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Abstract

In this paper, we consider a multiple-input multiple-outfoadcast channel with limited feedback where
all users share the feedback rates. Firstly, we find the @ptieedback rate sharing strategy using zero-forcing
transmission scheme at the transmitter and random vectottigation at each user. We mathematically prove that
equal sharing of sum feedback size among all users is theabstrategy in the low signal-to-noise ratio (SNR)
region, while allocating whole feedback size to a singler isehe optimal strategy in the high SNR region. For
the mid-SNR region, we propose a simple numerical methodnid the optimal feedback rate sharing strategy
based on our analysis and show that the equal allocation rof fsedback rate to a partial number of users is
the optimal strategy. It is also shown that the proposed lsimpmerical method can be applicable to finding the
optimal feedback rate sharing strategy when different fmsbes of the users are taken into account. We show that

our proposed feedback rate sharing scheme can be extendeel $gstem with stream control and is still useful
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for the systems with other techniques such as regularizerifeecing and spherical cap codebook.
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I. INTRODUCTION

In recent years, multiple-input multiple-output (MIMO)dadcast channel (BC) systems, constructed by
an access point with multiple antennas and many users, lemreibtensively studied [1][3]. In a MIMO
BC, multiple users are simultaneously served through ieddent user specific multiple data streams and
a multiplexing gainis attained as in point-to-point MIMO. The capacity regidntltoe Gaussian MIMO
BC was derived in[[3] where dirty paper coding (DPC) [4] is wmoto be a capacity achieving scheme.
Because DPC is hard to implement, many practical technigaes been proposed such as zero-forcing
precoding (channel inversion)|[5] and Tomlinson-Harashimecoding![[6]. In these schemes, multiuser
interference is pre-canceled at the transmitter with perébannel state information at the transmitter
(CSIT).

CSIT can be obtained by reciprocity between uplink and dowrdhannels in time division duplexing
(TDD) systems and feedback from receivers in frequencysidiai duplexing (FDD) systems. In FDD
systems, the amount of feedback information is in generatéd and hence perfect CSIT is not available.
The accuracy of CSIT depends on both the type of feedbacknitpoh and the amount of feedback
overhead allowed. A popular feedback architecture is alwoole approach where an index of a codeword
in a predetermined codebook is fed back to the transmitierT@ere have been many studies on the
performance of codebook based multi-user MIMO systemsguganious transmission schemes such as
zero-forcing (ZF) beamforming [8], block diagonalizati®D) [9], [10], and the unitary precoding [11].

In limited feedback environments, a key difference betwkBRO BC and point-to-point MIMO is
the multiplexing gain achievability 7]/ [8]. In point-tpeint MIMO, a full multiplexing gain is achievable
even with open-loop transmission. On the other hand, a fultiplexing gain cannot be achieved using
a finite amount of feedback information in a MIMO BC [8]. The kiplexing gain of MIMO BC rather
diminishes in the high signal-to-noise ratio (SNR) regiare do imperfect orthogonalization resulting
from inaccurate CSIT. To maintain the multiplexing gainwiis shown in[[B],[[9] that the feedback size

should linearly increase with SNR (in decibel scale).



Since a large amount of feedback is a heavy burden on uplipkotty, many studies have been devoted
to increasing the efficiency of limited feedback. [nl[12].eedback reduction technigque has been proposed
using multiple antennas at the receiver. User selectionlIM®™BC has been studied to reduce the amount
of uplink feedback[[13]-H[17]. In[[14], random beamformingsvgeneralized and semi-orthogonal user
selection was proposed. Also, it was shown that channeltguaformation as well as channel direction
information are necessary to obtain both the maximum makipg and diversity gains. In_[16], a dual-
mode limited feedback system was proposed to switch betweghe user and multiuser transmissions.
The authors in[[17] investigated two partial feedback sak®efor user scheduling.

In practical systems, the uplink capacity of control chadsns typically limited and shared among
multiple users. A sum feedback rate constraint in spaceidivimultiple access (SDMA) was considered
in [18] but the amount of feedback information per user wdd benstant. In[[19], the optimum feedback
size per user and the number of feedback users were inviestigader a sum feedback rate constraint
assuming all users employ the same amount of feedback. Rerategies of feedback bit partitioning
between the desired and interfering channels proposedlinf¢2 a cooperative multicell system. IR-
user multiple-input-single-output (MISO) interferendeaanel, the feedback rate control to minimize the
average interference power was proposed_ in [21].

In MIMO BC, the effects of different amounts of feedback simeong the users are studied[in/[22]=[25].
In [22], the feedback rate sharing strategy has been prdpmseninimize the upper bound of sum rate
loss in correlated single-polarized and dual-polarizednciels, respectively. The feedback rate sharing
strategies in the low and high SNR regions have been propongedns of the correlation coefficient. The
feedback rate sharing strategy to increase the sum rate ls@ap@posed in [23] by considering users’
path losses, where the system performance was shown to beviedoby changing feedback bit allocation
according to the path losses. However, when the path lossesnailar, the feedback rate sharing strategy
in [23] is to equally share the sum feedback size regardlESN® levels but it is not optimal in some

SNR regions. Also, the effects of path losses are canceleith dloe high SNR region so that equal sharing



of the sum feedback size is not optimal any more. The feedbateksharing strategy to minimize total
transmission power for given users’ outage probabilities wroposed in_[24].

In this paper, we provide a new analytical framework for teedback rate sharing strategy and
rigorously analyzed the effects of different amounts ofifesck information among users by extending and
generalizing the results df [25]. The effects of feedbad& sharing on the achievable rate are investigated
in a MIMO BC with ZF beamforming at the transmitter and randeettor quantization (RVQ)_[26] at
each user. We derive the optimal feedback rate sharingegtest according to various SNR regions. Our
analytical results prove the optimal feedback rate shastngtegy in the low and the high SNR regions.
The feedback rate should be equally shared among all usdtseitow SNR region while the whole
feedback rate should be allocated to a single user in the 8R region. For the mid-SNR region,
we establish a simple numerical method for finding the ogtifeedback sharing strategy based on our
analytical framework. Through the proposed numerical wetiwe find that to equally allocate whole
feedback size to a partial number of users is the optimalbiaeld rate sharing strategy. For the users
suffering different path losses, we show that the proposedemical method can be applicable to finding
the optimal feedback rate sharing strategy. In the high SBion, we prove that the effects of path
losses are canceled out and hence the optimal feedbackgstriatto allocate the whole feedback size to
a single user with the highest SNR. Our proposed feedbaekstaring strategy derived from the system
with ZF beamforming and RVQ is also evaluated for the systauitis other techniques such as stream
control, regularized ZF transmission scheme and sphasaqgalcodebook model [14], [27]. Our numerical
results show that our proposed feedback rate sharing gyr&estill valid for other configurations.

The rest of this paper is organized as follows. We describesyistem model and formulate the problem
in Section Il. The impacts of asymmetric feedback size amasgys are investigated in Section Ill. The
optimal sum feedback rate sharing strategy is derived ini@etV. The numerical results are shown in

Section V. Section VI concludes our paper.



[I. PROBLEM FORMULATION
A. System Model

Our system model is depicted in Fig. 1. We consider a MIMO BGhwi/ transmit antennas and
K(= M) users having a single antenna. If the receiver has multiptenmas, each antenna can be
considered as an independent user, or receive combiniogsdied in[[12] can be adopted. The received
signal at the usek becomes

yk:\/%hlx+nk, kzl,...,K,

wherey, is the path loss of théth user,h;, € CM*! is a channel vector whose entries are independent
and identically distributed (i.i.d.) circularly symmeticomplex Gaussian random variables with zero mean
and unit variancex € CM*! is the transmit signal vector, is a complex Gaussian noise with zero
mean and unit variance, and the superscrigenotes conjugate transposition of a vector. Wikeis the
transmit signal powerx satisfies thati[tr (xx')] = P. If users demand the same quality of service, the
propagation path losses need to be pre-compensated totheldame average SNR at the receiver in
downlink. Thus, we firstly assume that the different propimgapath losses for users are compensated by
the transmitter, i.e;; = v = --- = v = 1. The open loop power control is also useful for preventing
waste of transmit power and avoiding extra interferencett@mousers. Then, we extend our results to
different path loss scenarios in Section TV-D.

As a simple linear precoding scheme, we adopt a ZF beamfgrsgheme in which the data stream
for each user is aligned with its precoding vector. We demioéeprecoding vector of theth user asv,
such that|v,|| = 1 and then the transmit signalbecomesc = 3", vi.s;, wheres; is the data symbol
for the kth user. We assume that the transmitter has only channetidimeinformation (CDI) so that the
feedback for power allocation can be saved. Therefore rémsimitter allocates equal power to users such
thatE|s;|* = P/M. Also, we assume thaj, is chosen from a Gaussian codebook and the codeword block
length is sufficiently long so that it encounters all possithannel realizations for ergodicity. Obviously,

power adaptation can further increase the achievable tdatéhb power allocation using channel quality



information (CQI) is a secondary problem when the numberaridmit antennas is same as the number
of served users, i.e., full multiplexin@l[8]. In Sectibn B/-we will consider the stream control where the
transmitter adaptively controls multiplexing gain and #ezved users equally share total transmit power.

The received signal at thiegth user using linear precoding becomes

K
yk:hzvkskjt Z hlivismtnk, k=1,...,K. Q)
i=1,ik

When the transmitter knowh;, ..., hx} perfectly, the precoding vectors yield zero multiuser rifgte

ences, i.e.) h!v;s; = 0; the received signal at thith user becomes
Yk :h};VkSk—Fnk, k=1,....K.

In most practical systems, however, the imperfect CSI is @vailable at the transmitter due to the
limited feedback budget. The uskrquantizes its own channdh,, and feeds the quantized CSI denoted
by h, to the transmitter. Then, the transmitter finds the preapaigctorsvy, ..., vy from the quantized
CSl, ﬁl, el ﬁK, instead of the perfect CSh,, ..., hx. Because of the quantization errors, the precoding
vectors obtained from the quantized CSI cannot perfecttigate the multiuser interference. The precoding
vector cannot be exactly picked in the null space of the atlsers’ channel vectors; the interference term
D itk h!v;s; remains in the received signal.

At the transmitter, a quantized channel matrix definedfby® [h,, ..., hg]' is constructed with the
quantized CSI fed back from the users. Tk normalized column vector & ~! becomes the precoding
vector for thekth user,v,,, where(-)~! denotes the matrix inversion. Thus, we can decompdsé as
H' = VA, whereV = [vy,...,vg] is a zero-forcing beamforming matrix such fse;||> = 1, and
A = diag(\y, ..., \k) is diagonal matrix whose elemenj, € R is the Euclidean norm of théth
column of H 1,

For the channel quantization, RVQ is considered at each usgech is widely used to analyze the
effects of quantization error and asymptotically optimaltae number of antennas goes to infinlty [8],

[28]. Although the performance is suboptimal for a smallteggck size, RVQ makes the analysis tractable



and provides insightful results. Furthermore, the ovaratds of RVQ generally agree with the trends of
other quantization model5s [14].

Using b,-bit RVQ at thekth user, the quantized CSI is obtained by

hy, = argmax  cos*(Z(h;, w)) = argmax |hiw]|?,
weWy, weWy

where W, = {Wy1,..., W, } iS @ random vector codebook at théh user consists o2’ randomly

chosen isotropicl/-dimensional unit vectors. The quantization error dendted’,. € [0, 1] becomes

Zr = min sin?(Z(hy, w)) = sin?(Z(hg, b)) = 1 — |hihg|?, 2)

wEW)
where hy, = h,/||h,|. For an arbitrary codeworav € W;, |hiwl|? is a squared inner product of
two independent random vectors isotropic @, so follows the beta distributiunwith parameters
(M —1,1) [8], [28]. Consequently, a quantization error usitigbit RVQ, Z,, becomes the minimum
of 2% independent beta distributed random variables with pat@sé)M — 1,1). Correspondingly the

complementary cumulative density function (CDF)4f is given by [28]

Pr{Z, > 2] = (1— 211" (3)

B. Feedback Rate Sharing Strategy

We assume aaveragefeedback size allocated for each useb iso that the total feedback rate (i.e.,
the sum of all individual users’ feedback rates) becomi@sbits per channel realization. Assuming the
feedback rate sharing among users, each usertydas feedback and the sum feedback rate constraint
becomesZkK:1 b, = Kb. Since codebook size is typically a non-negative integenimer of bits, we
restrict the average feedback sizeas an positive integer, i.eh,c Z*. For the same reason, we assume

the feedback size at theth user,b,, as a non-negative integer, i.é;, € {0} UZ" fork=1,... K,

The probability density function of beta distributed randgariableS with parametersd( b)) becomesfs (s) = Fr(ff;é’g) 71 —s)b !

[29, p.635].



From individual feedback rates, a feedback rate sharirajegty can be expressed Iy-dimensional

vector
b= [b,...,bx], 4)

and the sum feedback rate constraint becofites = Kb where|| - ||, is the vector one norm.
From (1), we obtain the average sum rate as a function of trérmower, P, and the sum feedback

rate sharing strategy, denoted byR (P, b) given by

R(P,b) = iE log (1 LA )] (5)
) - 2 .
k=1 T4 s ﬁ‘hlvi‘z
Thus, we solve the following problem:
imi P,b
mim RO v
K
subjectto > by, = Kb, (7)
k=1
b e {0JUZT k=1,...,K. (8)

Note that the optimal sum feedback rate sharing stratedybeitlerived later and shown to be dependent
on the SNR value. Therefore, the feedback bits are realdcadch time when the SNR changes. In
practical scenarios, several allocation patterns can hstaated offline for typical SNR values and then

the transmitter can broadcast an appropriate allocatitterpausing the current SNR.

[Il. | MPACTS OFASYMMETRIC FEEDBACK SIZES AMONG USERS

To find the optimal feedback rate sharing strategy, we firatyae the impact of asymmetric feedback

sizes among the users on the sum rate. For the simplicity,efieedthree random variables

Qu2 el X2 [Blvi? Vi 23 (Bl ©)
ik

where Q). is the kth channel gainX,, is the squared inner product between thle normalized channel

vector and thekth beamforming vector, andl, is the sum of the squared inner products between the



kth normalized channel vector and the other beamformingovectNote thatX, is not affected by the
feedback size of théth user sincev,, is selected in the null space {:ﬁi}#k.
Using the quantization erraf;, defined in[(2), we can decompoﬁg into hy, = /T — Zphy +V/Zrex

whereey, is an unit vector such thaﬁLekP = 0. The random variabl&), becomes

. N
Yk = Z (\/ 1-— Zkhk + Zkek) V; (10)
ik
=7y lefvil? (11)
i#k
= 7y - Wy, 12)

where the random variabl&/, = D itk lelv;|? is the sum of the square of inner products between
the quantization error vectay, and the beamforming vectors of other usévs};.,. The independency
betweenZ, and |e£vi\2 is shown in [12] from the fact that the magnitude of the quaatiion error,Z,

is independent of the direction of quantization errgy, Thus, we can easily find that, and Wy (=

D itk lelv;|?) are independent. We start from the following lemma.

Lemma 1. The random variableg);, X, W and Z; have following properties.

1) Invariant with the feedback sizes,, ..., by, the distributions of),, X, and W, are identical for

all users, respectively, i.e.,
ka<q):fQ1<Q)7 ka(SL’) :fX1<x)7
fWk(w>:fW1<w)7 k:27"'7K7

where fo, (¢), fx,(z), and fy, (w) are the marginal PDFs o), X, W, respectively,
2) Q, Xi, and W, are independent of, respectively.
3) The joint PDF of(),, X, and W, are identical for all users, i.e.,

kav—Xkka(Q7 xZ, w) = fQ1,X1,W1 (Qa z, w)a

where fo, x,.w. (¢, z,w) is the joint PDF ofQ, X, and W.
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Proof: See Appendix A. [ ]

Lemma 2. The achievable rate of thkth user is determined by only its own feedback s$jzeand is

independent of the other users’ feedback siges; ;.

Proof: From Lemmad]L, we can rewrite the average sum ratélin (5) as

= T Qr Xk
R(P,b) = ZEQImXIwW/ka logy [ 1+

1+ 2 QuWiZi

k=1
[ w1431
= E 1,X1,W1,Z log, [ 1+ ot :
Zk:l N ¢ [ 2 1+ LQ W2,

Thus, the achievable rate at thth user is dependent on only its own feedback size bec@us&’;, and

W, are not affected by the feedback size as noted in Leidma 1e $ivecdistribution of7Z;, is a function

of b, the achievable rate at each user is only affected by its esdlfack size. [ |
Thus, the achievable rate of the ugebecomes a function of transmit powErand own feedback size

by denoted byR (P, b;) such that

PO.X
Ri(P,br) = Eq, x,,w1,2, [10?;2 (1 + X ) 7 (13)

1+ 2Q1W1Z,

and it satisfies thaR (P, b) = S_r_ Ri(P, by.).

To verify Lemmal2, two feedback scenaribs = [10, 10, 10] andb, = [10, 0, 0] are considered in ZF
MIMO BC with M = 3, K = 3. In Fig.[2, the sum rate for the first scenario is much highantthat
for the second scenario due to the larger amount of totalbfeedinformation. As predicted in Lemma
[2, however, the achievable rate of user 1 is the same in thestenarios.

Lemmal2 indicates that a feedback size of a user does not #ifeachievable rates of the other users
and only changes its own achievable rate. Under a sum feledate constraint, an increase of one user’s
feedback size necessarily decreases other users’ feedimsk With more accurate;, the transmitter
can pick the beamforming vectors of other users in more ateurull space of the usér. Hence, the
user k benefits from less interference from other users. On therdthed, the other users experience

more interference since the accuracy of the users’ chamllledge degrades under the sum feedback
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rate constraint. Consequently, when a user increases ridemdback size, the achievable rate of the user
increases but the achievable rates of the other users decr@ad vice versa. The optimal feedback rate

sharing strategy starts from this fundamental tradeoff.

V. SUM FEEDBACK RATE SHARING STRATEGY
A. Low SNR Region

In the low SNR region, the achievable rate of ttth user given in[{13) becomes

lim Rk(P, bk)

P—0
. P P
= }1)1£H>OE|:10g2 (]_ + MQle -+ MQlVVle)

P
—1 14+ — A
og2< +MQ1W1 k)}

' P QW1 Z,,
— }LlinoEllogz (1 + MQ1X1> + log, (1 + m

P
—1 1+ — Z
og2< + MQ1W1 k)}
@ 1p[P,y]_ L |m@Ximz
to In2 1+ %Qle

1 _%Q%leﬁ
In2 1—}—%@1)(1

-E[Z],

where the equalitya) holds becausém, ., In(1 + z) = z, and the equalityb) holds from the fact that
Z,. is independent of);., X, andWW, from Lemmadl. In the low SNR region, therefore, the optimaat

problem [®) is equivalent with the following problem:
K
minimize > E[Z] (14)
k=1

subjectto  [7)(@).

Definition 1 (Majorization) For a vectora € R™, we denote byat € R™ the vector with the same

components, but sorted in decreasing order. For given reatoa, € R™ such that|a;[|; = ||az]|;, we
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saya; majorizesa, written asa; > a, when

n

o= Yl 1<n<m (15)

i=1

where|[]; denotes theéth component of the vector.

Theorem 1 (Strategy in the Low SNR RegionYJsing RVQ in the low SNR region, feedback rate sharing

strategyb; achieves higher average sum rate than feedback rate shatmtegyb, wheneverb; < b,

ie.,
lim R(P,by) > lim R(P,by) forall by < b,. (16)
P—0 P—0
Proof: See Appendix B. [ |

Corollary 1. In the low SNR region, when the sum feedback ratdsiigi.e., > b, = Kb), the optimal
feedback rate sharing strategy is to allocate the same amoiufeedback, = b) to all users while the

worst strategy is to allocate whole feedback amokitto a single user.

Proof: All possible feedback sharing strategieq||b||, = Kb) satisfy that

b,...,b <b < [Kb,0,....0] (17)

Thus, the optimal feedback sharing strategy in low SNR regsoto allocate the same feedback size to

all users while the worst strategy is to allocate the whokslback size to a single user. [ |

B. High SNR Region

With fixed feedback size in the high SNR region, the sum rata MIMO BC saturates and cannot
achieve the full multiplexing gain [8]. This is because tmaining interference caused by the quantization
error increases with SNR so that the SINR is saturated in idje 8NR region.

For ease of explanation, we decompose the achievable ratseat into anincreasing termand a
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decreasing terndenoted byR; (P, b;) and R, (P, by), respectively, given by
R+(P bk) =K lOg 1+ £621)(1 + £Q1W12k
kAT 2 M M
_ P
R, (P by) =E {logz (1 + MQlWIZk)] ;

so thatR (P, by) = R} (P, br)—R; (P, by). Similarly, we can express the average sum rate into twe part
R(P,b) = R*(P,b) — R~ (P,b) whereR*(P,b) = 3.1 R} (P,bx) andR~(P,b) = 3.1 R;. (P, by.)-

In the high SNR region, the increasing term of ttte user’s achievable rat&®; (P, b;), becomes
Jim R (P by) =E [log, (£Q1)] + E [log, (X1 + W1 Z)],

where the second term on the right hand side of the equalibnlig affected by the quantization error,
Zy,. For the quantization erraf;. € [0, 1], the range oflog, (X; + W1 Z;) becomedog, (X; + W1 Zy,) €
[log, (X1),log, (X1 + W1)]. In the high SNR region, on the other hand, the decreasimg tdrthe kth

user’s achievable rat&y, (P, b;), becomes

lim R (P,b) = E [log, (£QW1)] + E [log, (Zi)]

P—oo

where the quantization error affeci[log, (Zx)] only. For the quantization erra¥, € [0, 1], we can
find log, (Zx) € (—o0,0]. However, note thatog, (+-Q1W;) > —log, Z, when P — oo although
log, (Zk) € (—o00,0]. These facts implicate that in the high SNR region the gaatitn error,Z;, only
dependent on the feedback size, highly affects the rateedsiolg terniz,_ (P, b,) and thus the achievable
rate at each user is dominated by the rate decreasing terenefbhe, the feedback rate sharing strategy
in the high SNR region should be focused on minimizing the decreasing term. The average sum rate

decreasing termiR ~ (P, b), becomes

o P -
lim R™(P,b) = ME {bgz (M&Wl” +Y E[log, Z] .

k=1

Hence, as an alternative &fl (6) in the high SNR region, weestie optimization problem to minimize
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R~ (P, b) equivalent with the following problem:
b=[b1,....bx]

K
minimize > El[log, Z] (18)
k=1

subjectto  [(7)(@).

Theorem 2 (Strategy in the High SNR Regionlsing RVQ in the high SNR region, feedback rate sharing

strategyb; achieves higher average sum rate than feedback rate shatnategyb, wheneverb; = b,,

ie.,
lim R(P, bl) > lim R(P, bg) for all b; > b,. (19)
P—oo P—oo
Proof: See Appendix C. [ ]

Corollary 2. In the high SNR region, when the total amount of feedbackrrdtion from all users is
fixed (i.e.,Y b, = Kb), the optimal feedback rate sharing strategy is to alloocatele feedback amount
Kb to a single user while the worst strategy is to allocate thmeaamount of feedback,(= b) to all

users.

Proof: As stated in the proof of Corollary 1, any feedback rate sigastrategyp, satisfies that

b,...,b] = b =< [Kb,0,...,0] (20)

Thus, the optimal feedback rate strategy in the high SNRoret to allocate the whole feedback size to

a single user while the worst strategy is to allocate the s@@back size to each user. [ |

C. Intermediate SNR Region

In Theorem[ ]l and Theorefd 2, the optimal feedback rate shatiragegies in the asymptotic SNR
regions are derived. In the practical SNR region, the ogtstrategy can easily be found by a numerical
method owing to Lemma] 2 that the achievable rate of each udgrdepends on its own feedback size.
We first compute the achievable rates of each user for vafemegback bits;, = 0, ..., Kb, respectively.

Using the computed numerical values, we select the besbé&eidrate sharing strategy for each SNR
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TABLE |

THE OPTIMAL FEEDBACK RATE SHARING STRATEGY FOR Al x 4 MIMO BC

2 streams 3 streams 4 streams

SNR(B) bt SNR bt SNR bt

0~27 | [12,12] || 0~12 | [88.8] || 0~7 | [6,6,6,6]
28~ [24, 0] || 13~23 | [12,12,0] || 8~11 | [8,8,8,0]

24~ | [24,0,0] || 12~20 | [12,12,0,0]

21~ | [24,0,0,0]

that maximizes the total sum rate among all possible stiegegor example, when total feedback size
is 16bits, the conventional exhaustive search needs talsd¢he optimal strategy among all possible
64 strategies. On the other hand, in our proposed numerietthad, it is enough to consider only five
strategies -0, 0,0,0], [1,2,3,4], [5,6,7,8], [9,10,11,12], [13,14, 15,16] — because the achievable rate
for other strategies can be easily obtained from Lerhina 2ofiem the set of all possible strategies by
B, the procedure to find the optimal feedback strategy is de=trin Algorithm[1. The complexity of

the procedure will be analyzed in Section IV-E.

Observation 1. The optimal feedback rate sharing strategy is to allocate same amount of feedback

to the optimal number of users at given SNR.

Algorithm 1 Procedure to find Feedback Rate Sharing Strategy
1: Initialization: randomly chooséd € B

2: for all b’ € B do

w

4: b =Db";
5: end if
6. end for

~

: Output: the optimal feedback stratedgy




16

Example 1. For a 4 x 4 MIMO BC with 24 total allowable feedback bit&¢ = 24), the achievable rate
of a user for varioudy, € {0,...,24} is plotted in Fig.[B. For various feedback rate sharing stgies,
the sum rate is calculated by using the numerical valuesiobthin Fig.[3 and then we can find the

optimal feedback sharing strategy for given SNR as showraliheTl.

Interestingly, the optimal feedback rate sharing strateégiermines the optimal number of concurrent
users for equal feedback rate sharing at a given SNR. In digabhsystem with user scheduling, the
weighted sum rate may be more important than the sum rateawealso easily find the optimal feedback

rate sharing strategy numerically as in Example 1 owing tonoa[2.

D. Different Path Losses at the Users

In this subsection, we obtain the feedback rate sharingeglyaaccording to SNR (i.e.”) when
propagation path losses for users are different. Under iffexeht path losses, the sum rate given[ih (5)

becomes

P
| 1+ L b vy |?
082 WP 1T, 12
I+ Zi;ék: i |hkzvi|

K r WP X
D3 |log, [ 1+ —AL 2
I 1+ 2-QuWiZy

k=1

K T wP . x
(:)ZE log, [ 1+ MPQI !

=l T+ 2P0,

where(a) is from the definitions oZ;, Q, X, andW, given in [2) and[(R), respectively, aritl) holds
from Lemmall. Thus, we can easily check that Leniina 2 is stiitlviar different path losses such that

R(P,b) = Ele Ry (v P, b)) whereR (v, P, by) is the achievable rate at thgh user given by

wP o x
log, | 1+ MPQl -
1+ 2= Wi Zy,

Ri(eP, b)) £ E : (21)

The equation[{21) indicates that the average achievalBeatatach user is affected by only its own path
loss and independent of other users’ path losses. Therefmeptimal feedback rate sharing strategy can

be found by the simple numerical method proposed in Se€le@l IIn the same manner in Examjle 1,
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we first compute the achievable rates of each user for vafemdback bits based o (21). Then, we select
the optimal feedback rate sharing stratdgy= [by, ..., bx| from the computed values to maximize the

sum rater:1 Ry (7P, b). The equation[(21) also implicates that the effects of pasisds are canceled

out in the high SNR region sincémp_,.. Ry (7P, bx) = E [logQ (1 + W)flzk)] Therefore, the optimal
feedback rate sharing strategy is the same as Theldrem 2 éwam different path losses are taken into
account.

On the other hand, the feedback rate sharing strategy flarelift path losses proposed (in|[23] is given

by

K
_ 1
by =b— (K —1) <log2 M= ; log, %) (22)

which results in equal sharing of the sum feedback size déggs of SNR levels when the path losses

are the same (i.eq; = ... = vk), which is not optimal in the mid and the high SNR regions.

Example 2. Consider a4 x 4 MIMO BC with 24 total allowable feedback bit& ¢ = 24). We assume the
path losses of each user &si,2,73,74) = (1.5,1.25,1,0.75). For the given path losses, the feedback
rate sharing strategy given i22) becomesb = [7,7,6,4]. On the other hand, the optimal feedback
rate strategy obtained by the proposed numerical methodvisngin Tablel according to various SNR
regions. The average sum rate by the optimal feedback reategly by the proposed method is plotted
in Fig 4. Fig[4 confirms that our proposed strategy given in [&ll more significantly outperforms the
feedback rate sharing strategy proposed(@2) as SNR becomes higher.
TABLE II

THE OPTIMAL FEEDBACK RATE SHARING STRATEGY FOR M x 4 MIMO BC WHEN ALL USERS SUFFERING DIFFERENCE PATH LOSSES

(71,72, v3,74) = (1.5,1.25,1,0.75)

SNR [b1, b, b3, ba] SNR [b1, b2, b3, ba]

0~ 1dB | [8,8,8,0 | 8~17dB | [13,11,0,0]

2~ 6dB | [10,8,6,0] 18 dB [16,8,0, 0]

7dB [11,8,5,0] 19dB ~ | [24,0,0,0]
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E. Complexity Analysis

In this subsection, we analyze complexity to find the optirfe@dback rate strategy described in
Algorithm [1. Because the effects of different path losses lsa simply regarded as different transmit
SNR of users as described in Section IV-D, the achievabksrat users with different path losses can
be calculated by the same procedure based on Fig. 3.

In the symmetric path loss cases (i.;, = ... = 7xk), two strategiesb; and b, yield the same
performance Wheneveb“lL = bé. Thus, the optimal feedback strategy can be found in theéeglyaset3

given by

]~

B= {b¢ ) be (ZTU{opDX, S (bl = KB}. (23)

k=1

The number of all possible strategies is determined by tted feedback size as in Talle]lll.

For asymmetric path loss cases, without loss of general@ycansider the case that > ... > ~g.
Because the larger feedback size yields the higher muttiglegain, larger feedback size should be
assigned to the user with smaller path loss (i.e., lasgerThis implicates that the stratedy outperforms

b, i.e.,

K K
> Ri(wP.[bY) = Y Ri(yeP. [b

k=1 k=1

Therefore, the optimal feedback rate sharing strategy lectsal in the feedback strategy detdefined
in (23). Because the number of all possible strategies,|i3, is the same for the symmetric and the

asymmetric path loss cases, the computational complexifsio the same for both cases.

TABLE 1lI

THE NUMBER OF FEEDBACK STRATEGIES FOR x 4 MIMO BC

Total FB Size|| 8 16 24 32 40 48 56 64

18| 15 64 169 351 632 1033 1575 2280
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F. Extension to Stream Control

Although the equal power allocation with full multiplexing mainly considered in our manuscript,
our feedback rate sharing strategy can readily be extermiédet stream control where the transmitter
adaptively controls multiplexing gain. Far x 4 MIMO BC, for example, four ways of equal power
allocation according to the number of stream$44, P/4, P/4, P/4], [P/3, P/3, P/3,0], [P/2, P/2,0,0],
and[P,0,0,0] — are possible with the steam control. Note that single streansmission corresponds to
the TDMA scheme. Since we consider ZF beamforming at thestnétter, the beamforming vector for
each user is randomly picked orthogonal to other users’ titgexh channels. Therefore, it can easily be
shown that Theorerml 1 and Theoréin 2 are still valid even withstineam control. In Tablé I, we have
found the optimal feedback rate sharing strategydfer4 MIMO BC according to the number of streams
and SNR when total feedback budget is 24bits and the patledam® symmetric. We can also find the
optimal feedback rate sharing strategies for asymmettiic jusses because Lemih 2 still holds for the

stream control and hence the rate of each served user igeaffbyg its own feedback size.

V. NUMERICAL RESULTS
A. Numerical Examples

In this section, we present numerical results to analyzetteets of feedback rate sharing strategies. In
Fig.[H, the average sum rates dt a2 MIMO BC using different feedback rate sharing strategies.ath-
sider five feedback rate sharing strategibs, b,, bs, by, bs) = ([0, 16], [2, 14], [4, 12], [6, 10], [8, 8]) such
thatb, > by > by = b, > b;. In Fig.[§, for allb, > b, we obtainlimp_,, R(P, b;) < limp_,o R(P,b;)
andlimp_,., R(P,b;) > limp_,o R(P,b;) as stated in Theorefd 1 and Theorem 2, respectively. In the
low SNR region, the equal sharing of the sum feedbacklsate [8, 8] achieves the highest average sum
rate while allocating the whole feedback rate to a single bse= [0, 16] achieves the lowest average
sum rate as predicted in Corolldry 1. In the high SNR regianyéver, allocating the whole feedback rate

to a single useb; = [0, 16| achieves the highest achievable rate whereas equal stafrihg feedback
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rate b; = [8, 8] achieves the worst achievable rate as claimed in Cordlllary 2

In a noise limited environment, increasing multiplexingngadirectly results in higher sum rate, and
the multiplexing gains are maximized when the feedback iategqually shared among users. Since the
remaining interference caused by the quantization erroofines dominant in the high SNR region, the
full multiplexing gain cannot be achieved and the multijphgxgain rather diminishes as SNR increases.
Therefore, by allocating the whole feedback rate to a sing, the other users can effectively eliminate
the interference limitation by removing all multiuser irfezence from the user being allocated the whole
feedback rate. Reducing the number of interferers is mdeetafe in an interference limited environment
from a sum rate perspective since the multiplexing gainrisaaly lost.

The sum rate of a x 4 MIMO BC for various feedback sizes is shown in Fig.6(a) whtre total
feedback rate is restricted to 36 bits. Four feedback raddrgi strategies are consideredb, by, bs, by)
= ([0,0,0,36], [0,0,18,18], [0,12,12,12], [9,9,9,9]) such thatb; > b, = bs > by. As stated in Theorem
[ and Theoreni]2, we can observe thatp o R(P,b;) < limp_,oR(P,b;) andlimp_,., R(P,b;) >
limp_, R(P,b;) wheneverb;, > b,. Also, we can observe that the equal allocation to the optima
number of users according to SNR becomes the optimal syratethe mid-SNR region as stated in

Observation 1.

B. Extension to Other Codebook Models

Although the overall trends obtained by RVQ are known to egneell with the results of other
codebooks, we consider another codebook model to verifyothservations and conclusions obtained
for RVQ are effective for other codebook models. Since a nadéimizing codebook is difficult to find,
we consider a spherical cap codebobk [3],/ [14],] [27] whictbased on an ideal assumption that each
quantization cell irb-bit codebook is a spherical cap with the surface &&aA spherical cap codebook

is an ideal vector quantizer whose quantization error ish&tstically dominated by any other codebooks
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[8]. In a b-bit spherical cap codebook, the CDF of the quantizationretenoted byZ becomes
i 2 M-l )<< 2w
Pr[Z < z] = {

1, 2> 0 W,

Fig.[6(a) and Fig]. 6(Ib) show the average sum rates ©kal MIMO BC using various feedback sharing
strategies when RVQ and a spherical cap codebook are uspectevely. This result confirms the optimal
strategies obtained from RVQ is still valid for the sphelricap codebook.

In general, RVQ and spherical cap codebook are regardedealrer bound and the upper bound
of the practical quantization codebook, respectivelynfithe both codebook models, therefore, we can
conjecture the average sum rate in practical4 ZF MIMO BC for the given configuration. In Fig. 6(c),
the conjectured average sum rate region for practical qain codebook (withy _ b, = 36) is shaded
with/without adopting our proposed feedback rate sharingteqy, respectively. Each shaded region is
bounded both on RVQ and the spherical cap cases plotted if6Fag and Fig[ 6(B), respectively. Fig.
implicates that our proposed feedback rate shariregesly is useful even for practical ZF MIMO

BC systems, especially in the high SNR region.

C. Comparison with TDMA and Regularized ZF

We also consider the regularized zero-forcing beamforrfigvhich enhances the performance of ZF
beamforming in the low SNR region. Also, TDMA is consideredi@ompared with both ZF beamforming
and regularized ZF beamforming. The average sum ratesd4ok @ MIMO BC using ZF beamforming
adopting our proposed feedback rate sharing strategy anpared with TDMA in Fig[ 7(3), whed_ b, =
60. In TDMA, all available feedback bits are allocated to thegé served usem(= [60]). In Fig.[7(a),
we can observe that ZF beamforming is inferior to a TDMA sysia both low and high SNR regions
although it outperforms a TDMA system in the mid SNR regiontiese regions, it is desirable to adopt
the mode switching [31] between ZF and TDMA for sum rate mazation.

~ A A 1
In the regularized ZF beamforming, the normalized columctaes of H' (HHT + %IM> are used

for the beamforming vectors wheitlg; is an M x M identity matrix. Although the optimal feedback
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rate sharing strategy using the regularized ZF beamfornsif@ard to analyze, the feedback rate sharing
strategy will be the same with that of ZF beamforming casénenttigh SNR region. This is because the
regularized ZF beamforming vectors correspond to ZF beanifmy vectors in the high SNR region. In
Fig.[7(b), the average sum rates of a4 MIMO BC using regularized ZF beamforming are plotted while
other parameters are same in Fig. [7(a). As shown in[Fig] #{b)regularized ZF beamforming improves
ZF beamforming especially in the low SNR region and henceertdrms TDMA in wider SNR region.
Since TDMA always achieves a multiplexing gain of one evethwiind transmission, TDMA system
outperforms MIMO BC with limited feedback in the high SNR i@y This is because the achievable
rate of MIMO BC with finite limited feedback is saturated inetlhigh SNR region due to mutual
interference. The inferior performance in the high SNRaags a fundamental limit of MIMO BC with
limited feedback. However, it should be noted that ZF beamiiog can be enhanced by the regularized
ZF beamforming and our feedback rate sharing strategy esabF beamforming or regularized ZF
beamforming to outperform TDMA in wider SNR region. Note ttlwaur main contributions are to find
the feedback rate sharing strategy and to show the feedlzdeksharing strategy (e.g}, br = 60)
enhances the system performance compare to equal feeditackharing (e.gb = [15, 15,15, 15]). In
Fig. [7(b), the regularized ZF beamforming outperforms TDNtdm -15dB to about 45dB when the
optimal feedback rate sharing strategy is employed, wiseegmially sharing makes the regularized ZF

beamforming outperform TDMA until about 34dB.

VI. CONCLUSION

In this paper, we have analyzed the average sum rate of ZF MB@Owith limited feedback when
the users share the feedback rates. The impact of asymrfetdback sizes among the users has been
rigorously analyzed by adopting RVQ at each user. Our madiieal analysis has shown that the optimal
feedback rate sharing strategy in the high SNR region islozate the whole feedback rate to a single
user. On the other hand, the optimal feedback rate sharmagegy in the low SNR region is the equal

sharing of the feedback rate among users. We have proposetpke siumerical method for finding the
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optimal feedback rate sharing strategy in the practical $8don and shown that equal sharing of the
feedback rate among the optimal number of concurrent useoptimal. It has also been shown that
the proposed numerical method can be applicable to findiagofitimal feedback rate sharing strategy
when path losses of the users are different. In the simulgtast, we have shown our proposed feedback
capacity sharing strategy is still valid for other systenmfggurations such as regularized zeroforcing

transmission and spherical-cap codebook.

APPENDIX A. PROOF OFLEMMA (1]

Since the channel vectors are i.i.d, it is obvious t@at~ ), for all k. Becauseh,, is isotropic in
CM, the quantization ohy, is also isotropic ifC. Thus,{h,}X_, become independent and isotropically
distributed random vectors it". Becausev; is uniquely obtained from{ﬁi}#k, the beamforming
vectors,{v;},,, are also isotropic irC". Sincev, is independent ohy,, X.(= |hyv,|?) becomes the
squared inner product between two independent random registatropic inC*. Hence, X, is identical
for all k, i.e., X ~ Xi. For Wi (= >, |e£vi|2), bothe, and {v;};.; are picked independently in the
null space ofh,, and they are also isotropic in thg — 1 dimensional subspace. Thu,, becomes the
sum of K — 1 the squared inner products between two independent andpsorandom vectors in the
M — 1 dimensional subspace i@ so thatV, ~ W;, Vk. From above reasons, we can conclude that
Qr, Xk, andW, are identical for allk, respectively, invariant with the feedback siZgs. .., bx.

We can prove the second property tH&},, Xi, W}, is independent of al{ Z, } X, becauseZ, is
only dependent om, as shown in[(R).

Because{@;, X;, W;} is interchangebly obtained frogQ),, X, W, } by swapping the index df; and
h;,, whose distribution are the same, i.6); ~ Q, X; ~ X, andW,; ~ W,, we can obtain the third

property such that

ka,Xk,Wk(qv wi) - fQ1,X1,W1(Q7 wi)v k= 17 ey K.

When all users use the equal feedback size, @ig+ Z, Vk), the average achievable rate of each user
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P P
is the same such thét [log2 (1 + %)] =K [logz <1 + %)] for all k. This can be ex-
M <k M ¢LVL

. (a) (b) (a)
plained from the fact thaf,, «, w, z(¢,z,w, 2) = fo, x.w. (¢, 7,w)f2(2) = fo, x,w (¢, 7, w)fz(2) =

forx.w.2(q, z,w, z) where(a) and(b) are from the second property and the third property, resedyt

APPENDIX B. PROOF OFTHEOREM[I]

To prove Theorernl1, we firstly show the average quantizatiar E[Z,] is a discretely convex function

of b,. Then, we use the majorization theory. We start from follggvLemma.
Lemma 3. The average quantization errdt|[Z] is a discretely convex function éf.

Proof: It was shown inl[[8], [[28] thatf[Z;[b, = b] = 2°- 3 (2", %), where 3(xz,y) is the beta

function given by (xz,y) = FF(ZIZJ{S’)) Using this, we obtain
E[Zlby = b+ 1]
M
— 2b+1 . 2b+1 o
5 (25
2T (2 +55) 2T ()T (55)
PR TR
o 2 I,
@ L x E[Zy|by = b,

- b+1_
[T i+ %)
where the equalitya) is fromI'(z+1) = 2I'(x). Thus, we can rewrit&[Z;|b, = b+ 1] = n,-E[Zy|bx = b]
2b+1

wheren, =2 [[_, W

M—-1

When we define a forward difference functidx(b) = E[Z,|b, = b+ 1] — E[Z,|b, = b], we can find
that the forward difference function is an increasing fiorctof b, i.e., A(b+ 1) > A(b), such that
Ab+1) — A(b)
= E[Zi|by = b+ 2] — 2-E[Z|by, = b+ 1] + E[Z),|by = b]

(a)
= (Mop1mp — 2 + 1) - E[Zy| by, = b] > 0

where (a) is from the fact thaty,, 17, — 2, = 4 - (Hff;,_l (ZT) — Hfi;_l (’7M)) is ranged in
i+ i

-1 M—1

[—1,0] and minimized and maximized wheéWl = 2 and M = oo, respectively. Since a discretely convex
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function has an increasing (non-decreasing) forward iiffee function[[30]E[Z,] is a discretely convex
function of b,,. m

It is widely known in majorization theory that for a convexnfition » : R — R and two vectors

a;,a, € R”,

> hlanl) < 3 h(facls), (B.1)

i=1

whenevera; < a,. In the low SNR region, the sum average rate with feedback sharing strategy is
only related Wichf:1 E[Z,] as stated in[(14). From Lemma 3, we know the average quantizetror
is a convex function ob,. With the feedback rate sharing stratedgigs=< b,, therefore, we can conclude

that
K K
ZE{Zk|bk = [b]i} < ZE{Zk|bk = [boli}, (B.2)
k=1 k=1
and eqt.Iivalentlyhmp_ﬂ) R(P, bl) > limp_, R(P, bg)
APPENDIX C. PROOF OFTHEOREM[Z
We firstly show thatE [log, Zx] is a discretely concave function éf in following lemma.

Lemma 4. The average quantization errdt|log, 7| is a discretely concave function of.

Proof: In [8], it was shown thatE [log, Zy|by = b] = —po2° 2211% In this case, the forward

difference functionA(b) £ E [log, Z;|br, = b + 1] — E [log, Z.|b;, = b] becomes
2 2

2(b+1)

A(b) = 1°g2 Z - (C.1)

i= 2”-1—1

and is a monotonically decreasing function ipfi.e., A(b) > A(b + 1). Since a discretely concave
function has a decreasing(non-increasing) forward difiee function [[30],E[log, Z;| is a discretely
concave function ob,,. [ ]

In majorization theory, for a concave functign R — R, it satisfies that

> alfail) = 3 gfas)) c2)
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whenever two vectora,, a; € R" satisfiesa; < a,. In the high SNR region, the average sum rate with
feedback rate sharing strategy is related V@ﬁ(zlE[logz Zy] as stated in[(18). As stated in Lemina 4,
E[log, Zx] is the concave function df,. Thus, under the feedback rate sharing stratebies b,, we

can conclude that

K K
> E{log, Zelbx = [bals} > > E{logy Zilbx = [bals},
k=1

k=1

equivalentlylimp_,.. R~ (P, b;) > limp_,.. R~ (P, by). As stated in Sectidn V4B, in the high SNR region,
the achievable rate at each user is dominated by the ratea$#eg term. Thus, we conclude that the
feedback rate sharing stratetiyip ... R(P, by) < limp_,,, R(P, by) for feedback rate sharing strategies

b; < bs.
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Fig. 1. A system model. The sum feedback rate is shared bysatsu
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Fig. 2. The sum rate and the achievable rate at the user31xii3 MIMO BC. The achievable rate of user 1 is not affected by theent

users’ feedback sizes, while the sum rate is increased a®gdldback sizes of other users increase.
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Fig. 3. Achievable rate of a single user usihgfeedback bits in a x 4 MIMO BC.
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Fig. 4. Sum rates of & x 4 MIMO BC using various feedback rate sharing strateglesb¢ = 24). Different path losses among the users
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Fig. 6. Sum rates of & x 4 MIMO BC using various feedback rate sharing strateglesb¢ = 36).



25

T T T
— g Feedback strategy b1:[0,0,0,60]

— A Feedback strategy b2:[0,0,30,30]
20t —— Feedback strategy b3:[0,20,20,20]
—x— Feedback strategy b4:[15,15,15,15]
TDMA (b=[60])

15

10

Average sum rate (bps/Hz)

0 10 20 30 40 50 60
SNR (dB)
(a) ZF beamforming vs. TDMA
25 T T T

—g— Feedback strategy b1:[0,0,0,60]

— A Feedback strategy b2:[0,0,30,30]
20t —— Feedback strategy b3:[0,20,20,20]
—x— Feedback strategy b4:[15,15,15,15]
TDMA (b=[60)]

15

10

Average sum rate (bps/Hz)

0 i i i i i
0 10 20 30 40 50 60
SNR (dB)

(b) Regularized ZF beamforming vs. TDMA

Fig. 7. Sum rates of & x 4 MIMO BC using various feedback rate sharing strateglesb¢ = 60).
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