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Exact Joint Distribution Analysis of Zero-Forcing
V-BLAST Gains with Greedy Ordering

Serdar Ozyurt and Murat Torlak,Senior Member, IEEE

Abstract—We derive the joint probability distribution of zero-
forcing (ZF) V-BLAST gains under a greedy selection of decoding
order and no error propagation. Unlike the previous approxi-
mated analyses, a mathematical framework is built by applying
order statistics rules and an exact closed-form joint probability
density function expression for squared layer gains is obtained.
Our analysis relies on the fact that all orderings are equiprobable
under independent and identical Rayleigh fading. Based on this
idea, we determine the joint distribution of the ordered gains
from the joint distribution of the unordered gains. Our resu lts
are applicable for any number of transmit and receive antennas.
Although we present our analysis in a ZF V-BLAST setting, our
analytical results can be directly applied for the dual cases of ZF
V-BLAST. Under the assumption of a low rate feedback of
decoding order to the transmitter, a benefit of having exact
expressions is illustrated by the calculation of the cutoffvalue
under optimal power allocation that maximizes the sum of the
substream outage capacities under a given sum power constraint.
We provide numerical results and verify our analysis by means
of simulations.

Index Terms—Multiple-input multiple-output, zero-forcing
V-BLAST, outage probability, order statistics.

I. I NTRODUCTION

A multiple-input multiple-output (MIMO) transmission sys-
tem has the potential to offer substantial increase in the data
rate performance beyond its single-input single-output coun-
terpart in a rich-scattering environment [1], [2]. Many space-
time transmission schemes have been offered in literature to
realize this potential gain in practice. One implementation
called zero-forcing (ZF) vertical Bell Labs Layered Space-
Time (V-BLAST) algorithm is especially appealing for its
high spectral efficiency with relatively low complexity [3].
In a scenario oft transmit andr receive antennas with
t ≤ r, ZF V-BLAST algorithm providest-fold sum rate
increase as compared to a single transmit antenna case by
transmitting independently encoded and modulatedt input
data streams overt different antennas. At the receiver, a two-
step process is employed on the aggregate received signal. In
an ideal scenario, by multiplying the received signal with a
certain matrix with orthonormal columns and then applying
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successive interference cancellation, each substream canbe
detected without the effect of the inter-stream interference.
Detection order plays a crucial role on the system perfor-
mance. Optimal ordering given by an exhaustive search can
be impractical due to its combinatorial complexity. A reduced-
complexity ordering called greedy ordering tries to make best
possible choices in a sequential and greedy manner. Despite
the fact that it is a suboptimal algorithm, greedy ordering is
shown in [4] to attain the best diversity-multiplexing tradeoff
performance.

If the transmitter is not provided with any form of channel
state information (CSI), the suitable performance metric is the
outage probability which is also proportional to the error rate
of the system. Symbol error rate of ZF V-BLAST is studied
in [5] under the effect of error propagation over layers due
to channel estimation errors. An analytical approach based
upon channel instantaneous correlation matrices is presented
for the outage analysis of ZF V-BLAST algorithm in [6].
It is shown that the diversity order of ZF V-BLAST is
(r − t + 1) no matter what ordering method is used [7].
The gain obtained by the optimal ordering of post-processing
signal-to-noise ratio (SNR) values manifests itself by a hor-
izontal shift of the outage curve [7], [8]. This SNR gain
is quantified in [7] based on an asymptotically high SNR
assumption. An outage analysis for two and any number of
transmit antennas is provided in [6] and [9], respectively.Note
that the analysis given in [9] is in the form of a number
of bounds and approximations. In [4], ZF V-BLAST with
two different channel-dependent ordering methods, namely
norm ordering and greedy ordering, is analyzed. Using some
bounding techniques, the diversity order for theith substream
is shown to be equal to(t − i + 1)(r − i + 1) when greedy
ordering is employed. It is mentioned to be intractable to
perform an exact statistical analysis on the post-processing
layer gains when greedy ordering is used. As a remedy, the
same authors propose a hyperbola model to approximate the
outage probability in [10]. An exact performance analysis of
ZF V-BLAST with greedy ordering does not exist in literature
to the best of our knowledge.

In this work, we present an exact statistical analysis of ZF
V-BLAST algorithm with greedy ordering described in [4]
over Rayleigh fading channels. Assuming no error propaga-
tion, we derive the joint probability density function (PDF)
of the squared layer gains by introducing an analytical frame-
work. Our framework is built on the basis that all orderings are
equiprobable under independent and identical Rayleigh fading.
Capitalizing on this fact, we determine the joint distribution of
the ordered gains from the joint distribution of the unordered
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gains. A compact closed-form solution is presented on the joint
PDF of the squared layer gains for anyt and r with t ≤ r.
The joint PDF of the diagonals of an upper triangular matrix
resulting from ordered QR decomposition of a Gaussian
channel matrix finds application in some other settings as
well. A joint antenna selection and link adaptation algorithm is
described in [11]. This algorithm leads to the same subchannel
gains as ZF V-BLAST. The authors approximate the statistics
of the subchannel gains to estimate the optimal number of
active antennas. Our results can be directly applied in this
case to reach to answers based on the exact statistics. We
also use the analytically obtained PDF expressions to illustrate
the cutoff value under the water-filling power allocation given
in [10].

Notation: The operatorsE{.}, |.|, ‖.‖, (.)H , \, Pr(.), log(.),
andtr(.) denote expectation, absolute value, Euclidean norm,
Hermitian transpose, set difference, probability, logarithm to
base two, and trace, respectively. Throughout the paper, we
refer to the PDF ofx by fX(x) and represent the joint
PDF of {x1, x2, . . . , xn} by fXn

1
(x1, x2, . . . , xn) where the

subscript and superscript onXn
1 show the starting and ending

indices, respectively. The same convention is also followed for
cumulative distribution function (CDF) expressions.

The rest of the paper is organized as follows. Section II
introduces the system model and ZF V-BLAST algorithm with
greedy ordering. In Section III, an exact outage probability
analysis on ZF V-BLAST algorithm with greedy ordering is
carried out by deriving PDF expressions and numerical results
are presented in Section IV. Finally, Section V concludes the
paper.

II. SYSTEM MODEL

A single-user MIMO transmission system is assumed with
t and r antennas (t ≤ r) at the transmitter and receiver,
respectively. The received complex baseband signal is modeled
by

y = HΠΛx + n (1)

where H = [h1 h2 . . . ht] is the channel matrix with
[H]ij ∈ C denoting the fading coefficient between the
jth transmit antenna andith receive antenna. Also,Π is
a permutation matrix capturing the effect of the decoding
order at the receiver andΛ is a diagonal matrix with the
square of itsith diagonal, i.e.,ρi, representing input power
allocation on theith substream under a total power constraint
of ρ such that

∑

i ρi ≤ ρ. Additionally, the elements of
x ∈ Ct×1 denote encoded and modulated data symbols
such thatE{xxH} = I with I denoting the identity matrix
and n ∈ Cr×1 represents additive white Gaussian noise at
the receiver withE{nnH} = I . Note that each substream
has an independent and capacity-achieving encoder together

with its own modulation scheme. We assume thathi with
i ∈ {1, . . . , t} are independent and identically distributed (IID)
random vectors with each remaining constant throughout one
codeword transmission and independently changing between
transmissions. We also assume a homogeneous network with
enough spacing among the antennas such that the elements
of hi are IID zero-mean complex Gaussian random variables
with unit variance. Note that due to the channel statistics,H
matrix has full column rank with a probability of one. Full
CSI is assumed to be available only at the receiver.

A. Zero-Forcing V-BLAST Algorithm with Greedy Ordering

The receiver employs a two-stage algorithm to detectt
substreams transmitted overt transmit antennas in parallel.
In the first step, the ordered channel matrix is decomposed as
HΠ = QU whereQ is a matrix with orthonormal columns
such thatQHQ = I andU is an upper-triangular square matrix
which can be obtained via QR decomposition. Multiplying the
received signal vector byQH nulls the interference on theith
substream caused by thejth substream withj < i. The second
step includes successive interference cancellation whichstarts
with the interference-free substream. Before detecting any
substream signal, the interference induced by the previously
detected streams is subtracted from the aggregate signal. In
a noise-free environment with rich-scattering, this two-stage
algorithm completely suppresses the inter-stream interference
resulting in t virtual parallel channels. We employ a greedy
ordering policy to set the detection order, which is specified
by Π matrix. The channel-dependent permutation matrix is
chosen such that theith diagonal element ofU is made as
large as possible starting from the first diagonal element in
a sequential and greedy fashion [4]. The resulting upper-
triangular matrix is given by (2) at the bottom of this page.
In (2), {π(1), . . . , π(t)} denotes a permutation of{1, . . . , t}
and P⊥

π(1:n) (n ∈ {1, . . . , t − 1}) is a projection matrix onto
the orthogonal complement of the vector space spanned by
{hπ(1), . . . , hπ(n)}. Note that due to the greedy ordering, we
have (3) and (4) at the top of the next page [4]. The substream
transmitted from theπ(t)th transmit antenna is detected first
and the substream corresponding to theπ(t − 1)th transmit
antenna follows it. The last detected substream is the one
that has been sent over theπ(1)th transmit antenna. When
error propagation effect is ignored, the interference terms
(represented by the off-diagonal elements of the matrixU)
are completely suppressed and ZF V-BLAST with the greedy
ordering yields
{

γ1 = ‖hπ(1)‖
2, γ2 = hH

π(2)P
⊥
π(1)hπ(2), . . . ,

γt = hH
π(t)P

⊥
π(1:t−1)hπ(t)

}

as the squared layer gains.

U =















‖hπ(1)‖ ∗ ∗ . . . ∗

0
√

hH
π(2)P

⊥
π(1)hπ(2) ∗ . . . ∗

...
...

... . . .
...

0 0 0 . . .
√

hH
π(t)P

⊥
π(1:t−1)hπ(t)















. (2)
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π(i) =











argmax
j∈{1,...,t}

‖hj‖ for i = 1,

argmax
j∈{1,...,t}\{π(1),...,π(i−1)}

√

hH
j P⊥

π(1:i−1)hj for i ∈ {2, . . . , t},
(3)

[U]ii =











max
j∈{1,...,t}

‖hj‖ for i = 1,

max
j∈{1,...,t}\{π(1),...,π(i−1)}

√

hH
j P⊥

π(1:i−1)hj for i ∈ {2, . . . , t}.
(4)

III. PERFORMANCEANALYSIS

In this section, we present a framework
to derive the joint PDF of the first m
(m ∈ {1, 2, . . . , t}) squared layer gains by neglecting
error propagation. Using the fact that all orderings are
equiprobable under independent and identical Rayleigh
fading, we determine the joint distribution of the ordered
gains from the joint distribution of the unordered gains. To
this end, we first temporarily ignore the effect of the greedy
ordering by assumingΠ = I . This leads to the following
unordered squared norms and projections

vij =

{

‖hi‖
2 for i ∈ {1, . . . , t} andj = 1,

hH
i P⊥

1:j−1hi for i ∈ {2, . . . , t}
(5)

andj ∈ {2, . . . ,min(i,m)},

whereP⊥
1:j−1 represents a projection matrix onto the null space

of the vector space spanned by{h1, . . . , hj−1}. Note thathj

with j ∈ {1, 2, . . . , t} are IID random vectors representing the
columns of the channel matrixH.

Theorem 1: The joint PDF of{vij : i ∈ {1, . . . , t}, j ∈

{1, . . . ,min(i,m)}} denoted byfVtm
11

(

{{vij}
t
i=1}

min(i,m)
j=1

)

can be written as

fVtm
11

(

{{vij}
t
i=1}

min(i,m)
j=1

)

= fV11
(v11)fV22

21
(v21, v22)fV33

31
(v31, v32, v33) . . .

×fVmm
m1

(vm1, vm2, . . . , vmm)

×fVm+1,m

m+1,1
(vm+1,1, vm+1,2, . . . , vm+1,m) . . .

× fVtm
t1
(vt1, vt2, . . . , vtm). (6)

Proof: See Appendix A [12], [13].
Note that the variables in (6) are specifically formed such
that vij for a given i represent the candidate squared gains
for the jth layer before any ordering is applied. For anyi ∈
{1, . . . , t}, vij with 1 ≤ j ≤ min(i,m) ≤ t are dependent
random variables and have chi-squared PDF with2(r− j+1)
degrees of freedom, respectively [14].

Theorem 2: The PDF expressions on the the right-hand side
of (6) can be written as

fVii
i1
(vi1, vi2, . . . , vii) =

vr−i
ii

(r − i)!
e−vi1 (7)

for i ∈ {1, . . . ,m} andvi1 ≥ vi2 ≥ . . . ≥ vii ≥ 0. Also,

fVim
i1
(vi1, vi2, . . . , vim) =

vr−m
im

(r −m)!
e−vi1 (8)

for i ∈ {m+ 1, . . . , t} andvi1 ≥ vi2 ≥ . . . ≥ vim ≥ 0.
Proof: See Appendix B.

Using (7) and (8) in (6), the joint PDF
fVtm

11

(

{{vij}
t
i=1}

min(i,m)
j=1

)

can be expressed as

fVtm
11

(

{{vij}
t
i=1}

min(i,m)
j=1

)

=

(

m
∏

i=1

vr−i
ii

(r − i)!
e−vi1

)(

t
∏

i=m+1

vr−m
im

(r −m)!
e−vi1

)

. (9)

We now arrange the unordered gains according to the greedy
ordering technique described in (4) and, without loss of
generality (due to the assumption of homogeneous users),
assume that it yields[U]ii = γi = vii for i ∈ {1, . . . ,m},
i.e,


















γ1 = v11 ≥ {v21, v31, . . . , vt1},
γ2 = v22 ≥ {v32, v42, . . . , vt2},

...
γm = vmm ≥ {vm+1,m, vm+2,m, . . . , vtm}.

(10)

Resorting to Bapat-Beg theorem from order statistics [15],
the joint PDF of {γ1, γ2, . . . , γm} denoted by
fγm

1
(γ1, γ2, . . . , γm) can be written as follows

fγm
1
(γ1, γ2, . . . , γm)

=
t!

(t−m)!
E

{

fVtm
11

(

{{vij}
t
i=1}

min(i,m)
j=1

)

∣

∣

∣

∣

v11=γ1
v22=γ2

...
vmm=γm

}

(11)
where the average is taken over allvij such thati 6= j.
Note that in (11), t!/(t − m)! is the number of differ-
ent m−permutations that can be selected out oft transmit
antennas. Using (7) and (8) together with (10) in (11),
fγm

1
(γ1, γ2, . . . , γm) can be written as given in (12) at the

top of the next page. Arranging terms appropriately, one can
obtain

fγm
1
(γ1, γ2, . . . , γm) =

t!

(t−m)!





m
∏

j=1

γr−j
j

(r − j)!
Ij



 (13)

×

[∫ γm

0

zr−m

(r −m)!
Im(γm = z)dz

]t−m

whereI1 = e−γ1 and

Ij =

∫ γj−1

γj

∫ γj−2

vj,j−1

. . .

∫ γ1

vj2

e−vj1dvj1 . . . dvj,j−2 dvj,j−1

for γ1 ≥ γ2 ≥ . . . ≥ γm ≥ 0 [16]. The expression in
(13) is obtained in another context in [17] where a sum
rate performance analysis on zero-forcing dirty paper coding
(ZF DPC) [18] with greedy user selection [19] is performed.
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fγm
1
(γ1, γ2, . . . , γm) =

t!

(t−m)!

γr−1
1

(r − 1)!
e−γ1

[∫ γ1

γ2

γr−2
2

(r − 2)!
e−v21dv21

] [∫ γ2

γ3

∫ γ1

v32

γr−3
3

(r − 3)!
e−v31dv31dv32

]

. . .

×

[

∫ γm−1

γm

∫ γm−2

vm,m−1

. . .

∫ γ1

vm2

γr−m
m

(r −m)!
e−vm1dvm1 . . . dvm,m−2dvm,m−1

]

×

[∫ γm

0

∫ γm−1

vtm

. . .

∫ γ1

vt2

vr−m
tm

(r −m)!
e−vt1dvt1 . . . dvt,m−1dvtm

]t−m

. (12)

Ij = e−γj − e−γj−1 −

j−3
∑

k=0

e−γj−k−2

∑

b1+...+bk+1=k+1
∀n∈{1,...,k},b1+...+bn≤n

[

γ
bk+1

j−1 (γj−2 − γj−1)
bk − γ

bk+1

j (γj−2 − γj)
bk

bk+1!bk! . . . b1!

× (γj−3 − γj−2)
bk−1 (γj−4 − γj−3)

bk−2 . . . (γj−k−1 − γj−k)
b1

]

. (14)

∫ γm

0

zr−m

(r −m)!
Im(γm = z)dz = 1−

Γ(r −m+ 1, γm)

(r −m)!
−

γr−m+1
m

(r −m+ 1)!
e−γm−1 −

m−3
∑

k=0

e−γm−k−2

×
∑

b1+...+bk+1=k+1
∀n∈{1,...,k},b1+...+bn≤n

[

γ
bk+1

m−1 (γm−2 − γm−1)
bk γr−m+1

m

(r−m+1)! −
∑bk

c=0

(

bk
c

)γ
bk−c

m−2
(−1)c γ

bk+1+c+r−m+1

m

(bk+1+c+r−m+1)(r−m)!

bk+1!bk! . . . b1!

× (γm−3 − γm−2)
bk−1 (γm−4 − γm−3)

bk−2 . . . (γm−k−1 − γm−k)
b1

]

. (15)

Replacing the number of users by the number of transmit
antennas in our setting, it can be shown that ZF DPC with
greedy user selection for single-antenna users is a dual case
of ZF V-BLAST with greedy ordering. Although the authors
present a quite lengthy proof in [17], we provide a much
shorter and simpler framework to arrive at the same conclusion
by applying only order statistics rules.

Theorem 3: The solution to the multiple integralIj in
(13) is given in (14) as a double-column equation for
j ∈ {2, 3, . . . ,m}. In (14), the second sum is evalu-
ated over all combinations of nonnegative integer indices
{bk+1, bk, . . . , b1} (beginning frombk+1) such that the listed
conditions are satisfied.

Proof: See Appendix C.
In (13), the integral raised to the(t − m)-th power can be
solved using Theorem 3. The solution is given in (15) as a
double-column equation where the derivation is based on the
binomial expansion theorem [20]. In (15),Γ(s, x) is the upper
incomplete gamma function [20]. The result in (13) together
with Theorem 3 and (15) can be used to find the joint PDF
of the squared layer gains of the firstm substreams in an
exact closed-form. The analytically obtained PDF expressions
fγ2

(γ2) and fγ3
(γ3) are plotted in Fig. 1 fort = 3 and

r = 4 together with the corresponding simulated histograms.
The strong match between the analytical and numerical results
clearly verifies the accuracy of the analytical PDF expressions.
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γ
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f γ i(γ
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Simulation, γ
3

Analytical, γ
3

Fig. 1. Comparison of the analytical PDF expressions onγ2 andγ3 with
the corresponding numerical results fort = 3 andr = 4.

The CDF of γm can be written as given in (16) at the
top of the next page. The solutions to the integrals within
the last expectation in (16) can be obtained from (15). Note
that the denominator term in (16) is not a function ofγm.
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Fγm
(γm) = Eγ1,...,γm−1

{

∫ γm

0

fγm
1
(γ1, γ2, . . . , γm−1, γm = z)

fγm−1

1

(γ1, γ2, . . . , γm−1)
dz

}

= Eγ1,...,γm−1











(t−m+ 1)
∫ γm

0

z
r−m
1

(r−m)!Im(γm = z1)
[

∫ z1

0

z
r−m
2

(r−m)!Im(γm = z2)dz2

]t−m

dz1
[

∫ γm−1

0

z
r−m+1

3

(r−m+1)!Im−1(γm−1 = z3)dz3

]t−m+1











= Eγ1,...,γm−1











[

∫ γm

0

z
r−m
1

(r−m)!Im(γm = z1)dz1

]t−m+1

[

∫ γm−1

0

z
r−m+1

3

(r−m+1)!Im−1(γm−1 = z3)dz3

]t−m+1











. (16)

Also, as the average is taken over{γ1, γ2, . . . , γm−1}, we
can directly investigate the numerator to see the dependence
of the CDF onγm. As γm → 0, (15) can be replaced with
O(γr−m+1

m ) by using asymptotic behavior of the incomplete
gamma functions [20]. Substituting this in (16), one can
conclude

Fγm
(γm) = O(γ(t−m+1)(r−m+1)

m ) as γm → 0. (17)

Using the idea that an outage happens when the channel gain
is sufficiently small (for high power allocation values), the
expression in (17) can be interpreted as that themth substream
has a diversity order of(t −m + 1)(r −m + 1) [4]. As the
overall outage probability of the ZF V-BLAST is dominated
by the worst subchannel gain, the overall diversity order is
given by (r − t+ 1) [6].

A. Low Rate Feedback of Decoding Order

When the transmitter is not provided with any form of CSI,
the applicable capacity measure is the outage capacity [14].
Representing the CDF of theith layer’s squared gain by
Fγi

(γi), the outage probability for theith substream can be
written as

Pout(Ri) = ǫ = Pr(log(1 + γiρi) ≤ Ri) = Fγi

(

2Ri − 1

ρi

)

(18)

for a given pair of rate and power allocation valuesRi andρi,
respectively. Using (18), theith substream’sǫ−outage capacity
can be expressed as

Ri(ǫ) = log
(

1 + F−1
γi

(ǫ)ρi
)

(19)

whereF−1
γi

(.) denotes the inverse function for the CDF of
the ith layer’s squared gain. It is worth to mention that
the ith substream with theǫ−outage capacity ofRi has
(t− i+1)th place in detection order. Under an identical target
outage probability ofǫ per layer, the optimal power alloca-
tion policy that maximizes the sum of substreamǫ−outage
capacities can be determined from

max
ρi

t
∑

i=1

log
(

1 + F−1
γi

(ǫ)ρi
)

,

subject to
t
∑

i=1

ρi = ρ. (20)
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Fig. 2. Substream outage probabilities under a target rate of Ri = 1 bits/s/Hz
with t = 3, r = 4, and varyingρ.

It can be shown that the optimal power allocation over layers
is given by the following water-filling formula

ρi =

(

µ−
1

F−1
γi (ǫ)

)

+

(21)

where (.)+ refers to max(0, .) and µ is obtained from
∑t

i=1 ρi = ρ [10]. For a given targetǫ outage probability
per layer and total power constraint ofρ, one can solve
(21) beforehand (using the statistics of the squared layer
gains obtained previously) for the power allocation values
and corresponding number of active substreams with nonzero
power allocations. In this case, the transmitter only needsto
be informed on the decoding order, which can be sent back
from the receiver inlog t! bits [10].

IV. N UMERICAL RESULTS

In this section, a number of numerical results are provided
for r = 4. The power allocation among substreams is uniform
in Fig. 2 and Fig. 3 whereas the water-filling power allocation
in (21) is used in Fig. 4 and Fig. 6. In Fig. 2, outage
probabilities for different layers are illustrated under atarget
substream rate ofRi = 1 bits/s/Hz with t = 3 and varying
ρ. The different diversity levels for different layers can be
seen from this figure. Specifically, it can be deduced that the
diversity levels are{2, 6, 12}. Substreamǫ−outage capacities
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of the greedy ordering and no ordering cases are compared
in Fig. 3 with respect toρ with ǫ = 0.1 and t = 3.
The benefit of the greedy ordering clearly exhibits itself on
the first two substreams. For the greedy ordering, the third
substream has a lower outage capacity as compared to that of
no ordering. This is expected as the greedy ordering leaves the
last substream with the smallest squared layer gain. However,
when comparing the sum of the substream outage capacities,
the greedy ordering yields around1 bits/s/Hz better spectral
efficiency. Using the water-filling power allocation in (21),
substreamǫ−outage capacities are plotted in Fig. 4 with
t = 3, ρ = 10 dB, and varying target outage probability per
layer. As the target outage probability per layer increases, the
corresponding substream outage capacities increase. The rate
of change in the last substream is faster as compared to the
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Fig. 6. Substream outage capacities witht = r = 4, ǫ = 0.1, and varying
ρ where power distribution over layers is given by the water-filling power
allocation in (21).

first two substreams. Inverse ofF−1
γi

(ǫ) in (19) is illustrated
in Fig. 5 for i ∈ {1, 2, 3}, t = 3, and varyingǫ together
with the cutoff valueµ in (21) for ρ = 5 dB. SinceF−1

γi
(ǫ)

is an increasing function of the outage probability [10], the
cutoff value decreases as the outage probability increases
under a fixedρ. When the target outage probability per layer
is less than around0.215, no power is allocated on the third
substream. The first two substreams on the other hand have
similar nonzero power allocation values for all plotted range.
Note that without the analytical CDF expressions, one may
need to carry out extensive simulations to find the power
allocation values. For varying total available powerρ, the
substreamǫ−outage capacities are plotted in Fig. 6 by setting
t = 4 and ǫ = 0.1. Power allocation over layers is given by
the water-filling power allocation given in (21). Whenρ is
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small, the power allocation policy heavily favors the best two
subchannels resulting in a zero rate on the fourth substream
whenρ ≤ 15 dB. As ρ increases on the other hand, the power
distribution over layers gets more and more uniform.

V. CONCLUSION

We have presented an exact statistical analysis on zero-
forcing V-BLAST algorithm under no error propagation and a
greedy selection of decoding order at the receiver. Relyingon
the fact that all orderings are equiprobable under independent
and identical Rayleigh fading, we have obtained the joint dis-
tribution of the ordered gains using the joint distributionof the
unordered gains. Unlike the previous approximate analyses, an
exact mathematical framework has been introduced. Particu-
larly, a compact and closed-form expression has been derived
on the joint PDF of the squared layer gains for any number of
transmit and receive antennas. The analytically obtained PDF
expressions have been utilized to compute the cutoff value
under the water-filling power allocation that maximizes the
sum of the substream outage capacities for a given sum power
constraint [10]. It is also possible to extend our analysis to
obtain exact bit and symbol error probability curves under no
error propagation. Our analysis has been numerically verified.
The presented framework can be modified for other similar
ordering techniques.

APPENDIX A
PROOF OFTHEOREM 1

The unordered variables{vij : i ∈ {1, . . . , t}, j ∈
{1, . . . ,min(i,m)}} in (5) can be written as given in (22)
at the top of the next page form ≥ 3. In (22), hj for
j ∈ {1, 2 . . . , t} represent the channel vectors (IID isotropic
jointly Gaussian random vectors) andP⊥

1:j−1 is a projection
matrix onto the null space of the vector space spanned by
{h1, . . . , hj−1}. We need to prove that the random vec-
tors [v11], [v21, v22], . . . , [vt1, vt2, . . . , vtm] are independent.
Instead of working on the squared norms, we prove the
independence for the random vectors themselves given by (23)
on the next page as a double-column equation. In other words,
we prove that[w11], [w21,w22], . . . , [wt1,wt2, . . . ,wtm] are
independent. This is a stronger claim than the previous one,
hence its proof directly implies the desired result. Note that
for anywij = P⊥

1:j−1hi in (23),hi andP⊥
1:j−1 are independent

sinceP⊥
1:j−1 depends only on{h1, h2, . . . , hj−1} and we have

j ≤ i. Also, conditioned on{h1, h2, . . . , hj−1}, wij is a pro-
jection of a Gaussian random vector onto a given subspace and
has a Gaussian distribution. This can be seen by first applying
the spectral decomposition onP⊥

1:j−1 and then utilizing the
fact that the distribution of a circularly-symmetric Gaussian
random vector is invariant under unitary transformations [14].
Hence, the random vectors in a given row in (23) are jointly
Gaussian. For Gaussian variates, pairwise independence im-
plies joint independence as the dependence is established
by the covariance matrix in this case. Consequently, proving
pairwise independence for any two random vectors in different
rows serves our purpose. It is clear from the definition that all
wi1 vectors withi ∈ {1, 2, . . . , t} are independent. As the pro-
jections of two independent Gaussian random vectors onto a

given orthogonal direction (or subspace) are independent [14],
all vectors in the second column, i.e,wi2 for i ∈ {2, 3, . . . , t},
are also independent. The same result holds for all other
columns. Hence, each column in (23) is comprised of IID
random vectors. Therefore, in order to prove Theorem 1, it
suffices to show that all pairs{wij ,wpq} with i 6= p and
j 6= q are independent, i.e.,E{wijwH

pq} = 0 with 0 denoting
the zero matrix. The productwijwH

pq can be written as

wijwH
pq = P⊥

1:j−1hihH
p P⊥

1:q−1 (24)

where we use the fact that any orthogonal projection matrix
has the property of being Hermitian. We can express (24) as

wijwH
pq = P⊥

1:j−1hihH
p P⊥

1:q−1 =
r
∑

ν=1

hiν gj−1,ν hH
p P⊥

1:q−1

(25)
where hiν and gj−1,ν with ν ∈ {1, 2, . . . , r} represent the
νth element ofhi and theνth column ofP⊥

1:j−1, respectively.
Taking average in (25), we can write

E{wijwH
pq} =

r
∑

ν=1

E
{

hiν gj−1,ν hH
p P⊥

1:q−1

}

. (26)

We havej ≤ i, q ≤ p, i 6= p, and j 6= q. Also, gj−1,ν and
P⊥
1:q−1 depend only on{h1, . . . , hj−1} and {h1, . . . , hq−1},

respectively. Consequently, forp < i, (26) can be written as

E{wijwH
pq} =

r
∑

ν=1

E {hiν} E
{

gj−1,ν hH
p P⊥

1:q−1

}

= 0 (27)

sinceE {hiν} = 0. Using the same approach, (25) can also
be expressed as

wijwH
pq =

r
∑

ν=1

h∗
pν P⊥

1:j−1hi gHq−1,ν (28)

where h∗
pν and gq−1,ν with ν ∈ {1, 2, . . . , r} denote the

complex conjugate of theνth element ofhp and theνth
column ofP⊥

1:q−1, respectively. Whenp > i, hp is independent
of hi, P⊥

1:j−1, andP⊥
1:q−1. Additionally, asE

{

h∗
pν

}

= 0, we
can conclude

E
{

wijwH
pq

}

=

r
∑

ν=1

E
{

h∗
pν

}

E
{

P⊥
1:j−1hi gHq−1,ν

}

= 0 (29)

for p > i.

APPENDIX B
PROOF OFTHEOREM 2

Let {βi1, . . . , βir} with i ∈ {1, . . . , t} be independent
and exponentially distributed random variables. Also, for
j ∈ {1, . . . , r}, defineṽij as

ṽij = βij + . . .+ βir . (30)

In (30), {βi1, . . . , βir} have the following joint PDF

fβir

i1

(βi1, . . . , βir) = e−(βi1+...+βir) (31)

for {βi1, . . . , βir} ≥ 0 [14]. Using (30), we can derive the
following transformation:

βij =

{

ṽij − ṽi,j+1 for j ∈ {1, . . . , r − 1},
ṽir for j = r,

(32)
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v11 = ‖h1‖
2,

v21 = ‖h2‖
2, v22 = ‖P⊥

1 h2‖
2,

v31 = ‖h3‖
2, v32 = ‖P⊥

1 h3‖
2, v33 = ‖P⊥

1:2h3‖
2,

...
...

...
vm1 = ‖hm‖2, vm2 = ‖P⊥

1 hm‖2, vm3 = ‖P⊥
1:2hm‖2, . . . , vmm = ‖P⊥

1:m−1hm‖2,
...

...
...

...
...

vt1 = ‖ht‖
2, vt2 = ‖P⊥

1 ht‖
2, vt3 = ‖P⊥

1:2ht‖
2, . . . , vtm = ‖P⊥

1:m−1ht‖
2.

(22)

w11 = h1,

w21 = h2, w22 = P⊥
1 h2,

w31 = h3, w32 = P⊥
1 h3, w33 = P⊥

1:2h3,
...

...
...

wm1 = hm, wm2 = P⊥
1 hm, wm3 = P⊥

1:2hm, . . . , wmm = P⊥
1:m−1hm,

...
...

...
...

...
wt1 = ht, wt2 = P⊥

1 ht, wt3 = P⊥
1:2ht, . . . , wtm = P⊥

1:m−1ht.

(23)

with the Jacobian determinant given bydet(J) = 1. Using
(31) and (32), we can write

f
Ṽ

ir

i1

(ṽi1, . . . , ṽir) = fβir

i1

(βi1 = ṽi1 − ṽi2, βi2 = ṽi2 − ṽi3,

. . . , βir = ṽir) | det(J)|

= e−ṽi1 (33)

for ṽi1 ≥ . . . ≥ ṽir ≥ 0. Note that we havẽvij = vij for
i ∈ {1, . . . , t} andj ∈ {1, . . . , i}. Therefore, the joint PDF of
{vi1, vi2, . . . , vii} is identical to that of{ṽi1, ṽi2, . . . , ṽii} and
can be determined by integrating out{ṽi,i+1, ṽi,i+2, . . . , ṽir}
in (33). This fact can be utilized to obtain (7) and (8).

APPENDIX C
PROOF OFTHEOREM 3

The multiple integralIj is defined as

Ij =

∫ γj−1

γj

∫ γj−2

vj,j−1

. . .

∫ γ1

vj2

e−vj1dvj1 . . . dvj,j−2 dvj,j−1

for γ1 ≥ γ2 ≥ . . . ≥ γm ≥ 0. This integral also appears
in [17] where the authors use some bounding techniques to
get an approximated solution. We first evaluate the innermost
integral as

Ij =

∫ γj−1

γj

∫ γj−2

vj,j−1

. . .

∫ γ2

vj3

(

e−vj2 − e−γ1
)

dvj2

. . . dvj,j−2 dvj,j−1.

Partially solving the new innermost integral, we obtain

Ij =

∫ γj−1

γj

∫ γj−2

vj,j−1

. . .

∫ γ3

vj4

(

e−vj3 − e−γ2
)

dvj3 . . .

dvj,j−2 dvj,j−1

−e−γ1

∫ γj−1

γj

∫ γj−2

vj,j−1

. . .

∫ γ2

vj3

dvj2 . . . dvj,j−2 dvj,j−1.

Proceeding in the same way, we can conclude

Ij = e−γj − e−γj−1 − e−γj−2 (γj−1 − γj)−

j−3
∑

k=1

e−γj−k−2

×

[

G(γj−1, γj−2, γj−3, . . . , γj−k−1) (34)

−G(γj , γj−2, γj−3, . . . , γj−k−1)

]

where

G(α1, α2, . . . , αk+1)

=

∫ α1

0

∫ α2

xk+1

∫ α3

xk

. . .

∫ αk+1

x2

dx1 dx2 . . . dxk dxk+1

with 0 ≤ α1 ≤ α2 ≤ . . . ≤ αk+1.

Lemma 1: The solution to the multiple integral
G(α1, α2, . . . , αk+1) is given in [21] as

G(α1, α2, . . . , αk+1)

=
∑

b1+...+bk+1=k+1
∀n∈{1,...,k},b1+...+bn≤n

α
bk+1

1 (α2 − α1)
bk . . . (αk+1 − αk)

b1

bk+1!bk! . . . b1!

(35)
where the summation is evaluated over all
combinations of nonnegative integer indices{bk+1,
bk, . . . , b1} (starting from bk+1) with the condition that
the listed requirements are satisfied.

Using (35) in (34), the desired result in (14) can be obtained.
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