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Exact Joint Distribution

Analysis of Zero-Forcing

V-BLAST Gains with Greedy Ordering
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Abstract—We derive the joint probability distribution of zero-
forcing (ZF) V-BLAST gains under a greedy selection of decothg
order and no error propagation. Unlike the previous approxi-
mated analyses, a mathematical framework is built by applyig
order statistics rules and an exact closed-form joint probaility
density function expression for squared layer gains is obiaed.
Our analysis relies on the fact that all orderings are equipobable
under independent and identical Rayleigh fading. Based onhis
idea, we determine the joint distribution of the ordered gains
from the joint distribution of the unordered gains. Our results
are applicable for any number of transmit and receive antenms.
Although we present our analysis in a ZF V-BLAST setting, our
analytical results can be directly applied for the dual case of ZF
V-BLAST. Under the assumption of a low rate feedback of
decoding order to the transmitter, a benefit of having exact
expressions is illustrated by the calculation of the cutoffvalue
under optimal power allocation that maximizes the sum of the
substream outage capacities under a given sum power consind.
We provide numerical results and verify our analysis by meas
of simulations.

Index Terms—Multiple-input multiple-output, zero-forcing
V-BLAST, outage probability, order statistics.

. INTRODUCTION
A multiple-input multiple-output (MIMO) transmission sys

successive interference cancellation, each substreanbean
detected without the effect of the inter-stream interfegen
Detection order plays a crucial role on the system perfor-
mance. Optimal ordering given by an exhaustive search can
be impractical due to its combinatorial complexity. A redde
complexity ordering called greedy ordering tries to makstbe
possible choices in a sequential and greedy manner. Despite
the fact that it is a suboptimal algorithm, greedy orderigg i
shown in [4] to attain the best diversity-multiplexing tesdf
performance.

If the transmitter is not provided with any form of channel
state information (CSl), the suitable performance metrithe
outage probability which is also proportional to the errater
of the system. Symbol error rate of ZF V-BLAST s studied
in [5] under the effect of error propagation over layers due
to channel estimation errors. An analytical approach based
upon channel instantaneous correlation matrices is pteden
for the outage analysis of ZF V-BLAST algorithm in [6].
It is shown that the diversity order of ZF V-BLAST is
(r —t + 1) no matter what ordering method is used [7].
The gain obtained by the optimal ordering of post-procegssin
signal-to-noise ratio (SNR) values manifests itself by & ho

tem has the potential to offer substantial increase in the d&,j.a1 shift of the outage curve [7], [8]. This SNR gain

rate performance beyond its single-input single-outpuineo
terpart in a rich-scattering environment [1], [2]. Many spa

is quantified in [7] based on an asymptotically high SNR
assumption. An outage analysis for two and any number of

time transmission schemes have been offered in literatureyt, < it antennas is provided in [6] and [9], respectiviiyte
realize this potential gain in practice. One implementatiq, . ; the analysis given in [9] is in the form of a number
called zero-forcing (ZF) vertical Bell Labs Layered Spaces: pounds and approximations. In [4], ZF V-BLAST with
Time (V-BLAST) algorithm is especially appealing for itStwo different channel-dependent ordering methods, namely
high spectral efficiency with relatively low complexity 3] 1 ordering and greedy ordering, is analyzed. Using some
In a scenario oft transmit andr receive antennas with 1y, ,nqing techniques, the diversity order for ftie substream

t < r, ZF V-BLAST algorithm providest-fold sum rate

increase as compared to a single transmit antenna case,

transmitting independently encoded and modulateitput

data streams overdifferent antennas. At the receiver, a twop,
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is_shown to be equal t¢¢ — i + 1)(r — i + 1) when greedy
ofdering is employed. It is mentioned to be intractable to
perform an exact statistical analysis on the post-prongssi
er gains when greedy ordering is used. As a remedy, the

to the best of our knowledge.

In this work, we present an exact statistical analysis of ZF
V-BLAST algorithm with greedy ordering described in [4]
over Rayleigh fading channels. Assuming no error propaga-
tion, we derive the joint probability density function (PPF
of the squared layer gains by introducing an analytical &am
work. Our framework is built on the basis that all orderings a
equiprobable under independent and identical Rayleigindad
Capitalizing on this fact, we determine the joint distributof
the ordered gains from the joint distribution of the unoedkr
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gains. A compact closed-form solution is presented on tim jowith its own modulation scheme. We assume thatwith
PDF of the squared layer gains for anyandr with ¢ < r. i€ {1,...,t} areindependentand identically distributed (IID)
The joint PDF of the diagonals of an upper triangular matris,andom vectors with each remaining constant throughout one
resulting from ordered QR decomposition of a Gaussiawdeword transmission and independently changing between
channel matrix finds application in some other settings &snsmissions. We also assume a homogeneous network with
well. A joint antenna selection and link adaptation aldoritis enough spacing among the antennas such that the elements
described in [11]. This algorithm leads to the same subablanof h; are IID zero-mean complex Gaussian random variables
gains as ZF V-BLAST. The authors approximate the statistiegth unit variance. Note that due to the channel statistits,
of the subchannel gains to estimate the optimal number roftrix has full column rank with a probability of one. Full
active antennas. Our results can be directly applied in thixSI is assumed to be available only at the receiver.
case to reach to answers based on the exact statistics. We
also use the analytically obtained PDF expressions tdiiitss A Zero-Forcing V-BLAST Algorithm with Greedy Ordering
the cutoff value under the water-filling power allocationegi The receiver employs a two-stage algorithm to detect
in [10]. substreams transmitted overtransmit antennas in parallel.
Notation: The operator&{.}, ||, I|.|l, (.)¥, \, Pr(.), log(.), In the first step, the ordered channel matrix is decomposed as
andtr(.) denote expectation, absolute value, Euclidean nori]II = QU whereQ is a matrix with orthonormal columns
Hermitian transpose, set difference, probability, lotjemi to  such thaQ”’Q = | andU is an upper-triangular square matrix
base two, and trace, respectively. Throughout the paper, which can be obtained via QR decomposition. Multiplying the
refer to the PDF ofx by fx(x) and represent the joint received signal vector b@" nulls the interference on thigh
PDF of {z1,22,...,2,} by fxp(21,72,...,7,) where the substream caused by thith substream with < i. The second
subscript and superscript off' show the starting and endingstep includes successive interference cancellation wdtantts
indices, respectively. The same convention is also foltbfee with the interference-free substream. Before detecting an
cumulative distribution function (CDF) expressions. substream signal, the interference induced by the prelyious
The rest of the paper is organized as follows. Section dletected streams is subtracted from the aggregate signal. |
introduces the system model and ZF V-BLAST algorithm with noise-free environment with rich-scattering, this tvage
greedy ordering. In Section lll, an exact outage probabilialgorithm completely suppresses the inter-stream irmenfee
analysis on ZF V-BLAST algorithm with greedy ordering igesulting int virtual parallel channels. We employ a greedy
carried out by deriving PDF expressions and numerical tesubrdering policy to set the detection order, which is spedifie
are presented in Section IV. Finally, Section V concludes tiby II matrix. The channel-dependent permutation matrix is
paper. chosen such that thiéh diagonal element ot is made as
large as possible starting from the first diagonal element in
1. SYSTEM MODEL a sequential and greedy fashion [4]. The resulting upper-

A single-user MIMO transmission system is assumed wi jangular matrix is given by (2) at the bottom of this page.
n (2), {wx(1),...,n(¢t)} denotes a permutation dfl, ..., ¢}

t and r antennas# < r) at the transmitter and receiver, ' . o .
andPr.,,, (n € {1,...,¢t —1}) is a projection matrix onto

tively. Th ived lex baseband signal is ledd
L(;spec Vely. The recelved complex baseband signatis ethe orthogonal complement of the vector space spanned by

_ h ...,hz }. Note that due to the greedy ordering, we
— HITAX + n 1) M=y, Py

y + @) have (3) and (4) at the top of the next page [4]. The substream
whereH = [hy hy ... hy] is the channel matrix with transmitted from ther(¢)th transmit antenna is detected first

[H];; € C denoting the fading coefficient between thand the substream corresponding to the — 1)th transmit

jth transmit antenna andh receive antenna. Alsdl is antenna follows it. The last detected substream is the one
a permutation matrix capturing the effect of the decodinpat has been sent over the€1)th transmit antenna. When
order at the receiver and is a diagonal matrix with the error propagation effect is ignored, the interference germ
square of itsith diagonal, i.e.p;, representing input power (represented by the off-diagonal elements of the mathx
allocation on theth substream under a total power constrairdre completely suppressed and ZF V-BLAST with the greedy
of p such that)". p; < p. Additionally, the elements of ordering yields

x € C'*! denote encoded and modulated data symbofs 9 H el
such thatE{xx"’} = | with | denoting the identity matrix {71 = Ih=@ ", 72 = M) Py ez, -
andn € C"*! represents additive white Gaussian noise at _hH plL h

the receiver withE{nn} = |. Note that each substream RO CE) ’T(t)}
has an independent and capacity-achieving encoder tagethe the squared layer gains.

||hﬂ.(1)|| * * T *

/ L
0 h7IT{(2)P7T(1)h7T(2) * ... *

O O O “ e \/hWH(t)PTLr(l:t—l)hF(t)

(2)
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arg max | /h;|| for i =1,
} Je{1,....t}
(i) = 3
@) arg max «/hfpi(mq)hj forie{2,...,t}, ®)
et N\ L (1), (= 1)}
max | h,]| fori=1,
je{l,.t}

U] = \/ﬁ “
h'Pry_ph;  forie{2,...t}.
ettt \ (1= V19 (=11 orie€{2,...,t}

..........

[1l. PERFORMANCEANALYSIS Using (7)) and (8 in (6), the joint PDF

In this section, we present a frameworkfvin ({{vij}} 1}mm(l m)) can be expressed as
to derive the joint PDF of the first m
(m € {1,2,...,t}) squared layer gains by neglectingfy:m ({{vij} l}mm(l m))
error propagation. Using the fact that all orderings are _ .
equiprobable under independent and identical Rayleigh O Vii ' e Vi i

fading, we determine the joint distribution of the ordered (r —1)!
gains from the joint distribution of the unordered gains. To . .
this end, we first temporarily ignore the effect of the greedfe now arrange the unordered gains according to the greedy

r—m):

=1 i=m+1

ordering by assumingI = |. This leads to the following oOrdering technique described in (4) and, without loss of
unordered squared norms and projections generality (due to the assumption of homogeneous users),
assume that it yield$U);; = v = v;; fori € {1,...,m},
- ”th2 for i e {1 t} andj =1, (5) e y $U]“ Yi i { }
ViU hERL o forie (2.4 ’
' and] € {2 .,min(i,m)}, M =v1 2 {va1,v31,. . ;v },
= > V32, V42, ..., Vg2 fs
WherePfj_1 represents a projection matrix onto the null space i - N {vs2, vaz 2} (10)
of the vector space spanned Bly,...,h;_;}. Note thath; :
with j € {1,2,...,t} are 1D random vectors representing the Y = Vmm > {Umt1,m, Umt2,ms - - > Vtm}-
columns of the channel matri. Resorting to Bapat-Beg theorem from order statistics [15],

Theorem 1: The joint PDF of{v;; : i € {1,...,t},7 € the joint PDF of {v1,72,...,7m} denoted by
{1,...,min(i,m)}} denoted by fyn ({{'Uij} 1}“““(1 m)) Sy (71,72, - - -, ym) can be written as follows
can be written as

fyr (92,5 vm)
Fvip ({{Uij} _, pne m))

V11=71

t! mln(l m) V222
= fva, (v11) fuzz (va1, v22) fus (vs1, vs2, vss) - . B (t—m)!E{fVﬁ” ({{U”} 1} )
VUmm=T"m
X v (Umh Um2,y - - - avmm) . (11)
where the average is taken over al; such thati # j.
va:ﬂ;;“(”mﬂvlvvmﬂ-ﬂv""”m+1vm)"' Note that in (11),#!/(t — m)! is the number of differ-

ent m—permutations that can be selected outtaffansmit
antennas. Using (7) and (8) together with (10) in (11),
Proof: See Appendix A [12], [13]. B fym(71,72,--.,7m) Can be written as given in (12) at the

Note that the variables in (6) are specifically formed suabp of the next page. Arranging terms appropriately, one can
that v;; for a giveni represent the candidate squared gaimghtain
for the jth layer before any ordering is applied. For ang m T?j
{1,...,t}, v;; with 1 < j < min(¢,m) < t are dependent ,_ _ ,
random variables and have chi-squared PDF with—j +1) Fre(no72s---57m) H g (13)
degrees of freedom, respectively [14].

Theorem 2: The PDF expressions on the the right-hand side

X fVH’L(Ut17Ut2a'-'avtm)' (6)

—

j=

Tm r—m t—m
of (6) can be written as X / Zilm(ym = 2)dz
—i o (r—m)
() v
fvii (vin, vig, - vig) = ﬁe_”” (7) wherel; = e and
) Yi—-1 Yi-2
forie{l,...,m} anduv;; > vi0 > ... > vy > 0. Also, I —/ / / _Uﬂd’Ujl d’UJJ 2 dv“ 1
T—m Vii=1
fvl;{n (Vi1, Vigy e - oy Uign) = L'e_”“ (8 for v > v > ... > v, > 0 [16]. The expression in
' (r —m)! (13) is obtained in another context in [17] where a sum
forie {m+1,...,t} andvy > vie > ... > v > 0. rate performance analysis on zero-forcing dirty paper regpdi

Proof: See Appendix B. B (ZF DPC) [18] with greedy user selection [19] is performed.
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t! %*1 . 71 r 2 . Y2 rf -
Fre o) = iy /7 o / / " dvadvaa -

Ym—1 Ym—2 Y1 Vrfm
X — e " dUn . AU m—2dUn m—1
» L, (r=m)!

m,m—1

Ym TYm—1 7 /UT m o
|:/ / / _tm ' e "tduyy .. .dUt,m—ldUtm] : (12)
0 v V2 (T B m)

tm

ji—3 bk+1 b brt1
SRR 3 W (e = v-)™ = (e — )™
I] —e Vi e Vi1 e Yi—k-2 [ J—

b 1bg!. .. bq!
p—r b1t bp =k+1 k+1:k
vne{l,...,k},bi+...4+b,<n

X (vj-3 — ’ijz)bkl (Vj—a — ’ij?))bk*z v (Vjmke1 — 'ijk)bl ] . (14)

Ym  Lr—m 1'\(7, —m4+1 '7771) ’YT m—+1 m—3
L — dz=1— ? _ m —Ym—-1 __ —Ym—k—2
/0 (r —m)! m(Ym = 2)dz (r—m)! (r—m—i—l)!e kzzoe
b bp LT b (biy Yok Ty (Z1)° qgetiterrTmh
% Z 77?1:+11 ('7m 2= 'mel) * (r—m+1)! chzo ( k) (bk2+1+c+r7m+l)(r7m)!
b, !
bt brs1bi! ... by!
vne{l,...k},bi+...4b,<n
_ br—1 _ br—2 _ by 15
X (7m73 7m72) ('Ym74 'Ym73) CIE ('mekfl 'mek) . ( )
Replacing the number of users by the number of trar 0.7 : : : : : :
antennas in our setting, it can be shown that ZF DPC - % - Simulation, y,
greedy user selegtion for single-a.ntenna users is a dua 0.6+ —x— Analytical, y, |{
of ZF V—BLAS_T with greedy ord_ermg. Although t.he auth - & - Simulation, y,
present a quite lengthy proof in [17], we provide a m 051 .
. . : —o— Analytical, y,
shorter and simpler framework to arrive at the same corah 3

by applying only order statistics rules.

Theorem 3: The solution to the multiple integral; in = o4
(13) is given in (14) as a double-column equation ™ 03l
j € {2,3,...,m}. In (14), the second sum is eva
ated over all combinations of nonnegative integer inc 0.2k
{bk+1, bk, .. .,b1} (beginning fromby1) such that the liste '
conditions are satisfied. o1

Proof: See Appendix C. [ ] '

In (13), the integral raised to th@ — m)-th power can b
solved using Theorem 3. The solution is given in (15) O§"'
double-column equation where the derivation is based o Y,

binomial expansion theorem [20]. In (19)(s, z) is the upper

incomplete gamma function [20]. The result in (13) togethetg. 1. Comparison of the analytical PDF expressionsygrand vs with
with Theorem 3 and (15) can be used to find the joint PDife corresponding numerical results for= 3 andr = 4.

of the squared layer gains of the firgst substreams in an

exact closed-form. The analytically obtained PDF expoessi

fva(v2) and f,,(vs) are plotted in Fig. 1 fort = 3 and The CDF of v, can be written as given in (16) at the
r = 4 together with the corresponding simulated histogram®p of the next page. The solutions to the integrals within
The strong match between the analytical and numericalteesuhe last expectation in (16) can be obtained from (15). Note

clearly verifies the accuracy of the analytical PDF expmssi that the denominator term in (16) is not a function gf.
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Tm f M( e _ = Z)
1,72, y Ym—15"Tm
Fy(ym) = By : dz
B " T ! 0 ffyi“*l(/yla/}/?a"w’)/m—l)
r—m r—m t—m
(t—m+1) O'Ym ﬁ[m(wm =21) [ Ozl (iz—m)!Im(%n = 22)d22j| d=
= E’yl,_..,'ymfl - Lr—mtl t—m+1
[ 0 mfm—l(%n—l = 23)d23}
v LT m t—m-+1
[ 0 " (Tlfm)l‘[m(')/m = Zl)d'zl}
= E’yl.,..-y')/m—l ~ L Sr—m1 t—m—+1 (16)
{ 0 " mfm—l(’}/m—l = 23)d23}
Also, as the average is taken ovefi,72,...,Vm—1}, We 10° .

can directly investigate the numerator to see the depee ¢ Simulation

of the CDF onv,,. As v,, — 0, (15) can be replaced wi Analytical
O(yr~m+1) by using asymptotic behavior of the incompl . ard |
gamma functions [20]. Substituting this in (16), one _ 10 f g At
conclude T
2
_ (t—m+1)(r—m+1) 2
Ey (Ym) = Oy, ) as ym = 0. (A7) & | , X
1
Using the idea that an outage happens when the channe ¢~ ilftl'ayer’ 2nd layer,
= = i=2

is sufficiently small (for high power allocation values)e
expression in (17) can be interpreted as thatiile substrear =1
has a diversity order oft — m + 1)(r —m + 1) [4]. As the
overall outage probability of the ZF V-BLAST is domina
by the worst subchannel gain, the overall diversity ords
given by (r — ¢t + 1) [6]. 10

out

P

p (dB)

A. Low Rate Feedback of Decoding Order
. . . . Fig. 2. Substream outage probabilities under a target fakg &= 1 bits/s/Hz
When the transmitter is not provided with any form of CShyith ¢ = 3, » = 4, and varyingp.

the applicable capacity measure is the outage capacity [14]
Representing the CDF of théth layer's squared gain by |t can be shown that the optimal power allocation over layers

F,.(v:), the outage probability for théth substream can bejg given by the following water-filling formula
written as

1
oR: _ 1 pi=\r— == (21)
Pout(Ri) = € = Pr(log(1 + vipi) < Ri) = F., Fri(e)) 4
Pi ; :
(18) where (.); refers to max(0,.) and p is obtained from
t

> i1 pi = p [10]. For a given target outage probability
for a given pair of rate and power allocation valuésandp;, per layer and total power constraint @f one can solve
respectively. Using (18), thith substream’s—outage capacity (21) beforehand (using the statistics of the squared layer
can be expressed as gains obtained previously) for the power allocation values
1 and corresponding number of active substreams with nonzero
Ri(e) =log (1+ F, (€)p:) (19) power allocations. In this case, the transmitter only needs
t)e informed on the decoding order, which can be sent back
r

where F1(.) denotes the inverse function for the CDF o L .
A om the receiver ifogt! bits [10].

the ith layers squared gain. It is worth to mention tha
the ith substream with the—outage capacity ofR; has
(t—i+1)th place in detection order. Under an identical target IV. NUMERICAL RESULTS
outage probability of per layer, the optimal power alloca- In this section, a number of numerical results are provided
tion policy that maximizes the sum of substreamoutage for » = 4. The power allocation among substreams is uniform
capacities can be determined from in Fig. 2 and Fig. 3 whereas the water-filling power allocatio
in (21) is used in Fig. 4 and Fig. 6. In Fig. 2, outage
probabilities for different layers are illustrated undetaaget
substream rate of?; = 1 bits/s/Hz witht = 3 and varying
. p. The different diversity levels for different layers can be
subject to Zpi = . (20) seen from this figure. Specifically, it can be deduced that the
= diversity levels arg[2, 6, 12}. Substreant—outage capacities

t
max Z log (14 F. ' (e)pi) ,
i=1

Pi
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12 T N T T T T
R1+R2+R3, Greedy ordering : l/FAf_gl(e)
ol R1+R2+R3, No ordering ,sl —— 1/F'v_21(6)
1 —A— R, Greedy ordering o —A— 1/F§11 (¢)
i A R1‘ No ordering pforp=5dB
n
@ 8r —e— R, Greedy ordering 2F ¢ 1
g R., No orderi O
> @ R, No ordering =
'g 6 —p— R,, Greedy ordering EL{'“ 15¢ 1
8 ~ R, No ordering =
& 4 , 1t L
g ‘‘‘‘‘‘‘‘‘
""""""""""""""""" (M
Ry S RS il o LR EE R S 0.5 1
vvvvvvvvvvvvvvvvvvvvvvvvv ~ + t)
S A A A
O E 0 I I I
0 5 10 15 0.1 0.2 0.3 0.4 0.5
p (dB) €

Fig. 3. Substream outage capacities with respect for greedy and no Fig. 5. Inverse ofF.ﬁl(e) for i € {1,2,3}, t = 3, r = 4, and varyinge

ordering cases where= 0.1, t = 3, andr = 4. together withy in (21) for p = 5 dB.
5 T T T 9 T T T T T
——R
sl 1
—_— R2
7H ——R, 1
) 1

Outage capacity (bits/s/Hz)
Outage capacity (bits/s/Hz)

E
03 ‘ ‘ A v

0.1 0.2 0.3 0.4 0.5 10 15 20 25 30
Outage probability, € p (dB)

o]

Fig. 4. Substream outage capacities with the water-filliog/gr allocation Fig. 6. Substream outage capacities with- » = 4, ¢ = 0.1, and varying
given in (21) fort = 3, r = 4, p = 10 dB, and varying target outage p where power distribution over layers is given by the watking power
probability per layer. allocation in (21).

of the greedy ordering and no ordering cases are compafiest two substreams. Inverse ﬂ;l(e) in (19) is illustrated

in Fig. 3 with respect top with ¢ = 0.1 and¢t = 3. in Fig. 5 fori € {1,2,3}, ¢ = 3, and varyinge together
The benefit of the greedy ordering clearly exhibits itself owith the cutoff valueu in (21) for p = 5 dB. SinceF;il(e)

the first two substreams. For the greedy ordering, the thiiglan increasing function of the outage probability [10]e th
substream has a lower outage capacity as compared to thatuibff value decreases as the outage probability increases
no ordering. This is expected as the greedy ordering leénes tinder a fixedp. When the target outage probability per layer
last substream with the smallest squared layer gain. Haweus less than around.215, no power is allocated on the third
when comparing the sum of the substream outage capacitsystream. The first two substreams on the other hand have
the greedy ordering yields arourdbits/s/Hz better spectral similar nonzero power allocation values for all plottedgan
efficiency. Using the water-filling power allocation in (21) Note that without the analytical CDF expressions, one may
substreame—outage capacities are plotted in Fig. 4 witmeed to carry out extensive simulations to find the power
t = 3, p = 10 dB, and varying target outage probability perllocation values. For varying total available power the
layer. As the target outage probability per layer increafess substreant—outage capacities are plotted in Fig. 6 by setting
corresponding substream outage capacities increase.afde t = 4 ande = 0.1. Power allocation over layers is given by

of change in the last substream is faster as compared to the water-filling power allocation given in (21). Whenis
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small, the power allocation policy heavily favors the besbt given orthogonal direction (or subspace) are independeit [
subchannels resulting in a zero rate on the fourth substrealhvectors in the second column, iwe;, fori € {2,3,...,t},
whenp < 15 dB. As p increases on the other hand, the poweare also independent. The same result holds for all other
distribution over layers gets more and more uniform. columns. Hence, each column in (23) is comprised of 11D
random vectors. Therefore, in order to prove Theorem 1, it
V. CONCLUSION suffices to show that all pair§w;;, w,,} with i # p and
We have presented an exact statistical analysis on zefo# ¢ are independent, i.eE{w;;w/!} = 0 with 0 denoting
forcing V-BLAST algorithm under no error propagation and &he zero matrix. The produet;;w,, can be written as
greedy selection of decoding order at the receiver. Relgimg wowf = PL  hhipl (24)
the fact that all orderings are equiprobable under indegeind 7P L=l T gl
and identical Rayleigh fading, we have obtained the joiat diwhere we use the fact that any orthogonal projection matrix
tribution of the ordered gains using the joint distributifithe has the property of being Hermitian. We can express (24) as

unordered gains. Unlike the previous approximate analgses r
exact mathematical framework has been introduced. Particuw;;w), = P, hihlPl = "hi g, , hIPL,
larly, a compact and closed-form expression has been derive v=1

on the joint PDF of the squared layer gains for any number of . (25)
transmit and receive antennas. The analytically obtairizié Pwhere hiy andg;_,, with v € {1.2,.. Ir} represeqt the
expressions have been utilized to compute the cutoff valtl! element oh; and thevth column ofPy;;_,, respectively.
under the water-filling power allocation that maximizes th&aKing average in (25), we can write

sum of the substream outage capacities for a given sum power r

constraint [10]. It is also possible to extend our analysis t ~ E{WijWy} = > E{hi g1, NP} (26)

obtain exact bit and symbol error probability curves under n v=1

error propagation. Our analysis has been numerically eekifi We havej < i, ¢ < p, i # p, andj # q. Also, g;_, , and

The presented framework can be modified for other similﬁ’rﬁq_1 depend only on{hs,...,h;_1} and {hy,... h;_1},

ordering techniques. respectively. Consequently, fpr< i, (26) can be written as
APPENDIX A E{wywhi} =Y E{hiw} E{g;_1, P, 1} =0 (27)

v=1

PROOF OFTHEOREM 1

The unordered variablegv;; : i € {l,...,t},j
{1,...,min(¢,m)}} in (5) can be written as given in (22)

sinceE {h;,} = 0. Using the same approach, (25) can also
be expressed as

at the top of the next page fon > 3. In (22), h; for H S H

j € {1,2...,t} represent the channel vectors (IID ijsotropic Wi = 3 b, Py ahi gty (28)
jointly Gaussian random vectors) alﬁdjj_l is a projection 1/:1.

matrix onto the null space of the vector space spanned Wpere i, andg, ,, with v € {1,2,...,r} denote the
{h1,...,h;_1}. We need to prove that the random veccomplex C(lnjugate of thexth element 'ofhp_ a_md thevth
tors [vi1], [va1, vas],- .., [ve1, vz, - ., e are independent. column ofPy;,_,, respectively. Whep > i, h,, is independent

- 1 L e *

Instead of working on the squared norms, we prove td i, Pi; ;. andPy;, . Additionally, ask {h;,} =0, we
independence for the random vectors themselves given By (88N conclude
on the next page as a double-column equation. In other words, H " . n o
we prove that[wy], [Wai, Waal, ..., [Wer, W, . .., Wy, are E {wijw, } = ZE{hpv} E{Py;_1hi 9.1y, } =0 (29)
independent. This is a stronger claim than the previous one, _ v=1
hence its proof directly implies the desired result. Notat thfor p > i.
for anyw;; = Py,;_h; in (23),h; andPy;,_, are independent
sincePﬁj_1 depends only okhy, ho,...,h;_;} and we have APPENDIXB
_.]. S’L Also, Condit.ionEd Or{hl, h2, ceey hjfl},-Wij is a pro- PROOF OFTHEOREM 2
Jection of a Gaussian random vector onto a given subspace anflyy (5. 5.} with i € {L,....} be independent

as a aussian distribution. 1h1s can be seen by TIrst afplylg, exponentially distributed random variables. Also, for
the spectral decomposition d?lf‘:j_l and then utilizing the e {1 r}, defined;; as
fact that the distribution of a circularly-symmetric Gaiass J el Y
random vector is invariant ur?der unitary transformatiohﬁ_a].[ Vij = Pij + ...+ Bir. (30)
Hence., the random vgctors in a given row in (23) are Jomtl% (30), {Bu1,..., B} have the following joint PDF
Gaussian. For Gaussian variates, pairwise independence im
plies joint independence as the dependence is established f,@@(ﬁil,...,ﬁir) — o~ Bt ABir) (31)
by the covariance matrix in this case. Consequently, pgvin " , ,
pairwise independence for any two random vectors in differef©f {5it; - fir} =0 [1_4]' Using (30), we can derive the
rows serves our purpose. It is clear from the definition thiat 40!l0wing transformation:
w;; vectors withi € {1,2,...,¢} are independent. As the pro- i = Uiy — Uiy forje{l,...,r—1}, (32)
jections of two independent Gaussian random vectors onto a "%/ Vi for j =r,
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vnr = [l
var = ||, waz = |[Piha|?,
vs1 = ||hsl|?,  ws2 = [Prhs|?,  vss = ||Pishs|?,
: : : (22)
Um1 = M2 vm2 = [PTAm2 vms = [IPiabmll®, oy vmm = [Pl il
v = el? v =IPrh? o = P01, o v = ([P, e
Wi = hy,
Wo; = hy,  Way = Pihy,
Wi =hs,  Ws =Pihs,  was = Pihs,
: : : (23)
W1 = hmv W2 = Pf_hma Wm3 = Ptzhma ceey Whm = Pf_m 1h
Wy = hy, Wio = Pf'ht, W3 = Pfght, sy Wy = Pf‘;m_lht-
with the Jacobian determinant given kyt(J) = 1. Using Proceeding in the same way, we can conclude
(31) and (32), we can write
7j—3
fgir @iy o) = fair (Bir = 0 — Uiz, Biz = Viz = Vi, [ = W —e W1 —e V2 (g 1 — ;) — Y e
B = ) | det()] =
= eiﬂ“ (33)
for ¥;; > ... > v; > 0. Note that we havey;; = v;; for XA G(Vj=15Yj—2, =31+ s Vj—k—1) (34)
ie{l,...,t} andj € {1,...,4}. Therefore, the joint PDF of
{Uila Vi2y v - ,’Uii} is identical to that Oi{’f}il,’f)ig, e ,’ﬁii} and
can be determined by integrating oi; ;+1, 9;it2, - - -, Vir }

in (33). This fact can be utilized to obtain (7) and (8). G(vi, V2,7 o )
— Gy Yj—=2,Vj=3+ - jfk—l

APPENDIXC h
PROOF OFTHEOREM 3 where
The multiple integrall; is defined as G(ai,az, ..., apt1)

Yi-1 Yi-2 Y1
i _/ / / e dvji .. dvjjo dvj i Qg1
Yi Vj,i—1 :/ / / / d.fCl dIQdZCk dZCkJrl
foryy > v > ... > v, > 0. This integral also appears 0 Jreyr Jrk *2

in [17] where the authors use some bounding techniques t
get an approximated solution. We first evaluate the innermds
integral as

C{hO<O{1<OL2< ..SO{k+1.

Lemma 1: The solution to the multiple integral

Yi—1 Yi—2 ’Yz 1 I 1
. _/ G- / - / e _ e~ ) dujy G(ag,ag,...,ar+1) IS given in [21] as
Vi vy 1
e G(alaa25---aak+1)
-+ v j—2 dvj 1.
. - - . - bk+1 _ b _ by
Partially solving the new innermost integral, we obtain B Z " ag — ) (g — ag)
R 3 -2 bi+...+bpy1=k+1 D1yt !
I = Vj: — € )dng Vne{l,...,k},b1+...+bn§n
Vi Vj,j—1 (35)

where the summation is evaluated over all

combinations of nonnegative integer indice$by1,

- - o bk,.._.,bl} (stf_;lrting from bk+1) _vvith the condition that
/ / dvjo ... dvjj_o dvjj 1. the listed requirements are satisfied.

j—1
e |
i

i Vjj—1 V53 Using (35) in (34), the desired result in (14) can be obtained

dvj j—2 dvj i1
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