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Abstract

The recent years have brought a significant body of research on wireless Two-Way Relaying (TWR),

where the use of network coding brings an evident advantage in terms of data rates. Yet, TWR scenarios

represent only a special case and it is of interest to devise similar techniques in more general multi-

flow scenarios. Such techniques can leverage on the two principles used in Wireless Network Coding

to design throughput-efficient schemes: (1) aggregation of communication flows and (2) embracing

and subsequently cancel/mitigate the interference. Using these principles, we investigate Coordinated

Direct/Relay (CDR) schemes, which involve two flows, of a direct and a relayed user. In this paper we

characterize a CDR scheme by deriving/bounding the Diversity-Multiplexing Trade-off (DMT) function.

Two cases are considered. In the first case a transmitter knows the Channel State Information (CSI) of

all the links in the network, while in the second case each node knows only CSI of the links towards

its neighbors. The results show that the new CDR scheme outperforms the reference scheme in terms

of DMT characterization. Several interesting features are identified with respect to the impact of the

CSI knowledge to the improvement in diversity or multiplexing brought by the CDR scheme.

I. INTRODUCTION

A. Motivation

Relay–based transmission, has been a subject of extensive research efforts in the recent years,

due to its potential to extend cellular coverage or increase diversity. Several relaying modes
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have been established, such as Amplify-and-Forward (AF) [1], Decode-and-Forward (DF) [2]

and Compress-and-Forward (CF) [3], etc. These modes have been used as building blocks to

devise relaying techniques in relaying scenarios with one, two, or multiple communication flows

[4].

In particular, Two-Way Relay (TWR) using Wireless Network Coding (WNC) has recently

attracted a significant interest, due to the evident throughput benefits in wireless networks [5]–

[7]. Schemes applying WNC in TWR scenarios have been extensively discussed, analyzed and

evaluated in many different aspects. Yet, the TWR scenarios are essentially limited, as they

represent a special case of the general scenario in which multiple communication flows need

to be concurrently transmitted over a shared wireless medium. In order to generalize the trans-

mission schemes applied in TWR scenarios, it is instructive to identify the two basic principles

used in designing throughput–efficient schemes with WNC: (1) aggregation of communication

flows: WNC operates by having a set of flows sent/processed jointly; (2) intentional cancelable

interference using side information: flows are allowed to interfere over the wireless channel,

knowing a priori that the interference can be cancelled by the destination via side information.

Using these principles one can design novel transmission schemes in other multi-flow scenarios

that involve wireless relaying. A particularly promising scenario is a network with a base station

(BS), a relay station (RS), a relayed user (U) and a direct user (V). One possible configuration

of multiple traffic flows is depicted on Fig. 1, where user U receives downlink traffic from the

BS, while V sends uplink traffic to the BS. In the first step the BS transmits to the relay RS.

For the reference scheme E, in the second step RS transmits to user U and in the third step

V transmits to the BS. However, using the principles behind WNC, we can do better in the

following way. By recognizing that the BS knows a priori what RS will send in the second

step because the relayed signal from RS is what was originally transmitted by the BS, the new

scheme S operates by combining both transmissions RS→U and V→BS in the same step. Then

BS can cancel the signal sent by the RS and obtain a “clean” message from V. This scheme has

been proposed in [8]. The same scenario can be used as a basis to design transmission schemes

for other configurations of traffic flows. One example is when U has an uplink traffic towards BS
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through the RS, while V has a downlink traffic from the BS. The latter and two more schemes

have been discussed and analyzed in [9]. Detailed analysis of the achievable rate regions in these

traffic scenarios is provided in [4] (AF) and [10] (DF).

So far, the devised CDR schemes have been analyzed only through the prism of spectrum

efficiency [4], [8]–[10]. In order to get insight into the diversity aspect of the scheme, in this paper

we carry out analysis of the Diversity-Multiplexing Trade-off (DMT) functions [11], [12]. In

[12], a DMT analysis is provided leading to an adaptive optimization of the different transmission

phase durations of TWR Network Coding. We focus on the scenario and the traffic configuration

depicted on Fig. 1 (from now on referred to simply as “the scenario”) and we derive the DMT

functions for both the reference scheme and the scheme S from [8]. We are using DF as a

relaying method, which means that the relay is able to re–encode the information that is relayed

with another codebook. The transmissions rates from the BS to the RS and from the RS to

user U are not necessarily identical, leading to time intervals that are not necessarily equal. The

essential difference with [12] is that in the two-phase two-way relaying scheme in [12],

the interference is a priori known and completely cancelled while in this paper part of

the interference is cancelled and part is treated as noise. We thus introduce β as a power

exponent to distinguish the transmit powers of different sources. As a technical difference,

we need to optimize over multiple variables that represent the time intervals, rather than

one variable as in [12].

The DMT function of S depends on three different transmissions, two of which (RS→U

and V→BS) are taking part simultaneously. In fact, due to the use of DF, the transmissions

of RS and V in the second step of the scheme S are not necessarily completely overlapping.

The durations/overlaps of all transmissions are therefore different and subject to optimization,

through which one minimizes the outage probability.

B. Main Contributions

The main contributions of this paper can be described as follows. We consider two possible

configurations of channel knowledge in the network. In the first case, termed CSI-L (Channel
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State Information for the related Link channels), each node knows only the CSI of the links

towards its neighbors. In the second model, termed CSI-A (Channel State Information for All

channels), the information of all channels is available at all stations. The transmission strategies

and the DMT functions are significantly different for the two cases. We analytically calculate the

DMT function of the reference scheme, denoted by E, and the CDR scheme in CSI-L model.

In CSI-A model the DMT functions are bounded.

• In the case of CSI-L, due to the fact that not all channels in the network are known, the

durations of the different transmissions cannot be optimized for the instantaneous fading

realizations, i.e. the actual channels that are valid during the time block in which the

transmission takes place. Instead, for given rates, these durations are fixed and optimized

according to the statistics of the individual links.

• In the case of CSI-A, for each fading realization one can optimize the durations of the

different steps. Outage occurs if, for the fading realizations in the observed time block,

there are no time durations that can satisfy the required rates.

The rest of the paper is organized as follows. Section II presents the system model used.

We describe and calculate the maximal achievable rates of the reference and CDR schemes in

Section III. Section IV calculates and bounds the DMT functions of the schemes. Section V

presents and discusses the numerical results and Section VI concludes the paper.

II. SYSTEM MODEL

We consider a scenario with one base station (BS), one relay (RS), and two users (U and V),

see Fig. 1. All stations have a single antenna and all transmissions have a normalized bandwidth

of 1 Hz. Each of the complex channels hi, i ∈ {1, 2, 3, 4}, is reciprocal and a realization of a

block fading Rayleigh distribution. The variance of each channel is set to 1. We consider two

channel models. In the first one, only the transmitter and the receiver of a transmission know the

channel of that transmission (CSI-L). In the second one, information of all channels is available

at all stations (CSI-A). The direct channel BS–U is assumed weak and U gets the information

from BS only through the decoded/forwarded signal from RS.
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BS has to send message s1 to user U via relay RS and receive message s2 from user V directly.

Because we have a relayed downlink and a direct uplink, there are three relevant links: BS→RS,

RS→U, V→BS, corresponding to the channels h1, h2 and h3, respectively. We assume that the

transmit powers of the corresponding transmitters are PB, PR, PV , respectively. In addition, we

assume PB = PR = ρ and PV = ρβ [14]. The noise at all stations has a complex circular

Gaussian distribution with variance σ2
N set to 1. We denote the number of symbols in codeword

x as |x|, log denotes the base-2 logarithm and , serves to define a notation via an equation.

In the reference scheme denoted as E, all transmissions are orthogonally multiplexed in time.

In the CDR scheme denoted as S, transmissions of the two messages are partially overlapped

in time. This overlap time is chosen in such a way that the information about the interference is

exploited as much as possible. We use Ri
U and Ri

V , i ∈ {E, S} to denote the maximal achievable

rates averaged over the whole duration of scheme i for users U and V respectively.

Each transmission period may involve one or two transmissions with different rates. Different

transmission durations are characterized by λ, θ and µ, 0 < λ, θ, µ < 1 which are defined as

follows. In both schemes, there are λN symbols in the V→BS hop transmission where N is the

total number of symbols in the whole scheme. In scheme E, there are totally θN symbols in

the RS→U and V→BS hop transmissions. In scheme S, there are µN symbols in the RS→U

hop transmission.

Finally, we use yk[j] and zk[j] to denote the received and noise signals respectively at station

k, k ∈ {B,R,U, V } where B, R, U and V are corresponding subscripts for BS, RS, users U

and V, in time interval j, j ∈ {1, 2, 3} and qiU [j] and qiV [j] as instantaneous transmission rates

in time interval j for user U and V respectively in scheme i, i ∈ {E, S}. Denote γi = |hi|2
σ2
N

with

i ∈ {1, 2, 3, 4}. The notation summary is given in Table I.

III. SCHEME DESCRIPTION

We describe and calculate the achievable rates for two users in the reference scheme E and

the CDR scheme S.
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TABLE I
NOTATION SUMMARY

Notation Description
E, S reference, CDR schemes

hi channel coefficient

σ2
N = 1 noise power

PB = PR = ρ transmit power of the BS and RS

PV = ρβ transmit power of user V

Ri
U , R

i
V maximal achievable rates for user U, V in scheme i

λ, θ, µ tranmission durations

N symbol number in a scheme

yk[i], zk[i] received and noise signals at node k in time interval i

qiU [j], qiV [j] instantaneous rates for users U, V in time interval j of scheme i

γi = |hi|2
σ2
N

normalized channel gain

rU , rV multiplexing gains for users U, V

Rt
U , R

t
V target rates for users U, V

OiUk ,O
i
Vk

outage events for the k-th transmission of users U, V in scheme i

diUk , d
i
Vk

diversity gain for the k-th transmission of users U, V in scheme i

diL, diversity gain for scheme i in CSI-L

diUB
A , diLB

A upper and lower bound of DMT function of scheme i in CSI-A

rij,Lo, r
i
j,Ao maximum multiplexing gain for user j in scheme i in CSI-L, CSI-A

A. Reference Scheme

The reference scheme consists of three transmission phases. In the first transmission phase,

BS encodes s1 to x1 at a rate qEU [1] and transmits it to RS as seen in Fig. 1. RS receives

yR[1] = h1x1 + zR[1]. In the second transmission phase, RS decodes x1 to s1, re-encodes it to

xR1 at a rate qEU [2] and transmits it to user U. U receives yU [2] = h2x
R
1 + zU [2]. In the third

transmission phase, user V encodes s2 to x2 at a rate qEV [3] and transmits it to BS. BS receives

yB[3] = h3x2 + zB[3]. Since x1, x2 and x3 are transmitted with power PB, PR and PV , the

rates qEU [1], qEU [2] and qEV [3] are selected as the maximal rates over the corresponding channels

qEU [1] = log (1 + ργ1) , C1, qEU [2] = log (1 + ργ2) , C2 and qEV [3] = log
(
1 + ρβγ3

)
, C3.
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Since all transmissions are performed separately, the duration of the BS→RS transmission is

(1−θ)N . The BS→RS, RS→U and V→BS transmissions therefore have durations of (1−θ)N ,

(θ − λ)N and λN symbols respectively. On the other hand, the corresponding maximal rates

are C1, C2 and C3 for each of the respective transmissions. Thus the maximal rates for the

transmissions on the links BS→RS, RS→U and V→BS are

RE
U1

= (1−θ)NC1

N
= (1− θ)C1, RE

U2
= (θ − λ)C2, RE

V = λC3. (1)

B. CDR Scheme

The RS→U and V→BS transmissions can be conducted simultaneously because the interfering

signal from RS to BS is known at BS and can be cancelled. Therefore compared to the reference

scheme, the maximal rates will be increased.

In the first time interval, BS transmits x1 to RS (see Fig. 1), RS receives yR[1] = h1x1 +zR[1]

and decodes x1 to s1. The maximal achievable rate of this transmission is therefore qSU [1] = C1.

In the second time interval, two cases are distinguished depending on the relative duration of

transmissions RS→U and V→BS.

1) µ ≥ λ: In the second time interval, user V encodes s2 to x2 and RS divides s1 into two

sub-messages s1,1 and s1,2 so that after re-encoding to xR1,1 and xR1,2, we have |xR1,1| = λN .

RS transmits xR1,1 to user U and user V transmits x2 to BS simultaneously. BS thus receives

yB[2] = h1x
R
1,1 + h3x2 + zB[2]. Since BS knows x1, it can cancel the contribution of x1 and

decodes its desired signal x2 with maximal achievable rate C3. In the meantime, user U receives

yU [2] = h2x
R
1,1 + h4x2 + zU [2]. There are two decoding options for user U:

• No-Interference Cancellation (NIC): User U decodes xR1,1 treating x2 as noise. The maximal

achievable rate for transmitting xR1,1 is qSU [2] = log
(

1 + ργ2
ρβγ4+1

)
, C2−4. The transmitting

rate of x2 is selected as qSV [2] = C3.

• Interference Cancellation (IC): User U first decodes x2 treating xR1,1 as noise. It is possible

only if the transmitting rate of x2 is not larger than log
(

1 + ρβγ4
ργ2+1

)
, C4−2. Hence the

transmitting rate of x2 is selected as qSV [2] = min{C3, C4−2}. Then user U cancels x2’s
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contribution in yU [2] and decodes x1,1 interference-free. Hence the maximal achievable rate

for transmitting x1,1 is qSU [2] = C2.

A trade-off between those two options can be achieved by multiplexing them by time. It is

actually one point in the diagonal edge of the Multiple Access Channel (MAC) rate region when

user U treats the interference from user V as another signal to decode [13]. In terms of sum-rate,

this trade-off solution can be better than both NIC and IC decoding options above. However,

when computing the DMT, the transmit powers tend to infinity. Depending on which of RS and

user V’s powers goes to infinity faster, the only relevant decoding options are either NIC or IC.

In the third time interval, RS transmits xR1,2 to user U interference-free with rate qSU [3] = C2.

The durations for the three time slots are therefore (1 − µ)N , λN and (µ − λ)N symbols

respectively. The maximal achievable rates averaged over the whole duration of the scheme are,

• For links BS→RS, RS→U and V→BS in the NIC option, RS
U1

= (1 − µ)C1, RS
U2

=

λC2−4 + (µ− λ)C2 and RS
V = λC3.

• For links BS→RS, RS→U, V→U and V→BS in the IC option, RS
U1

= (1−µ)C1, RS
U2

= µC2

and RS
V = λmin(C3, C4−2) + (µ− λ) min(C3, C4).

Selecting a decoding option will be discussed later on.

2) µ < λ: In the second time interval, RS encodes s1 to xR1 and user V divides s2 into two

sub-messages s2,1 and s2,2 so that after re-encoding to x2,1 and x2,2, we have |x2,1| = µN . RS

transmits xR1 to user U and user V transmits x2,1 to BS simultaneously. The NIC and IC options

are conducted similarly as in the case µ ≥ λ. In the third time interval, user V transmit x2,2 to

BS.

The durations for the three time slots are (1− λ)N , µN and (λ− µ)N symbols respectively.

The maximal achievable rates averaged over the whole duration of the scheme are,

• For links BS→RS, RS→U and V→BS in the NIC option, RS
U1

= (1− λ)C1, RS
U2

= µC2−4

and RS
V = λC3.

• For links BS→RS, RS→U, V→U and V→BS in the IC option, RS
U1

= (1−λ)C1, RS
U2

= µC2

and RS
V = µmin{C3, C4−2}+ (λ− µ) min(C3, C4) with C4 , log

(
1 + ρβγ4

)
.
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IV. DIVERSITY-MULTIPLEXING TRADE-OFF (DMT) ANALYSIS

We first introduce the DMT definition and notations in section IV-A and derive the DMT

functions in both channel modes CSI-L and CSI-A for E in section IV-B and S in section IV-C.

A. DMT Definition and Notations

A scheme is said to achieve spatial multiplexing gain r and diversity gain d if

limζ→∞
R(ζ)
log ζ

= r and limζ→∞− logPe(ζ)
log ζ

= d (2)

where R(ζ) is the maximal achievable rate, ζ is the corresponding average SNR and Pe is the

average outage probability.

Throughout the rest of the paper, we use the symbol .= to denote exponential equality, i.e. we

write f(ζ)
.
= ζb then limζ→∞

log f(ζ)
log ζ

= b. Notations and
.

≥,
.

≤ are similarly defined. Therefore,

the second equation in (2) can be written as

Pe(ζ)
.
= ζ−d. (3)

We also denote (x)+ = max(0, x). Because limζ→∞
ζa+ζb

ζmax(a,b) = 1, we often use ζa+ζb
.
= ζmax(a,b)

or ζa + 1 = ζa + ζ0 .
= ζmax(a,0) = ζa

+ . Moreover,

Pr[γi < x] =

∫ x

0

e−tdt = 1− e−x and lim
x→0

1− e−x

x
= 1. (4)

Therefore,

Pr
[
γi < ζ−a

] .
= ζ−a

+

. (5)

We investigate the outage probability and how fast it decays with respect to logPi, i ∈

{B,R, V }, when the system tries to achieve a certain target rate pair (Rt
U , R

t
V ).

Since the stations have different transmit powers, the target rates have different expressions.

We calculate the DMT for the scheme when the target rate for user i is given by Rt
i = ri logPj

where ri is the corresponding multiplexing gain and Pj is the transmit power of the transmitter

i.e. for direct uplink Pj = PV = ρβ and for relayed downlink Pj = PB = ρ. We assume that β

is always known in both cases of CSI-L and CSI-A.
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The scheme is in outage when the maximal achievable rate for user U or user V is lower than

the respective target rate. The maximal achievable rate is computed over the whole duration of

the scheme and depends on time-multiplexing factors (λ, θ) for scheme E and (λ, µ) for scheme

S. According to the CSI models that we have adopted, an outage is not due to the lack of

knowledge of the instantaneous value of channel at the transmitter, but rather to the values of

the multiplexing factors. For example, in scheme S, if the transmission from the BS is allocated

a short duration compared to the 2 other simultaneous transmissions, the rate to user U computed

over the whole duration of the scheme will likely be small and below the target rate.

In the CSI-L model of scheme E, an outage is defined if the pair (λ, θ) cannot support a

target rate pair (Rt
U , R

t
V ). The outage probability and then the DMT function are calculated as

functions of λ and θ. The DMT function is maximized based on λ and θ. In the CSI-A model of

scheme E, all channels are available thus for a certain channel realization, λ and θ are calculated

so that they can support a target rate pair for the given fading realization. An outage is defined

as there is not any pair (λ, θ) which can support the target rate pair [12], [15], [16]. A similar

procedure is carried out in both channel models of scheme S with parameters (λ, µ).

B. Reference Scheme E

1) CSI-L:

Proposition 4.1: The DMT function of scheme E in CSI-L channel model is given by dEL =

min
{
dEU1

, dEU2
, dEV
}

in which

dEU1
=
(
1− rU

1−θ

)+
, dEU2

=
(
1− rU

θ−λ

)+
, dEV = β

(
1− rV

λ

)+ (6)

are the DMT functions of three transmissions BS→RS, RS→U and V→BS in the scheme

respectively.

Proof: The scheme is in outage, denoted as OE , when either Rt
U is larger than the maximal

achievable rate RE
U for user U or Rt

V is larger than the maximal achievable rate RE
V for user

V . Recalling that RE
U = min(RE

U1
, RE

U2
), the system is in outage when one of the following
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conditions occur

OEU1
: RE

U1
< Rt

U , OEU2
: RE

U2
< Rt

U , OEV : RE
V < Rt

V . (7)

Hence OEL = OEU1
∪ OEU2

∪ OEV , where subscript L refers to CSI-L. The probability of the first

event is

Pr
[
OEU1

]
= Pr[(1 + ργ1)1−θ < ρrU ]

.
= Pr[(ργ1)1−θ < ρrU ] = Pr[γ1 < ρ

rU
1−θ−1]. (8)

The second equality in (8) is obtained when letting ρ tend to infinity. This probability decays

only when rU
1−θ − 1 < 0. It means that we have a positive diversity gain corresponding to this

transmission only when 1− rU
1−θ > 0. Using (5), we can write Pr

[
OEU1

] .
= ρ−(1− rU

1−θ )
+

. Similarly,

the probability of the second event is Pr
[
OEU2

] .
= ρ−(1− rU

θ−λ)
+

. We have Pr
[
OEV
] .

= ρ−β(1− rV
λ )

+

.

Therefore,

Pr[OEL ]
.
= Pr[OEU1

] + Pr[OEU2
] + Pr[OEV ]

.
= ρmax{−dEU1

,−dEU2
,−dEV } = ρ−min{dEU1

,dEU2
,dEV }. (9)

The first equality comes from the fact that the events OEU1
, OEU2

and OEV are independent due to

the independence of γ1, γ2 and γ3 and that the product of any two or three of the probabilities

Pr[OEU1
], Pr[OEU2

] and Pr[OEV ] decays faster than each of them. The second equality is due

to that the smaller terms are negligible and the probability is determined by the largest term

in the sum when ρ → ∞. According to the definition in (3), the diversity gain is therefore

dEL = min
(
dEU1

, dEU2
, dEV
)
, fEL (θ, λ, rU , rV ).

The information in CSI-L channel model is necessary and enough to achieve the result above.

At a station, the information of all channels is not available thus determining the transmission

durations according to the current channel realization is impossible. Therefore, as shown above,

the results in (6) is obtained by averaging all channel realizations. The optimal transmission

durations will be then optimized based on these averaged results. On the other hand, the

information of the channels to the neighbors of a station is still necessary such that it can

determine the instantaneous rates to transmit and receive e.g. in the second time interval of

scheme E, the RS needs to know h2 to determine qEU [2] = C2. However this information does
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not help to determine the optimal transmission durations as all channels are assumed to be

independent.

Proposition 4.2: The DMT function of scheme E in CSI-L channel model with optimized

transmission durations is given by

dELo =

(
1− rU

1− θo

)+

=

(
1− rU

θo − λo

)+

= β

(
1− rV

λo

)+

. (10)

in which θo = λo+1
2

, λo = 1−β−βrV −2rU+
√

∆
2(1−β)

and ∆ = (1− β − βrV − 2rU)2 + 4(1− β)βrV .

Proof: Each individual diversity component
(
dEU1

, dEU2
, dEV
)

increases when the corresponding

time assigned to each transmission, (1 − θ)N , (θ − λ)N and λN respectively, increases. The

time durations assigned to the 3 transmission hops should be balanced such that the diversity

gain of the whole scheme is maximized. Note that increasing the diversity gain at a certain

multiplexing gain also makes the multiplexing gain at a certain other diversity gain increased.

Therefore maximizing diversity gain is equivalent to maximizing the multiplexing gain. Hence,

with finite β, the optimal values λo and θo are roots of the equations dEU1
= dEU2

= dEV . The

equations dEU1
= dEU2

= dEV are equivalent to (1− β)λ2 − (1− β − βrV − 2rU)λ− βrV = 0 and

θ = 1+λ
2

. Because ∆ = (1− β − βrV − 2rU)2 + 4(1− β)βrV ≥ 0, there are always real roots.

We consider two cases

• β ≤ 1, the two roots satisfies λ1λ2 = −β(1− β)rV ≤ 0, there is hence one positive root.

• β > 1, λ1λ2 = −β(1 − β)rV > 0 and λ1 + λ2 = 1−β−βrV −2rU
1−β > 0, there are hence two

positive roots.

We select the root as written in Proposition (4.2) which satisfies 0 < λ < θ < 1.

2) CSI-A: For the CSI-A case we have only derived the upper bound, similar to the approach

in [11], [12].

Proposition 4.3: The upper bound of the DMT function of scheme E in CSI-A channel model

is given by

dEUB
A =


(
β(1−2rU−rV )

1−2rU

)+

if β ≤ 1(
1−2rU−rV
1−rU−rV

)+

if β > 1
(11)

February 26, 2013 DRAFT



13

Proof: When all channels are available at all stations, the value of λ and θ can be selected

according to all CSIs. User U and BS can decode the messages s1 and s2 respectively when

RE
U1
≥ Rt

U , RE
U2
≥ Rt

U , RE
V ≥ Rt

V
(12)

Denoting a1 ,
rU log ρ

log(1+ργ1)
, a2 ,

rU log ρ
log(1+ργ2)

and a3 ,
rV log ρβ

log(1+ρβγ3)
, equation (12) is equivalent to

θ ≤ 1− a1, λ ≥ a3 and θ ≥ λ+ a2 (13)

We illustrate condition (13) in Fig. 2 with a coordinate system of λ and θ in which the shaded

area represents the values of λ and θ which satisfy the conditions in (13). This non-outage area

does not exist if and only if the point (a3, 1− a1) lies below the line θ = λ+ a2. This condition

is equivalent to 1− a1 < a3 + a2 or

a1 + a2 + a3 > 1. (14)

Equation (14) is the condition for an outage event, denoted as OEA , for the CSI-A model. Denote

αi = − log γi
log ρ

, i ∈ {1, 2, 3, 4} therefore a1
.
= rU log ρ

log(ργ1)
= rU

1−α1
, a2

.
= rU log ρ

log(ργ2)
= rU

1−α2
and a3

.
=

rV log ρβ

log(ρβγ3)

.
= rV

1−α3
β

hence

Pr[OEA ] = Pr
[

rU
1−α1

+ rU
1−α2

+ rV
1−α3

β

> 1
]
. (15)

When ρ→∞, αi → 0, α1α2, α2α3, α3α1 and α1α2α3 decay faster than α1, α2 or α3 hence

Pr[OEA ]
.
= Pr [rU(β − βα2 − α3) + rU(β − α1 − α3)

+rV (β − βα1 − βα2) > β − βα1 − βα2 − α3] .
(16)

Because the time is divided for two transmissions of user U and one tranmission of user V we

have rU + rV < 1 and 2rU < 1. Using these conditions, we have two cases below respectively.

We therefore obtain lower bounds on the outage probability and thus upper bounds on the DMT

functions for both cases.

Pr[OEA ]
.

≥


Pr
[
α3 >

β(1−2rU−rV )
1−2rU

]
= Pr

[
γ3 < ρ

−
(
β(1−2rU−rV )

1−2rU

)+]
if β ≤ 1

Pr
[
α1 >

(1−2rU−rV )
1−rU−rV

]
= Pr

[
γ1 < ρ

−
(

1−2rU−rV
1−rU−rV

)+]
if β > 1

(17)

The upper bound of the DMT function is therefore given by (11).
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It is obvious that Pr[OEA ] monotonically decreases with ρ whenever β(1−3r)
1−2r

is positive. There-

fore − log ρPr[OEA ] monotonically increases with ρ. A lower bound of the DMT function can

be hence obtained by calculating Pr[OEA ] at a fixed value of ρ = ρo. The higher ρo is, the tighter

the lower bound is. From (15), the condition rU
1−α1

+ rU
1−α2

+ rV
1−α3

β

> 1 is equivalent to α3 > mE

with mE = β

(
1− rV

1− rU
1−α1

− rU
1−α2

)
. It means that an outage occur when γ3 < ρ−mEo therefore we

have

dELB
A = − logρo

∫ ∞
0

e−γ1dγ1

∫ ∞
0

e−γ2dγ2

∫ ρ
−mE
o

0

e−γ3dγ3. (18)

This bound is numerically calculated and given in section V.

C. Coordinated Direct and Relay Scheme S

In the CDR scheme S, there are two decoding options at user U. When β ≤ 1, the NIC option

treating the interference from user V (with transmit power ρβ) as noise is better than the IC option

decoding the interference first. On the other hand, in the NIC option, the three transmission hops

BS→RS, RS→U and V→BS have corresponding normalized rates RS
U1

= (1 − max(µ, λ))C1,

RS
U2

= min(µ, λ)C2−4 + (µ−min(µ, λ))C2 and RS
V = λC3. We have

• If µ ≥ λ, RS
U1

= (1− µ)C1, RS
U2

= λC2−4 + (µ− λ)C2, RS
V = λC3.

• If µ < λ, RS
U1

= (1− λ)C1, RS
U2

= λC2−4, RS
V = λC3.

Hence RS
U2(µ≥λ) ≥ RS

U2(µ<λ), R
S
V (µ≥λ) = RS

V (µ<λ). On the other hand, because λ and µ take

similar roles in RS
U1

, the case µ ≥ λ is better than the case µ < λ in the NIC option.

When β > 1, the IC option is better than the NIC option and the case µ < λ is better than

the case µ ≥ λ in the IC option. To summarize, in each CSI model, we consider two cases: If

β ≤ 1, we use the NIC option with µ ≥ λ and if β > 1, we use the IC option with µ < λ.

1) CSI-L:

Proposition 4.4: The DMT function of scheme S in CSI-L channel model is given by
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• If β ≤ 1, dSL = min
{
dSU1

, dSU2
, dSV
}

in which

dSU1
=
(

1− rU
1−µ

)+

, dSV = β
(
1− rV

λ

)+
,

dSU2
=


(

1− rU
µ−λ

)+

if rU ≤ β(µ− λ)(
1− βλ

µ
− rU

µ

)+

if rU > β(µ− λ).

(19)

• If β > 1, dSL = min
{
dSU1

, dSU2
, dSV1 , d

S
V2

}
in which

dSU1
=
(
1− rU

1−λ

)+
, dSU2

=
(

1− rU
µ

)+

, dSV2 = β
(
1− rV

λ

)+
,

dSV1 =

 β
(

1− rV
λ−µ

)+

if rV ≤ λ−µ
β(

β − µ
λ
− βrV

λ

)+
if rV >

λ−µ
β
.

(20)

Proof: We consider two cases below

• β ≤ 1: The scheme is in outage when one of the three link transmissions BS→RS, RS→U

and V→BS is in outage; the corresponding events are denoted by OSU1
, OSU2

and OSV .

According to section III-B1, RS
U1

= RE
U1

and RS
V = RE

V therefore Pr[OSU1
] = Pr[OEU1

] and

Pr[OSV ] = Pr[OEV ] which are already calculated in the scheme E. Here xR1,1 and xR1,2 are

jointly decoded therefore only one outage event for the RS–user U is defined.

Pr[OSU2
] = Pr

[
RS
U2
< Rt

U

] .
= Pr

[(
1 + γ2ρ

γ4ρβ

)λ
(1 + γ2ρ)µ−λ < ρrU

]
(21)

We consider four cases below in which the outage events are denoted as OS1
L , OS2

L , OS3
L

and OS4
L respectively.

– γ2ρ
γ4ρβ
≤ 1 and γ2ρ ≤ 1: In this case, the outage always occurs. We have Pr

[
OS1
L

]
= ρ−1.

– γ2ρ
γ4ρβ

> 1 and γ2ρ ≤ 1: It is in outage when
(
γ2ρ
γ4ρβ

)λ
< ρrU . Combinning the conditions

we have Pr
[
OS2
L

] .
= min

{
ρ−1, ρ

rU
λ

+β−1
}
.
= ρ−1

– γ2ρ
γ4ρβ
≤ 1 and γ2ρ > 1: It is in outage when (γ2ρ)µ−λ < ρrU . Combinning the conditions

we have

Pr
[
OS3
L

] .
= ρ−max{1−β,1− rU

µ−λ}
+ .

=

 ρ−(1− rU
µ−λ)

+
1 if rU ≤ β(µ− λ)

ρ−(1−β) if rU > β(µ− λ)
(22)
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– γ2ρ
γ4ρβ

> 1 and γ2ρ > 1: It is in outage when
(
γ2ρ
γ4ρβ

)λ
(γ2ρ)µ−λ < ρrU . Combinning the

conditions we have

Pr
[
OS4
L

] .
=

 0 if rU ≤ β(µ− λ)

ρ−(1−βλ
µ
− rU

µ )
+

if rU > β(µ− λ)
(23)

Pr [OL] = Pr
[
OS1
L ∪ O

S2
L ∪ O

S3
L ∪ O

S4
L

] .
= Pr

[
OS1
L

]
+ Pr

[
OS2
L

]
+ Pr

[
OS3
L

]
+ Pr

[
OS4
L

]
.
=

 ρ−(1− rU
µ−λ)

+

if rU ≤ β(µ− λ)

ρ−(1−βλ
µ
− rU

µ )
+

if rU > β(µ− λ)

(24)

The DMT function for this case is therefore given in Proposition 4.4.

• β > 1: In this case, the scheme is in outage when one of the following event occurs

RS
U1
≥ Rt

U , RS
U2
≥ Rt

U , min
(
RS
V1
, RS

V2

)
≥ Rt

V
(25)

with RS
U1

, RS
U2

, RS
V1

and RS
V2

given in section III-B2. With similar steps as in the case β ≤ 1,

we have the DMT function as Proposition 4.4.

Proposition 4.5: The DMT function of scheme S with optimized transmissions’ durations in

CSI-L channel model is given by

dSLo =



(
1− rU

1−µa

)+

if β ≤ βa,b(
1− rU

1−µb

)+

if βa,b ≤ β > βb,c(
1− rU

1−µc

)+

if βb,c ≤ β > 1(
1− rU

1−λd

)+

if 1 ≤ β ≤ βd,e(
1− rU

1−λe

)+

if βd,e ≤ β ≤ βe,f

(1− 2rU)+ if β > βe,f

(26)

where µa = λa =
−β−βrV +1−rU+

√
(β+βrV −1+rU )2+4β(1−β)rV

2(1−β)
,

µb = βλb+rU
βλb+2rU

, λb =
1−β−2rU+

√
(β−1+2rU )2+4β2rV

2β
,

µc = λc+1
2

, λc =
1−β−βrV −2rU+

√
(1−β−βrV −2rU )2+4(1−β)βrV

2(1−β)
,

µd = 1− λd, λd =
3β−3+2rU+βrV −

√
(3β−3+2rU+βrV )2−8(β−1)(β+βrV +rU−1)

4(β−1)
,
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µe = 1− λe, λe =
rU+β+1+βrV −

√
(rU+β+1+βrV )2−4β(1+βrV )

2β
,

µf = λf = 1
2
,

βa,b, βb,c, βd,e and βe,f are the roots of the equations µa(β) = µb(β), µb(β) = µc(β), λd(β) =

λe(β) and λe(β) = 1
2

respectively.

Proof: Similarly to scheme E in CSI-L, the optimal values λi and µi, i ∈ {a, b, c, d}, are

also roots of the equation dSU1
= dSU2

= dSV .

2) CSI-A:

Proposition 4.6: For scheme S in the CSI-A model the upper bound of the DMT function of

the CDR scheme S in CSI-A channel model is given by

dSUB
A =


β
(

1−2rU−βrV
1−2rU

)+

if β ≤ 1(
1−(1+ 1

β )rU−rV
1− rU

β
−rV

)+

if β > 1.
(27)

The proof is given in the Appendix. On the other hand, similarly to scheme E and based on

(32) and (36) a lower bound for scheme S is given as follows.

dSLB
A =

 − logρo
∫∞

0
e−γ1dγ1

∫∞
0
e−γ2dγ2

∫ ρ−mS1o

0
e−γ3dγ3 if β ≤ 1

− log ρo
∫∞

0
e−γ2dγ2

∫∞
0
e−γ4dγ4

∫ ρ−mS2o

0
e−γ1dγ3 if β > 1

(28)

where mS1 = β

(
1− βrV

1− rU
1−α1

− rU
1−α2

)
and mS2 = 1− rU

1− rU
β(1−α2)

− rV
1−α4

β

. These bounds are numeri-

cally calculated and given in section V.

D. Comparison between the schemes E and S

We first consider the case of CSI-L and β ≤ 1. Substituting θ to µ in (19) and comparing

(6) and (19), we see that dSL = dEL when rU ≤ β(µ − λ). The case rU ≤ β(µ − λ) is

divided into two cases. In the first case, dEU2
≤ dEU1

, which is equivalent to 2θ − 1 ≤ λ,

dEL = min{dEU2
, dEV }. Since dSU2

≥ dEU2
, by substitution and further manipulation, we get

dSL > min{dEU2
, dSV } = min{dEU2

, dEV } = dEL and therefore dSL ≥ dEL . In the second case,

dEL = min{dEU1
, dEV } and we have dSL > min{dEU1

, dSV } = dEL . The case with CSI-L and β > 1

is treated similarly and we also have dSL ≥ dEL . With CSI-A, we can easily compare (11)

and (27) see that dSA ≥ dEA.
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Regarding the maximum multiplexing gain (MMG), we see that a given scheme achieves

the same MMG for both CSI models. Therefore, the knowledge of all the channels does

not improve the MMG. To see this, denote rEi,Lo, rSi,Lo, rEi,Ao and rSi,Ao, i ∈ {U, V }, as the

corresponding MMGs of scheme E and S in CSI-L and CSI-A models, respectively, of

the i−th user. The MMGs are the smallest roots rU and rV of the equations d(rU , rV ) = 0

where d(rU , rV ) is the corresponding DMT function. The MMG pair including the MMGs

of two users U and V is a curve represented by a certain equation f(rU , rV ) = 0. With

the scheme E in CSI-L, the MMGs satisfy rEU,Lo = 1− θo(rEU,Lo, rEV,Lo) where θo is given in

Proposition 4.2. The equation gives rEV,Lo = 1−2rEU,Lo which is also simmilar to the equation

for MMGs of scheme E in CSI-A rEV,Ao = 1−2rEU,Ao. For the scheme S in CSI-L, the MMGs

satisfy rSU,Lo = 1 − µj(rSU,Lo, rSV,Lo), j ∈ {a, b, ..., f} if β ≤ 1 and rSU,Lo = 1 − λj(rSU,Lo, rSV,Lo)

and if β > 1, where µj and λj are given in Proposition 4.5. The equations give

rSV,Ao =


1−2rU
β

if β ≤ 1

1−
(

1 + 1
β

)
rU if β > 1.

(29)

which are also the equations for MMGs of scheme S in CSI-A. Clearly, the MMGs of

scheme S are larger than MMGs of scheme E.

V. NUMERICAL RESULTS

The following numerical results show the DMT functions of scheme S and E in the two

models CSI-L and CSI-A. In the CSI-L model, dEL and dSL are functions of (λ, θ) and (λ, µ)

respectively, dELo and dSLo are the optimal functions when optimized with respect to (λ, θ) and

(λ, µ) respectively. In the CSI-A model, the lower bounds of the DMT functions of schemes E

and S are numerically calculated with large enough ρ = ρo. In both cases of β ≤ 1 and β > 1,

the lower bounds are quite close to their corresponding upper bounds.

In Fig. 3, the DMT functions of scheme S and E in CSI-L and CSI-A are shown for the case

with rV = 3
2
rU and β = 0.7. In case of β > 1, by a similar variable substitution, we can see a

similar comparison between dSL and dEL . For CSI-A, the results with β = 2.3 and rV = 3
4
rU are

February 26, 2013 DRAFT



19

shown in Fig. 4. From (6), (11), (19), (20) and (27), we observe that all schemes have the same

maximum diversity gain of min(1, β), regardless of the CSI model.

The reference scheme gives the same MMG for both CSI-L and CSI-A channel models. The

CDR scheme also has the same MMG for both CSI models but with a different value with the

reference scheme. Therefore, at higher multiplexing gains, knowing all channels does not help

significantly while applying the CDR scheme gives a significant improvement as shown in Fig.

3 and 4. At lower multiplexing gains, knowing all channels brings a large gain while applying

the CDR scheme does not give a significant improvement.

We consider now the influence of parameter β on the diversity gain. As we can see with

CSI-A, in (11) and (27), when β tends to 1, scheme S loses its superiority to scheme E because

the interference from user V to user U is as strong as the desired signal thus both NIC or IC

options consisting in treating interference as noise or decoding and cancelling it are not efficient.

This also holds for CSI-L. The difference between CSI-L and CSI-A achieves its maximum at

β = 1. Thus knowing all channels benefits the most when β = 1. These are reflected in Fig. 5

with a multiplexing gain r fixed at 0.2.

The optimized DMT function of scheme E in CSI-L is given by a single expression in

Proposition 4.2 while the optimized DMT function of scheme S in CSI-L is given by many

expressions for cases of β Proposition 4.5. Therefore as shown in Fig. 6 where the optimal µ

and λ of scheme S and E in CSI-L are shown also with fixed r = 0.2 and varied β, there are

several corresponding discontinuities in case of scheme S.

Regarding the limit of the diversity gain when β tends to infinity, as shown in Fig. 5, increasing

β over 1 does not give any improvement for scheme E in CSI-A. The reason is that its diversity

gain reaches and not affected by β as seen in (11). On the other hand for scheme S in CSI-

A, the limit is higher at limβ→∞ d
SUB
A =

(
1−rU−rV

1−rV

)+

= 0.75. For scheme E in CSI-L, a

very high β means a very high dEV = β(1 − rV
λ

)+ in (6). The diversity gain of the scheme

dEL = min
{
dEU1

, dEU2
, dEV
}

is hence limited by dEU1
and dEU2

which corresponds to transmission

duration ratios 1−θ and θ−λ. Therefore λ should be reduced as much as possible to make 1−θ

and θ−λ higher. However, λ must be kept larger than or equal to rV = r to make
(
1− rV

λ

)
not
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negative. Hence the optimal value is λo = rV = 0.2. The optimal θ can be calculated based on

equation dEU1
= dEU2

which is equivalent to 1−µ = µ−λ from which we obtain µo = 1+rV
2

= 0.6

therefore limβ→∞ d
E
L = 1− 0.2

1−0.4
= 0.5 as seen in the figure. The case with scheme S in CSI-L

is dealt similarly. The limit of diversity gain of scheme S is higher than that of scheme E.

VI. CONCLUSION

In this paper, we have considered a network with a base station, a relay station, a relayed

user and a direct user in two models with different channel knowledge levels. The Diversity-

Multiplexing Trade-off (DMT) functions of the Coordinated Direct and Relay (CDR) scheme

and of the corresponding conventional scheme are either analytically calculated or bounded. The

transmission durations in both schemes are optimized accordingly. The results reveal that at low

diversity gains, knowledge of all channels at a station does not improve the DMT function.

Nevertheless, upgrading the conventional scheme to the CDR scheme brings improvement in

terms of the multiplexing gain. Conversely, at high diversity gains, upgrading does not help

while knowing all channels can improve the DMT function.

APPENDIX

PROOF OF PROPOSITION 4.6

We consider the two cases β ≤ 1 and β ≥ 1.

A. β ≤ 1

Similarly to the CSI-L case, we consider µ ≥ λ. From the expressions for RS
U1

, RS
U2

and RS
V ,

we derive the condition for no outage as follows min
{

(1− µ) log(1 + ργ1), (µ− λ) log(1 + ργ2) + λ
(

1 + ργ2
ρβγ4+1

)}
≥ rU log ρ

λ log(1 + ρβγ3) ≥ rV log ρβ.
(30)

It is equivalent to

µ ≤ 1− a1, λ ≥ a3 and µ ≥ max(λ(1− a4) + a2, λ) (31)
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with a1, a2 and a3 as denoted in section IV-B2 and a4 =
log

(
1+

ργ2
ρβγ4+1

)
log(1+ργ2)

. The no-outage area

is demonstrated in Fig. 7a. Using the method in section IV-B2, we can derive that (31) never

occurs if the point (a3, 1 − a1) lies below one of the lines µ = λ and µ = λ(1 − a4) + a2 or

1− a1 < b1 = max(a2 + a3(1− a4), a3). In this case, we cannot find any (λ, µ) to accommodate

the target rate pair. The condition is equivalent to OSA = OS1
A ∪O

S2
A where OS1

A , {1−a1 < a3}

and OS2
A , {1− a1 < a2 + a3(1− a4)}. Similarly to scheme E in CSI-A, we have Pr

[
OS1

A

] .

≥

ρ
−β
(

1−rU−rV
1−rU

)+
, dS1

A . On the other hand, because limρ→∞ a4 = 1− β, we have

Pr
[
OS2

A

]
= Pr

[
rU

1−α1
+ rU

1−α2
+ βrV

1−α3
β

> 1
]

= Pr [βα1 + βα2 + α3 − βα1(rU + βrV )− βα2(rU + βrV )− 2α3rU > β − 2βrU − β2rV ]
.

≥ Pr [α3 − 2α3rU > β − 2βrU − β2rV ]

= Pr
[
α3 > β 1−2rU−βrV

1−2rU

]
.
= ρ

−β
(

(1−2rU−βrV )

1−2rU

)+
.

(32)

Pr
[
OSA
] .

= Pr
[
OS1

A

]
+Pr

[
OS2

A

] .
= max

{
ρ
−β
(

1−rU−rV
1−rU

)+
, ρ
−β
(

(1−2rU−βrV )

1−2rU

)+}
= ρ

−β
(

(1−2rU−βrV )

1−2rU

)+
.

(33)

The DMT function is therefore given in (27).

B. β > 1

We consider µ < λ. The condition for no outage is min
{

(1− λ) log(1 + ργ1), µ log(1 + ρβγ2)
}

≥ rU log ρ

min
{

(λ− µ) log(1 + ρβγ4) + µ
(

1 + ρβγ4
ργ2+1

)
, λ log(1 + ρβγ3)

}
≥ rV log ρβ.

(34)

It is equivalent to

λ ≤ 1− a1, µ ≥ a2, λ ≥ max(µ(1− a5) + a6, µ) and λ ≥ a3 (35)

with a1, a2, a3 as denoted in section IV-B2, a5 =
log

(
1+

ρβγ4
ργ2+1

)
log(1+ρβγ4)

and a6 =
log(1+ρβ)

log(1+ρβγ4)
. The no-outage

area is demonstrated in Fig. 7b. Using the method in section IV-B2, we can see that (35) never

occurs if (1) the point (a3, 1 − a1) lies above one of the lines λ = µ and λ = µ(1 − a5) + a6

or (2) a3 < 1 − a1. The condition is equivalent to 1 − a1 < max(a2, a6 + a2(1 − a5), a3).
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The outage condition is denoted as OSA = OS1
A ∪ O

S2
A ∪ O

S3
A where OS1

A , [1 − a1 < a2],

OS2
A , [1 − a1 < a6 + a2(1 − a5)] and OS3

A , [1 − a1 < a3] in which Pr
[
OS1

A

] .
= ρ

−
(

1−2rU
1−rU

)+
and Pr

[
OS3

A

] .
= ρ

−β
(

1−rU−rV
1−rU

)+
. On the other hand, because limρ→∞ a5 = 1− 1

β
, we have

Pr
[
OS2

A

]
= Pr

[
rU

1−α1
+ rV

1−α4
β

+ rU
β(1−α2)

> 1
]

.
= Pr

[
α1(β − βrV − rU) + α2(β − βrU − βrV ) + α4(1− rU − rU

β
) > β − βrU − βrV − rU

]
.

≥ Pr [α1(β − βrV − rU) > β − βrU − βrV − rU ]

= Pr
[
α1 >

β−(β+1)rU−βrV
β−rU−βrV

] .

≥ ρ
−
(

1−(1+ 1
β )rU−rV

1− rU
β

−rV

)+

.

(36)

Hence

Pr
[
OSA
] .

= Pr
[
OS1

A

]
+ Pr

[
OS2

A

]
+ Pr

[
OS3

A

]
.
= max

ρ−
(

1−2rU
1−rU

)+
, ρ
−β
(

1−rU−rV
1−rU

)+
, ρ
−
(

1−(1+ 1
β )rU−rV

1− rU
β

−rV

)+
 = ρ

−
(

1−(1+ 1
β )rU−rV

1− rU
β

−rV

)+

.
(37)

The upper bound of the DMT function in this case is therefore given in (27).
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Fig. 2. Only in the shaded triangle in the middle, the scheme is not in an outage (λ ≥ a3, θ ≤ 1− a1 and θ ≥ λ+ a2).
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