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Abstract—User cooperation although improves performance of
wireless systems, it requires incentives for the potentialcooperat-
ing nodes to spend their energy acting as relays. Moreover, these
potential relays are better informed than the source about their
transmission costs, which depend on the exact channel conditions
on their relay-destination links. This results in asymmetry of
available information between the source and the relays. Inthis
paper, we use contract theory to tackle the problem of relay selec-
tion under asymmetric information in OFDM-based cooperative
wireless system that employs decode-and-forward (DF) relaying.
We first design incentive compatible offers/contracts, consisting of
a menu of payments and desired signal-to-noise-ratios (SNR)s at
the destination. The source then broadcasts this menu to nearby
mobile nodes. The nearby mobile nodes which are willing to relay,
notify back the source with the contracts they agree to accept in
each subcarrier. We show that when the source is under a budget
constraint, the problem of relay selection in each subcarrier with
the goal of maximizing capacity is a nonlinear non-separable
knapsack problem. We propose a heuristic relay selection scheme
to solve this problem. We compare the performance of our
overall mechanism and the heuristic solution with a simple
relay selection scheme. Selected numerical results show that our
solution performs better and is close to optimal. The benefits of
the overall mechanism introduced in this thesis is that it issimple
to implement, needs limited interaction with potential relays and
hence it requires minimal signalling overhead.

Index Terms—relay selection, OFDM, asymmetric information,
adverse selection, contract theory, nonlinear knapsack problem.

I. I NTRODUCTION

Relay-assisted cooperation in wireless networks plays a key
role in improving the overall efficiency of wireless networks by
improving the system throughput, energy efficiency, spectrum
usage, coverage, channel reliability and network cost reduction
via spatial multiplexing and achieving diversity gains. Relay-
based cellular network architectures have also been considered
for next generation wireless systems such as 3GPP Long Term
Evolution (LTE) and IEEE 802.16j mobile WiMAX [1], [2].

Cooperation via relays can potentially assist a source node
by forwarding its data to the destination either by amplify-and-
forward (AF) or by decode-and-forward (DF) relay protocols.
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This cooperation can be achieved either by installing fixed
relays within the network coverage area or by making the
other mobile nodes act as relays. The latter scenario, also
known as user cooperation, is gaining attention, because of
the minimal changes required in existing infrastructure and
because it has been shown to not only increase the data
rates but also to make the achievable rates less sensitive to
channel variations [3], [4]. While user cooperation eliminates
the cost of installing additional relay nodes, it increasesthe
complexity of the overall system for several reasons. First,
various dynamic resource allocation algorithms require near
complete channel state information (CSI) from potential users
assisting as relays. In the absence of this information, it
is a challenge to design algorithms that dynamically select
mobile users as potential relays [5]. Most relay selection
algorithms for cooperative networks assume complete CSI
[6], [7]. However, this information is private to mobile users
and they may not be willing to share this information. This
results in anasymmetryof available information between the
source mobile user and the potential relays. Secondly, user
cooperation poses a logistic challenge because the increased
rate of one user comes at the expense of consumption of the
limited resources of the relaying user (e.g. battery, power,
bandwidth etc.). The potential relays are usually selfish nodes
that could belong to different network entities/operatorsand
hence may not be willing to cooperate without any additional
incentives.

While relay selection with partial CSI have been ex-
plored by several authors e.g. [8], [9], no incentive-based
mechanisms has been considered in these and other related
works. To tackle this problem, game-theoretic models have
generally been suggested for cooperative systems that are
either reputation-based, resource exchange-based, or pricing
based [10, references therein]. However, there are still many
challenges in applying game theoretic solutions to coopera-
tive systems including investigating the existence, uniqueness,
computation and efficiency of the Nash Equilibrium, as well
as addressing signalling overheads [10]. Moreover, to the best
of our knowledge, the problem of relay selection under asym-
metric information together with incentive-based mechanisms
for OFDM-based cooperative systems, had not been studied.
Therefore, the objective of this paper is to address this problem
with simple pricing-based incentive mechanisms with minimal
signalling overheads.

Orthogonal Frequency Division Multiplexing (OFDM) has
been adopted by many modern communication systems as
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standard multi-carrier modulation technology due to its abil-
ity to handle severe channel conditions without complex
equalization filters. In a dual-hop OFDM-based cooperative
communication system, choice of a relaying protocol, i.e.,
the interface between source-relay land the relay-destination
links, is an important factor in defining the performance and
complexity of such systems [11]. The authors in [11] present
and analyze a comprehensive set of relaying protocols namely;
time-domain versus frequency-domain processing, resource
block-wise versus symbol-wise processing, AF versus DF,
reordering/pairing of resource blocks, buffering over fading
states, and optimization of time sharing. In this paper, we
consider a OFDM-based dual-hop cooperative communication
system that uses DF relaying due to its obvious performance
advantages over AF relaying. We assume no buffering and
equal time sharing for the two hops because of the low
complexity and simple analysis. Pairing of subcarriers has
not been considered explicitly because under the assumptions
that we discuss later, this information is not required for
the proposed solution to the relay selection problem under
asymmetric information.

We use a simpleprincipal-agent modelfrom microeco-
nomics for source and relay, where source acts as the principal
and relay is an agent [12]. In such a model, the bargaining
power is kept with the principal, and the agent can either
accept or decline an offer proposed by the principal. Such a
model reduces the interaction needed between a source and a
relay, and only the users willing to relay can participate. These
offers or contractsproposed to relays are in the form of a
menu of renumeration or monetary transfers for a specified
service in each subcarrier, which in this paper is taken as
desired signal-to-noise ratio (SNR) at destination. Assuming
that the source has limited information about the relay-agents
(e.g. joint probability distribution of CSI), we use “contract
theory” to design these set ofcontractswhich are designed
for different typesof users (we will elaborate on “types” later
on in this paper). Contract theory is a field of economics
that studies how economic players or agents create mutually
agreeable contracts or arrangements in presence of asymmetric
or incomplete information [13]. Contract-based solutionsfor
spectrum sharing in wireless systems have recently been
discussed in [14]–[17]. The challenge behind contract-based
approach for wireless systems is due to the fact that the agents
can lie to principal about their individual information in order
to increase their utility and hence a contract in this situation
tries to create incentives for agents to report their information
truthfully.

Once the prospective relays confirm to the source which
contracts (i.e. payments and SNRs) they are willing to accept
for each subcarrier, the only problem that remains is to select
appropriate relays in each subcarrier such that the overall
capacity is maximized for the source under overall budget
constraint. Without designing these contracts and having no
information about exact channel conditions of the potential
relays, it would be difficult for the source to optimally
choose relays and offer them suitable renumeration. This is
because relays can lie about their channel conditions and
hence the source could possibly make inefficient payments

with unsatisfactory performance. As we will see later in this
paper, this relay selection now becomes a nonlinear non-
separable convex knapsack problem which cannot be solved
with reasonable computational complexity and we therefore
suggest a heuristic method to solve it. We then compare the
performance of our overall mechanism and heuristic relay
selection solution with a simple relay selection scheme and
show that not only the proposed solution performs better
but also it is near optimal under most general settings. The
proposed scheme is very simple to implement in practical
systems, requires almost no information about relays at source,
limits the computational overheads only at the source and
requires very limited interaction with potential relays.

A list of terms and definitions used in the paper is given
in Table I. The organization of the paper is as follows. We
will first present our system model, problem description and
solution approach in Section II. The utility models for contract
design will be discussed in Section III. In Section IV-A, we
will discuss a contract formulation under a complete or perfect
information. In Section IV-B, we will show how to obtain an
optimal contract design under asymmetric information. Relay
section under a budget constraint will be discussed in Section
V. Numerical results will be presented in Section VI and
conclusions will be drawn in Section VII.

II. SYSTEM MODEL

A. Problem Description

We consider a typical cooperative network scenario in which
a particular mobile node acting as a source, wants to transmit
a block of data to a destination node with the help of some
nearby mobile nodes that can act as relays. Fig. 1 shows an
example of such a cooperative network system. We assume
that the source uses an OFDM-based multi-carrier system
for the transmission technology with a total number ofN
subcarriers. We posit that there areM such mobile stations that
could be the possible relay candidates. Based on its channel
conditions, each relay node incurs a certain cost to provide
a pre-specified SNR to the source on a particular subcarrier
at the destination. Since there is no obligation for these
mobile stations to forward its data towards the destination,
the source mobile node must provide some incentives such
as some monetary payment or credits, to these possible relay
candidates. However, in such a system, it is practical to
assume that the source is not only unaware of the number
of possible relay candidatesM but also the exact channel
conditions on all the relay-destination links on each subcarrier.
In absence of this information, the source does not know
which relay nodes to choose and how much it should pay
to each relaying node because relaying nodes are regular
mobile users and are therefore selfish, and can potentially
lie about their actual cost of transmission. The relay node’s
private information, i.e., instantaneous channel gains between
relay-destination link on all subcarriers can be expressedas
a vectorΨm = {θ1m, θ2m, · · · θNm}, whereθim denotes the
channel gain for themth relay on theith subcarrier for the
corresponding relay-destination link. A relay node’s channel
gain on a relay-destination link on a particular subcarrierwill
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TABLE I
TERMINOLOGY USED

principal-agent model microeconomic model where payoff to the principal (source)depends on an action taken
by the relay-agent and the bargaining power is kept with the principal.

asymmetric information one party (relay-agent) has more or better information thanthe other (source).
contract a tuple consisting of a targeted SNR that a relay of a certain type on a particular subcarrier

can provide on that subcarrier, and a corresponding paymentthat the source promises to
make to that relay.

private information relay agent’s instantaneous channel gains between relay-destination link on all subcarriers.
type relay agents private information on a particular subcarrier, i.e., channel gain on a relay-

destination link on that subcarrier.
transfer payment made to a relay node by a source in lieu of a targeted SNR at destination.
reservation utility minimum utility the relay-agent will get by not accepting a contract.
incentive compatible relay-agent chooses the contract designed for his type only.
individually rational contract designed for each type gives the relay-agent at least as much utility as it would

get by not accepting the offer.
revelation principle Every equilibrium outcome with a mechanism is realized by a payoff-equivalent revelation

mechanism that has an equilibrium where the relay-agents truthfully report their types.
single crossing property indifference curves for two different types of relay agentscannot intersect more than once.
information rent positive surplus that the relay receives by accepting a contract.

Source
Destination

Potential Relays

Fig. 1. A typical cooperative wireless network system with user cooperation

henceforth be called itstype1 on that subcarrier and we will
subsequently use the symbolθ without subscripts to indicate
types in general. We assume these channel gains to be slow-
varying, which means that they would remain constant for both
transmission and relaying time slots.

Although the source is unaware of relay node’s exact type
or channel condition, we assume that it has information about
the joint distribution of the types and the setΘ ⊂ R

N
≥0 from

which these type vectors are drawn from. This is a reasonable

1To avoid confusion, we would like to clarify thattype of a relay is not
to be confused with relay types in LTE systems which classifies relay nodes
as type 1, 1a, 1b or 2 [18]. In this paper, usage oftype is synonymous to
the equivalent standard definitions in the theory of economics of asymmetric
information [13].

assumption because source can learn about this distribution
through the knowledge of fading environment parameters
between relays and destination and these parameters could
be provided to the source with limited feedback from the
destination. However, as we will later observe that knowledge
of this distribution only affects the optimality of the designed
solution hence the source can begin transmission with just a
priori belief about this distribution.

Moreover, we assume that the source has a maximum budget
T in one time frame for the total payments ortransfersthat
it can make to the relay nodes over all subcarriers. We further
assume that the relays utilize space-time coded cooperative
diversity for multi-relay transmission on the same subcarrier.
Based on these assumptions, the problem can be described as
follows: the source has to effectively choose a set of relaysfor
every subcarrier in order to maximize its overall throughput
in a given time frame, make optimal transfers to these relays
without the knowledge of relays’ private information, while
making sure total transfers do not exceed the overall budget
constraintT .

B. Two Part Contract-based Solution

This overall problem of selecting relays on each subcarrier
while providing transfers to different relays is quite difficult
to solve because of the overall budget constraint, multi-
dimensional information types and information asymmetry
(difference in available information between the source and
the potential relays). However with the help of contract theory,
we will attempt to solve it by breaking the problem down into
two parts:

1) Contract Design: A contract, is defined as a tuple
consisting of a targeted SNR at destination on a certain
subcarrier that a relay can provide and a corresponding
guaranteed transfer or monetary incentive that source
promises to make. The source first designs a set of
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common contracts applicable to all subcarriers without
using any specific budget constraints, and broadcasts
them to all relay candidates using some established
protocol. Since, the number of contracts broadcasted
are independent of number of subcarriers, the signalling
overhead will be small. The relays listen to the contracts
offered by source then respond back identifying the
contracts they are willing to accept for each subcarrier.
This part also has less signalling overhead than regular
communication because relays do not have to provide
their actual channel feedback.

2) Relay Selection:Based on the accepted contracts by
the relays on each subcarrier, source then chooses an
optimum set of relays for each subcarrier considering
its budget constraint, while maximizing its expected
capacity. We assume that the source instructs the se-
lected relays with space-time-codes for each subcarrier,
and hence relays can transmit simultaneously on the
same subcarrier. Each relay node hence acts as a “vir-
tual antenna” and sends out the signal in a Multiple
Input Multiple Output (MIMO) setting. All the relay
transmissions hence occur in the same subcarrier and
superimpose at the destination so that the overall SNR
in each subcarrier is the summation of SNRs provided
by all selected relays [19], [20].

An important assumption for this proposed two-part contract
based solution is that the overall budget constraintT is
sufficiently larger than the average cost of transmission for
relay in each subcarrier. This assumption is reasonable because
source expects the transmission to happen at least on a few
subcarriers, hence source must set a budget constraint several
times larger than the average cost of transmission for relay
in each subcarrier. This assumption ensures that the monetary
incentive or transfer for any contract pair would be sufficiently
smaller thatT . Fig. 2 illustrates the complete representation
of this mechanism in a three step process for a sample system.

III. U TILITY MODELS FORCONTRACT DESIGN

As we explained in section II-B, acontract is defined as a
tuple consisting of a targeted SNR that a relay of a certain type
on a particular subcarrier can provide on that subcarrier, and
a corresponding payment that the source promises to make to
that relay. For the purpose of contract design, we will focusour
analysis for a general relay typeθ (channel gainθ on the relay-
destination link) on any subcarrier. To begin with, source first
needs to design a set of common contract pairs(γ(θ), t(θ)) for
a given range of typesθ that areincentive compatible(IC) and
individually rational (IR) on all subcarriers. Here,γ(θ) is the
SNR that the relay of typeθ can provide at the destination and
t(θ) is the transfer (e.g. monetary incentive) that the source
node makes to the relay for a particular subcarrier.Incentive
compatiblemeans that the relay-agent chooses the contract
designed for his type only.Individually rationalmeans that the
contract designed for each type gives the relay-agent at least
as much utility as it would get by not accepting the offer or
in other words, by not relaying. This minimum utility is also
known asreservation utilityand we will take it as 0 in the

rest of the paper. Using therevelation principle, we can focus
our analysis on contract designs where agents declare their
types truthfully or in other words, we can directly consider
types while designing contracts [13]. We will now make a
practical assumption that the relay nodes do not have a prior
knowledge of source’s budgetT and the number of other relay
candidates. In other words, the relay nodes have no way of
knowing that whether the contract they will accept will be
executed or not by the source. Assuming DF relaying with
repetition coding, the SNR of the source-relay-destination link
on a certain subcarrier will be given bymin{γSR, γRD+γSD},
whereγSR is source-relay SNR andγRD is relay-destination
SNR [20]. Ignoring the direct path, the source-relay link can
be safely assumed to be stronger because source will only
consider nearby mobile nodes who can decode the source
information, as relay candidates and henceγRD will be the
bottleneck [14]. Moreover, due to the assumption that source-
relay link is always stronger, subcarrier pairing has also been
ignored in the current problem formulation. Therefore from
now on, we will approximateγRD as the net SNR for the
overall link and will drop the subscript and call it justγ
henceforth.

We now define a quasi-separable utility for the source with
a contract pair(γ(θ), t(θ)) on each subcarrier as follows:

U(γ(θ)) − t(θ) (1)

whereU(·) is a concave function that gives the utility that the
source gets with an SNRγ between a relay and destination
on some subcarrier, when it is using only this particular relay,
and this utility can be given by Shannon capacity formula:

U(γ) =
1

2
log2 (1 + min{γSR, γ + γSD}) ≈

1

2
log2 (1 + γ) .

(2)
Here, the half factor is used to account for half duplexity
of the relaying protocol and approximation is based on the
argument in the previous paragraph. The overall utility of a
relay candidate of typeθ that announces its type truthfully can
also be described by a quasi-separable function given by the
difference between transfers and cost of transmission:

t(θ)− C(γ(θ), θ) (3)

whereC(γ, θ) is the cost for relay of typeθ to provide SNRγ
at the destination on some subcarrier. This cost could be the
summation of the cost of per unit power used for relaying in
addition to fixed decoding costs. Ignoring the decoding costs,
this cost can simply be given by:

C(γ, θ) =
cγ

θ
(4)

wherec is a positive number denoting cost per unit power and
γ
θ is the transmitted power by the relay. Conveniently, since
∂2C(γ,θ)
∂γ∂θ < 0, the cost function satisfies a form of Spence-

Mirrlees Condition orsingle crossing property[13]. What this
means is that indifference curves(γ, t) (plot of contracts for
which a relay gets constant utility) for two different types
of relay agents cannot intersect more than once. Moreover,
the economic significance of this condition is that the relay
agents of higher types are willing to provide better SNRγ for
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(a) Step 1: Source S broadcasts a set of con-
tracts to all nearby relays M1, M2, M3, M4.

M1

M2

M3

M4

S

M1

M2

M3

M4

D

M1

M2

M3

M4

(b) Step 2: Relays M1, M2 and M3 accept
certain contracts on certain subcarriers and
respond to source indicating which contracts
they are willing to accept.

M1

M2

M3

M4

M1

M2

M3

M4

S

M1

M2

M3

M4

D

(c) Step 3: Source selects relays M1 and M2,
makes transfers, sends instructions and mes-
sages, and relays help transmit to destination
D.

Fig. 2. A contract based cooperative communication and relay selection mechanism

a smaller increase in transfert. In the following sections, we
will see how to solve the problem of contract design for two
specific cases: complete information scenario and incomplete
information scenario.

IV. CONTRACT FORMULATION UNDER COMPLETE AND

ASYMMETRIC INFORMATION

A. Contract Formulation under complete Information: First-
best scenario

This is the scenario when the source has the precise in-
formation of the relay types vectorΨm, i.e., CSI between
relay-destination link in each subcarrier. This is also known
as the first-best scenario and will be used for benchmarking,
because this is the ideal case for source, as it is in the best
position to make the maximum use of the available potential
relays. Therefore in this scenario, source only has to ensure
that each relay agent is ready to accept the contract that he is
about to offer, or in other words he only has to satisfy relay-
agent’s individual rationality condition in each subcarrier. The
source’s objective problem for a relay-agent type ofθ in a
certain subcarrier can now be written as:

max
γ(θ),t(θ)

U(γ(θ)) − t(θ) (5)

subject to t(θ)−
cγ(θ)

θ
≥ 0. (6)

The source hence gives the relay-agent zero utility in order
to maximize its own utility, i.e., the source extracts all the
surplus from the relay-agent. Therefore, setting (6) to equality,
substituting in (5) and then differentiating the objectivew.r.t γ
and finally equating it to zero, the optimal first-best contract
(γ(θ), t(θ)) for a relay of typeθ is given by( θ

2c ln 2−1, 1
2 ln 2−

c
θ ).

B. Contract Formulation under Asymmetric Information:
Second-best scenario

1) Theoretical analysis with continuous relay-agent types:
In this section, we will analyze the structure of the solution
using some standard theoretical analysis. In this case, we as-
sume that the types of relays for all subcarriers are continuous

and belong to a setΘ = [θ, θ̄] and has a joint probability
distributionf(θ1, θ2, · · · θN ) (with F (θ1, θ2, · · · θN ) as cumu-
lative density function), which is known to the source node.
Let P(θ̂, θ) be the profit or utility achieved by relay agent of
type θ on a certain subcarrier who announces his type asθ̂.
The profit is given by the following function:

P(θ̂, θ) = t(θ̂)− C(γ(θ̂), θ). (7)

The contract(γ(θ), t(θ)) satisfies the incentive constraints (IC)
if and only if being truthful gives a relay node at least as much
utility as it gets by lying, i.e.,

P(θ, θ) ≥ P(θ̂, θ), ∀(θ, θ̂) ∈ Θ2 (IC). (8)

Hence, for the contract to beincentive compatible, the follow-
ing first and second order conditions must hold:

∀θ ∈ Θ,

{

∂P(θ̂,θ)

∂θ̂
|θ̂=θ= 0 (IC1)

∂2P(θ̂,θ)

∂θ̂2
|θ̂=θ≤ 0 (IC2).

(9)

Substituting forP(θ̂, θ), these conditions can be simplified to

∀θ ∈ Θ,

{

dt(θ)
dθ = c

θ
dγ(θ)
dθ (IC1)

dγ(θ)
dθ ≥ 0 (IC2).

(10)

This means that first bothγ(θ) and t(θ) must be increasing
in typeθ (by IC2) and secondly, IC1 tells us how the increase
in transfers w.r.t to the agent types are related to increasein
deliverable SNR. Letρ(θ) denotes the utility of the relay agent
of type θ with the optimal truthful contract, i.e, a mechanism
where relay chooses contract designed for his type only. Then,
ρ(θ) can simply be given byP(θ, θ), i.e.,

ρ(θ) = t(θ)−
cγ(θ)

θ
. (11)

Using IC1, we can compute that

dρ

dθ
=

dt(θ)

dθ
−

c

θ

dγ(θ)

dθ
+

cγ(θ)

θ2
=

cγ(θ)

θ2
(12)

which is positive and implies thatρ(θ) is an increasing
function of θ and hence the higher types benefit with higher
returns. Assuming relay agent’sreservation utilityto be 0, its



6

individual rationality (IR) condition can therefore simply be
given by:

ρ(θ) = 0 (IR). (13)

This is because making transfers is costly to the source node
and since higher type relay nodes have higher returns, source
just has to give zero utility to the lowest typeθ to satisfy the
IR condition. Using equations (11), (12), and (13), we can
hence write

t(θ) =
cγ(θ)

θ
+

∫ θ

θ

cγ(τ)

τ2
dτ. (14)

Now the source’s objective is to maximize the expected utility
which is given as:

∫ θ̄

θ

∫ θ̄

θ

· · ·

∫ θ̄

θ

N
∑

n=1

(U(γ(θn))− t(θn))f(θ1, θ2, · · · , θN )

dθ1dθ2 · · · dθN .
(15)

Proposition 1: We can rewrite source’s optimization prob-
lem as follows:

max
γ(θ)

N
∑

n =1

∫ θ̄

θ

(

U(γ(θ))−
cγ(θ)

θ
−
cγ(θ)

θ2
1− Fn(θ)

fn(θ)

)

fn(θ)dθ

subject to IC2 or
dγ(θ)

dθ
≥ 0 (i.e. γ is increasing)

andγ ≥ 0, (SNR must be positive)

(16)

wherefn(θ) is the marginal probability distribution andFn(θ)
is corresponding cumulative distribution of types in thenth
subcarrier.

Proof: Proof is provided in Appendix.
The optimization problem in (16) can be interpreted as fol-
lows: the source has to maximize the expression in the brackets
of the objective function subject to the constraint thatγ(θ)
is positive and increasing inθ, where the first two terms
of the objective are same as in the source’s optimization
problem under complete information scenario and the last term
measures the impact of incentive problem. In order to solve
the optimization problem in (16), first we can just try to do
pointwise maximization of the objective function at eachθ.
However, if pointwise maximization at eachθ in (16) does not
give us an increasingγ(θ) function, then we can use resort to
optimal control theory.

Using this continuous case as a reference, we will now focus
our analysis to the case where the types are considered to
be discrete values rather than taken from a continuous set.
This case is of more practical interest because the contracts
can be easily broadcasted as finite number of values. In the
next subsection, we will design incentive compatible contracts
by approximating the continuous distribution by a discrete
distribution with finite points. With the discussion above,we
have a good idea about the structure of the optimal contract
and we will notice some parallels when we discuss the discrete
agent types case in the following subsection.

2) Solution with discrete relay-agent types:We will now
see how to solve a more practical problem of designing
contracts for relay agents with discrete types. This problem is
more practical because the number of contracts are finite and
can be transmitted to relay-agents in real-time. We quantize
the set of typesΘ = [θ, θ̄] with a quantization factorK such
that the collection of types are reduced to a discrete set of
K types, i.e.,Θ = {δ1, δ2 · · · δK}. Without loss of generality,
we can assume thatδ1 < δ2 < · · · < δK . We consider the
quantization process to be uniform with equidistant values,
i.e., δk = θ+ k−1

K (θ̄− θ), and ifΘ is unbounded above, then
θ̄ can be replaced by the upper limit of a desired confidence
level. We chose quantization to be uniform mainly because
of its ease of implementation and a closer representation of
continuous distribution, however, in general a non-uniform
quantization process can also be chosen depending upon
how sensitive the cost function is to the variation in types.
Using forward difference method, the probability that a relay-
agent could be of typeδk in nth subcarrier is given by
πkn = P (δk ≤ θn < δk+1) = Fn(δk+1) − Fn(δk) (δK+1

can be replaced bȳθ) with
∑K

k=1 πkn = 1. We assume that
source is aware of this distribution on all subcarriers.

The objective of the source is to maximize its expected
utility by designing an incentive compatible and individually
rational optimal contract(γ(δk), t(δk)) (for simplicity, we will
now refer it as(γk, tk)) for eachδk ∈ Θ, i.e.,

max
γ(θ),t(θ)

N
∑

n=1

En[U(γ(θ))− t(θ)] =

max
γk,tk∀k

N
∑

n=1

K
∑

k=1

πkn(U(γk)− tk).

(17)

The individual rationality condition for this discrete scenario
can now be given by:

tk −
cγk
δk

≥ 0, ∀δk ∈ Θ (18)

and theincentive compatibilitycondition is given by:

tk −
cγk
δk

≥ tj −
cγj
δk

, ∀δk, δj ∈ Θ. (19)

Theorem 1:For the optimal solution, the individual ratio-
nality condition for the lowest type is binding, i.e.,t1−

cγ1

δ1
= 0

and the others can be ignored.
Proof: For any δk ∈ Θ using the IC condition from

equation (19) we can write that

tk −
cγk
δk

≥ t1 −
cγ1
δk

≥ t1 −
cγ1
δ1

(20)

since δk > δ1 ≥ 0 and cγ ≥ 0. Therefore, if IR forδ1 is
inactive, so will be IR forδk. Hence, all the other IRs except
for δ1, can be ignored. Now, if IR forδ1 is not binding, then
all transferstk ’s can be reduced by the same amount, having
no effect on IC and hence increasing source’s utility.

Theorem 2:For the optimal solution,0 ≤ γ1 ≤ γ2 ≤ · · · ≤
γK , and all the downward adjacent ICs are binding and others
can be ignored, i.e.,

tk −
cγk
δk

= tk−1 −
cγk−1

δk
, ∀k ≥ 2. (21)
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Proof: Proof is provided in Appendix.
Now using theorems 1 and 2, the optimization problem in

(17), (18), and (19) can be reduced to:

max
γk∀k

N
∑

n=1

K
∑

k=1

πkn(U(γk)− tk)

s.t. t1 =
cγ1
δ1

, tk =
cγ1
δ1

+
k
∑

i=2

c(γi − γi−1)

δi

and0 ≤ γ1 ≤ γ2 ≤ · · · ≤ γK . (22)

Proposition 2: The optimization problem in (22) can be
rewritten as follows:

max
γk∀k

N
∑

n=1

K
∑

k=1

πkngn(γk) s.t. 0 ≤ γ1 ≤ γ2 ≤ · · · ≤ γK , (23)

where

(24)gn(γk)

=

{

U(γk)−
cγk

δk
− cγk

(

1
δk

− 1
δk+1

)(

1−
∑

k

i=1 πin

πkn

)

, ∀k < K

U(γk)−
cγk

δK
if k = K.

Proof: Proof is provided in Appendix.
Now because of the concavity assumption onU(·), this prob-
lem can easily be transformed into a simple convex optimiza-
tion problem and can be solved using standard methods. In
fact, it can be shown that the inequality constraint of increasing
γ’s can also be neglected, and hence point-wise maximization
of each

∑N
n=1 gn(γk) is sufficient here. Once we calculate

contract pairs(γk, tk) (k ≤ K), it can be easily verified that a
relay that has a typeθ in a certain subcarrier will automatically
select contractk, if δk ≤ θ < δk+1, because this contract will
maximize its utility.

The objective of the contract design so far was to design
incentive compatible and individually rational offers that the
interested relay-agents can accept without revealing their types
or channel information directly to the source. This helps the
source to segregate the relays in terms of their abilities to
deliver certain SNRs at the destination and the price at which
they are willing to do so. Hence, the source can select relays
based on his budget constraint and we discuss this relay
selection problem and its solution in next section in detail.

V. RELAY SELECTION UNDER A BUDGET CONSTRAINT

In this section, we will discuss the relay selection procedure
for the source under the budget constraint with either com-
plete or incomplete information. While in perfect information
scenario, the source is aware of the contracts acceptable by
each relay in each subcarrier, in case of imperfect information,
source broadcasts the contract menu to all relays and each
relay responds with a desired contract pair for each subcarrier
as discussed in section IV-B (if a certain relay is unwilling
to relay in a certain subcarrier, we assume it accepts null
contract (0, 0)). In either case, the source knows a contractpair
(γmn, tmn) that is acceptable by relaym in thenth subcarrier.
Under a budget constraintT , the objective of the source now
becomes to maximize its total capacity. LetM = {1, 2, ...,M}

denote the set of all the relay agents who are willing to
relay while providing a certain SNR at destination in each
subcarrier for a certain price that is determined by the contract
for that relay agent. The objective is to obtain a subset vector
S = {Sn, ∀n ≤ N |Sn ⊆ M} (i.e. set of selected relays in
each subcarrier),

max
S

C(S)

s.t.
N
∑

n=1

∑

∀m∈Sn

tmn ≤ T

where,C(S) =
N
∑

n=1

log2

(

1 +
∑

∀m∈Sn

γmn

)

. (25)

This problem is a nonlinear non-separable convex knapsack
problem in its current form withT as knapsack size,tmn as
weights,γmn as values of items, andC(S) as the objective
function. Because of the non-linearity and non-separability of
the objective function, it is difficult to find the exact solution in
the existing form of this problem [21]. The standard method
to obtain the optimal solution is to use branch and bound
algorithm, where at each step, a series of continuous subprob-
lems are solved to obtain upper bounds by integer relaxation
of the original problem. The branch and bound algorithm is
discussed in detail in [22]. The authors in [23], [24] discuss
methods to obtain these upper bounds for a general class of
nonlinear non-separable knapsack problems. However, branch
and bound method can still have the worst case complexity
of exhaustive search and forM number of subcarriers andN
number of potential relays, the worst case complexity could
be as high asO(2MN ), which makes the branch and bound
method practically infeasible due to exponential complexity. In
fact, we verified the complexity to be exponential in most cases
for a very simple system with simulations. Due to lack of space
and practical importance, we will not go into further detailof
obtaining the exact solution. Instead, in the next subsection,
we will propose a heuristic solution based on the structure of
our original problem described in (25).

A. Heuristic Solution

Here, we will discuss a few heuristics to solve the original
problem by breaking it down in smaller problems that are
standard 0-1 knapsack problems. We notice that if we could
divide the overall constraintT by allocating a budget con-
straint Tn for subcarriern, such that

∑N
n=1 Tn = T , then

the sub-problem for relay selection in subcarriern is just a
standard knapsack problem, withTn as knapsack size,tmn as
weights, andγmn as values of items. This problem can just
be written as follows:

max
Sn

∑

∀m∈Sn

γmn s.t.
∑

∀m∈Sn

tmn ≤ Tn. (26)

We also notice that the objective of the problem is to maximize
the productΠn

i=1(1 +
∑

∀m∈Sn
γmn), subject to the budget

constraints. In order to maximize this product we need to
maximize SNR

∑

∀m∈Sn
γmn for each subcarrier, while also

making sure that none of the SNR’s are too low, otherwise
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they will minimize the product. Based on this analogy, we will
attempt to solve this problem using two forms of heuristics and
we combine the results to obtain the final solution.

The first heuristic is to decomposeT into Tn by using
certain weights profilewn for subcarriern and hence,Tn could
be given byTn = wnT∑

N

n=1 wn

. The second heuristic will be to
sequentially select relays for each subcarrier as long as weare
under the budget constraint. We suggest three weight profiles
for the first heuristic as follows:

1) Equal subcarrier weights (ESW): The simplest possible
way is to choose equal weights for all subcarriers:

w(1)
n = 1, ∀n. (27)

A simple way to measure two different contracts relative to
each other is to compare how much is the SNR per unit
price for each contract. This metric, i.e., SNR per unit price,
can be defined as the efficiency and can be used to compare
the subcarriers relative to each other either by averaging the
efficiencies of contracts in each subcarrier or by calculating
net efficiency in each subcarrier. The following weight profiles
are based on this observation:

2) Average subcarrier efficiency weights (ASW): If the
efficiency of a contract accepted by relaym in subcarrier
n is defined byemn = γmn

tmn
, then the weightswn of nth

subcarrier are obtained by the following relation:

w(2)
n =

∑M
m=1 emn

M
, ∀n. (28)

3) Net subcarrier efficiency weights (NSW): In this case,
weights are obtained by calculating the net efficiency of
a subcarrier, i.e., the ratio of maximum achievable SNR
and the corresponding maximum transfer:

w(3)
n =

∑M
m=1 γmn

∑M
m=1 tmn

, ∀n. (29)

Using each of the three above mentioned weight profiles, we
solve the original problem iteratively by solvingN standard
0-1 type knapsack problems. These knapsack problems can be
solved using dynamic programming by scaling and rounding
transferstmn and budgetTn [25]. For each of the above
mentioned weight profiles, we obtain solution subset vectors
S
(1), S(2) andS(3) for each subcarrier. For the second heuristic

solution, we perform an efficiency based relay selection as
follows:

4) Sequential Subcarrier Contract Pair Allocation (SS-
CPA): In this heuristic, we allocate a relay to each
subcarrier sequentially by choosing a relay that provides
greatest efficiencyemn and has not been allocated in that
subcarrier. We repeat this process until we run out ofT
and we obtain the corresponding solution subset vector
and call itS(4).

The overall heuristic solution is hence chosen as the solution
vector that gives highest capacity, i.e.,

S = arg max
S(i)|i=1,2,3,4

{C(S(i))}. (30)

Table II summarizes the overall heuristic solution and Algo-
rithm 1 describes the entire relay selection heuristic. Thenet

complexity of the algorithm can be calculated as follows: The
SSCPA heuristic is just sorting and selectingMN contract
pairs, hence the complexity can beO(MN log(MN)). The
three other heuristics based on weight profiles solveN knap-
sack problems, each upper bounded by pseudo polynomial
complexity ofO(MT ) (assumingT is rounded). Hence the
overall complexity will beO(MNT ), which is much easier to
handle than branch and bound algorithm for small to medium
values of budget constraint.

VI. N UMERICAL RESULTS

In this section, we will briefly present some of the numerical
results. For simulations, we consider a system where the relay
typesθ are normalized, independent and uniformly distributed
between 50 to 300 in each subcarrier. We consider uniform
distribution for our simulations because uniform distribution is
the maximum entropy probability distribution for any random
variable contained in the distribution’s support. It effectively
means that source has no additional information about the
types other than their support and is therefore a benchmark
scenario. In order to generate a set of first and second best
contracts, we quantize the range of types with a quantization
factor K to be 10. The number of subcarriersN is chosen
to be 16 and the parameterc is taken to be 1. The simula-
tion parameters and the corresponding first and second-best
contracts are presented in Table III. The first-best contracts
are calculated when the source is completely aware of the
relay-agent’s discrete type (complete information). However,
the first-best contracts are not incentive compatible (downward
ICs do not hold) and it can be easily verified by plugging
the parameters of Table III in relay-agent’s overall utility.
On the other hand, the second-best contracts are incentive
compatible by virtue of design. The IC conditions can be
verified with the corresponding second-best contracts, i.e., any
relay of typeθ s.t. δk ≤ θ < δk+1 will automatically pick the
kth contract, because this contract will maximize its expected
utility. Another noticeable difference between the first and
second-best contract that can be seen from Table III is that
under incomplete information, except for the lowest type, the
source pays more to get a certain SNR than what it would have
gotten for lesser price under complete information. Moreover,
in case of incomplete information, the source asks for sub-
efficient SNRs from all the relay types except from the highest
type. This is in order to provide incentive for higher types to
not to choose a lower types’ contract, and the related concept
is called information rent[26]. In simple words, information
rent is the positive surplus that the relay receives and Table
III clearly indicates that higher type relay gets more positive
surplus for the contract designed for its type.

Next, we will evaluate the performance of four heuristics,
namely ESW, ASW, NSW, SSCPA, that we suggested in
section V-A with respect to each other and a few benchmarks
that we will describe here. We compare the performance of
these heuristics with the obvious simple solution, i.e., select
the contracts that offer the best SNRs amongst all contracts
for all subcarriers while satisfying the budget constraint. More-
over, we will also compare the performance of the proposed
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Algorithm 1 Relay Selection Algorithm
1: for i = 1 to 4 do
2: SetS(i)

n = φ, ∀n ≤ N
3: if i ≤ 3 then Obtain weightsw(i)

n by (27), (28) or (29) fori = 1, 2, 3 respectively∀n ≤ N .
4: SetTn = w

(i)
n T /

∑N
n=1 w

(i)
n , ∀n ≤ N

5: for n = 1 to N do
6: Setτ = Tn
7: for t = 0 to Tn do
8: Γ[0, t] = 0
9: end for

10: for m = 1 to M do
11: for t = 0 to Tn do
12: if tmn ≤ t andΓ[m− 1, t− tmn] + γmn > Γ[m− 1, t] then
13: Γ[m, t] = Γ[m− 1, t− tmn] + γmn, s[m, t] = 1
14: else
15: Γ[m, t] = Γ[m− 1, t], s[m, t] = 0
16: end if
17: end for
18: end for
19: for m = M to 1 do
20: if s[m, τ ] = 1 then S

(i)
n := S

(i)
n ∪ {m}, τ = τ − tmn

21: end if
22: end for
23: end for
24: else if i = 4 then
25: while T ≥ 0 do
26: for n = 1 to N do
27: m = argmax

∀m/∈S
(i)
n

{γmn/tmn}, T = T − tmn

28: if T ≥ 0 then S
(i)
n := S

(i)
n ∪ {m}

29: end if
30: end for
31: end while
32: end if
33: SetS(i) = {S

(i)
1 ,S

(i)
2 · · · S

(i)
N }

34: end for
35: return S as given by (30)

heuristics with respect to the solution of original problemin
(25) with relaxed integer constraints as a benchmark. We will
call these solutions as“Best SNR contracts” and “Relaxed
Solution” respectively in the corresponding plots. In Figures
3(a), 3(b), and 3(c), we plot average capacity per subcarrier
vs number of relay agents for three values ofT , i.e., 8, 16
and 24 respectively. The number of subcarriersN are fixed
at 16 and quantization factorK is chosen to be 10. As we
could notice from these plots, the heuristic SSCPA always
performs better when there are fewer relay agents or when the
budget constraint is large. The three other heuristics based
on weight profiles, namely ESW, ASW and NSW have a
very similar behavior and perform better than SSCPA when
number of relay agents are high and budget is not too big.
The intuitive reasoning behind this observation is as follows:
As the number of relay agents increase, there are more
diversified contracts available per subcarrier to choose from.
The ESW, ASW and NSW schemes by their inherent design
try to maximize the productΠn

i=1(1 +
∑

∀m∈Sn
γmn) by

splitting the budget in each subcarrier and hence maximizing
the sum SNRs in every subcarrier. Under low to medium
budget conditions and with high number of relay agents, these
algorithms outperform SSCPA because the latter scheme could
run out of budget before it could select contracts in each
subcarrier. Moreover under such conditions, SSCPA performs
poorly as the number of agents increase because sequential
allocation may result in first choosing contracts that may need
higher transfers and hence source may run out of budget
too quickly without balancing sum SNRs well. This behavior
can be seen numerically in Figures 3(a) and 3(b). Under
high budget conditions, SSCPA scheme has more freedom to
sequentially choose best and optimum contracts per subcarrier
as long as the budget allows inherently improving the product
Πn

i=1(1 +
∑

∀m∈Sn
γmn) while automatically balancing the

SNRs per subcarrier. Fig. 3(c) demonstrates this adequately.
Moreover, “Best SNR Contracts” solution not only has inferior
performance compared to proposed heuristics in general, but
the average capacity with this solution decreases as the number
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TABLE II
L IST OF HEURISTICS

Heuristic Method Description Solution Subset Vector

ESW Divide T based on weight profilesw(1)
n =

1, ∀n and solveN 0-1 knapsack problems
S
(1)

ASW Divide T based on weight profilesw(2)
n =∑

M

m=1 emn

M , ∀n and solveN 0-1 knapsack
problems

S
(2)

NSW Divide T based on weight profilesw(3)
n =∑

M

m=1 γmn∑
M

m=1 tmn

, ∀n and solveN 0-1 knapsack
problems

S
(3)

SSCPA Sequential Allocation per subcarrier as per
maximum efficiency

S
(4)

Overall Heuristic Combination of ESW, ASW, NSW and
SSCPA

S = argmaxS(i)|i=1,2,3,4{C(S
(i))}.

TABLE III
FIRST AND SECOND BEST CONTRACTS

Relay types First-best contract Second-best contract Information Rent
& distribution (γ(1), t(1)) (γ in dB) (γ(2), t(2)) (γ in dB) t(2) − cγ(2)/θ

δ1 = 50, π1n = 0.1 (15.4490,0.7013) (9.0401,0.1603) 0
δ2 = 75, π2n = 0.1 (17.2510,0.7080) (12.3131,0.2806) 0.0534
δ3 = 100, π3n = 0.1 (18.5208,0.7113) (14.6324,0.4008) 0.1102
δ4 = 125, π4n = 0.1 (19.5021,0.7133) (16.4428,0.5210) 0.1683
δ5 = 150, π5n = 0.1 (20.3020,0.7147) (17.9322,0.6412) 0.2271
δ6 = 175, π6n = 0.1 (20.9773,0.7156) (19.1990,0.7615) 0.2863
δ7 = 200, π7n = 0.1 (21.5615,0.7163) (20.3020,0.8817) 0.3457
δ8 = 225, π8n = 0.1 (22.0764,0.7169) (21.2794,1.0019) 0.4052
δ9 = 250, π9n = 0.1 (22.5367,0.7173) (22.1564,1.1221) 0.4649
δ10 = 275, π10n = 0.1 (22.9528,0.7177) (22.9528,1.2424) 0.5246

of relay agents increase. This is because the “Best SNR
Contracts” solution just selects the contracts that offer the best
SNRs amongst all subcarriers without actually balancing the
SNRs amongst all subcarriers reducing the overall capacity.
In addition to this, the gap between the envelope of proposed
heuristics (overall heuristic solution) and “Relaxed Solution”
decreases asT is increased. This gap reduces with budget
because with higher budget more contracts can be chosen as
whole per subcarrier hence reducing the difference in capacity
obtained with the “Relaxed Solution”. Notice that the optimal
solution lies in between this gap, hence, smaller this gap
is, better is the performance. Additionally, we notice that
for the overall proposed heuristic, capacity tends to converge
to a stable value as number of relay agents are increased.
The convergence happens because of the diversification of
independent relay types.

Fig. 4(a) compares the performance of the proposed heuris-
tic, i.e., overall average capacity with respect to number of
subcarriers for two values of budget constraints. The simula-
tion parameters are provided under the figure. We could easily
deduce from this figure that the performance of “Best SNR
Contracts” saturates very quickly and is far inferior from the
proposed heuristic solution because of lower overall average
capacity. One reason why “Best SNR Contracts” has inferior

performance is that in this solution the best SNRs may not be
well-spread over all subcarriers and some of the subcarriers
may be underused.

In Fig. 4(b), we plot the average capacity per subcarrier
vs. quantization factor for the heuristic solution and for the
“Best SNR Contracts” solution with two different budget con-
straints. Once again, the parameters are provided underneath
the graph. It is interesting to observe that the average capacity
per subcarrier for the proposed heuristic solution remains
almost the same as we increase the quantization factorK,
which means that it is not that advantageous to quantize
the probability distribution to a very high factor in order
to obtain better performance. For example, a quantization
factor as low as 3 which essentially classifies the types as
“good”, “average”, or “bad” can be sufficient. This further
demonstrates numerically that the source needs to design and
broadcast very few contracts to get fair performance which
leads to less signalling overheads. However, this observation
is valid for uniform distribution and results could vary fora
non-uniform distribution where higher quantization factor may
lead to some types being more probable than others.

Lastly, we analyze the performance of our system under
both complete and incomplete information scenarios. In order
to do that, we plot average capacity per subcarrier vs. the
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(a) Comparison of different heuristics withT = 8, N = 16, andK = 10
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(b) Comparison of different heuristics withT = 16, N = 16, andK = 10
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(c) Comparison of different heuristics withT = 24, N = 16, andK = 10

Fig. 3. Comparison of heuristic schemes

number of relay agents for two values of budget constraints
under these two scenarios in Fig. 4(c). We use heuristic
solution for relay selection to evaluate the capacity. For each
budget constraint, we plot the case where we have complete
information, i.e., source knows the efficient contracts forall
relays, and for incomplete information we plot two cases;
when first-best contracts are broadcasted, and when second-
best contracts are broadcasted. As expected, on average, for
each budget constraint, the performance gap due to infor-
mation asymmetry between the complete information and
the incomplete information with the second-best contractsis
smaller than gap between complete information and the incom-
plete information with the first-best contracts. Moreover,the
capacity obtained with the first-best contracts is almost always
constant because the first-best contracts are not designed to be
incentive compatible and only the smallest contract is selected
by all relays, so increasing the number of agents has no effect
on performance.

VII. C ONCLUSION

In this paper, we study the problem of relay selection and
incentive mechanisms in multi-carrier wireless systems under
asymmetric information. In such networks, a source node is
assumed to be ill-informed of possible potential relay nodes
and their private information such as channel conditions on
the relay-destination link. This information asymmetry makes
it harder for the source to choose selfish relay nodes efficiently
and hence to optimize its throughput. In this paper, we address
this classical problem by introducing a simpleprincipal-
agent modelfor source and relays. The advantage of this
model is that it leaves the bargaining power completely to
the principal which in our case is the source node, and this
reduces signalling and computational overheads for the relays.
We then divide the problem into two parts. In the first part, we
use contract theory to design a common incentive compatible
contracts for the relays (assuming that source has a joint
distribution of private information ortypesof relays for all
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Fig. 4. Performance evaluation

subcarriers), i.e., a relay of a certain type will choose contract
designed for his type only. These contracts are broadcasted
by the source to all relays and the interested relay-agents
respond with the contracts they are willing to accept in each
subcarrier. Once the source becomes aware of these contracts,
the only problem that remains is to select appropriate relays
in each subcarrier such that the overall capacity of source is
maximized while the source is under a budget constraint. We
formulate this problem of relay selection as a nonlinear non-
separable knapsack problem and suggest a heuristic solution
to solve it efficiently. The source then notifies the selected
relays with instructions such as space-time codes and makes
the required transfers. We have compared the performance of
heuristic solution with a simple relay selection mechanismand
have presented numerical results to show that our solution

performs better under the most common settings. The overall
mechanism introduced in this paper is simple and has limited
interaction between the source and the potential relays and
participation of interested nodes is also voluntary. As part of
future work, we will address more complex issues for the relay
selection mechanism such as including the effect of direct
links and considering selective relaying in the proposed system
model (selective relaying is discussed in [27]), addressing en-
ergy efficiency with asymmetric information (energy efficiency
for cooperative networks is explored [28]), and designing
better heuristics and more efficient protocols.
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APPENDIX

A. Proof of Proposition 1

Lets assume the marginal distribution of typeθn to be
fn(θn) and the corresponding cumulative distribution to be
Fn(θn) (s.t.F ′

n(θ) = fn(θ)), wherefn(θn) is given by

fn(θn) =
∫ θ̄

θ

∫ θ̄

θ

· · ·

∫ θ̄

θ

f(θ1, θ2, · · · , θN )dθ1dθ2 · · · θn−1θn+1 · · · dθN .

(31)

Using the expression (31), we can simplify (15) and subse-
quently substitute (14) as described in equation (32). We can
then use integration by parts to rewrite the last term of (32)
to obtain (33). Substituting (33) in (32), we can reduce the
corresponding optimization problem to (16). Q.E.D.

B. Proof of Theorem 2

Let us consider two relay-agent typesδk and δj such that
δk > δj . The mutual IC conditions for these relay types are

tk −
cγk
δk

≥ tj −
cγj
δk

, (34)

tj −
cγj
δj

≥ tk −
cγk
δj

. (35)

Adding these two IC conditions gives
cγk
δk

+
cγj
δj

≤
cγj
δk

+
cγk
δj

or, δj(γk − γj) ≤ δk(γk − γj). (36)

Sinceδk > δj, we can say thatγk ≥ γj . And becauseγ’s are
all assumed to be positive, we have

0 ≤ γ1 ≤ γ2 ≤ · · · ≤ γK . (37)

So, we proved the first result and now we must also prove that
for the optimal solution, ICs reduce to (21) when compounded
with (37). This proof is a slightly more intricate but we will
first prove that when the downward adjacent ICs are binding,
i.e., (21) is true, all the other ICs are automatically satisfied
(sufficiency) and we will then prove that when one or more
downward adjacent ICs is not binding, the contract cannot be
optimal and a better contract can be obtained by binding the
downward adjacent ICs recursively by reducing the transfers,
hence increasing the source’s utility (necessity).

1) Proof of Sufficiency:Suppose the adjacent downward
ICs are binding, then we can rewrite (21) as follows:

(tk − tk−1) =
c(γk − γk−1)

δk
, ∀k ≥ 2. (38)

Lets consider somej such thatj > k, then using (37) and
(38), we can write:

(tj − tk)

= (tj − tj−1) + (tj−1 − tj−2) + · · ·+ (tk+1 − tk)

=
c(γj − γj−1)

δj
+

c(γj−1 − γj−2)

δj−1
+ · · ·

c(γk+1 − γk)

δk+1

≤
c(γj − γj−1)

δk
+

c(γj−1 − γj−2)

δk
+ · · ·

c(γk+1 − γk)

δk

=
c(γj − γk)

δk
. (39)

Now, lets take somej such thatj < k, then using (37) and
(38), we can write:

(tk − tj)

= (tk − tk−1) + (tk−1 − tk−2) + · · ·+ (tj+1 − tj)

=
c(γk − γk−1)

δk
+

c(γk−1 − γk−2)

δk−1
+ · · ·

c(γj+1 − γj)

δj+1

≥
c(γk − γk−1)

δk
+

c(γk−1 − γk−2)

δk
+ · · ·

c(γj+1 − γj)

δk

=
c(γk − γj)

δk
. (40)

Combining equations (39) and (40), we get:

(tk − tj) ≥
c(γk − γj)

δk
or tk −

cγk
δk

≥ tj −
cγj
δk

, ∀j 6= k. (41)

Hence all the ICs are automatically satisfied when adjacent
downward ICs are binding.

2) Proof of Necessity:Suppose one or more downward
adjacent ICs are not binding for optimal solution (and IRs
are satisfied because it is a solution). Lets take one such type
δk for which adjacent downward IC is inactive, so using IR
for type δk−1 we have:

tk−
cγk
δk

> tk−1−
cγk−1

δk
≥ tk−1−

cγk−1

δk−1
≥ 0 ∀j ≥ k, j ≤ k

(42)
What this means is that if we reduce alltj ’s, ∀j ≥ k with
equal amount through which the adjacent downward IC for
type δk becomes active, it will not affect any of the IRs
and the existing relation (whether binding or not binding)
between adjacent downward ICs for every other type. We can
iteratively repeat the process (starting with the lowest type for
which adjacent downward IC is inactive) till all the adjacent
downward ICs are binding. In this process, we have only
reduced the transfers to bind all the downward adjacent ICs,
which in turn automatically guarantees that all the other ICs
are satisfied from the sufficiency conditions proved in Part 1.
This therefore increases source’s profit because transfersare
expensive for the source. Hence, the original contract cannot
be optimal because we found a better contract, which is a
contradiction.

C. Proof of Proposition 2

Lets look at the second term
∑N

n=1

∑K
k=1 πkntk of the

objective of optimization problem in (22). Substituting the
equality constraints from (22), we write the individual terms
of the summation as described by (43). Now adding the
individual equations in (43), collecting the terms for eachγk,
and using the fact that

∑K
i=1 πin = 1 we can derive (44).

Substituting (44) back in (22), we get (24). Q.E.D.
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∫ θ̄

θ

∫ θ̄

θ

· · ·

∫ θ̄

θ

N
∑

n=1

(U(γ(θn))− t(θn))f(θ1, θ2, · · · , θN )dθ1dθ2 · · · dθN

=
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∫ θ̄

θ

∫ θ

θ

cγ(τ)

τ2
fn(θ)dτdθ =

∫ θ̄

θ

F ′
n(θ)

∫ θ

θ

cγ(τ)

τ2
dτdθ = Fn(θ)

∫ θ

θ

cγ(τ)

τ2
dτ

∣

∣

∣

∣

∣

θ̄

θ

−

∫ θ̄

θ

cγ(θ)

θ2
Fn(θ)dθ

=

∫ θ̄

θ

cγ(θ)

θ2
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θ

cγ(θ)

θ2
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fn(θ)
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N
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N
∑

n=1

π1n

(

cγ1
δ1
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∑
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πKntK =
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πKn

(

cγ1
δ1
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cγ2
δ2

−
cγ1
δ2
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cγ3
δ3

−
cγ2
δ3

· · ·+
cγK
δK

−
cγK−1

δK

)

. (43)
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K
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1
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∑

n=1

K
∑
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∑
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∑
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∑
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∑
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∑
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1
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