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Abstract—Wireless networks can be self-sustaining by harvest-
ing energy from ambient radio-frequency (RF) signals. Recently,
researchers have made progress on designing efficient circuits and
devices for RF energy harvesting suitable for low-power wireless
applications. Motivated by this and building upon the classic
cognitive radio (CR) network model, this paper proposes a novel
method for wireless networks coexisting where low-power mobiles
in a secondary network, called secondary transmitters (STs),
harvest ambient RF energy from transmissions by nearby active
transmitters in a primary network, called primary transmitters
(PTs), while opportunistically accessing the spectrum licensed
to the primary network. We consider a stochastic-geometry
model in which PTs and STs are distributed as independent
homogeneous Poisson point processes (HPPPs) and communicate
with their intended receivers at fixed distances. Each PT is
associated with a guard zone to protect its intended receiver
from ST’s interference, and at the same time delivers RF energy
to STs located in its harvesting zone. Based on the proposed
model, we analyze the transmission probability of STs and
the resulting spatial throughput of the secondary network.The
optimal transmission power and density of STs are derived for
maximizing the secondary network throughput under the given
outage-probability constraints in the two coexisting networks,
which reveal key insights to the optimal network design. Finally,
we show that our analytical result can be generally applied to
a non-CR setup, where distributed wireless power chargers are
deployed to power coexisting wireless transmitters in a sensor
network.

Index Terms—Cognitive radio, energy harvesting, opportunis-
tic spectrum access, wireless power transfer, stochastic geometry.

I. I NTRODUCTION

POwering mobile devices by harvesting energy from am-
bient sources such as solar, wind, and kinetic activities

makes wireless networks not only environmentally friendly
but also self-sustaining. Particularly, it has been reported
in the recent literature that harvesting energy from ambient
radio-frequency (RF) signals can power a network of low-
power devices such as wireless sensors [1]–[6]. In theory, the
maximum power available for RF energy harvesting at a free-
space distance of40 meters is known to be7uW and1uW
for 2.4GHz and 900MHz frequency, respectively [2]. Most
recently, Zungeruet al. have achieved harvested power of
3.5mW at a distance of0.6 meter and1uW at a distance of
11 meters using Powercast RF energy-harvester operating at
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915MHz [2]. It is expected that more advanced technologies
for RF energy harvesting will be available in the near future
due to e.g. the rapid advancement in designing highly efficient
rectifying antennas [3].

In this work, we investigate the impact of RF energy
harvesting on the newly emerging cognitive radio (CR) type
of networks. To this end, we propose a novel method for
wireless networks coexisting where transmitters from a sec-
ondary network, calledsecondary transmitters (STs), either
opportunistically harvest RF energy from transmissions by
nearby transmitters from a primary network, or transmit sig-
nals if theseprimary transmitters (PTs) are sufficiently far
away. STs store harvested energy in rechargeable batteries
with finite capacity and apply the available energy for sub-
sequent transmissions when batteries are fully charged. The
throughput of the secondary network is analyzed based on
a stochastic-geometry model, where the PTs and STs are
distributed according to independent homogeneous Poisson
point processes (HPPPs). In this model, each PT is assumed
to randomly access the spectrum with a given probability
and each active (transmitting) PT is centered at aguard
zone as well as aharvesting zone that is inside the guard
zone. As a result, each ST harvests energy if it lies in the
harvesting zone of any active PT, or transmits if it is outside
the guard zones of all active PTs, or is idle otherwise. This
model is applied to maximize the spatial throughput of the
secondary network by optimizing key parameters including the
ST transmit power and density subject to given PT transmit
power and density, guard/harvesting zone radius, and outage-
probability constraints in both the primary and secondary
networks.

Our work is motivated by a joint investigation of the
proposed conventionalopportunistic spectrum access and the
newly introducedopportunistic energy harvesting in CR net-
works, i.e., during the idle time of STs due to the presence of
nearby active PTs, they can take such an opportunity to harvest
significant RF energy from primary transmissions. Specifically,
as shown in Fig. 1, each ST can be in one of the following
three modes at any given time:harvesting mode if it is inside
the harvesting zone of an active PT and not fully charged;
transmitting mode if it is fully charged and outside the guard
zone of all active PTs; andidle mode if it is fully charged
but inside any of the guard zones, or neither fully charged nor
inside any of the harvesting zones.

A. Related Work

Recently, wireless communication powered by energy har-
vesting has emerged to be a new and active research area.

http://arxiv.org/abs/1302.4793v2
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Fig. 1. A wireless energy harvesting CR network in which PTs and STs are
distributed as independent HPPPs. Each PT/ST has its intended information
receiver at fixed distances (not shown in the figure for brevity). ST harvests
energy from a nearby PT if it is inside its harvesting zone. Toprotect the
primary transmissions, ST inside a guard zone is prohibitedfrom transmission.

However, due to energy harvesting, existing transmission
algorithms for conventional wireless systems with constant
power supplies (e.g., batteries) need to be redesigned to
account for the new challenges such as random energy ar-
rivals. For point-to-point wireless systems powered by energy
harvesting, the optimal power-allocation algorithms havebeen
designed and shown to follow modified water-filling by Ho
and Zhang [7] and Ozelet al. [8]. From a network perspective,
Huang investigated the throughput of a mobile ad-hoc network
(MANET) powered by energy harvesting where the network
spatial throughput is maximized by optimizing the transmit
power level under an outage constraint [9]. Furthermore, the
performance of solar-powered wireless sensor/mesh networks
has been analyzed in [10], in which various sleep and wakeup
strategies are considered.

Among other energy scavenging sources such as solar and
wind, background RF signals can be a viable new source
for wireless energy harvesting [11]. A new research trend
on wireless power transfer is to integrate this technology
with wireless communication. In [12] and [13], simultaneous
wireless power and information transfer has been investigated,
aiming at maximizing information rate and transferred power
over single-antenna additive white Gaussian noise (AWGN)
channels. For broadcast channels, Zhang and Ho have studied
multi-antenna transmission for simultaneous wireless informa-
tion and power transfer with practical receiver designs such as
time switching and power splitting [14]. Moreover, Zhouet al.
have proposed a new receiver design for enabling wireless
information and power transmission at the same time, by
judiciously integrating conventional information and energy
receivers [15]. For point-to-point wireless systems, Liuet
al. have studied “opportunistic” RF energy harvesting where
the receiver opportunistically harvests RF energy or decodes
information subject to time-varying co-channel interference
[16]. More recently, Huang and Lau have proposed a new
cellular network architecture consisting of power beacons

deployed to deliver wireless energy to mobile terminals and
characterized the trade-off between the power-beacon density
and cellular network spatial throughput [17].

In another track, the emerging CR technology enables
efficient spectrum usage by allowing a secondary network to
share the spectrum licensed to a primary network without
significantly degrading its performance [18]. Besides active
development of algorithms for opportunistic transmissions by
secondary users (see e.g. [19], [20] and references therein),
notable research has been pursued on characterizing the
throughput of coexisting wireless networks based on the tool
of stochastic geometry. For example, the capacity trade-offs
between two or more coexisting networks sharing a common
spectrum have been studied in [21]–[23]. Moreover, the outage
probability of a Poisson-distributed CR network with guard
zones has been analyzed by Lee and Haenggi [24], where the
secondary users opportunistically access the primary users’
channel only when they are not inside any of the guard zones.

B. Summary and Organization

In this paper, we consider a CR network with time slotted
transmissions and PT/ST locations modeled by independent
HPPPs. The ST transmission power is assumed to be suf-
ficiently small to meet the low-power requirement with RF
energy harvesting. Under this setup, the main results of this
paper are summarized as follows:

1) We propose a new CR network architecture where
STs are powered by harvesting RF energy from active
primary transmissions. We study the ST transmission
probability as a function of ST transmit power in the
presence of both guard zones and harvesting zones based
on a Markov chain model. For the cases of single-
slot and double-slot charging, we obtain the expressions
of the exact ST transmission probability, while for the
general case of multi-slot charging with more than two
slots, we obtain the upper and lower bounds on the ST
transmission probability.

2) With the result of ST transmission probability, we derive
the outage probabilities of coexisting primary and sec-
ondary networks subject to their mutual interferences,
based on stochastic geometry and a simplified assump-
tion on the HPPP of transmitting STs with an effective
density equal to the product of the ST transmission prob-
ability and the ST density. Furthermore, we maximize
the spatial throughput of the secondary network under
given outage constraints for the coexisting networks
by jointly optimizing the ST transmission power and
density, and obtain simple closed-form expressions of
the optimal solution.

3) Furthermore, we show that our analytical result can be
generally applied to even non-CR setups, where dis-
tributed wireless power chargers (WPCs) are deployed
to power coexisting wireless information transmitters
(WITs) in a sensor network, as shown in Fig. 2.
Practically, WPCs can be implemented as e.g.wireless
charging vehicles [25], or fixed power beacons [17]
randomly deployed in a wireless sensor network. Based
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Fig. 2. A wireless powered sensor network in which WPCs and WITs are
distributed as independent HPPPs. Each WIT has intended receiver at a fixed
distance (not shown in the figure for brevity). WIT harvests energy from a
nearby WPC if inside its harvesting zone. Unlike the CR setupin Fig. 1, the
guard zone is not applicable in this case, and thus a fully charged WIT can
transmit at any time.

on our result for the CR network setup, we derive the
maximum network throughput of such wireless powered
sensor networks in terms of the optimal density and
transmit power of WITs.

The remainder of this paper is organized as follows. Sec-
tion II describes the system model and performance metric.
Section III analyzes the transmission probability of energy-
harvesting STs. Section IV studies the outage probabilities in
the primary and secondary networks. Section V investigates
the maximization of the secondary network throughput subject
to the primary and secondary outage probability constraints.
Section VI extends the result to the wireless powered sensor
network setup. Finally, Section VII concludes the paper.

II. SYSTEM MODEL

A. Network Model

As shown in Fig. 1, we consider a CR network in which
PTs and STs are distributed as independent HPPPs1 with
densityλ′

p andλs, respectively, withλ′

p ≪ λs. It is assumed
that time is slotted and each PT independently accesses the
spectrum with probabilityp at each time slot. Thus, the point
process of active PTs forms another HPPP with densityλp =
pλ′

p, according to the Coloring Theorem [28], which varies
independently over different slots. For convenience, we refer
to active PTs simply as PTs in the rest of this paper. We
denote the point processes of PTs and STs asΦp = {X}
and Φs = {Y }, respectively, whereX,Y ∈ R

2 denote the
coordinates of the PTs and STs, respectively. In addition, it
is assumed that each PT/ST transmits with fixed power to
its intended primary/secondary receiver (PR/SR) at distances

1In general, transmitters’ locations in cognitive radio networks may have
non-homogeneous or even non-Poisson spatial distributions, which are diffi-
cult to characterize and not amenable to analysis. In this paper, we assume
HPPP for transmitters’ locations to obtain tractable analysis for the network
performance.

dp andds, respectively, in random directions. We denote the
fixed transmission power levels of PTs and STs asPp andPs,
respectively. We assumePp ≫ Ps in this paper for energy
harvesting applications of practical interest.

STs access the spectrum of the primary network and thus
their transmissions potentially interfere with PRs. To protect
the primary transmissions, STs are prevented from transmitting
when they lie in any of theguard zones, modeled as disks
with a fixed radius centered at each PT. Specifically, let
b(T, x) ⊂ R

2 represent a disk of radiusx centered atT ∈ R
2;

then b(X, rg) denotes the guard zone with radiusrg for
protecting PTX ∈ Φp. DefineG =

⋃

X∈Φp
b(X, rg) as the

union of all PTs’ guard zones; accordingly, an STY ∈ Φs

cannot transmit ifY ∈ G. Note that in practice the guard
zone is usually centered at a PR rather than a PT as we
have assumed, while our assumption is made to simplify our
analysis, similarly as in [19]. We further assumedp ≪ rg
to guarantee that guard zones centered at PTs (rather than
PRs) will protect the primary transmissions properly. Under
the above assumptions, the probabilitypg that a typical ST,
denoted byY ⋆, does not lie inG is equal to the probability that
there is no PT inside the disk centered atY ⋆ with radiusrg,
i.e., b(Y ⋆, rg). Note that the number of PTs insideb(Y ⋆, rg),
denoted byN , is a Poisson random variable with meanπr2gλp;
thus, its probability mass function (PMF) is given by

Pr{N = n} = e−πr2gλp
(πr2gλp)

n

n!
, n = 0, 1, 2, ... (1)

Consequently,pg can be obtained as

pg = Pr{Y ⋆ /∈ G} (2)

= Pr{N = 0} (3)

= e−πr2gλp . (4)

We assume flat-fading channels with path-loss and Rayleigh
fading; hence, the channel gains are modeled as exponential
random variables. As a result, in a particular time slot, the
signals transmitted from a PT/ST are received at the origin
with powergXPp|X |−α andgY Ps|Y |−α, respectively, where
{gX}X∈Φp

and {gY }Y ∈Φs
are independent and identically

distributed (i.i.d.) exponential random variables with unit
mean,α > 2 is the path-loss exponent, and|X |, |Y | denote
the distances from nodeX,Y to the origin, respectively.

B. Energy-Harvesting Model

To make use of the RF energy as an energy-harvesting
source, each RF energy harvester in an ST must be equipped
with a power conversion circuit that can extract DC power
from the received electromagnetic waves [1]. Such circuitsin
practice have certain sensitivity requirements, i.e., theinput
power needs to be larger than a predesigned threshold for the
circuit to harvest RF energy efficiently. This fact thus motivates
us to define theharvesting zone, which is a disk with radius
rh centered at each PTX ∈ Φp with rh ≪ rg. The radius
rh is determined by the energy harvesting circuit sensitivity
for a givenPp, such that only STs inside a harvesting zone
can receive power larger than the energy harvesting threshold,
which is given byPpr

−α
h . The power received by an ST
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outside any harvesting zone is too small to activate the energy
harvesting circuit, and thus is assumed to be negligible in this
paper.

Let b(X, rh) represent the harvesting zone centered at PT
X ∈ Φp such that an STY can harvest energy from one or
more PTs ifY ∈ H, whereH =

⋃

X∈Φp
b(X, rh) denotes the

union of the harvesting zones of all PTs. The probabilityph
that a typical STY ⋆ lies in H is equal to the probability that
there is at least one PT inside the diskb(Y ⋆, rh). Similar to
(1), the number of PTs insideb(Y ⋆, rh), denoted byK, is a
Poisson random variable with meanπr2hλp and PMF given by

Pr{K = k} = e−πr2hλp
(πr2hλp)

k

k!
, k = 0, 1, 2, ... (5)

Accordingly,ph is given by

ph = Pr{Y ⋆ ∈ H} (6)

= Pr{K ≥ 1} (7)

=
∞
∑

k=1

e−πr2hλp
(πr2hλp)

k

k!
(8)

= 1− e−πr2hλp . (9)

Sinceλp and rh are both practically small, we can assume
πr2hλp ≪ 1. Thus,ph given in (8) can be approximated as
Pr{K = 1} by ignoring the higher-order terms withk > 1.
Therefore, whenY ⋆ ∈ H, Y ⋆ is inside the harvesting zone of
one single PT most probably, which equivalently means that
the harvesting zones of different PTs do not overlap at most
time. As a result, the amount of average power harvested by
Y ⋆ ∈ H in a time slot can be lower-bounded byηPpR

−α

whereR ≤ rh denotes the distance betweenY ⋆ and its nearest
PT, and0 < η < 1 denotes the harvesting efficiency. Note that
the harvested power has been averaged over the channel short-
term fading within a slot.

C. ST Transmission Model

We assume that each ST has a battery of finite capacity
equal to the minimum energy required for one-slot transmis-
sion with powerPs for simplicity. Upon the battery being
fully charged, an ST will transmit with all stored energy in
the next slot if it is outside all the guard zones. We denote the
probability thatY ⋆ has been fully charged at the beginning
of a time slot aspf and the probability that it will be able
to transmit in this slot aspt. As mentioned above, the point
process of PTsΦp varies independently over different slots,
and thus the events that an ST has been fully charged in one
slot and that it is outside all the guard zones in the next slot
are independent. Consequently,pt can simply be obtained as

pt = pfpg, (10)

wherepg is given in (4), andpf will be derived in Section III.

D. Performance Metric

For both PRs and SRs, the received signal-to-interference-
plus-noise ratio (SINR) is required to exceed a given target
for reliable transmission. Letθp and θs be the target SINR

for the PR and SR, respectively. The outage probability is
then defined asP (p)

out
= Pr{SINR(p) < θp} for the primary

network andP (s)
out

= Pr{SINR(s) < θs} for the secondary
network. The outage-probability constraints are applied such
thatP (p)

out
≤ ǫp andP (s)

out
≤ ǫs with given0 < ǫp, ǫs < 1. Note

that the transmitting STs in general do not form an HPPP
due to the presence of guard zones and energy harvesting
zones, but their average density over the network is given by
ptλs. Accordingly, given fixed PT densityλp and transmission
powerPp, the performance metric of the secondary network
is the spatial throughputCs (bps/Hz/unit-area) given by

Cs = ptλs log2(1 + θs), (11)

under the given primary/secondary outage probability con-
straintsǫp andǫs.

III. T RANSMISSION PROBABILITY OF SECONDARY

TRANSMITTERS

In this section, the transmission probability of a typical ST
pt given in (10) is analyzed using the Markov chain model. For
convenience, we defineM as the maximum number of energy-
harvesting time slots required to fully charge the battery of an
ST. Since the minimum power harvested by an ST in one
slot is ηPpr

−α
h , which occurs when the ST is at the edge

of a harvesting zone, it follows thatM =
⌈

Ps

ηPpr
−α

h

⌉

, where

⌈x⌉ denotes the smallest integer larger than or equal tox.
Note thatM = 1 corresponds to the case where the battery is
fully charged within one slot time; thus this case is referred
to as single-slot charging. Similarly, the case ofM = 2 is
referred to asdouble-slot charging. It will be shown in this
section that ifM = 1 or M = 2, the battery power level
can be exactly modeled by a finite-state Markov chain; hence,
the transmission probabilitypt can be obtained. However, for
multi-slot charging with M > 2, only upper and lower bounds
on pt are obtained based on the Markov chain analysis for the
case ofM = 2.

A. Single-Slot Charging (M = 1)

If 0 < Ps ≤ ηPpr
−α
h , the battery of an ST is fully charged

within a slot, i.e.,M = 1. It thus follows that the battery
power level can only be either 0 orPs at the beginning of
each slot. Consider the finite-state Markov chain with state
space{0, 1} with states0 and1 denoting the battery level of
power 0 andPs, respectively. Furthermore, letP1 represent
the state-transition probability matrix that can be obtained as

P1 =

[

1− ph ph
pg 1− pg

]

(12)

with pg and ph given in (4) and (9), respectively. Thenpt
can be obtained by finding the steady-state probability of the
assumed Markov chain, as given in the following proposition.

Proposition 3.1: If 0 < Ps ≤ ηPpr
−α
h or M = 1 (single-

slot charging), the transmission probability of a typical ST is
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given by

pt =
ph

ph + pg
pg (13)

=
(1 − e−πr2hλp)e−πr2gλp

1− e−πr2
h
λp + e−πr2gλp

. (14)

Proof: Let the steady-state probability of the two-state
Markov chain be denoted byπ1 = [π1,0, π1,1], whereπ1 is
the left eigenvector ofP1 corresponding to the unit eigenvalue
such that

π1P1 = π1. (15)

From (15), the steady-state distribution of the battery power
level at a typical ST is obtained as

π1,0 =
pg

ph + pg
, π1,1 =

ph
ph + pg

. (16)

Note that the probability that an ST is fully charged at the
beginning of each slot as defined in (10) ispf = π1,1 in this
case. Consequently, from (10), the desired result in (13) is
obtained.

It is observed from (14) that in the single-slot charging case,
pt depends only onλp, rh andrg, but is not related toPs. The
reason is that the battery of an ST is guaranteed to be fully
charged over one slot if it gets into a harvesting zone; hence,
the probability that an ST is fully chargedpf = π1,1 = ph

ph+pg

does not depend onPs.

B. Double-Slot Charging (M = 2)

If ηPpr
−α
h < Ps ≤ 2ηPpr

−α
h or M = 2, an ST needs

at most 2 slots of harvesting to make the battery fully
charged. To establish the Markov chain model for this case, we
divide the harvesting zoneb(X, rh) into two disjoint regions,

b(X,h1) and a(X,h1, rh), where h1 =
(

Ps

ηPp

)−
1
α

< rh

and a(T, x, y) = b(T, y)\b(T, x) denotes the annulus with
radii 0 < x < y centered atT ∈ R

2. It then follows that
the regionb(X,h1) consists of the locations at which the
power harvested by a typical STY ⋆ from PT X is greater
than or equal toPs (i.e., single-slot charging region), while
the regiona(X,h1, rh) corresponds to the locations at which
the power harvested byY ⋆ is greater than or equal to12Ps

but smaller thanPs (see Fig. 3). For convenience, we define
H1 =

⋃

X∈Φp
b(X,h1) andH2 =

⋃

X∈Φp
a(X,h1, rh). Note

that H = H1 ∪ H2. We reasonably assume thatH1 andH2

are disjoint since the harvesting zones are most likely disjoint
as mentioned in Section II-B.

Consider a 3-state Markov chain with state space{0, 1, 2}.
Since the battery power level can only be either0 or in the
range[ 12Ps, Ps] sinceηPpr

−α
h ≥ 1

2Ps in this case, we define
state0 as the battery level of power 0, state1 with the power
level in the range[ 12Ps, Ps), and state2 with the power level
equal toPs. Note that in order to transit from state0 to 1,
0 to 2, and 1 to 2, the harvested power atY ⋆ needs to be
1
2Ps ≤ ηPpR

−α < Ps, ηPpR
−α ≥ Ps, andηPpR

−α ≥ 1
2Ps,

respectively (or equivalentlyY ⋆ needs to be insideH2, H1,
and H, respectively). Thanks to the fact that the minimum
charging power is always larger than or equal to1

2Ps in this

h1

rh

b(X,h1)

a(X,h1, rh)

X

Fig. 3. Divided harvesting zone for the case of double-slot charging (M = 2).

case, we can determine the probability of the transition from
state1 to 2, i.e., from the battery power level in the range
of [ 12Ps, Ps) to Ps, which occurs whenY ⋆ is (anywhere)
inside a harvesting zone (see Fig. 4(a)). Accordingly, the state-
transition probability matrix for the assumed 3-state Markov
chain (see Fig. 4(b)) is given as

P2 =





1− ph p2 p1
0 1− ph ph
pg 0 1− pg



 , (17)

wherep1 = Pr{Y ⋆ ∈ H1} and p2 = Pr{Y ⋆ ∈ H2}. Notice
that p1 + p2 = ph = 1 − e−πr2hλp , sinceH1 ∪ H2 = H and
we have assumed thatH1 andH2 are disjoint sets. Similarly
to (7), the probabilityp1 is given as

p1 = Pr{Y ⋆ ∈ H1} (18)

= 1− e−πh2
1λp , (19)

andp2 is given as

p2 = ph − p1 (20)

= e−πh2
1λp − e−πr2hλp . (21)

Then we can obtainpt for this case as given in the following
proposition.

Proposition 3.2: If ηPpr
−α
h < Ps ≤ 2ηPpr

−α
h or M = 2

(double-slot charging), the transmission probability of atypical
ST is given by

pt =
ph

ph + pg

(

1 + p2

ph

)pg (22)

=
(1− e−πr2hλp)e−πr2gλp

1− e−πr2
h
λp + e−πr2gλp

(

1 + e−πh2
1
λp−e

−πr2
h
λp

1−e
−πr2

h
λp

) . (23)

Proof: The result in (22) can be obtained by following the
similar procedure as in the proof of Proposition 3.1, i.e., by
solvingπ2P2 = π2, whereπ2 is the steady-state probability
vector given byπ2 = [π2,0, π2,1, π2,2]. Then, we obtainpf =
π2,2 and then (22) is obtained from (10).
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Ps

0

1

2
Ps

State 0

State 1

State 22

0

PsPP

1

(a) Battery power state of ST

0

12

p1

p2

ph

1− ph

1− ph1− pg

pg

(b) Markov chain model

Fig. 4. The battery power state for the case ofM = 2 and the corresponding
3-state Markov chain model, where (a) shows an example of theST being in
state1 of the Markov model in (b), i.e., the current battery power level is in
the range[ 1

2
Ps, Ps).

It is worth noting from (23) thatpt in this case is a

decreasing function ofPs sinceh1 =
(

Ps

ηPp

)−
1
α

in (23) is
such a function. In other words, ifPs increases with fixedPp

andrh, then the size ofb(X,h1) (single-slot charging region)
becomes smaller, which results in an ST harvesting for two
slots to be fully charged more frequently, and thus a smaller
pf . Hence,pt becomes smaller as well givenpt = pfpg in
(10).

C. Multi-Slot Charging (M > 2)

For multi-slot charging withPs > 2ηPpr
−α
h or M > 2, the

minimum charging power at the edge of the harvesting zone,
ηPpr

−α
h , is smaller than12Ps. Unlike the previous two cases

of M = 1 andM = 2, the battery power level in this case
cannot be characterized exactly by a finite-state Markov chain
since it is not possible in general to uniquely determine the
state-transition probabilities.2 However, we have shown that
for the case ofM = 2, the battery power level can indeed be
characterized with a 3-state Markov chain regardless of thefact
that we do not know the exact value of the battery power level
in state1, but rather only know its range[ 12Ps, Ps), provided
that the minimum charging powerηPpr

−α
h is no smaller than

2For instance, ifM = 3, following the previous two cases, we may divide
the battery power level into4 levels as0, [ 1

3
Ps,

2

3
Ps), [ 2

3
Ps, Ps), andPs

and match each level to the states0, 1, 2, and 3, respectively. Then it can
be easily shown that the transition probabilities are unknown for some of the
state transitions, e.g., from state1 to 2.

h1

rhh2

X
b(X,h1)

a(X,h1, h2)

a(X,h2, rh)

Fig. 5. Divided harvesting zone for the case ofM > 2. In this case, the
amount of power harvested from PTX in a(X, h2, rh) is either overestimated
as 1

2
Ps or underestimated as0 to obtain an upper/lower bound onpt in

Section III-C.

1
2Ps. Based on this result, we obtain both the upper and lower
bounds onpt for the case withM > 2 as follows.

As shown in Fig. 5, we divide the harvesting zone into
3 disjoint regionsb(X,h1), a(X,h1, h2), and a(X,h2, rh),
where0 < h1 < h2 < rh with h1 given in the case ofM = 2

and h2 =
(

Ps

2ηPp

)−
1
α

. Note thatb(X,h1) is also defined in

the case ofM = 2, while the regiona(X,h1, h2) consists of
the locations inb(X, rh) at which the power harvested from
PTX is larger than or equal to12Ps, but smaller thanPs, and
the regiona(X,h2, rh) consists of the remaining locations in
b(X, rh) at which the harvested power is smaller than1

2Ps.
Then, if we assume that the power harvested from a PT in
the regiona(X,h2, rh) is equal to 1

2Ps (an overestimation),
we can obtain an upper bound onpt; however, if we assume
it is equal to 0 (an underestimation), we can then obtain
a lower bound onpt, by applying a similar analysis over
the 3-state Markov chain as for the case ofM = 2. For
convenience, we define the following mutually exclusive sets
A1 =

⋃

X∈Φp
b(X,h1), A2 =

⋃

X∈Φp
a(X,h1, h2), and

A3 =
⋃

X∈Φp
a(X,h2, rh), whereA1 = H1 andA1 ∪ A2 ∪

A3 = H. Let p′2 = Pr{Y ⋆ ∈ A2} and p3 = Pr{Y ⋆ ∈ A3}.
It then follows thatp1 + p′2 + p3 = ph, wherep1 is given in
(19) and

p′2 = Pr{Y ⋆ ∈ A1 ∪ A2} − Pr{Y ⋆ ∈ A1}

= e−πλph
2
1 − e−πλph

2
2 , (24)

p3 = ph − p1 − p′2 = e−πλph
2
2 − e−πλpr

2
h . (25)

The following proposition is then obtained.
Proposition 3.3: If Ps > 2ηPpr

−α
h or M > 2, the trans-

mission probability of an ST is bounded as

p1 + p′2

(p1 + p′2) + pg

(

1 +
p′

2

p1+p′

2

)pg < pt <
ph

ph + pg

(

1 +
p′

2
+p3

ph

)pg.

(26)
Proof: See Appendix A.
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Fig. 6. ST transmission probabilitypt versus ST transmission powerPs,
with λp = 0.01, rg = 4, rh = 1.5, andPp = 2.

It is worth mentioning that the upper bound onpt is a

decreasing function ofPs sinceh1 =
(

Ps

ηPp

)−
1
α

. Also note
that the bounds in (26) are tight in the case ofM = 1 or
M = 2, sincep′2 = p3 = 0 with M = 1, andp′2 = p2 and
p3 = 0 with M = 2, thus leading to the same results in (13)
and (22), respectively.

Note that unlike the case ofM = 2, it is not possible
to verify in general whetherpt for the case ofM > 2 is a
decreasing function ofPs or not; however, it is conjectured
to be so since a larger value ofPs will generally render an
ST spend more time to be fully charged. We verify this by
simulation in the following subsection (see Fig. 6).

D. Numerical Example

To verify the results onpt, we provide numerical examples
as shown in Figs. 6, 7, and 8. For all of these examples, we set
the path-loss exponent asα = 4 and the harvesting efficiency
asη = 0.1.

In Fig. 6, we show ST transmission probabilitypt versus
ST transmission powerPs. It is worth noting thatM = 1 if
0 < Ps ≤ ηPpr

−α
h , M = 2 if ηPpr

−α
h < Ps ≤ 2ηPpr

−α
h , and

M > 2 if Ps > 2ηPpr
−α
h . It is observed thatpt is constant

if M = 1, but is a decreasing function ofPs if M = 2,
which agrees with the results in (14) and (23), respectively. It
is also shown that ifM > 2, pt is still a decreasing function of
Ps as we conjectured. Moreover, the upper bound and lower
bound onpt obtained in (26) forM > 2 are depicted in this
figure. These bounds are observed to be tight whenM = 1
andM = 2, while they get looser with increasingPs when
M > 2. The reason is that the size of the regiona(X,h2, rh)
shown in Fig. 5, in which we overestimate or underestimate
the harvested power, enlarges with increasingPs. However,
since only small value ofPs is of our interest, we can assume
that these bounds are reasonably accurate for small values of
M .
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Fig. 7. ST transmission probabilitypt versus PT densityλp, with rg = 3,
rh = 1 andPp = 1.
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Fig. 8. ST transmission probabilitypt versus the radius of guard zonerg ,
with λp = 0.01, rh = 1, andPp = 1.

Fig. 7 showspt versus PT densityλp. It is observed that
for bothM = 1 andM = 2, pt first increases withλp when
λp is small but starts to decrease withλp whenλp becomes
sufficiently large. This can be explained as follows. Ifλp is
small, increasingλp is more beneficial since each ST will
get charged more frequently and thus be able to transmit
(i.e., pf increases more substantially than the decrease of
pg). However, afterλp exceeds a certain threshold, increasing
λp will more pronounce the effect of guard zones and thus
make STs transmit less frequently (i.e.,pg decreases more
substantially than the increase ofpf ).

In Fig. 8, we showpt versus the guard zone radiusrg . It is
observed thatpt is a decreasing function ofrg. Intuitively, this
result is expected since largerrg results in STs transmitting
less frequently, i.e., smaller values ofpg, and it is known from
(10) thatpt = pfpg.
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Fig. 9. The CDF of exactIs and approximatedIs (based on Assumption 1)
with α = 4, η = 0.1, rg = 3, rh = 1, λs = 0.2, λp = 0.01, andPp = 2.

IV. OUTAGE PROBABILITY

In this section, the outage probabilities of both the primary
and secondary networks are studied. LetΦt denote the point
process of the active (transmitting) STs. In addition, letIp and
Is indicate the aggregate interference at the origin from all
PTs and active STs, respectively, which are modeled byshot-
noise processes [28], given byIp =

∑

X∈Φp
gXPp|X |−α and

Is =
∑

Y ∈Φt
gY Ps|Y |−α, respectively. Note that in general,

due to the presence of the guard zone and/or harvesting zone,
in each time slot, the point processΦt is not necessarily an
HPPP; thus,Is is not the shot-noise process of an HPPP. Ac-
cordingly, the outage probabilitiesP (p)

out
andP (s)

out
for primary

and secondary networks, both related toIs, are difficult to be
characterized exactly. To overcome this difficulty, we makethe
following assumption on the process of active STs.

Assumption 1: The point process of active STsΦt is an
HPPP with densityptλs.
It is shown in Fig. 9 that the cumulative distribution function
(CDF) of Is, given byPr{Is ≤ x}, obtained by simulations,
can be well approximated by that of approximatedIs based
on Assumption 1. Further verifications of Assumption 1 will
be given later by simulations (see Figs. 11 and 12).

Let Λ(λ) denote the HPPP with densityλ > 0. Under
Assumption 1, the distribution ofΦt is the same as that of
Λ(ptλs). It thus follows thatIs can be rewritten as

Is =
∑

Y ∈Λ(ptλs)

gY Ps|Y |−α. (27)

Consider first the outage probability of the primary network,
P

(p)
out

, which can be characterized by considering a typical PR
located at the origin. Slivnyak’s theorem [28] states that an
additional PT corresponding to the PR at the origin does not
affect the distribution ofΦp. Therefore, the outage probability
of the PR at the origin is expressed as

P
(p)
out

= Pr

{

gpPpd
−α
p

Ip + Is + σ2
< θp

}

, (28)

ds

rg

!"#$%&#&'(#)*+,+-.#

$%/01(#!2.#

rg

32#

Yo

Fig. 10. A typical SR located at the origin, for which there isno PT inside
the shaded regionb(Yo, rg).

wheregp is the channel power between the PR at the origin
and its corresponding PT, andσ2 is the AWGN power. Then,
P

(p)
out

is obtained in the following lemma.
Lemma 4.1: Under Assumption 1, the outage probability of

a typical PR at the origin is given by

P
(p)
out

= 1− exp (−τp) , (29)

where

τp =

(

λp + ptλs

(

Ps

Pp

)
2
α

)

θ
2
α
p d2pϕ+

θpd
α
pσ

2

Pp

, (30)

ϕ = π 2
α
Γ( 2

α
)Γ(1− 2

α
), with Γ(x) =

∫

∞

0 yx−1e−ydy denoting
the Gamma function.

Proof: See Appendix B.
Next, consider the outage probability of the secondary

network,P (s)
out

, which can be characterized by a typical SR
located at the origin. Note that there must be an active ST,
denoted byYo, corresponding to the SR at the origin. Since
an ST cannot transmit if it is inside any guard zone, to
accurately approximateP (s)

out
under Assumption 1, we consider

the outage probability conditioned on thatYo is outside all the
guard zones and thus there is no PT inside the disk of radius
rg centered atYo (see Fig. 10). Let the event in the above
condition be denoted byE = {Φp ∩ b(Yo, rg) = ∅}. Then the
outage probability of a typical SR at the origin can be obtained
as

P
(s)
out

= Pr

{

gsPsd
−α
s

Ip + Is + σ2
< θs |E

}

, (31)

wheregs is the channel power between the SR at the origin
and the corresponding STYo. From the law of total probability
we have

P
(s)
out

=
Pr
{

gsPsd
−α
s

Ip+Is+σ2 < θs

}

− Pr
{

gsPsd
−α
s

Ip+Is+σ2 < θs
∣

∣Ē
}

Pr{Ē}

Pr{E}
.

(32)
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Fig. 12. Outage probability of primary and secondary network versus ST
transmission powerPs, with α = 4, η = 0.1, dp = ds = 0.5, rg = 4,
rh = 1, λs = 0.2, λp = 0.01, θp = θs = 5, andPp = 2.

Note that Ē = {Φp ∩ b(Yo, rg) 6= ∅}. Then we have the
following lemma.

Lemma 4.2: Under Assumption 1, the outage probability of
the typical SR at the origin is approximated by

P
(s)
out

≈
1− exp (−τs)− (1− pg)

pg
, (33)

where

τs =

(

λp

(

Ps

Pp

)−
2
α

+ ptλs

)

θ
2
α
s d2sϕ+

θsd
α
s σ

2

Ps

. (34)

Proof: See Appendix C.
Although Is can be well approximated by (27) based on

Assumption 1, it is worth mentioning that the approximated
result ofP (p)

out
andP (s)

out
in Lemmas 4.1 and 4.2, respectively,

are valid only whenPp ≫ Ps, as assumed in this paper for the
following reasons. First, to deriveP (p)

out
under Assumption 1,

STs are uniformly located and thus can be inside the guard
zone corresponding to the typical PR at the origin, and as a
result cause interference to the PR. However, if we assume
Pp ≫ Ps, the interference due to STs inside this guard zone
is negligible and thus can be ignored. Next, to deriveP

(s)
out

,
as shown in Appendix C, the termPr

{

gsPsd
−α
s

Ip+Is+σ2 < θs
∣

∣Ē
}

in (32) can be assumed to be1 only when Pp ≫ Ps. In
Figs. 11 and 12, we compare the outage probabilities obtained
by simulations and those based on the approximations in (29)
and (33). It is observed that our approximations are quite
accurate and thus Assumption 1 is validated.

In addition, it can be inferred from (33) and (34) thatP
(s)
out

is
in general a decreasing function ofPs, sinceτs is a decreasing
function ofPs. This implies that large ST transmission power
Ps is beneficial to reducing the secondary network outage
probability, although largerPs also increases the interference
level from other active STs. This can be explained by the fact
that if Ps is increased, the increase of received signal power
by the SR at the origin can be shown to be more significant
than the increase of interference power from all other active
STs. On the other hand, from (29) and (30), it is analytically
difficult to show whetherP (p)

out
is a decreasing or increasing

function of Ps. This is because in general there is a trade-
off for settingPs to minimize the primary outage probability,
since largerPs increases the interference level from active STs
(resulting in largerP (p)

out
) but at the same time reduces the ST

transmission probabilitypt (see Fig. 6) and thus the number of
active STs (resulting in smallerP (p)

out
). In Fig. 12, we show the

outage probabilitiesP (p)
out

andP (s)
out

versusPs, respectively. It
is observed thatP (s)

out
is a decreasing function ofPs, whereas

P
(p)
out

is quite insensitive to the change ofPs.

V. NETWORK THROUGHPUTMAXIMIZATION

In this section, the spatial throughput of the secondary
network defined in (11) is investigated under the primary and
secondary outage constraints. To be more specific, with fixed
Pp, λp, rg, andrh, the throughput of the secondary network
Cs is maximized overPs andλs under givenǫp and ǫs. The
optimization problem can thus be formulated as follows.

(P1) : max.
Ps,λs

ptλs log2(1 + θs) (35)

s.t. P
(p)
out

≤ ǫp (36)

P
(s)
out

≤ ǫs, (37)

whereP (p)
out

andP (s)
out

are given by (29) and (33), respectively.
With other parameters being fixed, the transmission probability
pt is in general a function ofPs (cf. Section III). Thus, we
denotept aspt(Ps) in the sequel.

Sincelog2(1 + θs) in (35) is a constant andP (p)
out

, P (s)
out

are
monotonically increasing functions ofτp andτs, respectively
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Fig. 13. Optimal ST transmission powerP ∗

s versus PT densityλp, with
α = 4, dp = ds = 0.5, rh = 1, rg = 3, Pp = 2, ǫs = 0.3, and
θp = θs = 5.

(see (29) and (33)), (P1) is equivalently expressed as

max.
Ps,λs

pt(Ps)λs (38)

s.t. τp ≤ µp (39)

τs ≤ µs, (40)

whereµp = − ln(1−ǫp) andµs = − ln((1−ǫs)pg). Note that
µp andµs are increasing functions ofǫp andǫs, respectively.
In general, it is challenging to find a closed-form solution
for (38) with σ2 > 0. However, if we assume that the
network is primarily interference-limited, by settingσ2 = 0, a
closed-form solution for (P1) can be obtained as given in the
following theorem.

Theorem 5.1: Assumingσ2 = 0, the maximum throughput
of the secondary network is given by

C∗

s =
µs(µp − ϕθ

2
α
p d2pλp)

θ
2
α
s d2sµpϕ

log2(1 + θs), (41)

where the optimal ST transmit power is

P ∗

s =
θs
θp

(

ds
dp

)α(
µs

µp

)−
α
2

Pp, (42)

and the optimal ST density is

λ∗

s =
µs(µp − ϕθ

2
α
p d2pλp)

pt(P ∗
s )θ

2
α
s d2sµpϕ

. (43)

Proof: See Appendix D.
Note that sincept(P ∗

s ) has been obtained in close-form for
the case of0 < P ∗

s ≤ 2ηPpr
−α
h (i.e., M = 1 or M = 2 in

Section III), the optimal ST densityλ∗

s in (43) can be obtained
exactly for this case, according to (14) and (23). Otherwise,
only upper and lower bounds onλ∗

s can be obtained, based on
(26).

Some remarks are in order.
• It is worth noting thatµs = − ln((1 − ǫs)pg) in (40) is

an increasing function of PT densityλp, sincepg given
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Fig. 14. Maximum secondary spatial throughputC∗

s versus PT densityλp,
with α = 4, dp = ds = 0.5, rh = 1, rg = 3, Pp = 2, ǫs = 0.3, and
θp = θs = 5.

0 0.005 0.01 0.015 0.02 0.025 0.03
0

1

2

3

4

5

6

7

8

9

10

PT density

O
pt

im
al

 S
T

 d
en

si
ty

ε
p
=0.1

ε
p
=0.3ε

p
=0.2

Fig. 15. Optimal ST densityλ∗

s versus PT densityλp, with α = 4, dp =
ds = 0.5, rh = 1, rg = 3, Pp = 2, ǫs = 0.3, andθp = θs = 5.

in (4) is a decreasing function ofλp. Hence, the optimal
ST transmission powerP ∗

s given in (42) decreases with
increasingλp. This result is shown in Fig. 13, with three
different values ofǫp.

• In Fig. 14, we show the maximum secondary spatial
throughputC∗

s given in (41) versusλp with ǫp = 0.1,
0.2, or 0.3. Note that from the perspective of RF energy
harvesting, largerλp is beneficial to the secondary net-
work throughput. However, it is observed that ifǫp = 0.1,
C∗

s decreases withλp, whlie for ǫp = 0.2 or 0.3, C∗

s first
increases withλp whenλp is small but eventually starts
to decrease whenλp exceeds a certain threshold. The
reason of this phenomenon can be explained as follows.
When ǫp is small as compared withǫs (e.g., ǫp = 0.1
in Fig. 14), the constraint in (39) prevails over that in
(40), i.e., satisfying (39) is sufficient to satisfy (40), but
not vice versa. Therefore, in this case, ifλp is increased,
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the active STs’ densityptλs or C∗

s will be decreased to
reduceτp in (39), i.e., reducing the network interference
level. However, whenǫp is relatively larger (e.g.,ǫp = 0.2
or 0.3 in Fig. 14), (40) prevails over (39). As a result, if
λp is increased, then so isµs in (40), and thusptλs or
C∗

s will be increased. However, ifλp exceeds a certain
threshold,ptλs will be decreased to reduceτs in (40); as
a result,C∗

s decreases with increasingλp.
• It is revealed from (43) that for givenλp, the optimal

active STs’ densitypt(P ∗

s )λ
∗

s is fixed under a given
pair of primary and secondary outage constraints. In
other words,λ∗

s is inversely proportional topt(P ∗

s ). This
implies that aspt converges to zero withλp → 0 (see
Fig. 7),λ∗

s diverges to infinity at the same time, as shown
in Fig. 15. Thus, although the sparse PT density will lead
to larger secondary network throughput (see Fig. 14), a
correspondingly large number of STs need to be deployed
to achieve the maximum throughput, each with a very
small transmission probabilitypt. As a result, only a
small fraction of the STs could be active at any time,
resulting in large delay for secondary transmissions or
inefficient secondary network design.

VI. A PPLICATION AND EXTENSION

In this section, we extend our results on the CR network
to the application scenario depicted in Fig. 2, where a set of
distributed wireless power chargers (WPCs) are deployed to
power wireless information transmitters (WITs) in a sensor
network. It is assumed that wireless power transmission from
WPCs to WITs is over a dedicated band which is different
from that for the information transfer, and thus does not
interfere with wireless information receivers (WIRs). For
simplicity, we assume that the path-loss exponents for boththe
power transmission and information transmission are equalto
α. Moreover, the network models for WPCs and WITs as well
as the energy harvesting and transmission models of WITs are
similarly assumed as in Section II for PTs and STs in the CR
setup. For convenience, we thus use the same symbol notations
for PTs and STs to represent for WPCs and WITs, respectively.

A. Transmission Probability

Unlike the CR case, WITs in a sensor network do not need
to be prevented from transmissions by guard zones, since there
are no PTs present. As a result, a WIT can transmit at any
time provided that it is fully charged. By lettingrg = 0,
we havepg = 1, and from (14), (23) and (26) we obtain
the transmission probability of a typical WIT in the following
corollary.

Corollary 6.1: The transmission probability of a typical
WIT is given by

1) If 0 < Ps ≤ ηPpr
−α
h or M = 1,

pt =
ph

1 + ph
. (44)

2) If ηPpr
−α
h < Ps ≤ 2ηPpr

−α
h or M = 2,

pt =
ph

ph + 1 + p2

ph

. (45)
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Fig. 16. WIT transmission probabilitypt versus WPC densityλp, with
α = 4, η = 0.1, rh = 1, rg = 3, andPp = 1.

3) If Ps > 2ηPpr
−α
h or M > 2,

p1 + p′2

p1 + p′2 + 1 +
p′

2

p1+p′

2

≤ pt ≤
ph

ph + 1 +
p′

2
+p3

ph

, (46)

whereph = 1−e−πr2hλp is given in (9);p1 = 1−e−πh2
1λp and

p2 = e−πh2
1λp − e−πr2hλp are given in (19) and (21), respec-

tively; p′2 = e−πλph
2
1 − e−πλph

2
2 andp3 = e−πλph

2
2 − e−πλpr

2
h

are given in (24) and (25), respectively.
It is worth noting that unlike the CR setup,pt in this case

is in general an increasing function ofλp since there are no
guard zones and thus largerλp always help charge WITs more
frequently, as shown in Fig. 16.

B. Network Throughput Maximization

Note that unlike the CR setup, here we only need to consider
the outage probability of a typical WIR at the origin due to the
interference of other active WITs. Similar to Assumption 1,
we assume that active WITs form an HPPP with densityptλs;
thus, the outage probability of a typical WIR at the origin can
be obtained by simplifying Lemma 4.1 as

P
(s)
out

= Pr

{

gsPsd
−α
s

Is + σ2
< θs

}

(47)

= 1− exp (−τs) , (48)

where in this caseτs is given by

τs = θ
2
α
s d2sϕptλs +

θsd
α
s σ

2

Ps

. (49)

For the sensor network throughput maximization, Problem
(P1) can be modified such that only the outage constraint for
the WIR is applied. Thus we have the following simplified
problem.

(P2) : max.
Ps,λs

pt(Ps)λs log2(1 + θs) (50)

s.t. P
(s)
out

≤ ǫs. (51)
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The solution of (P2) is given in the following corollary, based
on Theorem 5.1.

Corollary 6.2: Assumingσ2 = 0, the maximum network
throughput is given by

C∗

s =
µ′

s

θ
2
α
s d2sϕ

log2(1 + θs), (52)

whereµ′

s = − ln(1− ǫs), and the optimal solution(P ∗

s , λ
∗

s) ∈
R+ × R+ is any pair satisfying

pt(P
∗

s )λ
∗

s =
µ′

s

θ
2
α
s d2sϕ

. (53)

Proof: With σ2 = 0, from (48) and (49), Problem (P2)
can be equivalently rewritten as

max
Ps,λs

pt(Ps)λs (54)

s.t. pt(Ps)λs ≤
µ′

s

θ
2
α
s d2sϕ

, (55)

whereµ′

s = − ln(1 − ǫs). To maximizept(Ps)λs, then it is
easy to see from (55) that the optimal solution ispt(P

∗

s )λ
∗

s =
µ′

s

θ
2
α
s d2

sϕ

; by multiplying it with log2(1 + θs), we then obtain

C∗

s in (52).

Note that unlike the result in Theorem 5.1, the maximum
network throughput remains constant regardless ofλp. This
is because there is no primary outage constraint in this case
and thus the optimal density of active WITspt(P ∗

s )λ
∗

s is
determined solely by the outage constraint of WIRs. On the
other hand, ifλp is increased, we can effectively reduce the
required WIT densityλ∗

s for achieving the sameC∗

s sincept
in general increases withλp.

VII. C ONCLUSION

In this paper, we have proposed a novel network architecture
enabling secondary users to harvest energy as well as reuse
the spectrum of primary users in the CR network. Based on
stochastic-geometry models and certain assumptions, our study
revealed useful insights to optimally design the RF energy
powered CR network. We derived the transmission probability
of a secondary transmitter by considering the effects of both
the guard zones and harvesting zones, and thereby charac-
terized the maximum secondary network throughput under
the given outage constrains for primary and secondary users,
and the corresponding optimal secondary transmit power and
transmitter density in closed-form. Moreover, we showed that
our result can also be applied to the wireless sensor network
powered by a distributed WPC network, or other similar
wireless powered communication networks.

APPENDIX A
PROOF OFPROPOSITION3.3

For both the upper and lower bounds, similar to the case
of M = 2, we apply a 3-state Markov chain with state space
{0, 1, 2} with states0, 1 and2 denoting the battery power level
of 0, in the range[ 12Ps, Ps), and equal toPs, respectively.

First, consider the upper bound onpt. Since the harvested
power in the regiona(X,h2, rh) is assumed to be equal to
1
2Ps, it is easy to see that the state transition-probability matrix
for this case is given by

P
(u) =





1− ph p′2 + p3 p1
0 1− ph ph
pg 0 1− pg



 . (56)

Let π(u) = [π
(u)
0 , π

(u)
1 , π

(u)
2 ] denote the steady-state probabil-

ity vector in this case. Solvingπ(u)
P

(u) = π
(u), we obtain

π
(u)
2 = ph

ph+pg

(

1+
p′
2
+p3

ph

) and thus the upper bound onpt can

be obtained by multiplyingπ(u)
2 with pg, according to (10).

Next, consider the lower bound onpt. Since the harvested
power in the regiona(X,h2, rh) is assumed to be0, it is easy
to obtain the state transition-probability matrix for thiscase as

P
(l) =





1− (p1 + p′2) p′2 p1
0 1− (p1 + p′2) p1 + p′2
pg 0 1− pg



 . (57)

Similarly to the derivation of the upper bound onpt, the
lower bound onpt can be found by finding the corresponding
steady-state probabilityπ(l)

2 =
p1+p′

2

(p1+p′

2
)+pg

(

1+
p′
2

p1+p′
2

) , and

then multiplying it with pg. The proof of Proposition 3.3 is
thus completed.

APPENDIX B
PROOF OFLEMMA 4.1

For convenience, we derive the non-outage probability1−
P

(p)
out

as follows withP (p)
out

given in (28).

1− P
(p)
out

= Pr

{

gpPpd
−α
p

Ip + Is + σ2
≥ θp

}

(58)

= Pr

{

gp ≥
θpd

α
p

Pp

(

Ip + Is + σ2
)

}

(59)

= EIp

[

EIs

[

exp

(

−
θpd

α
p

Pp

(

Ip + Is + σ2
)

)]]

(60)

= exp

(

−
θpd

α
p

Pp

σ2

)

EIp

[

exp

(

−
θpd

α
p

Pp

Ip

)]

EIs

[

exp

(

−
θpd

α
p

Pp

Is

)]

, (61)

where in (61), the expectations are separated sinceIp andIs
are assumed to be independent as a result of Assumption 1.
Note that EIp

[

exp
(

−
θpd

α
p

Pp
Ip

)]

and EIs

[

exp
(

−
θpd

α
p

Pp
Is

)]

are Laplace transforms in terms of the random variablesIp and

Is, respectively, both with input parameter
θpd

α
p

Pp
. According

to the result in [26, 3.21], the Laplace transform of the shot-
noise process of an HPPPΛ(λ) with densityλ > 0, denoted
by I =

∑

T∈Λ(λ) gTP |T |−α, with input parameters is given
by

EI [exp(−sI)] = exp(−(Ps)
2
αλϕ), (62)

where {gT }T∈Λ(λ) is a set of i.i.d. exponential random
variables with mean1, and ϕ is given in Lemma 4.1. Us-
ing (62), we can easily obtainEIp

[

exp
(

−
θpd

α
p

Pp
Ip

)]

and
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Admissible set 

Optimal point 

Ps

ptλs

ptλs = f1(Ps)

ptλs = f2(Ps)

Fig. 17. Illustration of the optimal solution for Problem (P1).

EIs

[

exp
(

−
θpd

α
p

Pp
Is

)]

and by substituting them to (61), the
proof of Lemma 4.1 is thus completed.

APPENDIX C
PROOF OFLEMMA 4.2

The termPr
{

gsPsd
−α
s

Ip+Is+σ2 < θs

}

in (32) is obtained by fol-
lowing the similar procedure in the proof of Lemma 4.1, given
by

Pr

{

gsPsd
−α
s

Ip + Is + σ2
< θs

}

= 1− exp(τs), (63)

whereτs is given in (34).
Next, under the assumptionPp ≫ Ps, it is reasonable to as-

sume that the interference from even only one single PT inside
b(Yo, rg) is sufficient to cause an outage to the typical SR at

the origin. Consequently, we havePr
{

gsPsd
−α
s

Ip+Is+σ2 < θs
∣

∣Ē
}

≈

1. Substituting this result, (63) andPr{E} = e−πr2gλp = 1−pg
into (32) yields (33). The proof of Lemma 4.2 is thus com-
pleted.

APPENDIX D
PROOF OFTHEOREM 5.1

From (30) and (34), the constraintsτp ≤ µp and τs ≤ µs

given in (39) and (40) are equivalent topt(Ps)λs ≤ f1(Ps)
andpt(Ps)λs ≤ f2(Ps), respectively, where

f1(Ps) =





1

θ
2
α
p d2pϕ

(

µp −
θpd

α
pσ

2

Pp

)

− λp





(

Ps

Pp

)−
2
α

,

(64)

f2(Ps) =
1

θ
2
α
s d2sϕ

(

µs −
θsd

α
s σ

2

Ps

)

− λp

(

Ps

Pp

)−
2
α

. (65)

As illustrated in Fig. 17,f1(Ps) decreases whereasf2(Ps)
increases with growingPs. The shaded region in Fig. 17 shows
the admissible set of(Ps, ptλs) that satisfies the given outage
probability constraints. It is observed that the optimal value
of pt(Ps)λs is the intersection of the two curvespt(Ps)λs =
f1(Ps) and pt(Ps)λs = f2(Ps). The intersection point can

be found by solvingf1(Ps) = f2(Ps), which has no closed-
form solution in general withσ2 > 0. However, by letting
σ2 = 0, the closed-form solution ofP ∗

s can be obtained as
θs
θp

(

ds

dp

)α (
µs

µp

)−
α
2

Pp. From pt(P
∗

s )λ
∗

s = f1(P
∗

s ) and (64),

we then obtainpt(P ∗

s )λ
∗

s =
µs(µp−ϕθ

2
α
p d2

pλp)

θ
2
α
s d2

sµpϕ

, and accordingly

λ∗

s =
µs(µp−ϕθ

2
α
p d2

pλp)

pt(P∗

s )θ
2
α
s d2

sµpϕ

. Theorem 5.1 is thus proved.
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