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Abstract—In this paper a MIMO quasi static block fading is equipped withN Space-Time Block Codes (STBCs), one
channel is considered in which the transmitter has partial bannel  corresponding to each of th¥ different values of the feed-
knowledge obtained via a finite N-ary delay-free, noise-free 5.k index, and based on the received feedback value, it uses
feedback from the receiver. The transmitter uses a set offV ’ . - -
Space-Time Block Codes (STBCs), one corresponding to eachthe correspon_dmg STBQ to encode and_transmlt |r_1format|on
of the N possible feedback values, to encode and transmit bits. The receiver, knowing the feedback index that it has se
information bits. The particular feedback function used at the to the transmitter and hence the STBC used for encoding,
receiver and the N component STBCs used at the transmitter performs maximum-likelihood (ML) decoding of transmitted
together constitute aFinite Feedback Scheme (FFS). If each of  ¢geword to estimate the information bits. The feedback
the component codes encodeK independent complex symbols . .
and is of transmission duration T', the rate of the FFS is% TunCt'on used by the receiver to generate fieary feedbaC.k
complex symbols per channel use. Although a number of FFSs index, and theN component STBCs used by the transmitter
are available in the literature that provably achieve full-diversity, ~determine the communication protocol implemented on the
such as transmit antenna selection, beamforming, and preding  MIMO channel with feedback. Throughout this paper we will
of STBCs, there is no known universal criterion to determine refer to the combination of the particular feedback furrctio
whether a given arbitrary FFS achieves full-diversity or nda. . .

Further, all known full-diversity FFSs for T < N; where N; used aF the receiver with th¥ component STBCs used at the

is the number of transmit antennas, have rate at the mostt. transmitter as &inite Feedback Scheme (FE®)each of the

In this paper a universal necessary condition for any FFS to component STBCs encodés$ independent complex symbols

achieve full-diversity is given, using which the notion ofFeedback-  and has transmission duratidf, we say that the FFS has

Transmission duration optimal (FT-Optimal) FFSs - schemes that (a6 p X complex symbols per channel use. The definition

use minimum amount of feedback N given the transmission . . . .
duration T, and minimum transmission duration given the of F'_:S is universal and subsu_mes all _sc?hemes available in
amount of feedback to achieve full-diversity - is introducel. When  the literature for delay-free noise-free finite feedbaclareh
there is no feedback, i.e., whenN = 1, an FT-optimal scheme nels with quasi-static block fading, such as transmit amen
consists of a single STBC withT" = NN;, and the universal selection [1], precoding for spatial multiplexing systef@k
necessary condition reduces to the well known necessary andyeamforming([3]4[6], combining space-time codes with beam
sufficient condition for an STBC to achieve full-diversity \iz., . ; S . L
every non-zero codeword difference matrix of the STBC must forming [7]-[9], extending orthogona! STBC?’ [10,]' switoi

be of rank N,. Also, a sufficient condition for full-diversity is P€tween orthogonal STBC and spatial multiplexingl [11], and
given for the class of FFSs in which the feedback chooses thecode diversity[[12] (See Sectidn IItA for formal definitiori o

component STBC with the largest minimum Euclidean distance an FFS, and Tablg | for a summary of some of the FFSs
Using this sufficient condition full-rate (rate N:) full-diversity available in the literature).

FT-Optimal schemes are constructed for all triples(N¢, T, IN) ) ) )
with NT = N,. These are the first full-rate full-diversity FFSs A number of FFSs are available in the literature that

reported in the literature for T' < . Finally, simulation results  provably achieve full-diversity such as transmit antenaa s

are presented that show that the new FFSs have the best error |action [1] and the schemes inl [4]=]12]. However, there is no

performance among all the schemes available in the literate. known universal criterion (applicable to any finite feedbac
Index Terms—Diversity, finite feedback, MIMO, rate, space- scheme, including those ihl[1]=[12] as special cases) terdet

time block codes, transmission duration. mine whether a given arbitrary FFS achieves full-diversity
not. Further, all known full-diversity FFSs far < Ny, where
|. INTRODUCTION N, is the number of transmit antennas, have rate at the most

. . . . .. 1. In this context the contributions (and organization) déth
We consider quasi-static block fading multiple-inpu ( 9 )

. . ; . aper are as follows.
multiple-output (MIMO) wireless channel with Rayleigh fIatE) P
fading. We assume that the receiver has full-channel state, we first give a universal necessary condition for any
information, and the transmitter has only a partial knogked FFS to achieve full-diversity (Corollafyl 1, Sectibn1l-B).
of the channel obtained through a delay-free noise-fiee  Using this necessary condition we introduce the notion
ary feedback index conveyed by the receiver. The transmitte  of Feedback-Transmission duration optimal (FT-Optimal)
) i . ) FFSs - schemes that use minimum amount of feedback
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full-diversity. The class of FT-optimal FFSs consists df akquipped withV STBCsCy,...,Cn, with |C1] = --- = |[Cn],
full-diversity schemes for which the product of feedbackne corresponding to each of thépossible feedback indices.
index set cardinalityN and transmission duratioi’ Whenf(H) = n, the transmitter uses the codg to encode
equals the number of transmit antenmés When there the information bits. Upon receiviny, knowing the feedback

is no feedback, i.e., whelN = 1, an FT-optimal scheme index, and hence knowing the codebook used for transmission
consists of a single STBC with = N, and the universal the receiver performs ML decoding

necessary condition reduces to the well known necessary

o ) B )
and sufficient condition for an STBC to achieve full- X = A8 el 1Y — VEXHI[}. 1)
diversity viz., every non-zero codeword difference matrix i ) -

of the STBC must be of rank/; (SectiorII-B). Definition 1: A Finite Feedback Scheme (FF®)y an NV; x

. For FFSs which use the feedback function that choosts MIMO Char.‘”e' with]_\f-ar.y noise-free, delay-free feedback
the component STBC with the largest minimum g and transmission duratidfi is atuple(f,Cy,...,Cn), where

. N¢X Ny i i
clidean distance, we give a sufficient condition for fuII-f 2 CTXT = {L,..., N} s the feedback .functlon, and
diversity (Theorenil2, SectidnII'C). Cy,...,Cn are theT x Ny STBCs corresponding to each of

« Using the sufficient criterion and tools from aIgebrai&heN feedback indices. . )
number theory we construct full-rate (rale= N,) full- Ex_amp_le 1.The FF.S qf [6], kn0\_/vn as Grassmannian _beam-
diversity FT-Optimal schemes for all triplegV;, T, N) formm_g, is of _transml_ssmn duratioff = 1. The trans}r\plitler
with NT = N; (Sectior1ll). These are the first full-rate'S equipped with’V' unit norm vectoray, ..., uy € C™ '
full-diversity FFSs reported in the literature fér < V. k_r10wn as thebeamforming vectorsLet A ¢ C be a fi-

o We present simulation results comparing the bit err(S}Jte signal set such as QAM, HE)jh or a PSK constella-
rate performance of the new schemes with the sche . Then, forn € il’_' .., N}, the T} component STBC
already available in the literature which show that th@ the FFS from [6] isC, = {augla € A} Th? fegd'
new FFSs have the best performance while utilizin*&aCk function used i$(H) = argmaxneq,...ny [[un H[E.

the least amount of feedback and transmission duration . ) . u .
(Sectior(IV). Table[] summarizes some of the FFSs available in the liter-

ature. The scheme frorn [11] uses two codes of differentrates
the Alamouti code [14] with raté and spatial multiplexing
ith rate 2, hence the rate of this FFS is not defined. The
st row corresponds t&/ = 1, i.e., MIMO channels without
§edback. In this case the FFS consists of a single STBC
nd the feedback value is equaltdor all H € CVexNr,

n FFS is said to achieve diversity order d if the

B bability of decoding erroP. at the receiver decays as

The system model is explained in Section 1I-A, the defin
tions and results from algebraic number theory that we h
used in this paper are briefly reviewed in Secfion TII-A, an
finally the paper is concluded in Sectibn V.

Notation: Throughout the paper, matrices (column vector
are denoted by bold, uppercase (lowercase) letters. For
complex matrixA, the transpose, the conjugate-transpose al
the Frobenius norm are denoted By, A and ||A||F

respectively. For a square mate, det(A) is the determinant (N_U) i.e., if there exists a constant > 0 such that
. A 4
of A, andtr(A) is the trace ofA. For any positive integen, P, <c N% , and an FFS is ofull-diversity if it achieves

I, is then x n identity matrix, and0 is the all zero matrix of
appropriate dimension. Unless used as a subsérggnotes
v/—1. The indicator function is denoted y-), and for any
vectoru, its £ component is denoted hy(¢).

a diversity order ofN; N,..

If an STBC encodesk independent complex symbols,
its rate is% complex symbols per channel use. The FFS
(f,Cq,...,Cn) is said to be of rat& if each of theN STBCs

Cy,...,Cy is of rateR, and the FFS is diull-rate if R = V;.
II. FULL-DIVERSITY CRITERIA:

A UNIVERSAL NECESSARYCONDITION, AND A ] »
A. System Model Some notations are introduced before stating the criterion
For any STBCC, let AC denote the set of non-zero codeword

We consider anV; x N, quasi-static Rayleigh flat fading difference matrices. i.e

MIMO channelY = VEXH + W, whereY is theT x N,
received matrix,X is the T x N; transmit matrix,H is the AC ={X; - Xy | X1,X2€C,X; # X>}.

N, x N,. channel matrixW is theT x N,. matrix representing . !

the additive noise at the receiver afAds the average transmit IJ:\?]E a ?\;ven fFSS = (£,C1,...,Cy) define the seAS of
power. The entries oH and W are independent, zero mean, x [Ve matrices as

circularly symmetric complex Gaussian random variablét w X4
the variance of each entry di being 1, and the variance Xy
of each entry ofW being Ny. The receiver uses a feedback AS = : X, €ACy,..., XNy € ACN p,
function f : CNexNr — £1 ... N} to send the feedback in- X
N

dex f(H) to the transmitter through a delay-free, noise-free
feedback channel. ASpace-Time Block Code (STBC)is i.e.,AS is the set of all combinations @f non-zero codeword
a finite set ofT" x N, complex matrices. The transmitter isdifference matrices, one corresponding to each of¥heodes,



TABLE |
EXAMPLES OF FINITE FEEDBACK SCHEMES AVAILABLE IN THE LITERATURE

(See table footnotes for notation.)

. Component Code Feedback function Rate
Scheme Setting
Cn f(H) R
. . 1: = y = 1: n
Antenna Selectior [1] Ne>1, N =N, T {sen|s € A} e ma}; E{lé M 1
ei,...,en, are columns ofly, |le, H||%
fa(H)
Precoded Spatial- Ne, N>1,T=1, M < Ny arg maXne{1,...,N}
Multiplexing [2] {s"F,|s € AM} Amin (Fr, H) M
Fi,...,Fy € CMxN:t arg MaXne{1,... N}

det(Tnr 4+ N%FnHHHFf)

Heath, Jr. & Paulraj[4] N :_22;,N >LT=1 {[s s7a]|s € A} AT MaAXne {1,.... N} 1
o= F, nefl,...,N} | [ H |3
Grassmannian Ny N >1,T=1, arg maXne{1,...,N}
Beamforming [[6] u,...,uy € CVex! {sul|s € A} [lulH||% 1
have unit norm
Precoded N¢yyN > 1, M < Ni,Cisa arg maXpe{1,...,N}
Orthogonal STBCH[8] | T' x M rate R orthogonal STBC, {XF,|X e} [|F.H||% <1
Fi,...,Fy e CMxNe
Heath, Jr. & Paulraj T11] Ne=N=T=2, ¢, is Alamouti code using4 f4(H) NA
] = AT - { [ } e A/}
S3 Sa
No feedback([13] N=1,N,T>1 Cy C CTxN 1 <N,

Notation:
e A, A’ C C are complex constellations such as QAM, HEX or PSK.
ofg(H) = arg max,ec{1,... N} {mianAcn HXHH%‘}, whereAC, = {X;1 — X2 | X1,X2 € Cpn, X1 # X2}
e Amin (A) is the smallest singular value &.

stacked on top of one another. Further, let is shown that this is also a sufficient condition for this soke
to attain full-diversity. [ ]
r(AS) = min{rank(X)|X € AS}. From Corollary[1, for a scheme to achieve full-diversity

the product of its transmission duration and the cardinalit
Since the matrices in the s&S are of dimensionVT x Ny, feedback index set must be at ledgt

we haver(AS) < N¢. Definition 2: A full-diversity FFS is said to bd-eedback-
Theorem 1:An FFSS achieves a diversity order of at theTransmission duration optimal (FT-optimaf) NT = N,.
mostr(AS)N;. An FT-optimal scheme uses the minimum amount of feed-
Proof: Proof is given in AppendikA. B back N given the transmission duratiofi, and minimum
The following necessary condition for full-diversity folks transmission duration given the amount of feedback torattai
immediately from the above theorem. full-diversity. When there is no feedback, i.e., wh&¥n= 1, an
Corollary 1: If an FFS S achieves full-diversity, then FT-optimal scheme consists of a single STBC with= NV,
r(AS) = N, and NT > N;. and the necessary condition of Corolldry 1 reduces to the

Proof: SinceS achieves full-diversity, from Theoref 1,Well known necessary and sufficient condition [of[[13] for an
NN, < r(AS)N, i.e., r(AS) > N,. But AS is a set of STBCto achieve full-diversity viz., every non-zero codewo
NT x N; matrices, and the matrices belonging A5 can difference matrix of the STBC must be of rai%. On the
have rank at the most equal ¥, thus we have(AS) = N;. other hand, for the case of least possible transmissiontidara
It follows that the rank of eaclX € AS is N; and hence the 7' = 1, an FT-optimal scheme uses ah= N,-ary feedback.
number of rows ofX NT > N;. m In SectiorfIll we construct FT-optimal schemes for &} > 1

Example 2:Continuing with Example]1, we have thatand all pairs(N,T) such thatNT = N;.
AC, = {aulla € AA}, where AA = {a1 — aslay,az, €
A, a1 # a2}. Each member ofAS is a matrix of the form
[a1u1 aslp - -+ QNUN]T, Whereal, ag,...,aN € AA and
hence are non-zero. This matrix will have raNk if and only Let f;(H) be the feedback function that returns the index
if the linear span of the vectors;, ..., uy isCV+*!, In[6] it of the codebook with largest minimum Euclidean distance for

C. A Sufficient Condition



the given channeH, i.e., for all parametersN,T and N, such thatN, = NT. In
Section[II-A we briefly review some definitions and results
} . (2) from algebraic number theory which we use to construct new
schemes in Section TI[B7{ = 1 case) and Sectioh 1HC
We now show that for any FFS that udes fy, the necessary (T' > 1 case).
condition of Corollary[l is also a sufficient condition to
achieve full-diversity. o
Theorem 2:The FFSS = (f4,C1,...,Cn) achieves full- A. Preliminaries
diversity if r(AS) = N,. For any two fieldsK andF, if F C K thenK is said to be
Proof: See AppendixB. B anextensiorof F, andF a subfieldof K. For anya € K, F(a)
1) A new full-diversity FFS:As an example for the ap- denotes the smallest subfieldfthat containg anda, and it
plication of Theoren{2, we now construct a neW = 2, consists of all the elements of the folf, wheref, i € F[z]
T = 1 FT-optimal, full-rate, full-diversity FFS fotN: = 2 are polynomials oveF and i (z) # 0. An elementa € C is
antennas. Letx;,x; be complex symbols encoded usingaid to be aralgebraic numberor simply algebraig if there
a QAM constellationA C Z[i]. Let Q(i,/5) be the field exists a non-zero polynomigl € Q[z] such thatf(a) = 0.
obtained fromQ by the adjunction of elemenis= v/~T and |t  is algebraic, the field)() is said to be aralgebraic
V5, and o : Q(i,v/5) — Q(i,v/5) be the automorphism on number field
Q(i, v/5) that fixesQ(i) and mapsy’5 to —/5. Define Example 3:For anya € Q, \/a is algebraic, since it
satisfies the equatior? —a = 0. Hence,v/2,V/3,i = v/—1 are
T1,T2 € A} and ) algebraic. Also, Y5 s algebraic since it is a root of the

fi(H) = in ||XH|?
a(H) afgnef?ﬁ%f]v}{x?g%n“ 7

C = {[a(xl +a20) o (w1 + 220))]

equationr? —z—1 = 0. [
Cy = {[04(551 + 220) o (az1 + 5629))} T1,T2 € A} ; Lemma 2 ([16, p. 107]):The sum, difference, product and
guotient of algebraic numbers are themselves algebraic num
wheref = ”2—\/5 anda =1 +1i — 6. bers.
The Golden cod€ [15], which is a full-diversity STBC for We will use the following result to prove the full-diversity
2 transmit antennas with large coding gairCiggen = property of our FFSs.

Theorem 3 (Lindemann-Weierstrass Theorem [17, p. 6]):
21, T2, Y1, Y2 € A b If aq,.. - Qo A€ distinct algebraic numbers, and ..., ¢,
are algebraic numbers that are not all equal to zero, then

{a(xl + x20) o (a(yr + ygb'))]
a(yr +120) o (a(z1 + 220))

The codes’; and C, correspond to the two ‘threads’ of the CLe®t + ce®2 -t e £ 0.
Golden code {; is obtained from the entries on the main
diagonal ofCc.lden @andCs from the entries in the off-diagonal. The following result gives a procedure to construct sets
Lemma 1:The FFSS = (fq4,C1,C2) achieves full-diversity. of algebraic numbers, of any desired finite cardinality,t tha
Proof: We need to show that evelX € AS has full are linearly independent ovep. We will use this result to
rank. Since botl; andC; are linear, for any giveiX € AS  construct full-diversity FFSs fol" > 1 in Sectior1II-C.

there existfzy @2]”, [y1 y2]” € Z[i]* \ {0}, such that Theorem 4 ([18]): Let n4,...,n,, be positive integers,
alzy +z20) o (a(z) + 120)) Dly---sPm b.e.d.istinct primes, and, . ...,bm be positive in-
= alyr +y20) o (alyr +120))| tegers not divisible by any of these primes. koe 1,...,m,
letay = "¢/brpr, andf(z1,...,xm) € Q[z1,...,2,] be any

Sincex;,z2 € Q(i) and {1,6} is a basis ofQ(i,+/5) as a polynomial in indeterminates, .. ., z,, with degree less than
vector space ovef)(i), we have thatr = a(z; + z26) # 0. or equal ton,—1 with respect tac,.. Then,f(aq,...,am) =0

Similarly, y = a(y1 + y20) # 0. Sincedet(X) = izo(y) — if and only if all the coefficients off are equal to zero.
yo(z) and o2 is the identity map onQ(i,/5), we have It follows immediately from the above theorem that the set
det(X) = iz — o(z), wherez = zo(y) € Q(i,v5) \ {0}.
If X is not of full rank,det(X) = 0, i.e.,i = Z2 for some {aflagz ol | 0< e <, k=1, .,m},
z € Q(i,+/5). This would imply that
. with cardinality [],"; nx, is linearly independent ove®.
i=o(i)=0 (U(Z)) __* _ (U(Z)) - _; Note that the above set of algebraic numbers obtained from
z o(z) ’ Theorem[# is real. On multiplying each of the elements of
L ol , this set withi, we get a set of purely imaginary algebraic
which is not true. Hence, # z) for any z € Q(i, v5), and numbers that ar€)-linearly independent. We are interested
in purely imaginary numbers as these will lead to FFSs in

X is of full rank. [ |
Section[ll with the same average transmit energy per each
1. NEW FULL-RATE FULL-DIVERSITY FT-OPTIMAL transmit antenna.

FINITE FEEDBACK SCHEMES

Example 4:Let m = 2, p; = 2 andpy = 3 be the two
In this section, using tools from algebraic number theowry, wdistinct primes, and; = b, = 1. Suppose we want a set of
construct full-rate full-diversity FT-optimal FFSs with=fy; nin. = 4 algebraic numbers that are linearly independent over



Q. Choosingn; = ny = 2, we havea; = v/2 anday = /3. from [23], we get the following STBCs
From Theoreni 14, N
C = {[75(1) s(2) s(3)] ’ s=Ua, ac A t},
£y L _
{otog 0616 <2} = {1,V2.V5, &} ¢ ={[s1) 752) s@)] |s=Ua aca} and

is linearly independent ove®. On multiplying each of the ¢, = {[5(1) s(2) 75(3)} ‘ s=Ua, ac ANt}.
elements of the above set bywe see thafi,iv/2,iv/3,iv/6}

is linearly independent ovep. [ ] _ _ _ _ _ u

In [19]-[22] rotation matricesU € C™*™ where con- Lemma 3:If U is a full-diversity algebraic rotation and
structed for allm > 1 with non-zero minimum product IS & Non-zero algebraic number, the F&S- (fq,C1, ... ,Cn,)
distance, i.e., with the property that for aaye Z[i]™ \ {0} achieves full-diversity, wheré,, ...,Cn, are given in [(B).
ands = Ua, [[7, |s(¢)| > 0, wheres(¢) denotes the/t" Proof: All the component codes are linear, i.e., for every
component ok. Further, these matrices were constructed over BC C each entry of the codeword matrix is a linear
algebraic number fields, i.e., each componentlbfis an Combination of the QAM symbolga(i)|i = 1, ... a%}’ and
algebraic number. These matrices are knowrulisdiversity Nence for amX € AS, there existy, ..., ay, € Z[i]™\ {0}
algebraic rotationsand a table of the best known (in terms ofds» = Uay, n=1,..., N; such that
min_imum .prod‘uct distance) full-diversity algebraic rodats is ys1(1)  s1(2) oo si(IVy)
available in [23]. < so(1)  s2(2) -+ sa(Vy)
B. New Finite Feedback Schemes with= 1 sv(1) sw(2) -0 s (Vi)

Let U € CNe*N: pe any full-diversity algebraic rotation, Where S_n](f) is the (" ComponenEnof the vectos,,. Since
a € C be any non-zero algebraic number, apd= ¢®. The an € Z[i]™*\{0} ands,, = Ua,, [[,_, [s(¢)| > 0, and hence
proposed FT-optimal FFS uséé = N, component STBCs, all the components af,, are non-zero. Sinc¥ is an algebraic

Ci,...,Cn, C C1XNe each of which encodes, independent rotation, and elements @fi| are algebraic, from Lemnia 2, all

QAM symtbols as follows. Let = [a(1) a(2) --- a(N,)]” the components af,, are algebraic numbers. It follows that all

be a vector ofN, independent symbols that take value fronfh€ entries ofX are non-zero, all the off-diagonal entries are

a QAM constellationd C Z[i], and algebraic, and all the diagonal entries are products*ofvith
some algebraic number. Now, the determinanXof= [z; ]

s=[s(1) s(2) --- S(Nt)]T = Ua. is det(X) =, c,, 58M(0)T1,0(1)T2,0(2) TN, o (Ny) =
The N; component STBCs of the proposed FFS are = > YTt tn=cmsgn(o)s1((1))s2(a(2)) - - - sw, (0 (N)),
UESNt

Clz{[’ys(l) s(2) - s(V)]

Cy = {[5(1) vs(2) .- S(Nt)] ‘ s=Ua, ac ANt}, where Sy, is the set of all permutations ofl,..., N:},
sgn(o) is equal tol or —1 if o can be decomposed into
even or odd number of transpositions respectively, a(d
is the indicator function. Froni{4) and Lemrmh d&t(X) =
Cn, = {[s(l) s(2) .- 7s(Nt)} ‘ s=Ua, ac€ .ANt} o + cre® + cpe2® 4 ...cNteJGEK, \)Nhereco,cl,...,cgvt )are
(3) algebraic. There is exactly one term i (4), corresponding
to the identity permutation, that contributes 46". Hence,
Each of the above STBCs is obtained fref by multiplying cn, = s1(1)s2(2)---sn, (N;) # 0. Since0, a,2a, ..., Nya
one of its components withy. Note that the rate of the gre all distinct and algebraic, ang, ..., cy, are algebraic
proposed scheme i® = N;. Although the full-diversity and not all equal to zero, from Theordm 3, we have that
property to be proved in Lemnid 3 is valid for any non-zerget(X) +# 0. Thus everyX e AS is of full-rank and

algebraica, choosinga to be purely imaginary would ensurer(AS) = N,, and from Theorerfll2S achieves full-diversity.
that |[y| = 1, and that for each of the component codes the n

average energy transmitted on each offheantennas is same.
Example 5:Consider the case N, =3. Using C. New Finite Feedback Schemes for> 1

=i M) =¢e® and the3 x 3 full-diversity rotation

@ Z( 2 )= e x y 1) Some notationsThe structure of the component codes
of the new FFSs fofl" > 1 is similar to the threaded space-
time architecture proposed ih_[24], [25]. Towards desogpbi

s = Ua, aeANt}, “)

—0.328 —0.591 —0.737 the new scheme, we first introduce some notations that aaptur
U= (-0737 -0.328  0.591 this structure. For an{” > 1 denote addition moduld@ by
—0.591 0737 —0.328 @, i.e., for any two integers andb, a® b = (a+b) mod T.

For a set ofl" vectorssy, ...,sp € CT*1, we define & x T



matrix 7 (si,...,sr) = [t; ;] whose entries are populated b
(51 1) = [tid] pop y —0.3664 —0.7677  0.4231  0.3121

the compone_r_lts 05;1_, .. .,sﬁ asdfollows. The entg_es o = A U 09264 —0.4745 —06846 —05050 -
[ti ;] are partitioned intd" t reads one corresponding to eac = 1_04745 02264 —0.5050 06846
of the vectorssy,...,st. The first thread of/” originates at —0.7677 03664  0.3121 —0.4231

t1,1 and occupies the main diagor@l ;i = 1,...,T}. These

entries are populated by the components of the first vestor is a full-diversity algebraic rotation [23]. Let; = iv/2, B2 =

The second thread originatestat, and occupies the entriesiv/3 and v; = e’',y, = e%2. Note that in Exampl&l4 we
that are one place to the right of the first threadirin cyclic showed that{3,, 32} = {iv/2,iv/3} is linearly independent
sense. Thus the elementssy, t23,...,tr—1.7,t71 form the overQ. The two component STBCs of the proposed FFS are
second thread, and these are populated by the componentgivén in [6) and[(I7) at the top of the next page. Each codeword
the second vectas,. In general, the/*” thread originates at of C; is of the form [T1 T2], where

t1 ¢ and consists of those entries’bfthat are one place to the

right of the entries of¢ — 1)** thread in cyclic sense. These Ti=T (ms1(1:2),7282(1: 2)) and
entries of 7 are occupied by the components of the vector To=T (s1(3:4),52(3:4)).
= T, </t,i< . . . :
;l:ave [se(1) s:(2) se(T)]". Hence, forl < ¢,i < T we The ‘threaded’ matrix7; (respectively7s) is obtained from
) the first two entries (last two entries) afi,s,. Further,
ti,1+((i71)€BT(l71)) = se(i)- the two threads of7; are scaled byy, and v, respec-
tively. Each codeword ofC; is of the form =
Example 6:For T = 3, we have 7T([7)'1/ 7)) 2 [72 7] -
si(1) sa2(1) s3(1) The construction for arbitrary’ a_mdN_ and NV, :_NT is as
T (s1,82,83) = [tij] = |s3(2) s1(2) s2(2)], follows. I._etU be anN; x N, fuII-d_lver5|ty algebraic r(])\;[atlon,
s2(3) s3(3) s1(3) A C Z[i] be a QAM constellationa,...,ar € AM be
) ) vectors whose components take values independently #fpm
where the entries occupied by the componentsspfon snqs, — Ua, for ¢ = 1,....T. Further, letss,. .., Gr be
the main diagonal form the first thread, the componenfgyepraic numbers that are linearly independent dyeand
of sy that occupy entries one place to the right of ve = Pt for ¢ = 1,...,T. The scalars?, ..., Br can be
form the second thread, and the componentssofthat piained using Theoref 4 as explained in Sedfionlil-A. Now
occupy entries two places to the right sf form the third for eachs = 1,..., 7, partition theN,-length vectors, into
thread. _ B N vectorssV s{?, ..., s of lengthT each such that
Example 7:The matrix 7 (s1,...,s4), fOr si,...,84 €
4x1 (1)
C IS Sy
s1(1) sao(1) s3(1) sa(1) s(?)
s4(2) s1(2) s2(2) s3(2) se=| .|,
s3(3) s4(3) s1(3) s2(3) :
s2(4) s3(4) sa(4) si(4) stV

]

For anys = [s(1) s(2) --- s(T)]T andl <m <n < T we

denote the length —m+1 vector[s(m) s(m+1) --- s(n)]T
bys(m :n). If T1,..., Ty areT x T complex matrices, define

ie., sy) =si(1:7), Sf) =s(T+1:2T),..., séN) =
se(N:—T+1 : N;). We now construcN matricesTy, ..., Ty,
whereT,, is the threaded” x T" matrix obtained from the*"
partitions ofsy, ..., sy as follows:

_ (1) (1) (1)
a([h o - Tver TW))=[Tn Ti T - T, 7'1—7-(7151 s V283 ,---WTST),and

T = T(sgn),sgn),...,s(Tn)) ,forn=2,...,N.
which is a cyclic shift of thel’ x T' blocks one place to the

right. For anyC  CT*NT | jet Finally, the N codebooks are

Clz{[ﬂ Tz - TN} ]al,...,aTeAN‘},and
Q) ={=(m = - )| = - Twec} (8)
Con=n(Cpn 1), n=2,...,N. (9)
We now give the construction of new FFSs fbr> 1. Example 9: The proposed constru_ction procedure o=
2) New FFSs forl' > 1: We first give an example of a2, N = 3 and N; = 6 yields C;,C> and C;

new FFS for the particular case &, = 4 antennas with as given in [(ID), [(I1) and[(12) at the top of the
N =T = 2. This will help the reader understand the gener@ext page, whereU is a 6 x 6 full-diversity algebraic
construction procedure that immediately follows the extemp rotation. u

Example 8:Let A C Z[i] be any QAM constellation, If B1,..., 57 are purely imaginaryy:| = -+ = [y = 1
ar,as € A* be vectors of information symbols, asd= Ua,, and for each of the component codgs the average power
¢ =1,2, where per each of the transmit antennas is same.



4
S1 = Ua1,52 = Uag, aj,az € A

Sleal,SQZUaQ, al,a2€A4} and (6)
} - )

[ris1(1) 72s2(1) s1(3) s2(3) s1(5) sa(5)
T R -U -U € A 10
! { 1252(2) Ms1(2) s2(4) s1(4) s2(6) s1(6)] [ a2 a2 A ’ (10)
[51(5) s2(5) misi(1) 72s2(1) s1(3) 52(3)] 6
Co = = Uaj,sy = Uay, aj,as € A° 5, 11
: { 5:06) $1(6) 1(2) M) s(1) sy(a) [P URsT DA an -
[51(3) s2(3) s1(5) s2(5)) msi(1) 7252(1)} 6
Cs = = Uay,sy = Uay, aj,as € A° ;| 12
3 { 52(4) s1(4) s2(6) s1(6) 72s2(2) 7181(2) . s A2 A (12)
Theorem 5:If U is a full-diversity algebraic rotation and
51, - .., Br are algebraic numbers that are linearly independe 10’ ‘ ]
over Q, the FFSS = (f4,C1,...,Cn) achieves full-diversity, 16 bpeu :.f:ewt:z“ezep .
Wherecl’ o ’CN are given by[IB) an(t[g) -¢ fGrass;naHnian Bealmfurming

Proof: See AppendiXx L for proof. [ ]

Since the proposed FFSs encoe= N,T independent
complex symbols they havR = % = N, i.e., full-rate.

For all the new FFSs (botl = 1 andT" > 1), each of the
component STBCs is linear, i.e., for each of the STBG
every entry of the codeword matrix is some linear combimatic
of the QAM symbols{a,(i)|¢{ = 1,...,T,i = 1,...,N¢}.
Thus, for a given component codg, there exist a set of
matrices{A, ;| =1,...,T,i=1,...,N;} C CT*N¢ called
linear dispersionor weight matrices[[26] such that

Bit Error Rate

\ A\
T N L A \\\6 \f\@\ .
Cn, = {Z Zag(i)Ag,i ag(i) S A} . \\\ X\\\
(=1 i=1 O \f®
Hence one can use the sphere-decdder [27] to obtain the | 10 | | i | ‘ ‘ -
estimate given by[{1)28]. Implementirfg, given by [2), re- ° ook Be 2 ®
quires one to findninxecac, || XH||% for eachn = 1,..., N.

Again, sinceC,, is linear,

T N
AC, = {ZZag(i)AM as(i) € AA} \ {0},

{=1 i=1

Fig. 1. FFSs for2 x 2 MIMO with N = 2.

A ... A Sch fo2 x 2 MIMO
where AA = {a) — as|a1, a2 € A} C Z[i]. Hence, finding chemes fat x

minxeac, ||XH||% is equivalent to finding the squared norm In this subsection we compare FFSs fdf = N, = 2
of the shortest non-zero vector contained in a subset ofwith N = 2-ary feedback. We compare the new FFS of
lattice. This can be implemented with a minor modificatioSection[T-C1 that was obtained from the Golden code with

to the sphere-decoding algorithm [29]. Grassmannian Beamforming|[6] (see Example 1), and the
scheme from Heath, Jr. & Paulraj |11]. All three schemes
IV. SIMULATION RESULTS achieve full-diversity, and while the new scheme and Grass-

In this section we present simulation results comparing theannian Beamforming havgé = 1 (FT-optimal), the scheme
bit error rate (BER) performance of the new schemes of thiom [11] usesT” = 2. The new scheme has ra&gfull-rate),
paper with the schemes already available in the literatuBrassmannian Beamforming has ratend the FFS of[[11]
under ML decoding of codewords. In all the simulations, theses two codes of different rates: the Alamouti codel [14]
new FFSs have the best performance while utilizing the legsate 1) and spatial multiplexing (rat@). For bitrate to be
amount of feedback and transmission duration. All the codesnstant across the three schemes, if the new FFS uses an
discussed in this section use square QAM constellations ahtiary QAM constellation, both Grassmannian Beamforming
Gray encoding to map information bits into QAM symbols. and the Alamouti code for the scheme inl[11] us&-ary
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—— New scheme, N=3

— B - Grassmannian Beamforming, N=16
— & - Grassmannian Beamforming, N=3
— + - Wu & Calderbank, N=3

Bit Error Rate
Bit Error Rate

—— New Scheme, N=4 \
- Love & Heath, Jr. (Multiplexing) N=4 ‘ . \
- Grassmannian Beamforming, N=64
- Grassmannian Beamforming, N=4
- Love & Heath, Jr. (Alamouti) N=4 \
- Wu & Calderbank, N=4 ¥

10° 1 1 1 1 I I I I I I 10" ! ! ! I
18 -5 0 5 10 15 20

Eb/Noin dB

Eb/Noin dB

Fig. 2. FFSs for3 x 3 MIMO with 6 bpcu. Fig. 3. FFSs fod x 4 MIMO with 8 bpcu andN > 4.

QAM, while spatial multiplexing useg/-ary QAM. Fig.[d 10’ | ‘

shows the performance of these three schemes, tand16
bpcu. While the new FFS does not fare well fbibpcu, its
relative performance improves as the bitrate increasesfan

—— New scheme, N=2

— & - Ekbatani & Jafarkhani, N=3
— #* -Love & Heath, Jr., N=2

— & - Akhtar & Gesbert, N=2

16 bpcu it has the lowest BER among the three schemes.

B. Schemes fo3 x 3 MIMO

We now compare the new FFS of Example® £ 1 and
rate 3) which usesN = 3, with Grassmannian Beamform-
ing [6] (T" = 1 and ratel) for N = 3 and 16, and the scheme
from Wu & Calderbank([12]T = N = 3 and ratel) for the
transmission rate af bpcu. The new code usdsQAM, while
the other two schemes ué¢-QAM. The new scheme and the
Grassmannian Beamforming that usgés= 3 are FT-optimal. "l
Fig.[2 shows the BER performance of the four schemes. \ ;
see that the new FFS has the least BER, outperforming e 9
the Grassmannian Beamforming scheme that uses a hig 100 ‘ ‘ ‘ ‘

-5 0 5 10 15 20
amount of feedback oV = 16 . EbiNo in dB

Bit Error Rate
=
S

C. Schemes fot x 4 MIMO with N > N, . )
] Fig. 4. FFSs fod x 4 MIMO with 8 bpcu andN < 4.
We consider the new FFS fa¥ = 4, T' = 1 constructed

using the procedure in Section 11I-B using= A# and ]

the 4 x 4 full-diversity algebraic rotatiori{5). The new FFS gVt = 4 antennas after precoding, afg the N = T' = 4 FFS
compared with five other schemes for the bitratesdspcu: ©f Wu & Calderbanki[12] for4 transmit antennas. The new
(i) the N = 4,7 = 1 scheme of Love & Heath, Ji[2] thatScheme has rat& = 4 and uses!-QAM constellation. The
chooses according the feedback functfor: fy a precoding FFS 0Of [2] has rate? = 2 and usesl6-QAM constellation.
matrix from a set of4 x 2 matrices to transmit a two- 1€ remaining four schemes have rdte= 1 and use256-
4 antennas, QAM. The comparison of BER is shown in Figl 3, and it is
seen that the new FFS has the best performance.

stream spatial multiplexing input ovew,
(i) Grassmannian Beamforming [6]' (= 1) with N = 64-ary
feedback,(iii) Grassmannian Beamformingl [6] witN = 4, .
(iv) the N = 4,T = 2 scheme of Love & Heath, Ji.|[8] thatD- Schemes fot x 4 MIMO with N < N,

chooses, based on the feedback index, a precoding matnix fro The new scheme considered is tNe= T = 2 FFS from
a given set ofl x 2 matrices to transmit an Alamouti code oveExample[8. This is compared witlii) the N = 3, T = 2



all triples (N, T, N;) with N, = NT'. These are the first full-

10 rate full-diversity FFSs reported in the literature fBr< N;.

—— New Scheme, N=6 Through simulation results we showed that the proposed FFSs

~ F -Love & Heath, Jr. N=16 have the best performance among the schemes available in the

literature. Following are some of the questions that aretyet

3 be addressed.

« Though the necessary condition presented in SeCfioh I1-B
for full-diversity is universal, the sufficient conditiorf o
Section1I-C applies to only those FFSs that tise fy.

R E Is there a universal necessary and sufficient criterion for

< full-diversity?

N « Findingfq(H) at the receiver is equivalent to solving the

\ < closest lattice point problem fa¥ different lattices, and

0k N \ i hence this operation is of high complexity. Are there

N ; feedback functions that can be implemented with low

N \ complexity and still lead to full-diversity? Can one design

\ the component STBCs in such a way thattself can be

10 ‘ ‘ ‘ ‘ ‘ LB implemented with low complexity?

Eb/Noin dB

Bit Error Rate
=
S,

APPENDIXA
PROOF OFTHEOREM[I]

Let X € AS be of rank r(AS). There exist
Xa(n),Xp(n) € Cyp, n=1,...,N, such that

Fig. 5. FFSs fos x 6 MIMO with 12 bpcu.

scheme of Ekbatani & Jafarkhanil [9]i) the N = T = 2 Xo(1) = Xp(1)
scheme of Love & Heath, Ji][8], an@i) the N = T = 2 Xa(2) — Xp(2)
scheme of Akhtar & Gesbert [10]. The new scheme Ras 4 X = .

and usest-QAM, while the other three schemes halte= 1 X (N : X (N

and use56-QAM constellation leading to a bitrate 8fbpcu. a(N) = Xp(N)

Fig.[4 shows the BER performance of these four schemesLet the codebook sizé;| = --- = |Cx| = M. For a fixed
channel realizatiorH, if the feedback indexX(H) = n, then
the probability of codeword error of the ML decoder when
E. Schemes fof x 6 MIMO X.(n) is transmitted is lower bounded by the pairwise error

We compare the neww = 6 FFS obtained fromfthe probability PEP(X, (n) — X;(n)|H) between the codewords
+

construction procedure of Sectibn 1l-B using= e i(%%)  Xa(n), Xp(n ) Hence we havé®.(H)

and the6 x 6 full-diversity algebraic rotation labeled ‘mixed - P(X,(n) is transmitte{E)PEP (X, (n) — X, (n)[H)
2x3' in [23]. This is compared with the rateFFS of [8] that -

usesf = fy and N = 16-ary feedback. The new FFS uses _ —Q < | E || X, (n ))HHF) 7
QAM while the scheme froni [8] uses-QAM, both leading

to 12 bpcu. Fig[5b shows the BER performance of these two
schemes, and we see that while using less amount of feedb
the new scheme outperforms the scheme from [8].

re . is the Gaussian tail function. Since
n)H|lr < [ XH|[r and Q is a
monotomcally decreasmg function, we have

V. CONCLUSION > 1 £
Pe(H) > 7-Q <\/2NO||XH||F . (13)

In this paper we have given a universal necessary conde
for any FFS to achieve full-diversity in a Rayleigh block

rom [30], for anyg > 1 and0 < a < ,/% vE-1 e have

fading channel with finite noise-free delay-free feedback(x) > Zexp(—22°). Usinga = § and 3 = 2 to lower
Based on this criterion we have introduced the notion of Fipound the right hand side df (13), we get

optimal schemes that use minimum feedback for the given 1

transmission duration and minimum transmission duration f Pe(H) > P ( N ||XH||§?) - (14)

the given feedback to achieve full-diversity. We have also
given a sufficient condition for full-diversity for thoseteemes Now, | XH||% = tr(HYX”XH). Let X#X = UDU"
in which the receiver chooses the component STBC whobe the eigen decomposition ®&*X, whereU e CNt*Ne
minimum Euclidean distance is maximum. Based on this unitary andD is the diagonal matrix consisting of the
criterion and using tools from algebraic number theory, weigenvalues oX*X. Let A1, Az, ..., A(as) be the non-zero
have constructed full-rate full-diversity FT-optimal F&%r eigenvalues ofX”X and H = UYH, then || XH|]%2 =



tr(HTDH) = SN S9N |h, 412, where H = [y ;).

SinceH andH are |dent|cally distributed, the variablb?&_,j |2

are independent and identically distributed exponerdiatiom
variables with unit mean. Averagin§ _(14) with respectHo
we getP. =

1 g J1&8
E(P.(H)) > —E - Nilhi i ?
(Pe(H)) = —7E | exp 2N0;; i g
r(AS)

4MJHl H1 E<exp< OAi|ﬁi7j|2>)
- T (3)

The last equality is due to the fact that for an exponentially

10

X2 Xopin- Let \* = minxeas Ay, (X#X). Since all

the matrices inAS have rankN;, we have\* > 0, and

[1 XK i 72 = A, (Xt X ) |[H[ 5 > A[[H| .

mwn

(16)

Sincen* = argmaxne{l N} | Ximin (n)H]|%, we have

.....

x 1 1
[ X (0" )H[F > IIXmm(n)HIIQF = X H] |-
N N
n=1
17)
From [16) and[{17) we have
[ (X, () = Ky (7)) H| |7 > [[Xipin (0" H| [

1

)\*
> ||

distributed random variable with unit mean, and for any Thus, we can upper bound the left hand sidelof (15) as

s> 0, E(exp(—sx)) =

(14s)~". For large values of%, we
have

E

e>i — AV
~ 4AM \ 2N, i

) —r(AS)N,. r(AS)

=1

Hence the probability of error decays at the most as fast as

—r(AS)N, .
(N%) . This completes the proof.

APPENDIXB
PROOF OFTHEOREM[Z

Let [Cy| = -+ =
each codebook’,, be indexed by the message index €
{1,...,M}, ie, letC, = {X,,(n)m € {1,...,M}}. In

order to prove the theorem, we derive an upper bound on the
pairwise error probabilitPEP(m; — mo) between any two

distinct message indices;, ms € {1,...,M}. For a given
channel realizatio, let f4(H) = n*, then

PEP(m1 — m2|H

Using the Chernoff bound [30D(z) < exp(—%-),
PEP(m1 — m2|H)

1 * *
< g0 (1l (K (07) = X (0 B
(15)
For each n = 1,...,N, let X,in(n) =
argminxeac, ||XH||F,and
Xmin— .

Note that||XmmH||F > AN, (XE. X)) H||%, where
v, (X2 X,.in) is the smallest singular

min

ICny| = M, and let the codewords of

value of

1 EX*
_ 2
__HH ( 4NN|”|)
1=17=1
(18)

whereH = [h; ;], and the variables$h, ;|?> are independent
random variables that are exponentially distributed witfit u
mean. Averaging (18) with respect ¥, we obtain

SN L)

1=17=1
1 Ex* 0\ NN
2 4N Ny

For large values ofj\’,E—0 we have

PEP(m1 — m2)

| /\

1/ Ex-\ MV
PEP <= .
(m1 = ma) S 5 <4NN0)

This completes the proof.

APPENDIXC
PROOF OFTHEOREM[G

Let X = [XT XT ... XT]T € AS. Since the codes
Ci1,...,Cy are linear, for eacm € {1,..., N} there exist
vectorsay, ..., ar € Z[i]t, not all zero, such that

X, =w<n—1> ([T T2 --- Tn]), where
(m))

Ti = Tns\V, . yrs®) and 7, = T(s(™, ... s\
for m > 1. All the entries of7,,, m > 1, are algebralc,
and each entry of7; is either 0 or a producty,« for
some! € {1,...,T} and some algebraic number Hence
the determinant ofX is a polynomial f(z1,...,z7) with
algebraic coefficients and degree at the mgstvith respect to
eachz,, evaluated at the poirtey,...,27) = (71,...,77)-
Let Zy,+1 = {0,1,...,N;}, and for anyp € Z}, ., let

~P denote the produc’y"(1 PP Thendet(X) =

pezf, | e where the scalarsp are algebra|c In order
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to use Theorern]3 we need to show that all4ps are distinct For¢ =1,...,T, letZ, C {1,..., N} be set of the indices
and at least one of thg, is non-zero. Suppose,, p2 € Zvat+1 of those matrices iIrX(1) ... X(V:N) whose first(¢ — 1)
are distinct. We have threads are zero, and th#¢* thread is non-zero. Since the
degree ofy; in (20) ism1T and since there are oniy; 7T non-
zero entries inX that contain terms of typévy;, ¢ algebraic,
and all of them are contained in the diagonal blocks indexed
by elements inZy, it follows that for everyn € 7, o, is
the identity map on{(n — 1)T" +1,...,nT}. There are only
moT non-zero entries inX, outside the blocks indexed by
elements ofZ;, of the type(ys, ¢ algebraic, and these are
contained in the block matrices whose indices belon@sto
Since the degree of, is myT in 20), for everyn € I,

,ypl _ engzl Bep1(€) and,ypz _ 622’11 51[)2(5).

Sincep1, p2 € Q7! are distinct, and 31, . . . ,BTT} is linearly
independent ove we haveZZT:1 Bep1(€) # >y Bep2().
Thus~P! and~P2 are distinct for all pairs of distingby, p2.
Now, using Theorenid 2 andl 3, it is enough to show that 0
for somep € Z}, ;.

Partition the matrixX into 7' x 7" matricesX (“/) such that

1,1 1,2 1,N -
iilli };22,2; §E27N; o—@(i) =n-1)T+1+((¢— (n—1)T —1) &7 1). Extending
X th|s.arg_ument, for any > 1, there are onlyrngT non-zero
: : entries inX that are of the form(v,, outside of the blocks
XN, x(N.2) X (N,N) X 4 e I, U---UTZy_q, and these are contained in the

matricesX (“%), i € 7,. Since the degree of, in (20) ism,T,
for everyn € Z, we have

on(i) = (n— )T+ 1+ (i — (n—1)T — 1) @y (( — 1)),

For i # j, every entry of X(»/) is algebraic. SinceU
is a full-diversity rotation, for everyi € {1,...,N} and
¢ € {1,...,T}, either all the entries of thé'" thread of
X (i) are zero or every entry of thé" thread is non-zero. In
the latter case each such entry is a productofvith some
algebraic number. From amoi)@(lvl), X(Qig)v L X(]\T’N)’ let  aigebraic, to the suni{L9). Heneg- # 0, and this completes
m1 be the number of matrices whose first thread is non-zegRe proof.
Let mo be the number of matrices whose first thread is zero
and second thread is non-zero. And in generalplgtbe the
number of matrices whose firét- 1 threads are zero and the
¢t thread is non-zero. Since for eadt(®) at least one of [1]
the T threads is non-zero, we hawe, + ---+mr = N, and 2
miT +moT + -+ mpT = N;. To complete the proof, we
will now show that forp* = [m,T moT --- m7T|", we
havecp- # 0.

Writing X = [z, ], we have

X o

T
PELN, 41

fori e {(n—1)T +1,...,nT}. Thus, there exists a unique
o € Sy, that contributes a non-zero term of type®", a
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