q), fXk

(x), and fWk
(w) are the marginal PDFs ofQk, Xk, Wk, respectively,

2) Qk, Xk, andWk are independent ofZk, respectively.

3) The joint PDF ofQk, Xk, andWk are identical for all users, i.e.,

fQk,Xk,Wk
(q, x, w) = fQ1,X1,W1(q, x, w),

wherefQk,Xk,Wk
(q, x, w) is the joint PDF ofQk, Xk, andWk.
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Proof: See Appendix A.

Lemma 2. The achievable rate of thekth user is determined by only its own feedback sizebk and is

independent of the other users’ feedback sizes{bi}i 6=k.

Proof: From Lemma 1, we can rewrite the average sum rate in (5) as

R(P,b) =

K
∑

k=1

EQk,Xk,Wk,Zk

[

log2

(

1 +
P
M
QkXk

1 + P
M
QkWkZk

)]

=

K
∑

k=1

EQ1,X1,W1,Zk

[

log2

(

1 +
P
M
Q1X1

1 + P
M
Q1W1Zk

)]

.

Thus, the achievable rate at thekth user is dependent on only its own feedback size becauseQ1, X1, and

W1 are not affected by the feedback size as noted in Lemma 1. Since the distribution ofZk is a function

of bk, the achievable rate at each user is only affected by its own feedback size.

Thus, the achievable rate of the userk becomes a function of transmit powerP and own feedback size

bk denoted byRk(P, bk) such that

Rk(P, bk) = EQ1,X1,W1,Zk

[

log2

(

1 +
P
M
Q1X1

1 + P
M
Q1W1Zk

)]

, (13)

and it satisfies thatR(P,b) =
∑K

k=1Rk(P, bk).

To verify Lemma 2, two feedback scenariosb1 = [10, 10, 10] andb2 = [10, 0, 0] are considered in ZF

MIMO BC with M = 3, K = 3. In Fig. 2, the sum rate for the first scenario is much higher than that

for the second scenario due to the larger amount of total feedback information. As predicted in Lemma

2, however, the achievable rate of user 1 is the same in the twoscenarios.

Lemma 2 indicates that a feedback size of a user does not affect the achievable rates of the other users

and only changes its own achievable rate. Under a sum feedback rate constraint, an increase of one user’s

feedback size necessarily decreases other users’ feedbacksizes. With more accuratêhk, the transmitter

can pick the beamforming vectors of other users in more accurate null space of the userk. Hence, the

userk benefits from less interference from other users. On the other hand, the other users experience

more interference since the accuracy of the users’ channel knowledge degrades under the sum feedback
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rate constraint. Consequently, when a user increases its own feedback size, the achievable rate of the user

increases but the achievable rates of the other users decrease, and vice versa. The optimal feedback rate

sharing strategy starts from this fundamental tradeoff.

IV. SUM FEEDBACK RATE SHARING STRATEGY

A. Low SNR Region

In the low SNR region, the achievable rate of thekth user given in (13) becomes

lim
P→0

Rk(P, bk)

= lim
P→0

E

[

log2

(

1 +
P

M
Q1X1 +

P

M
Q1W1Zk

)

− log2

(

1 +
P

M
Q1W1Zk

)]

= lim
P→0

E

[

log2

(

1 +
P

M
Q1X1

)

+ log2

(

1 +
P
M
Q1W1Zk

1 + P
M
Q1X1

)

− log2

(

1 +
P

M
Q1W1Zk

)]

(a)
=

1

ln 2
E

[

P

M
Q1X1

]

− 1

ln 2
E

[

P 2

M2Q
2
1X1W1Zk

1 + P
M
Q1X1

]

(b)
=

1

ln 2
E

[

P

M
Q1X1

]

− 1

ln 2
E

[

P 2

M2Q
2
1X1W1

1 + P
M
Q1X1

]

· E[Zk],

where the equality(a) holds becauselimx→0 ln(1 + x) = x, and the equality(b) holds from the fact that

Zk is independent ofQk, Xk, andWk from Lemma 1. In the low SNR region, therefore, the optimization

problem (6) is equivalent with the following problem:

minimize
b=[b1,...,bK ]

K
∑

k=1

E[Zk] (14)

subject to (7), (8).

Definition 1 (Majorization). For a vectora ∈ Rm, we denote bya↓ ∈ Rm the vector with the same

components, but sorted in decreasing order. For given vectors a1, a2 ∈ Rm such that‖a1‖1 = ‖a2‖1, we
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saya1 majorizesa2 written asa1 � a2 when

n
∑

i=1

[a↓
1]i ≥

n
∑

i=1

[a↓
2]i 1 ≤ n ≤ m, (15)

where[·]i denotes theith component of the vector.

Theorem 1 (Strategy in the Low SNR Region). Using RVQ in the low SNR region, feedback rate sharing

strategyb1 achieves higher average sum rate than feedback rate sharingstrategyb2 wheneverb1 � b2,

i.e.,

lim
P→0

R(P,b1) ≥ lim
P→0

R(P,b2) for all b1 � b2. (16)

Proof: See Appendix B.

Corollary 1. In the low SNR region, when the sum feedback rates isKb̄ (i.e.,
∑

bk = Kb̄), the optimal

feedback rate sharing strategy is to allocate the same amount of feedback (bk = b̄) to all users while the

worst strategy is to allocate whole feedback amountKb̄ to a single user.

Proof: All possible feedback sharing strategiesb (‖b‖1 = Kb̄) satisfy that

[b̄, . . . , b̄] � b � [Kb̄, 0, . . . , 0]. (17)

Thus, the optimal feedback sharing strategy in low SNR region is to allocate the same feedback size to

all users while the worst strategy is to allocate the whole feedback size to a single user.

B. High SNR Region

With fixed feedback size in the high SNR region, the sum rate ofa MIMO BC saturates and cannot

achieve the full multiplexing gain [8]. This is because the remaining interference caused by the quantization

error increases with SNR so that the SINR is saturated in the high SNR region.

For ease of explanation, we decompose the achievable rate atuserk into an increasing termand a
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decreasing termdenoted byR+
k (P, bk) andR−

k (P, bk), respectively, given by

R+
k (P, bk) = E

[

log2

(

1 +
P

M
Q1X1 +

P

M
Q1W1Zk

)]

R−
k (P, bk) = E

[

log2

(

1 +
P

M
Q1W1Zk

)]

,

so thatRk(P, bk) = R+
k (P, bk)−R−

k (P, bk). Similarly, we can express the average sum rate into two parts as

R(P,b) = R+(P,b)−R−(P,b) whereR+(P,b) =
∑K

k=1R+
k (P, bk) andR−(P,b) =

∑K

k=1R−
k (P, bk).

In the high SNR region, the increasing term of thekth user’s achievable rate,R+
k (P, bk), becomes

lim
P→∞

R+
k (P, bk) = E

[

log2
(

P
M
Q1

)]

+ E [log2 (X1 +W1Zk)] ,

where the second term on the right hand side of the equality isonly affected by the quantization error,

Zk. For the quantization errorZk ∈ [0, 1], the range oflog2 (X1 +W1Zk) becomeslog2 (X1 +W1Zk) ∈

[log2 (X1) , log2 (X1 +W1)]. In the high SNR region, on the other hand, the decreasing term of thekth

user’s achievable rate,R−
k (P, bk), becomes

lim
P→∞

R−
k (P, bk) = E

[

log2
(

P
M
Q1W1

)]

+ E [log2 (Zk)] ,

where the quantization error affectsE [log2 (Zk)] only. For the quantization errorZk ∈ [0, 1], we can

find log2 (Zk) ∈ (−∞, 0]. However, note thatlog2
(

P
M
Q1W1

)

≫ − log2 Zk when P → ∞ although

log2 (Zk) ∈ (−∞, 0]. These facts implicate that in the high SNR region the quantization error,Zk, only

dependent on the feedback size, highly affects the rate decreasing termR−
k (P, bk) and thus the achievable

rate at each user is dominated by the rate decreasing term. Therefore, the feedback rate sharing strategy

in the high SNR region should be focused on minimizing the rate decreasing term. The average sum rate

decreasing term,R−(P,b), becomes

lim
P→∞

R−(P,b) = ME

[

log2

(

P

M
Q1W1

)]

+

K
∑

k=1

E [log2 Zk] .

Hence, as an alternative of (6) in the high SNR region, we solve the optimization problem to minimize
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R−(P,b) equivalent with the following problem:

minimize
b=[b1,...,bK ]

K
∑

k=1

E[log2 Zk] (18)

subject to (7), (8).

Theorem 2 (Strategy in the High SNR Region). Using RVQ in the high SNR region, feedback rate sharing

strategyb1 achieves higher average sum rate than feedback rate sharingstrategyb2 wheneverb1 � b2,

i.e.,

lim
P→∞

R(P,b1) ≥ lim
P→∞

R(P,b2) for all b1 � b2. (19)

Proof: See Appendix C.

Corollary 2. In the high SNR region, when the total amount of feedback information from all users is

fixed (i.e.,
∑

bk = Kb̄), the optimal feedback rate sharing strategy is to allocatewhole feedback amount

Kb̄ to a single user while the worst strategy is to allocate the same amount of feedback (bk = b̄) to all

users.

Proof: As stated in the proof of Corollary 1, any feedback rate sharing strategy,b, satisfies that

[b̄, . . . , b̄] � b � [Kb̄, 0, . . . , 0]. (20)

Thus, the optimal feedback rate strategy in the high SNR region is to allocate the whole feedback size to

a single user while the worst strategy is to allocate the samefeedback size to each user.

C. Intermediate SNR Region

In Theorem 1 and Theorem 2, the optimal feedback rate sharingstrategies in the asymptotic SNR

regions are derived. In the practical SNR region, the optimal strategy can easily be found by a numerical

method owing to Lemma 2 that the achievable rate of each user only depends on its own feedback size.

We first compute the achievable rates of each user for variousfeedback bitsbk = 0, . . . , Kb̄, respectively.

Using the computed numerical values, we select the best feedback rate sharing strategy for each SNR
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TABLE I

THE OPTIMAL FEEDBACK RATE SHARING STRATEGY FOR A4× 4 MIMO BC

2 streams 3 streams 4 streams

SNR(dB) b
↓ SNR b

↓ SNR b
↓

0∼27 [12,12] 0∼12 [8,8,8] 0∼7 [6,6,6,6]

28∼ [24, 0] 13∼23 [12,12,0] 8∼11 [8,8,8,0]

24∼ [24,0,0] 12∼20 [12,12,0,0]

21∼ [24,0,0,0]

that maximizes the total sum rate among all possible strategies. For example, when total feedback size

is 16bits, the conventional exhaustive search needs to search the optimal strategy among all possible

64 strategies. On the other hand, in our proposed numerical method, it is enough to consider only five

strategies –[0, 0, 0, 0], [1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16] – because the achievable rate

for other strategies can be easily obtained from Lemma 2. Denoting the set of all possible strategies by

B, the procedure to find the optimal feedback strategy is described in Algorithm 1. The complexity of

the procedure will be analyzed in Section IV-E.

Observation 1. The optimal feedback rate sharing strategy is to allocate the same amount of feedback

to the optimal number of users at given SNR.

Algorithm 1 Procedure to find Feedback Rate Sharing Strategy
1: Initialization: randomly chooseb ∈ B

2: for all b
′ ∈ B do

3: if
∑

Rk(γkP, [b
′]k) >

∑

Rk(γkP, [b]k) then

4: b = b
′;

5: end if

6: end for

7: Output: the optimal feedback strategyb
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Example 1. For a 4× 4 MIMO BC with 24 total allowable feedback bits (Kb̄ = 24), the achievable rate

of a user for variousbk ∈ {0, . . . , 24} is plotted in Fig. 3. For various feedback rate sharing strategies,

the sum rate is calculated by using the numerical values obtained in Fig. 3 and then we can find the

optimal feedback sharing strategy for given SNR as shown in Table I.

Interestingly, the optimal feedback rate sharing strategydetermines the optimal number of concurrent

users for equal feedback rate sharing at a given SNR. In a practical system with user scheduling, the

weighted sum rate may be more important than the sum rate. We can also easily find the optimal feedback

rate sharing strategy numerically as in Example 1 owing to Lemma 2.

D. Different Path Losses at the Users

In this subsection, we obtain the feedback rate sharing strategy according to SNR (i.e.,P ) when

propagation path losses for users are different. Under the different path losses, the sum rate given in (5)

becomes

R(P,b) =
K
∑

k=1

E

[

log2

(

1 +
γkP

M
|h†

kvk|2

1 +
∑

i 6=k
γkP

M
|h†

kvi|2

)]

(a)
=

K
∑

k=1

E

[

log2

(

1 +
γkP

M
QkXk

1 + γkP

M
QkWkZk

)]

(b)
=

K
∑

k=1

E

[

log2

(

1 +
γkP

M
Q1X1

1 + γkP

M
Q1W1Zk

)]

where(a) is from the definitions ofZk, Qk, Xk, andWk given in (2) and (9), respectively, and(b) holds

from Lemma 1. Thus, we can easily check that Lemma 2 is still valid for different path losses such that

R(P,b) =
∑K

k=1Rk(γkP, bk) whereRk(γkP, bk) is the achievable rate at thekth user given by

Rk(γkP, bk) , E

[

log2

(

1 +
γkP

M
Q1X1

1 + γkP

M
Q1W1Zk

)]

. (21)

The equation (21) indicates that the average achievable rate at each user is affected by only its own path

loss and independent of other users’ path losses. Therefore, the optimal feedback rate sharing strategy can

be found by the simple numerical method proposed in Section IV-C. In the same manner in Example 1,
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we first compute the achievable rates of each user for variousfeedback bits based on (21). Then, we select

the optimal feedback rate sharing strategyb = [b1, . . . , bK ] from the computed values to maximize the

sum rate
∑K

k=1Rk(γkP, bk). The equation (21) also implicates that the effects of path losses are canceled

out in the high SNR region sincelimP→∞Rk(γkP, bk) = E

[

log2

(

1 + X1

W1Zk

)]

. Therefore, the optimal

feedback rate sharing strategy is the same as Theorem 2 even when different path losses are taken into

account.

On the other hand, the feedback rate sharing strategy for different path losses proposed in [23] is given

by

bk = b̄− (K − 1)

(

log2 γk −
1

K

K
∑

i=1

log2 γi

)

(22)

which results in equal sharing of the sum feedback size regardless of SNR levels when the path losses

are the same (i.e.,γ1 = . . . = γK), which is not optimal in the mid and the high SNR regions.

Example 2. Consider a4×4 MIMO BC with 24 total allowable feedback bits (Kb̄ = 24). We assume the

path losses of each user as(γ1, γ2, γ3, γ4) = (1.5, 1.25, 1, 0.75). For the given path losses, the feedback

rate sharing strategy given in(22) becomesb = [7, 7, 6, 4]. On the other hand, the optimal feedback

rate strategy obtained by the proposed numerical method is given in Table II according to various SNR

regions. The average sum rate by the optimal feedback rate strategy by the proposed method is plotted

in Fig 4. Fig 4 confirms that our proposed strategy given in Table II more significantly outperforms the

feedback rate sharing strategy proposed in(22) as SNR becomes higher.

TABLE II

THE OPTIMAL FEEDBACK RATE SHARING STRATEGY FOR A4× 4 MIMO BC WHEN ALL USERS SUFFERING DIFFERENCE PATH LOSSES

(γ1, γ2, γ3, γ4) = (1.5, 1.25, 1, 0.75)

SNR [b1, b2, b3, b4] SNR [b1, b2, b3, b4]

0 ∼ 1 dB [8, 8, 8, 0] 8 ∼ 17 dB [13, 11, 0, 0]

2 ∼ 6 dB [10, 8, 6, 0] 18 dB [16, 8, 0, 0]

7 dB [11, 8, 5, 0] 19 dB ∼ [24, 0, 0, 0]
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E. Complexity Analysis

In this subsection, we analyze complexity to find the optimalfeedback rate strategy described in

Algorithm 1. Because the effects of different path losses can be simply regarded as different transmit

SNR of users as described in Section IV-D, the achievable rates of users with different path losses can

be calculated by the same procedure based on Fig. 3.

In the symmetric path loss cases (i.e.,γ1 = . . . = γK), two strategiesb1 and b2 yield the same

performance wheneverb↓
1 = b

↓
2. Thus, the optimal feedback strategy can be found in the strategy setB

given by

B =
{

b
↓
∣

∣

∣
b ∈ (Z+ ∪ {0})K,

K
∑

k=1

[b]k = Kb̄
}

. (23)

The number of all possible strategies is determined by the total feedback size as in Table III.

For asymmetric path loss cases, without loss of generality we consider the case thatγ1 ≥ . . . ≥ γK .

Because the larger feedback size yields the higher multiplexing gain, larger feedback size should be

assigned to the user with smaller path loss (i.e., largerγk). This implicates that the strategyb↓ outperforms

b, i.e.,

K
∑

k=1

Rk(γkP, [b
↓]k) ≥

K
∑

k=1

Rk(γkP, [b]k).

Therefore, the optimal feedback rate sharing strategy is selected in the feedback strategy setB defined

in (23). Because the number of all possible strategies, i.e., |B|, is the same for the symmetric and the

asymmetric path loss cases, the computational complexity is also the same for both cases.

TABLE III

THE NUMBER OF FEEDBACK STRATEGIES FOR4× 4 MIMO BC

Total FB Size 8 16 24 32 40 48 56 64

|B| 15 64 169 351 632 1033 1575 2280
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F. Extension to Stream Control

Although the equal power allocation with full multiplexingis mainly considered in our manuscript,

our feedback rate sharing strategy can readily be extended to the stream control where the transmitter

adaptively controls multiplexing gain. For4 × 4 MIMO BC, for example, four ways of equal power

allocation according to the number of streams –[P/4, P/4, P/4, P/4], [P/3, P/3, P/3, 0], [P/2, P/2, 0, 0],

and [P, 0, 0, 0] – are possible with the steam control. Note that single stream transmission corresponds to

the TDMA scheme. Since we consider ZF beamforming at the transmitter, the beamforming vector for

each user is randomly picked orthogonal to other users’ quantized channels. Therefore, it can easily be

shown that Theorem 1 and Theorem 2 are still valid even with the stream control. In Table I, we have

found the optimal feedback rate sharing strategy for4×4 MIMO BC according to the number of streams

and SNR when total feedback budget is 24bits and the path losses are symmetric. We can also find the

optimal feedback rate sharing strategies for asymmetric path losses because Lemma 2 still holds for the

stream control and hence the rate of each served user is affected by its own feedback size.

V. NUMERICAL RESULTS

A. Numerical Examples

In this section, we present numerical results to analyze theeffects of feedback rate sharing strategies. In

Fig. 5, the average sum rates of a2×2 MIMO BC using different feedback rate sharing strategies. We con-

sider five feedback rate sharing strategies(b1,b2,b3,b4,b5) = ([0, 16], [2, 14], [4, 12], [6, 10], [8, 8]) such

thatb1 � b2 � b3 � b4 � b5. In Fig. 5, for allbi � bj we obtainlimP→0R(P,bi) < limP→0R(P,bj)

and limP→∞R(P,bi) > limP→∞R(P,bj) as stated in Theorem 1 and Theorem 2, respectively. In the

low SNR region, the equal sharing of the sum feedback rateb5 = [8, 8] achieves the highest average sum

rate while allocating the whole feedback rate to a single user b1 = [0, 16] achieves the lowest average

sum rate as predicted in Corollary 1. In the high SNR region, however, allocating the whole feedback rate

to a single userb1 = [0, 16] achieves the highest achievable rate whereas equal sharingof the feedback
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rateb5 = [8, 8] achieves the worst achievable rate as claimed in Corollary 2.

In a noise limited environment, increasing multiplexing gains directly results in higher sum rate, and

the multiplexing gains are maximized when the feedback rateis equally shared among users. Since the

remaining interference caused by the quantization error becomes dominant in the high SNR region, the

full multiplexing gain cannot be achieved and the multiplexing gain rather diminishes as SNR increases.

Therefore, by allocating the whole feedback rate to a singleuser, the other users can effectively eliminate

the interference limitation by removing all multiuser interference from the user being allocated the whole

feedback rate. Reducing the number of interferers is more effective in an interference limited environment

from a sum rate perspective since the multiplexing gain is already lost.

The sum rate of a4 × 4 MIMO BC for various feedback sizes is shown in Fig.6(a) wherethe total

feedback rate is restricted to 36 bits. Four feedback rate sharing strategies are considered –(b1,b2,b3,b4)

= ([0, 0, 0, 36], [0, 0, 18, 18], [0, 12, 12, 12], [9, 9, 9, 9]) such thatb1 � b2 � b3 � b4. As stated in Theorem

1 and Theorem 2, we can observe thatlimP→0R(P,bi) < limP→0R(P,bj) and limP→∞R(P,bi) >

limP→∞R(P,bj) wheneverbi � bj . Also, we can observe that the equal allocation to the optimal

number of users according to SNR becomes the optimal strategy in the mid-SNR region as stated in

Observation 1.

B. Extension to Other Codebook Models

Although the overall trends obtained by RVQ are known to agree well with the results of other

codebooks, we consider another codebook model to verify theobservations and conclusions obtained

for RVQ are effective for other codebook models. Since a ratemaximizing codebook is difficult to find,

we consider a spherical cap codebook [3], [14], [27] which isbased on an ideal assumption that each

quantization cell inb-bit codebook is a spherical cap with the surface area2−b. A spherical cap codebook

is an ideal vector quantizer whose quantization error is stochastically dominated by any other codebooks
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[8]. In a b-bit spherical cap codebook, the CDF of the quantization error denoted byZ̃ becomes

Pr[Z̃ < z] =

{ 2bzM−1, 0 ≤ z ≤ 2−
b

M−1

1, z ≥ 2−
b

M−1 .

Fig. 6(a) and Fig. 6(b) show the average sum rates of a4× 4 MIMO BC using various feedback sharing

strategies when RVQ and a spherical cap codebook are used, respectively. This result confirms the optimal

strategies obtained from RVQ is still valid for the spherical cap codebook.

In general, RVQ and spherical cap codebook are regarded as the lower bound and the upper bound

of the practical quantization codebook, respectively. From the both codebook models, therefore, we can

conjecture the average sum rate in practical4×4 ZF MIMO BC for the given configuration. In Fig. 6(c),

the conjectured average sum rate region for practical quantization codebook (with
∑

bk = 36) is shaded

with/without adopting our proposed feedback rate sharing strategy, respectively. Each shaded region is

bounded both on RVQ and the spherical cap cases plotted in Fig. 6(a) and Fig. 6(b), respectively. Fig.

6(c) implicates that our proposed feedback rate sharing strategy is useful even for practical ZF MIMO

BC systems, especially in the high SNR region.

C. Comparison with TDMA and Regularized ZF

We also consider the regularized zero-forcing beamforming[8] which enhances the performance of ZF

beamforming in the low SNR region. Also, TDMA is considered and compared with both ZF beamforming

and regularized ZF beamforming. The average sum rates of a4 × 4 MIMO BC using ZF beamforming

adopting our proposed feedback rate sharing strategy are compared with TDMA in Fig. 7(a), when
∑

bk =

60. In TDMA, all available feedback bits are allocated to the single served user (b = [60]). In Fig. 7(a),

we can observe that ZF beamforming is inferior to a TDMA system in both low and high SNR regions

although it outperforms a TDMA system in the mid SNR region. In these regions, it is desirable to adopt

the mode switching [31] between ZF and TDMA for sum rate maximization.

In the regularized ZF beamforming, the normalized column vectors ofĤ†
(

ĤĤ
† + M

P
IM

)−1

are used

for the beamforming vectors whereIM is an M × M identity matrix. Although the optimal feedback
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rate sharing strategy using the regularized ZF beamformingis hard to analyze, the feedback rate sharing

strategy will be the same with that of ZF beamforming case in the high SNR region. This is because the

regularized ZF beamforming vectors correspond to ZF beamforming vectors in the high SNR region. In

Fig. 7(b), the average sum rates of a4×4 MIMO BC using regularized ZF beamforming are plotted while

other parameters are same in Fig. 7(a). As shown in Fig. 7(b),the regularized ZF beamforming improves

ZF beamforming especially in the low SNR region and hence outperforms TDMA in wider SNR region.

Since TDMA always achieves a multiplexing gain of one even with blind transmission, TDMA system

outperforms MIMO BC with limited feedback in the high SNR region. This is because the achievable

rate of MIMO BC with finite limited feedback is saturated in the high SNR region due to mutual

interference. The inferior performance in the high SNR region is a fundamental limit of MIMO BC with

limited feedback. However, it should be noted that ZF beamforming can be enhanced by the regularized

ZF beamforming and our feedback rate sharing strategy enables ZF beamforming or regularized ZF

beamforming to outperform TDMA in wider SNR region. Note that our main contributions are to find

the feedback rate sharing strategy and to show the feedback rate sharing strategy (e.g.,
∑

bk = 60)

enhances the system performance compare to equal feedback rate sharing (e.g.b = [15, 15, 15, 15]). In

Fig. 7(b), the regularized ZF beamforming outperforms TDMAfrom -15dB to about 45dB when the

optimal feedback rate sharing strategy is employed, whereas equally sharing makes the regularized ZF

beamforming outperform TDMA until about 34dB.

VI. CONCLUSION

In this paper, we have analyzed the average sum rate of ZF MIMOBC with limited feedback when

the users share the feedback rates. The impact of asymmetricfeedback sizes among the users has been

rigorously analyzed by adopting RVQ at each user. Our mathematical analysis has shown that the optimal

feedback rate sharing strategy in the high SNR region is to allocate the whole feedback rate to a single

user. On the other hand, the optimal feedback rate sharing strategy in the low SNR region is the equal

sharing of the feedback rate among users. We have proposed a simple numerical method for finding the
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optimal feedback rate sharing strategy in the practical SNRregion and shown that equal sharing of the

feedback rate among the optimal number of concurrent users is optimal. It has also been shown that

the proposed numerical method can be applicable to finding the optimal feedback rate sharing strategy

when path losses of the users are different. In the simulation part, we have shown our proposed feedback

capacity sharing strategy is still valid for other system configurations such as regularized zeroforcing

transmission and spherical-cap codebook.

APPENDIX A. PROOF OFLEMMA 1

Since the channel vectors are i.i.d, it is obvious thatQk ∼ Q1 for all k. Becausehk is isotropic in

CM , the quantization ofhk is also isotropic inCM . Thus,{ĥk}Kk=1 become independent and isotropically

distributed random vectors inCM . Becausevk is uniquely obtained from{ĥi}i 6=k, the beamforming

vectors,{vk}Kk 6=1, are also isotropic inCM . Sincevk is independent of̂hk, Xk(= |h̃kvk|2) becomes the

squared inner product between two independent random vectors isotropic inCM . Hence,Xk is identical

for all k, i.e., Xk ∼ X1. For Wk(=
∑

i 6=k |e
†
kvi|2), both ek and{vi}i 6=k are picked independently in the

null space ofĥk, and they are also isotropic in theM − 1 dimensional subspace. Thus,Wk becomes the

sum ofK − 1 the squared inner products between two independent and isotropic random vectors in the

M − 1 dimensional subspace inCM so thatWk ∼ W1, ∀k. From above reasons, we can conclude that

Qk, Xk, andWk are identical for allk, respectively, invariant with the feedback sizesb1, . . . , bK .

We can prove the second property that{Qk, Xk,Wk}Kk=1 is independent of all{Zk}Kk=1 becauseZk is

only dependent onbk as shown in (2).

Because{Qi, Xi,Wi} is interchangebly obtained from{Qk, Xk,Wk} by swapping the index ofhi and

hk whose distribution are the same, i.e.,Qi ∼ Qk, Xi ∼ Xk, andWi ∼ Wk, we can obtain the third

property such that

fQk,Xk,Wk
(q, x, w) = fQ1,X1,W1(q, x, w), k = 1, . . . , K.

When all users use the equal feedback size, (i.e.,Zk ∼ Z̄, ∀k), the average achievable rate of each user
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is the same such thatE
[

log2

(

1 +
P

M
QkXk

1+ P

M
QkWkZ̄

)]

= E

[

log2

(

1 +
P

M
Q1X1

1+ P

M
Q1W1Z̄

)]

for all k. This can be ex-

plained from the fact thatfQk,Xk,Wk,Z̄
(q, x, w, z)

(a)
= fQk,Xk,Wk

(q, x, w)fZ̄(z)
(b)
= fQ1,X1,W1(q, x, w)fZ̄(z)

(a)
=

fQ1,X1,W1,Z̄(q, x, w, z) where(a) and(b) are from the second property and the third property, respectively.

APPENDIX B. PROOF OFTHEOREM 1

To prove Theorem 1, we firstly show the average quantization error E[Zk] is a discretely convex function

of bk. Then, we use the majorization theory. We start from following Lemma.

Lemma 3. The average quantization errorE[Zk] is a discretely convex function ofbk.

Proof: It was shown in [8], [28] thatE[Zk|bk = b] = 2b · β
(

2b, M
M−1

)

, whereβ(x, y) is the beta

function given byβ(x, y) = Γ(x)Γ(y)
Γ(x+y)

. Using this, we obtain

E[Zk|bk = b+ 1]

= 2b+1 · β
(

2b+1,
M

M − 1

)

=
2 · Γ

(

2b+1
)

Γ
(

2b + M
M−1

)

Γ (2b) Γ
(

2b+1 + M
M−1

) ×
2b · Γ

(

2b
)

Γ
(

M
M−1

)

Γ
(

2b + M
M−1

)

(a)
=

2 ·
∏2b+1−1

i=2b i
∏2b+1−1

i=2b

(

i+ M
M−1

)

× E[Zk|bk = b],

where the equality(a) is fromΓ(x+1) = xΓ(x). Thus, we can rewriteE[Zk|bk = b+1] = ηb ·E[Zk|bk = b]

whereηb , 2 ·
∏2b+1−1

i=2b
i

(

i+ M

M−1

) .

When we define a forward difference function∆(b) , E[Zk|bk = b + 1] − E[Zk|bk = b], we can find

that the forward difference function is an increasing function of b, i.e.,∆(b+ 1) > ∆(b), such that

∆(b+ 1)−∆(b)

= E[Zk|bk = b+ 2]− 2 · E[Zk|bk = b+ 1] + E[Zk|bk = b]

= (ηb+1ηb − 2ηb + 1) · E[Zk|bk = b]
(a)
> 0

where(a) is from the fact thatηb+1ηb − 2ηb = 4 ·
(

∏2b+2−1
i=2b

i
(

i+ M

M−1

) −
∏2b+1−1

i=2b
i

(

i+ M

M−1

)

)

is ranged in

[−1, 0] and minimized and maximized whenM = 2 andM = ∞, respectively. Since a discretely convex
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function has an increasing (non-decreasing) forward difference function [30],E[Zk] is a discretely convex

function of bk.

It is widely known in majorization theory that for a convex function h : R → R and two vectors

a1, a2 ∈ Rn,

n
∑

i=1

h([a1]i) ≤
n
∑

i=1

h([a2]i), (B.1)

whenevera1 � a2. In the low SNR region, the sum average rate with feedback rate sharing strategy is

only related with
∑K

k=1E[Zk] as stated in (14). From Lemma 3, we know the average quantization error

is a convex function ofbk. With the feedback rate sharing strategiesb1 � b2, therefore, we can conclude

that

K
∑

k=1

E{Zk|bk = [b1]k} ≤
K
∑

k=1

E{Zk|bk = [b2]k}, (B.2)

and equivalently,limP→0R(P,b1) > limP→0R(P,b2).

APPENDIX C. PROOF OFTHEOREM 2

We firstly show thatE [log2 Zk] is a discretely concave function ofbk in following lemma.

Lemma 4. The average quantization errorE[log2 Zk] is a discretely concave function ofbk.

Proof: In [8], it was shown thatE [log2 Zk|bk = b] = − log2 e
M−1

∑2b

i=1
1
i
. In this case, the forward

difference function∆(b) , E [log2 Zk|bk = b+ 1]− E [log2 Zk|bk = b] becomes

∆(b) =
− log2 e

M − 1

2(b+1)
∑

i=2b+1

1

i
, (C.1)

and is a monotonically decreasing function ofb, i.e., ∆(b) > ∆(b + 1). Since a discretely concave

function has a decreasing(non-increasing) forward difference function [30],E[log2 Zk] is a discretely

concave function ofbk.

In majorization theory, for a concave functiong : R → R, it satisfies that

n
∑

i=1

g([a1]i) ≥
n
∑

i=1

g([a2]i) (C.2)
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whenever two vectorsa1, a2 ∈ Rn satisfiesa1 � a2. In the high SNR region, the average sum rate with

feedback rate sharing strategy is related with
∑K

k=1E[log2 Zk] as stated in (18). As stated in Lemma 4,

E[log2 Zk] is the concave function ofbk. Thus, under the feedback rate sharing strategiesb1 � b2, we

can conclude that

K
∑

k=1

E{log2 Zk|bk = [b1]k} ≥
K
∑

k=1

E{log2 Zk|bk = [b2]k},

equivalently,limP→∞R−(P,b1) > limP→∞R−(P,b2). As stated in Section IV-B, in the high SNR region,

the achievable rate at each user is dominated by the rate decreasing term. Thus, we conclude that the

feedback rate sharing strategylimP→∞R(P,b1) < limP→∞R(P,b2) for feedback rate sharing strategies

b1 � b2.
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Fig. 1. A system model. The sum feedback rate is shared by all users.
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Fig. 2. The sum rate and the achievable rate at the user 1 in3× 3 MIMO BC. The achievable rate of user 1 is not affected by the other

users’ feedback sizes, while the sum rate is increased as thefeedback sizes of other users increase.
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