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Abstract

This paper investigates how multiuser dimensions can effectively be exploited for target degrees of freedom

(DoF) in interfering broadcast channels (IBC) consisting of K-transmitters and their user groups. First, each

transmitter is assumed to have a single antenna and serve a singe user in its user group where each user has receive

antennas less thanK. In this case, aK-transmitter single-input multiple-output (SIMO) interference channel (IC)

is constituted after user selection. Without help of multiuser diversity,K− 1 interfering signals cannot be perfectly

removed at each user since the number of receive antennas is smaller than or equal to the number of interferers.

Only with proper user selection, non-zero DoF per transmitter is achievable as the number of users increases.

Through geometric interpretation of interfering channels, we show that the multiuser dimensions have to be used

first for reducing the DoF loss caused by the interfering signals, and then have to be used for increasing the DoF

gain from its own signal. The sufficient number of users for the target DoF is derived. We also discuss how the

optimal strategy of exploiting multiuser diversity can be realized by practical user selection schemes. Finally, the

single transmit antenna case is extended to the multiple-input multiple-output (MIMO) IBC where each transmitter

with multiple antennas serves multiple users.
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I. INTRODUCTION

Interference is a major performance-limiting factor in modern wireless communication systems. Many

interference mitigation strategies have been proposed to improve network spectral efficiency. By allowing

partial or full cooperation among interfering base stations, interference can effectively be managed and

spectral efficiency can be improved. Joint beamforming [1] and network MIMO (or multicell processing)

[2] among base stations have been shown to be effective interference mitigation techniques. However, if

cooperation among transmitters is not allowed, orthogonalmultiple access has been a traditional solution

to interference. In aK-user single-input single-output (SISO) interference channel (IC), for example, each

user can achieve1/K degrees of freedom (DoF) by time division multiple access.

In recent years, interference alignment (IA) techniques have received much attention [3]–[6]. The basic

concept of IA is to align the interfering signals in a small dimensional subspace. In aK-user SISO IC,

K/2 DoF have been shown to be achievable using IA [3]. Although IAprovides a substantial asymptotic

capacity gain in interference channels, there are many practical challenges for implementation. IA requires

global channel state information at the transmitter (CSIT), and imperfect channel knowledge severely

degrades the gain of IA. In some channel configurations, symbols should be extended in the time/frequency

domain to align interfering signals. The high computational complexity is also considered as a major

challenge. To ameliorate these difficulties, many IA algorithms have been proposed such as iterative IA

[5] and a subspace IA [6].

For interference suppression, multiuser diversity can also be exploited by opportunistic user selection for

minimizing interference. The interference reduction by multiuser diversity can be enjoyed without heavy

burden on global channel knowledge because user selection in general requires only a small amount of

feedback [7]–[14]. In this context, opportunistic interference alignment (OIA) has been recently proposed

in [9] and has attracted much attention. In a 3-transmitterM × 2M MIMO interfering broadcast channel

(IBC), the authors of [11] proved thatαM (whereα ∈ [0, 1]) DoF per transmitter is achievable when the

number of users scales asP αM . In [12] and [13], aK-transmitter1× 3 SIMO IBC and aK-transmitter

1 × (K − 1) SIMO IBC have been studied, respectively. For SIMO interfering multiple access channel

(IMAC) constituted byK-cell uplink channels withM transmit antennas and single antenna users, the

authors of [14] showed thatKM DoF are achievable when the number of users scales asP (K−1)M . In
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these schemes, user dimensions are used to align the interfering signals; each transmitter opportunistically

selects a user whose interfering signals are most aligned among the users associated with the transmitter.

Contrary to the conventional opportunistic user selectiontechniques [7], [8], [15]–[18], the OIA scheme

exploits the multiuser dimensions for interference alignment.

In this paper, we investigate the optimal role of multiuser diversity for the target DoF in the IBC with

K-transmitters and generalize the results of [12] [13]. For theK-transmitter SIMO IBC, each transmitter

selects and serves a single user in its user group consistingof N users. Once afterK-transmitters select

their serving users, aK-user IC is constructed. Each user hasNr antennas less than or equal to the number

of interferers, i.e.,Nr ≤ K−1. Thus, without help of multiuser diversity, interference at each user cannot

be perfectly removed so that the achievable rate of each transmitter goes to zero as signal-to-noise ratio

(SNR) increases. Consequently, the achievable DoF per transmitter becomes zero. However, non-zero DoF

per transmitter is achievable by exploiting multiuser diversity as the number of users increases.

Since opportunistic user selection can focus on either enhancing the desired signal or decreasing

interference, non-zero DoF can be obtained by properly enhancing the desired signal strength and reducing

interference via user selection. That is, the non-zero DoFd comprises a DoF gain termd1 ≥ 0 from the

desired signal and a DoF loss termd2 ≥ 0 caused by interference such thatd1 − d2 = d, and the target

DoF d can be obtained by a proper combination ofd1 andd2. However, many questions remain unsolved;

what is the feasible and optimal combination of(d1, d2) for the target DoFd (= d1− d2) and what is the

sufficient number of users for the target DoF achieving strategy. We answer these fundamental questions

and analytically investigate how the multiuser dimensionscan be optimally exploited for the target DoF

in the IBC. Specifically, from geometric interpretation of interfering channels, we define an interference

alignment measure that indicates how well interference signals are aligned at each user.

Using the interference alignment measure, we first considertheK- transmitters SIMO IBC and show

that the DoF gain termd1 can be achieved if the number of users scales in terms of transmit powerP

as N ∝ eP
(d1−1)

and the DoF loss term can be reduced tod2 if the number of users scales asN ∝

P (1−d2)(K−Nr). From these results, we find the optimal strategy of exploiting multiuser diversity for the

target DoFd in terms of the required number of users; the optimal target DoF achieving strategies(d⋆1, d
⋆
2)

are(1, 1−d) and(d, 0) for the target DoFd ∈ [0, 1] andd (> 1), respectively. We also investigate how the
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optimal target DoF achieving strategy(d⋆1, d
⋆
2) can be realized by practical user selection schemes. Then,

we extend our results to theK-transmitter MIMO IBC where each transmitter hasNt multiple antennas

and serves multiple users withNr receive antenna each. Our generalized key findings are summarized as

follows:

• For the target DoFd ∈ [0, Nt], (d⋆1, d
⋆
2) = (Nt, Nt−d) is the optimal target DoF achieving strategy that

minimizes the required number of users. That is, the multiuser dimensions should be exploited to make

the DoF lossNt−d. The sufficient number of users for this strategy scales likeN ∝ P (d/Nt)(KNt−Nr).

• For the target DoFd (> Nt), (d⋆1, d
⋆
2) = (d, 0) is the optimal target DoF achieving strategy which

minimizes the required number of users. That is, the multiuser dimensions should be exploited to

make the DoF loss term zero as well as to make the DoF gain termd. The sufficient number of users

for this strategy scales likeN ∝ eP
(d/Nt−1)

P (KNt−Nr).

The rest of this paper is organized as follows. In Section II,we describe the system model. In Section

III, a geometric interpretation of interfering channels isprovided, and the interference alignment measure

is defined. Section IV derives the optimal strategies of achieving the target DoF in terms of the required

number of users. In Section V, we show how various practical user selection schemes exploit multiuser

diversity for the target DoF and discuss their optimality toachieve the target DoF. The system model is

extended for the MIMO IBC in Section VI. Numerical results are shown in Section VII, and we conclude

our paper in Section VIII.

– Notations

Throughout the paper, we use boldface to denote vectors and matrices. The notationsA†, Λi(A),

and Vi(A) denote the conjugate transpose, theith largest eigenvalue, and the eigenvector of matrixA

corresponding to theith largest eigenvalue. For convenience, the smallest eigenvalue, the largest eigenvalue,

and the eigenvectors corresponding eigenvectors ofA are denoted asΛmin(A), Λmax(A), Vmin(A), and

Vmax(A), respectively. Also,In, Cn, and Cm×n indicate then × n identity matrix, then-dimensional

complex space, and the set ofm× n complex matrices, respectively.
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II. PROBLEM FORMULATION

A. System Model

Our system model is depicted in Fig. 1. The system corresponds to the interfering broadcast channel

(IBC) of which capacity is unknown. There areK transmitters withNt transmit antennas each, and each

transmitter has its own user group consisting ofN users withNr antennas each. First, each transmitter is

assumed to have a single antenna, i.e.,Nt = 1, and serves a single user selected in its user group so that

K-transmitter SIMO IC is opportunistically constituted. The system model with multiple transmit antennas

(i.e., Nt > 1) becomes statistically identical with the single transmitantenna model if each transmitter

uses a random precoding vector. In Section VI, we extend our system model to theK-transmitter MIMO

IBC where each transmitter with multiple antennas serves the multiple users through orthonormal random

beams.

In this paper, we focus on the cases that the number of receiveantennas is smaller than the number

of transmitters, i.e.,Nr < K. Otherwise (i.e., ifNr ≥ K), each user can suppress all interfering signals

through zero-forcing like schemes so that DoF one is trivially guaranteed at each transmitter. We also

assume that collaboration or information sharing among thetransmitters is not allowed. Since the user

selection at each transmitter is independent of the other transmitters’, we only consider the achievable

rate of the first transmitter without loss of generality. Note that the average achievable rate per transmitter

will be same if the configurations of the transmitters are identical.

At the first transmitter, the received signal at thenth user denoted byyn ∈ C
Nr×1 is given by

yn = hn,1x1 +
K
∑

k=2

hn,kxk + zn,

wherehn,k ∈ C
Nr×1 is the vector channel from thekth transmitter to thenth user whose elements are

independent and identically distributed (i.i.d.) circularly symmetric complex Gaussian random variables

with zero means and unit variance. Also,xk ∈ C1×1 is the transmitted signal using random Gaussian

codebook from thekth transmitter such thatE|xk|
2 = P , whereP is the power budget at each transmitter.

Also, zn ∈ CNr×1 is a circularly symmetric complex Gaussian noise with zero mean and an identity

covariance matrix, i.e.,zn ∼ CN (0, INr). Assuming perfect channel estimation at each receiver, the

channel state information{hn,k}Kk=1 is available at thenth user.
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The received signal is postprocessed at each user using multiple receive antennas. Letvn ∈ CNr×1 be the

postprocessing vector of thenth user such that‖vn‖2 = 1. Then, the received signal after postprocessing

becomes

v†
nyn = v†

nhn,1x1 +

K
∑

k=2

v†
nhn,kxk + v†

nzn. (1)

To aid user selection at the transmitter, each user feeds onescalar value back to the transmitter. Various

user selection criteria and corresponding feedback information will be discussed in the following sections.

Since no information is shared among the transmitters, eachtransmitter independently selects a single

user based on the collected information.

Let n∗ be the index of the selected user at the first transmitter. Then, the average achievable rate of the

first transmitter is given by

R , E log2

(

1 +
P |v†

n∗hn∗,1|2

1 + P
∑K

k=2 |v
†
n∗hn∗,k|2

)

. (2)

We decomposeR into two termsR+ andR− such thatR = R+−R−, which are given, respectively, by

R+ = E log2

(

1 + P
K
∑

k=1

|v†
n∗hn∗,k|

2

)

, (3)

R− = E log2

(

1 + P
K
∑

k=2

|v†
n∗hn∗,k|

2

)

. (4)

Then, the achievable DoF of the first transmitter becomes

lim
P→∞

R

log2 P
= lim

P→∞

R+

log2 P
− lim

P→∞

R−

log2 P
. (5)

We call lim
P→∞

R+

log2 P
and lim

P→∞

R−

log2 P
asDoF gain termandDoF loss term, respectively.

B. Problem Description

The achievable rate of each transmitter depends on the number of users because multiuser dimensions

are exploited for a rate increase. When there are fixed numberof users, the achievable rate of each

transmitter will be saturated in the high SNR region due to interferences because the number of receive

antennas at each user is smaller than the number of total transmitters. Consequently, the first transmitter

cannot obtain any DoF, i.e.,

lim
P→∞
FixedN

R

log2 P
= 0. (6)
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In this case, both the DoF gain term and the DoF loss term become one, i.e.,
(

lim
P→∞
FixedN

R+

log2 P
, lim

P→∞
FixedN

R−

log2 P

)

= (1, 1). (7)

On the other hand, when the transmit power is fixed, the achievable rate of the selected user can increase

to infinity as the number of users increases, i.e.,

lim
N→∞
FixedP

R = ∞. (8)

Then, how much DoF can be achieved when both the number of users and the transmit power increase?

Obviously, non-zero DoF can be obtained by exploiting multiuser dimensions, and the achievable DoF

lim
N→∞

[

lim
P→∞

R

log2 P

]

(9)

will depend on the increasing speeds ofN and P . In this case, DoFd (> 0) at the first transmitter

comprises the DoF gain termd1 (≥ 0) and the DoF loss termd2 (≥ 0) such thatd1 − d2 = d, i.e.,

(d1, d2) ,

(

lim
P→∞

R+

log2 P
, lim
P→∞

R−

log2 P

)

. (10)

We call (d1, d2) as a target DoF achieving strategyif d = d1 − d2 for the target DoFd. Since each

strategy requires different user scaling, we need to find theoptimal DoF achieving strategy that exploits

multiuser diversity most efficiently, i.e., which requiresthe minimum user scaling. For thetarget DoF

per transmitterd (> 0), we find the optimal target DoF achieving strategy(d⋆1, d
⋆
2) satisfyingd⋆1 − d⋆2 = d

and derive the required user scaling. Note that the definition of DoF in this paper is extended from the

conventional definition of DoF in order to properly capture multiuser diversity gain in terms of achievable

rate. Achievable DoF defined in (9) depends on increasing speeds ofN andP ; and can have non-zero

values even larger than one if the number of users properly scales with the transmit power.

C. DoF Achieving Strategies and Reduced Set of Candidates for the Optimal Strategy

From the definitions of the rate gain term and the rate loss term given in (3) and (4), respectively, the

strategies which achieve the target DoFd are given by

{

(d1, d2) | d1 − d2 = d, d1 ≥ d2, d1 ≥ 0, d2 ≥ 0
}

. (11)

The following lemma shows that we do not need to consider all of the candidate strategies in (11) but

take into account only a subset of (11) to find the optimal target DoF achieving strategy.
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Lemma 1. For any non-negative target DoF, the optimal DoF achieving strategy is in the set

{

(d1, d2) | d1 ∈ [1,∞), d2 ∈ [0, 1], d1 − d2 = d
}

. (12)

Proof: At each channel realization, the achievable DoF has the formof

log2 (1 +X + Y )− log2 (1 + Y ) , (13)

whereX , |v†
n∗hn∗,1|2 andY , P

∑K
k=2 |v

†
n∗hn∗,k|2 are its own signal power and the interfering signal

power at the selected user, respectively. Since the function (13) is an increasing function ofX and a

decreasing function ofY , for an increase of (13), the multiuser dimension should be used for increasing

X, for decreasingY , or mixture of them. This fact results in (12).

Lemma 1 provides a basic guideline of using the multiuser dimension; multiuser diversity should not

be used for either decreasing DoF gain term or increasing DoFloss term. Since the optimal target DoF

achieving strategy is obtained in the reduced set of candidate strategies, we consider the DoF gain term

larger than one and DoF loss term smaller than one, i.e.,d1 ∈ [1,∞) and d2 ∈ [0, 1], in the latter parts

of this paper.

III. I NTERFERENCEALIGNMENT MEASURE

A. Where does the DoF Loss Come from?

In our system model, each user suffers fromK − 1 interfering channels which is larger than or equal

to the number of receive antennas, i.e.,K − 1 ≥ Nr. Since the interfering channels are isotropic and

independent of each other, they spanNr-dimensional space. Thus, the whole signal space at the receiver

is corrupted by interfering signals, and hence the DoF loss term becomes one if no effort is made to

align interfering signals. On the other hand, the DoF loss can be reduced by aligning interfering signals

in smaller dimensional subspace. For example, if the interfering signals are perfectly aligned in(Nr −1)-

dimensional subspace, they can be nullified by postprocessing so that we can make the DoF loss zero.

The transmitter can exploit the multiuser dimensions to align interfering signals by simply selecting

a user whose interfering channels are most aligned. Thus, each user needs to measure how much the

interfering channels are aligned in(Nr − 1)-dimensional subspace at the receiver. We call this measure

as theinterference alignment measure. In this section, we geometrically interpret the interfering channels
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and define the interference alignment measure at each user. The interference alignment measure will be

used for computing the reducible DoF loss via multiuser diversity in Section IV.

B. Preliminaries

Let S0 be the surface of theNr-dimensional unit hypersphere centered at the origin, i.e.,

S0 = {x ∈ C
Nr | ‖x‖2 = 1}.

For an arbitrary unit vectorc ∈ CNr and an arbitrary non-negative real number0 ≤ λ ≤ 1, we can divide

S0 into two parts,S1(c, λ) andS2(c, λ), given by

S1(c, λ) ,
{

x ∈ C
Nr
∣

∣ |c†x|2 ≥ λ, ‖x‖2 = 1
}

S2(c, λ) ,
{

x ∈ C
Nr
∣

∣ |c†x|2 ≤ λ, ‖x‖2 = 1
}

. (14)

Whenx, c ∈ R3, two partsS1(c, λ) andS2(c, λ) are represented in Fig. 2. LetA (Si(c, λ)) be the surface

area ofSi(c, λ) for i = 0, 1, 2. The surface area of anNr-dimensional complex unit hypersphere is given

by A(S0) = 2πNr/(Nr − 1)!, and it was shown that [19]

A (S1(c, λ)) =
2πNr(1− λ)Nr−1

(Nr − 1)!
,

which is invariant withc. Therefore, we obtain

A (S2(c, λ)) =
2πNr(1− (1− λ)Nr−1)

(Nr − 1)!

from the relationshipA(S0) = A (S1(c, λ))+A (S2(c, λ)). From this fact, we obtain the following lemma.

Lemma 2. Let g1, . . . , gm be independent and isotropic unit vectors inCNr . For an arbitrary unit vector

c ∈ CNr and λ ∈ [0, 1], the probability thatS2(c, λ) contains{g1, . . . , gm} becomes

Pr[{g1, . . . , gm} ⊂ S2(c, λ)] =
(

1− (1− λ)Nr−1
)m

, (15)

which is invariant withc.

Proof: From the ratio ofA(S2(c, λ)) andA(S0), we obtain

Pr[gi ∈ S2(c, λ)] =
A(S2(c, λ))

A(S0)
= 1− (1− λ)Nr−1, ∀i. (16)
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Sinceg1, . . . , gm are independent of each other, it is satisfied that

Pr[{g1, . . . , gm} ⊂ S2(c, λ)] = Pr[g1 ∈ S2(c, λ)]
m,

which is given in (15).

C. Interference Alignment Measure at Each User

In this subsection, we define the interference alignment measure at each user. The DoF loss is determined

by how much the interfering channels are closely aligned in(Nr − 1)-dimensional subspace. Only if

interfering channels are perfectly aligned in(Nr − 1)-dimensional subspace, we can have zero DoF loss.

The interference alignment measure is used for computing the DoF loss at each user. Letg1, . . . , gK−1

be theK − 1 (≥ Nr) normalized interfering channels at a user andq(g1, . . . , gK−1) be the interference

alignment measure among them.

Consider the following optimization problem:

minimize
c,λ

A(S2(c, λ)) (17)

subject to S2(c, λ) ⊃ {g1, . . . , gK−1},

‖c‖2 = 1, λ ∈ [0, 1].

From the definition ofS2(c, λ) given in (14), this problem is equivalent to

minimize λ (18)

subject to |c†gk|
2 ≤ λ for 1 ≤ k ≤ K − 1,

‖c‖2 = 1, λ ∈ [0, 1],

which can be solved by linear programming [21], [22]. Let(c⋆, λ⋆) be the solution of the above problem.

Then,S2(c
⋆, λ⋆) has the smallest surface area among allS2(c, λ) containingg1, . . . , gK−1.

Using c⋆, we can divide anNr-dimensional space into two subspaces which are the one-dimensional

subspace spanned byc⋆ and the(Nr − 1)-dimensional complementary subspace denoted byU . If there

existsc⋆ such thatc⋆ ⊥ {g1, . . . , gK−1}, it is satisfied that span(g1, . . . , gK−1) ⊂ U and S2(c
⋆, 0) ⊃

{g1, . . . , gK−1}, and henceλ⋆ becomes zero. In this case, we can say that the interfering channels are

perfectly aligned in(Nr−1)-dimensional subspace inCNr . Note thatS2(c
⋆, 0) is an(Nr−1)-dimensional
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subspace orthogonal toc⋆, andS2(c
⋆, 1) is theNr-dimensional complex hypersphere,S0. Whenλ⋆ is the

smaller, the vectors are the more aligned in the(Nr − 1)-dimensional subspace,U . Thus, we will useλ⋆

as aninterference alignment measureto quantify how much the interfering channels are closely aligned

in an (Nr − 1)-dimensional subspace, i.e.,

q(g1, . . . , gK−1) = min
‖c‖=1

max
1≤k≤K−1

|c†gk|
2 (19)

= λ⋆ (λ⋆ ∈ [0, 1]). (20)

In other words, we use the mini-max distance of the interfering channels from an(Nr − 1)-dimensional

subspace. In Fig. 3, the interference alignment measure is geometrically represented. The more the

interfering channels are aligned, the smaller the interference alignment measure becomes.

Since the interference alignment measure is obtained from the optimization problem (18), the exact

distribution is difficult to find. Instead, we obtain the lower bound for the cumulative distribution function

(CDF) of the interference alignment measure in the following lemma.

Lemma 3. WhenK > Nr, the probability that the interference alignment measureq(g1, . . . , gK−1) is

smaller thanλ ∈ [0, 1] is lower bounded on

Pr [q(g1, . . . , gK−1) ≤ λ] ≥
(

1− (1− λ)Nr−1
)K−Nr

. (21)

Proof: We consider two events:

(E1) : q(g1, . . . , gK−1) ≤ λ

(E2) : S2(c̄, λ) ⊃ {g1, . . . , gK−1},

where c̄ is the Nr-dimensional unit vector such that̄c ⊥ {g1, . . . , gNr−1}. By the definition of the

interference alignment measure given in (19),(E1) is true whenever(E2) is true, equivalently,Pr [(E1)] ≥

Pr [(E2)]. The probability of(E2) is obtained by

Pr [(E2)] = Pr [S2(c̄, λ) ⊃ {g1, . . . , gK−1}]

(a)
= Pr [S2(c̄, λ) ⊃ {gNr , . . . , gK−1}]

(b)
=
(

1− (1− λ)Nr−1
)K−Nr

, (22)
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where the equality(a) is from the definition of̄c such that̄c ⊥ {g1, . . . , gNr−1}. Also, the equality(b)

holds from Lemma 2 and from the fact thatc̄ is independent of{gNr , . . . , gK−1}. Thus, we obtain

Pr [(E1)] ≥
(

1− (1− λ)Nr−1
)K−Nr

. (23)

D. Achievable Value of the Interference Alignment Measure via User Selection

The remaining question is how much we can reduce the interference alignment measure via user

selection. In the first user group, thenth user hasK − 1 interfering channels,hn,2, . . . ,hn,K . The

interference alignment measure at thenth user can be written by

q
(

h̃n,2, . . . , h̃n,K

)

, (24)

whereh̃n,k is the normalized interfering channel, i.e.,h̃n,k = hn,k/‖hn,k‖. Thus, the achievable smallest

interference alignment measure via user selection is givenby

min
n

q
(

h̃n,2, . . . , h̃n,K

)

. (25)

Obviously, the smallest interference alignment measure will decrease as the number of users increases.

In the following lemma, we find the relationship between (25)and the number of total users (i.e.,N).

Lemma 4. When there areN users, the expectation of the smallest interference alignment measure is

upper bounded on

E

[

min
n

q
(

h̃n,2, . . . , h̃n,K

)

]

< N− 1
K−Nr . (26)

Proof: The complementary CDF of (25) is bounded on

Pr
[

min
n

q
(

h̃n,2, . . . , h̃n,K

)

≥ λ
]

= Pr
[

q
(

h̃n,2, . . . , h̃n,K

)

≥ λ for all n
]

=

N
∏

n=1

Pr
[

q
(

h̃n,2, . . . , h̃n,K

)

≥ λ
]

=
(

1− Pr
[

q
(

h̃n,2, . . . , h̃n,K

)

≤ λ
])N

(a)
<
[

1− (1− (1− λ)Nr−1)K−Nr
]N

, (27)
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whereλ ∈ [0, 1], and the inequality(a) holds from Lemma 3. Using this bound, we obtain (26) as

E

[

min
n

q
(

h̃n,2, . . . , h̃n,K

)

]

=

∫ 1

0

Pr
[

min
n

q
(

h̃n,2, . . . , h̃n,K

)

≥ λ
]

dλ

≤

∫ 1

0

[

1− (1− (1− λ)Nr−1)K−Nr
]N

dλ

(a)

≤

∫ 1

0

[

1− (1− (1− λ))K−Nr
]N

dλ

(b)
=

1

K −Nr

β

(

1

K −Nr

, N + 1

)

(c)
=

Γ
(

1 + 1
K−Nr

)

Γ(N + 1)

Γ
(

N + 1 + 1
K−Nr

)

(d)
< N− 1

K−Nr ,

where the inequality(a) is due to(1− λ)Nr−1 ≤ (1− λ) for 0 ≤ λ ≤ 1, and the equality(b) holds from

the representation of beta function [24, p.324]
∫ 1

0

xp−1(1− xq)r−1dx =
1

q
β

(

p

q
, r

)

.

The equality(c) comes from the definition of the beta functionβ(p, q) = Γ(p)Γ(q)/Γ(p + q) and the

property of the Gamma functionΓ(p + 1) = pΓ(p). In the right-hand-side of the equality(c), it holds

Γ(1 + 1
K−Nr

) < 1 because0 < Γ(x) < 1 for 1 < x < 2. Also, it is satisfied that

Γ(N + 1)

Γ
(

N + 1 + 1
K−Nr

)

(e)
<

(

N + 1 +
1

K −Nr

)− 1
K−Nr

< N− 1
K−Nr ,

where(e) is from the Gautschi’s inequality [25] given by

Γ(x+ s)

Γ(x+ 1)
< (x+ 1)s−1, for x > 0, 0 < s < 1,

with x = N + 1
K−Nr

ands = 1− 1
K−Nr

. Thus, the inequality(d) holds.

IV. OPTIMAL EXPLOITATION OF MULTIUSER DIVERSITY FOR THE TARGET DOF

In this section, we derive the optimal strategies of exploiting multiuser diversity for the target DoF

d. We first decompose the target DoFd into the DoF gain termd1 and the DoF loss termd2 such that

d = d1 − d2, and find the required user scalings ford1 and d2, respectively. Then, the optimal target
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DoF achieving strategy is derived by determining the optimal combination(d⋆1, d
⋆
2) which requires the

minimum user scaling for the target DoFd.

A. Required User Scaling to Reduce the DoF Loss Term

In this subsection, we find the required user scaling to reduce the DoF loss. Via user selection, the rate

loss term given in (4) can be minimized by

E

[

min
n,vn

log2

(

1 + P

K
∑

k=2

|v†
nhn,k|

2

)]

. (28)

This value is upper bounded on

E

[

min
n,vn

log2

(

1 + P

K
∑

k=2

|v†
nhn,k|

2

)]

(a)
= E‖h‖,h̃

[

min
n,vn

log2

(

1 + P

K
∑

k=2

‖hn,k‖
2|v†

nh̃n,k|
2

)]

(b)

≤ E
h̃

[

min
n,vn

E‖h‖ log2

(

1 + P
K
∑

k=2

‖hn,k‖
2|v†

nh̃n,k|
2

)]

(c)

≤ E
h̃

[

min
n,vn

log2

(

1 +NrP
K
∑

k=2

|v†
nh̃n,k|

2

)]

(d)

≤ E
h̃

[

min
n

log2

(

1 +NrP (K − 1)q(h̃n,2, . . . , h̃n,K)
)]

(e)

≤ log2

(

1 +NrP (K − 1)E
h̃

[

min
n

q(h̃n,2, . . . , h̃n,K)
])

(f)

≤ log2

(

1 +NrP (K − 1)N
− 1

K−NR

)

, (29)

where the equality(a) is obtained by decomposing the channel vector into direction and magnitude

independent of each other such thathn,k = ‖hn,k‖h̃n,k. The inequality(b) holds because the minimum of

the average is larger than the average of the minimum. The inequality (c) is from the Jensen’s inequality

andE‖hn,k‖2 = Nr. Also, the inequality(d) holds from the fact that

min
vn

[

K
∑

k=2

|v†
nh̃n,k|

2

]

≤ min
vn

[

(K − 1) max
2≤k≤K

|v†
nh̃n,k|

2

]

= (K − 1)q(h̃n,2, . . . , h̃n,K), (30)

whereq(h̃n,2, . . . , h̃n,K) is the interference alignment measure at the usern given in (19). The inequality

(e) is from the Jensen’s inequality, and the inequality(f) holds from Lemma 4. We obtain the following

theorem.
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Theorem 1. We can obtain the DoF loss termd2 ∈ [0, 1] when the number of users in each group scales

as

N ∝ P (1−d2)(K−Nr).

Proof: To obtain the DoF loss termd2, it is enough to make (29) satisfying

lim
P→∞

log2

(

1 +NrP (K − 1)N
− 1

K−NR

)

log2 P
= d2, (31)

which is achieved ifN ∝ P (1−d2)(K−Nr).

A tighter upper bound of the rate loss term than (29) could exist, but the derived upper bound in (29)

enables us to compare the increasing speeds of the transmit power and the required number of users,

which is the crucial factor of DoF calculation. The scaling law of the required number of users obtained

from (29), which is derived in Theorem 1, is enough to find the optimal target DoF achieving strategy as

shown in Section IV-C.

B. Required User Scaling to Increase the DoF Gain Term

We also find the required user scaling to increase the DoF gainterm. From the definition of the rate

gain term given in (3), the maximum rate gain term obtained byuser selection is

E

[

max
n,vn

log2

(

1 + P
K
∑

k=1

|v†
nhn,k|

2

)]

. (32)

This value is lower bounded on

E

[

max
n,vn

log2

(

1 + P

K
∑

k=1

|v†
nhn,k|

2

)]

≥ E

[

max
n,vn

log2
(

1 + P |v†
nhn,1|

2
)

]

= E

[

max
n

log2
(

1 + P‖hn,1‖
2
)

]

, (33)

and upper bounded on

E

[

max
n,vn

log2

(

1 + P

K
∑

k=1

|v†
nhn,k|

2

)]

≤ E

[

max
n

log2

(

1 + P

K
∑

k=1

‖hn,k‖
2

)]

≤ E

[

max
n

log2

(

1 + PKmax
k

‖hn,k‖
2
)]

. (34)
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Since all‖hn,k‖2 are i.i.d.χ2(2Nr) random variables, for sufficiently largeN , the bounds (33) and (34)

acts like [23]

E

[

max
n

log2
(

1 + P‖hn,1‖
2
)

]

∼ log2(1 + P logN)

E

[

max
n,k

log2
(

1 + PK‖hn,k‖
2
)

]

∼ log2(1 + PK log(KN)).

Thus, when bothN andP are large enough, (32) act likelog2(P logN), i.e,

lim
P→∞
N→∞

E

[

max
n,vn

log2

(

1 + P

K
∑

k=1

|v†
nhn,k|

2

)]

∼ log2(P logN). (35)

Therefore, we establish the following theorem.

Theorem 2. The DoF gain termd1 ∈ [1,∞) is achievable when the number of users in each group scales

as

N ∝ eP
(d1−1)

.

Proof: We use (35). By setting

lim
P→∞

log2(P logN)

log2 P
= d1, (36)

we obtain the required user scaling for the DoF gain termd1 given byN ∝ eP
(d1−1)

.

C. Target DoF Achieving Strategy

In Theorem 1 and Theorem 2, we found the required user scalings for the DoF loss termd2 and the

DoF gain termd1, respectively. In this subsection, we find the optimal target DoF achieving strategy

which requires the minimum user scaling. We start with the following theorem.

Theorem 3. For the target DoF up to one, the whole multiuser dimensions should be devoted to minimizing

the DoF loss caused by interfering signals. The optimal DoF achieving strategy for the target DoF

d ∈ [0, 1] is (d⋆1, d
⋆
2) = (1, 1− d), and the corresponding sufficient user scaling is

N ∝ P d(K−Nr). (37)

Proof: In Theorem 1, we have shown that the target DoFd ∈ [0, 1] is achievable by reducing the

DoF loss term with the user scalingN ∝ P d(K−Nr). On the other hand, this user scaling cannot increase
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the DoF gain term. SubstitutingN ∝ P d(K−Nr) into (35) the DoF gain termd1 becomes

lim
P→∞

log2
(

P log(P d(K−Nr))
)

log2 P
= 1. (38)

which is the same as when there is a fixed number of users as described in (7). That is, any other

combinations(d1, d2) = (1 + ∆, 1 − d +∆) which achieve the target DoFd requires larger user scaling

thanN ∝ P d(K−Nr), where∆ > 0 sinced1 > 1. Therefore, the optimal target DoF achieving strategy is

given by (d⋆1, d
⋆
2) = (1, 1− d), and the sufficient user scaling isN ∝ P d(K−Nr).

Now, we derive the target DoF achieving strategy when the target DoFd is greater than one. To find the

optimal DoF achieving strategy, we firstly find the sufficientuser scaling for an arbitrary strategy(d1, d2)

achieving DoFd (= d1 − d2 > 1). Then, we show that the optimal target DoF achieving strategy for the

target DoFd (> 1) is (d⋆1, d
⋆
2) = (d, 0).

Lemma 5. For the target DoFd (> 1), the sufficient user scaling for an arbitrary strategy(d1, d2)

achieving DoFd (= d1 − d2) is given by

N ∝ eP
(d1−1)

P (1−d2)(K−Nr), (39)

whered1 > 1 and d2 ∈ [0, 1].

Proof: As a target DoF achieving scheme, we consider a two-stage user selection scheme; the first

stage is to increase the DoF gain term, and the second stage isto decrease the DoF loss term. The

considered two stage user selection strategy is illustrated in Fig. 4. We randomly divide totalN users

into N2 subgroups havingN1 users each such thatN1N2 = N . Then, the user selection in each stage is

performed as follows.

• Stage 1: In each subgroup, a single user having the largest channel gain is selected amongN1 users.

As a result, we haveN2 selected users after Stage 1.

• Stage 2: Among theN2 users, the transmitter selects a single user to minimize theDoF loss term.

In Stage 1, the DoF gain termd1 is obtained at each selected user when

N1 ∝ eP
(d1−1)

(40)

as stated in Theorem 2. In Stage 2, we can make the DoF loss termd2 when

N2 ∝ P (1−d2)(K−Nr) (41)



18

as shown in Theorem 1. Thus, the target DoFd (> 1) with the strategy(d1, d2) such thatd = d1 − d2

can be obtained by the user scalingN1N2, which is given in (39).

From Lemma 5, we obtain the optimal DoF achieving strategy for the target DoFd (> 1) in following

theorem.

Theorem 4. The optimal target DoF achieving strategy ford ∈ [1,∞) is to increase the DoF gain term to

d and to perfectly eliminate the DoF loss, i.e.,(d⋆1, d
⋆
2) = (d, 0). Consequently, the sufficient user scaling

for target DoFd (> 1) becomes

N ∝ eP
(d−1)

P (K−Nr). (42)

Proof: The proof is similar to that of Theorem 3. From Lemma 5, we can obtain the target DoF

d (> 1) by the strategy(d, 0) with the sufficient user scaling given in (42). However, thisscaling cannot

increase the DoF gain term larger thand even when the user scaling is only used to increase the DoF

gain term. Substituting (42) into (35), we still have

lim
P→∞

log2

(

P log(eP
(d−1)

P (K−Nr))
)

log2 P
= d. (43)

This implicates that the user scaling given in (42) is sufficient for the strategy(d, 0) but not enough

for other strategies(d + ∆, 1) as well as(d + ∆,∆) which requires the higher user scaling than that

of (d + ∆, 1), where∆ ∈ (0, 1]. Therefore, the optimal strategy for the target DoFd (> 1) becomes

(d⋆1, d
⋆
2) = (d, 0).

In Fig. 5, the optimal DoF achieving strategy(d⋆1, d
⋆
2) is plotted according to the target DoFd (= d1−d2).

V. PRACTICAL USER SELECTION SCHEMES

In this section, we discuss how the optimal target DoF achieving strategy can be realized by practical

user selection schemes. The practical schemes considered in this section require no cooperation and

no information exchange among the transmitters. For practical scenarios, we assume that each user has

knowledge of channel state information (CSI) of the direct channel and the covariance matrix of the

received signal without explicit knowledge of CSI of the interfering channels. That is, thenth user

knows CSI of its own desired channelhn,1 and the covariance matrix of the received signalE[yny
†
n] =
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INr + P
∑K

k=1 hn,kh
†
n,k. From these values, the usern easily obtains the interference covariance matrix

denoted byRn , P
∑K

k=2 hn,kh
†
n,k such as

Rn = E[yny
†
n]− Phn,1h

†
n,1 − INr . (44)

Therefore, the achievable rate at the first transmitter given in (2) can be rewritten by

R , E log2

(

1 +
P |v†

n∗hn∗,1|2

v
†
n∗(INr +Rn∗)vn∗

)

.

To increaseR, various user selection schemes can be considered, but we focus on several popular tech-

niques in the following subsections – to maximize the postprocessed SNR
(

i.e., P |v†
n∗hn∗,1|

2
)

, to minimize

the postprocessed INR
(

i.e., v†
n∗Rn∗vn∗

)

, and to maximize the postprocessed SINR
(

i.e.,
P |v†

n∗hn∗,1|
2

v
†

n∗(INr+Rn∗)vn∗

)

.

A. The Maximum Postprocessed SNR User Selection (MAX-SNR)

In the MAX-SNR user selection scheme, each user maximizes the postprocessed SNR, and the trans-

mitter selects the user having the maximum postprocessed SNR. Consequently, the postprocessed SNR at

the selected user becomes

max
n

[

max
vn

P |v†
nhn,1|

2

]

(a)
= max

n
P‖hn,1‖

2, (45)

where the equality(a) holds when thenth user adopts the postprocessing vectorvsnr
n = hn,1/‖hn,1‖. Thus,

the selected user denoted byn∗
snr becomes

n∗
snr = argmax

n
P‖hn,1‖

2, (46)

and the desired channel gain at each user (‖hn,1‖2 for the usern) should be informed to the transmitter.

Using the MAX-SNR scheme, the transmitter can only increasethe DoF gain term while the DoF

loss term remains one. Although the MAX-SNR scheme can achieve the target DoFd by the strategy

(d1, d2) = (1 + d, 1), it is not optimal target DoF achieving strategy. The required user scaling for the

target DoFd (> 0) by the MAX-SNR scheme becomes

N ∝ eP
(1+d)

,

as shown in Theorem 2. This user scaling is of course higher than (37) for the target DoFd ∈ (0, 1]

and (42) for the target DoFd (> 1) since the MAX-SNR does not realize the optimal target achieving
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strategy. In other words, one can easily find that

lim
P→∞

[

eP
(1+d)

/P d(K−Nr)
]

= ∞ for d ∈ (0, 1],

lim
P→∞

[

eP
(1+d)

/
(

eP
(d−1)

P (K−Nr)
)]

= ∞ for d > 1.

B. The Minimum Postprocessed INR User Selection (MIN-INR)

In the MIN-INR user selection scheme, each user minimizes the postprocessed INR, and the transmitter

selects the user having the minimum postprocessed INR. Thus, the postprocessed INR at the selected user

becomes

min
n

[

min
vn

v†
nRnvn

]

(a)
= min

n
[Λmin (Rn)] , (47)

where the equality(a) is obtained by the postprocessing vector of thenth user

vinr
n = Vmin (Rn) . (48)

The required feedback information from thenth user isΛmin

(

Rn

)

, and index of the selected user denoted

by n∗
inr becomes

n∗
inr = argmin

n
[Λmin (Rn)] . (49)

Note that this scheme minimizes the rate loss term defined in (4).

Using the MIN-INR scheme, the transmitter can decrease the DoF loss term while the DoF gain term

remains to be one. Therefore, the MIN-INR scheme realizes the optimal target DoF achieving strategy

(d1, d2) = (1, 1− d) for the target DoFd ∈ [0, 1]. The required number of users by the MIN-INR scheme

for the target DoFd ∈ [0, 1] scales like

N ∝ P d(K−Nr),

which is the required user scaling of the optimal target DoF achieving strategy when the target DoF is

d ∈ [0, 1] as shown in Theorem 3.
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C. The Maximum Postprocessed SINR User Selection (MAX-SINR)

The MAX-SINR user selection scheme is known to maximize the achievable rate at the transmitter

although it requires additional complexity for postprocessing at the receivers. The achievable rate by the

MAX-SINR scheme denoted byRsinr becomes

Rsinr , E

[

max
n,vn

log2

(

1 +
P |v†

nhn,1|2

v
†
n(INr +Rn)vn

)]

. (50)

At each channel realization, the postprocessed SINR at the selected user is given by

max
n

[

max
vn

P |v†
nhn,1|2

v
†
n(INr +Rn)vn

]

. (51)

To maximize the postprocessed SINR, thenth user adopts the postprocessing vector given by

vsinr
n =

(INr +Rn)
−1hn,1

‖(INr +Rn)−1hn,1‖
,

which is identical with the MMSE-IRC in [26]. The corresponding postprocessed SINR at usern becomes

Ph
†
n,1(INr +Rn)

−1hn,1 [27], and hence the selected user at the transmitter denotedby n∗
sinr is given by

n∗
sinr = argmax

n
h
†
n,1(INr +Rn)

−1hn,1. (52)

Lemma 6. To obtain the target DoFd ∈ [0, 1], the required user scaling of the MAX-SINR scheme is

exactly the same as that of the MIN-INR scheme.

Proof: From the fact that

Rinr ≤ Rsinr ≤ R+
sinr −R−

inr, (53)

we obtain

lim
P→∞

Rinr

log2 P
≤ lim

P→∞

Rsinr

log2 P
≤ lim

P→∞

R+
sinr

log2 P
− lim

P→∞

R−
inr

log2 P

(a)
= lim

P→∞

Rinr

log2 P
, (54)

where the equality(a) is becauselim
P→∞

R+
sinr

log2 P
= 1 as shown in the proof of Theorem 3. Therefore, the

required user scaling forlim
P→∞

Rsinr
log2 P

= d is exactly the same as the required user scaling forlim
P→∞

Rinr
log2 P

= d,

equivalently, for lim
P→∞

R−
inr

log2 P
= 1− d.

Lemma 6 indicates that the MAX-SINR scheme realizes the optimal DoF achieving strategy(d⋆1, d
⋆
2) =

(1, 1− d) for the target DoFd ∈ [0, 1].
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Lemma 7. The MAX-SINR scheme realizes the DoF achieving strategy(d⋆1, d
⋆
2) = (d, 0) whenever the

target DoFd is greater than 1.

Proof: Since the MAX-SINR scheme is the optimal user selection scheme, it achieves DoFd (> 1)

with the user scalingN ∝ eP
(d−1)

P (K−Nr) as stated in Theorem 4. From the definition of (32), we obtain

R+
sinr < (32), and hence we havelim

P→∞

R+
sinr

log2 P
≤ lim

P→∞

(32)
log2 P

. As shown in (43), the sufficient user scaling for

the MAX-SINR scheme to obtain the target DoFd cannot increase the DoF gain term larger thand even

if the whole user scaling is only devoted to increasing the DoF gain term. This implicates that when we

obtain the target DoFd (> 1) by the MAX-SINR scheme with the user scalingN ∝ eP
(d−1)

P (K−Nr), we

obtain lim
P→∞

R−
sinr

log2 P
= 0 and have the DoF gaind at most (i.e., lim

P→∞

R+
sinr

log2 P
= d). Therefore, the MAX-SINR

scheme can only have
(

lim
P→∞

R+
sinr

log2 P
, lim
P→∞

R−
sinr

log2 P

)

= (d, 0) if lim
P→∞

Rsinr
log2 P

= d (> 1).

D. Two-stage User Selection Scheme

For the target DoFd (> 1), the two-stage user selection scheme described in the proofof Lemma 5

can be adopted. More specifically, the transmitter selects the users by the MAX-SNR scheme in the first

stage. Then, in the second stage, the transmitter selects a single user by the MIN-INR scheme or the

MAX-SINR scheme. As shown in the proof of Lemma 5, the two-stage user selection scheme can realize

the optimal target DoF achieving strategy for the target DoFd (> 1).

VI. EXTENSION TOK-TRANSMITTER INTERFERING MIMO B ROADCAST CHANNELS

In this section, we extend our system to interfering MIMO BC cases. More specifically, each transmitter

with Nt antennas sendsNt independent streams overNt orthonormal random beams using equal power

allocation. Similar to the user selection procedure in [7],each transmitter broadcastsNt orthonormal

random beams, and each user feedsNt scalar values corresponding to all beams back to the transmitter.

The feedback information corresponding to each stream suchas SNR, INR, and SINR can be easily found

in a similar way to the SIMO case. A single user is selected foreach beam, but the same user can be

selected for different beams. However, it rarely occurs that multiple streams are transmitted for a single

user as the number of users increases. When multiple streamsare transmitted for a single user, the user

is assumed to decode each stream treating the other streams as interferences. We denote the orthonormal
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random beams byu1, . . . ,uNt which satisfies that‖u1‖2 = · · · = ‖uNt‖
2 = 1 andu†

iuj = 0 for all i 6= j.

We start from the following remark.

Remark 1. Let H ∈ CNr×Nt be the channel matrix whose elements are i.i.d. Gaussian random variables.

Then, for an arbitrary unitary matrixU ∈ CNt×Nt (i.e.,U†U = UU† = INt), the distributions ofH and

HU are identical. Since theNr columns ofH are independent and isotropic random vectors inC
Nr , so

are theNr columns ofHU ∈ CNr×Nt.

Owing to Remark 1, theK-transmitter MIMO interfering BC is statistically identical with theKNt-

transmitter SIMO interfering BC. LetHk,n ∈ CNr×Nt be the channel matrix from thekth transmitter to

the nth user in the first user group. Since the random beams satisfythat [u1, . . . ,uNt ]
†[u1, . . . ,uNt ] =

[u1, . . . ,uNt ][u1, . . . ,uNt ]
† = INt, the usern in the first user group hasKNt independent and isotropic

channel vectors

Hk,nui ∈ C
Nr×1 k ∈ [K] i ∈ [Nt],

formed by the random beams and channel matrices from all transmitters.

If the nth user in the first group is served by theith random beam, the user has desired channel

Hn,1ui ∈ C
Nt×1 and the(KNt − 1) interfering channels, which correspond to(Nt − 1) inter-stream

interfering channels{Hn,1uj}j 6=i and (K − 1)Nt inter-transmitter interfering channels

⋃

j∈[Nt]

{Hn,kuj}
K
k=2.

Consequently, each random beam can be regarded as a single antenna transmitter with the transmit power

P/Nt. This fact leads to the following theorems.

Theorem 5 (MIMO BC). In a MIMO BC where a transmitter withNt antennas supportsNt users among

N users withNr(< Nt) antennas each, the optimal DoF achieving strategy for the target DoFd (∈ [0, Nt])

is (Nt, Nt − d) and requires the number of users to scale asN ∝ P (d/Nt)(Nt−Nr). For the target DoF

d (> Nt), the optimal DoF achieving strategy is(d, 0) and requires the number of users to scale as

N ∝ eP
(d/Nt−1)

P (Nt−Nr).

Proof: The DoF gain termd1(> Nt) is obtained when each stream achieves DoF gain termd1/Nt (>

1). Thus, with the same procedure given in Section IV-B, we can easily show that the DoF gain term
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d1(> Nt) is obtained whenN ∝ eP
(d1/Nt−1)

. On the other hand, the DoF loss termd2 (≤ Nt) is obtained

when each stream achieves DoF loss term per streamd2/Nt (≤ 1). As stated earlier, usingNt orthonormal

random beams at the transmitter each of which independentlysupports a single user, the MIMO BC can

be translated into anNt-transmitter SIMO IC where each transmitter supports one ofN users withNr

antennas. In this case, DoF loss termd2 (≤ Nt), i.e., DoF lossd2/Nt (≤ 1) per stream, is obtained when

N ∝ P (1−d2/Nt)(Nt−Nr). Therefore, we can conclude that the optimal DoF achieving strategy for the target

DoF d (∈ [0, Nt]) is (Nt, Nt − d) and requires the number of users to scale asN ∝ P (d/Nt)(Nt−Nr). Also,

for the target DoFd (> Nt), the optimal DoF achieving strategy is(d, 0) and requires the number of

users to scale asN ∝ eP
(d/Nt−1)

P (Nt−Nr).

Theorem 6 (Interfering MIMO BC). Consider aK-transmitter interfering MIMO BC where thekth

transmitter withN (k)
t antennas supportsN (k)

t users amongN (k) users withN (k)
r (< T ,

∑K
k=1N

(k)
t )

antennas each. At thekth transmitter, the optimal DoF achieving strategy for the target DoFd (∈ [0, N
(k)
t ])

is (N
(k)
t , N

(k)
t − d) and requires the number of users to scale asN ∝ P (d/N

(k)
t )(T−N

(k)
r ). For the target

DoF d (> Nt), the optimal DoF achieving strategy becomes(d, 0) and requires the number of users to

scale asN (k) ∝ eP
(d/N

(k)
t −1)

P (T−N
(k)
r ).

Proof: The proof is similar to that of Theorem 5. Thekth transmitter obtains DoF gain termd1 (>

N
(k)
t ) when each stream obtains DoF gain termd1/N

(k)
t (> 1), and the required user scaling is exactly

given by N (k) ∝ eP
(d1/N

(k)
t −1)

. On the other hand, thekth transmitter obtainsd2 (≤ N
(k)
t ) when the

DoF loss term per stream becomesd2/N
(k)
t (≤ 1). Using N

(k)
t orthonormal random beams at each

transmitter each of which independently supports a single user, the interfering MIMO BC can be translated

into an T (=
∑K

k=1N
(k)
t )-transmitter SIMO IC where each transmitter supports a single user among

N (k) users withN (k)
r antennas. Thus, thekth transmitter obtains the DoF loss termd2 (≤ N

(k)
t ) when

N (k) ∝ P (1−d2/N
(k)
t )(T−N

(k)
r ). Therefore, we can conclude that the optimal DoF achieving strategy of the

kth transmitter for the target DoFd (∈ [0, N
(k)
t ]) is (N

(k)
t , N

(k)
t − d) and obtained when the number of

users scales asN (k) ∝ P (d/N
(k)
t )(T−N

(k)
r ). Also, for the target DoFd (> N

(k)
t ), the optimal DoF achieving

strategy is(d, 0) and requires the number of users to scale asN (k) ∝ eP
(d/N

(k)
t −1)

P (T−N
(k)
r ).
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VII. N UMERICAL RESULTS

In this section, we first compare achievable rates of the practical user selection schemes for given

number of users. Then, we check if the target DoF can be achievable with increasing number of users by

showing achievable rates per transmitter for the practicaluser selection schemes. We have also considered

two time division multiple access (TDMA) schemes. In the first TDMA scheme (TDMA1), a single

transmitter operates at each time so that1/K DoF is achieved at each transmitter. In the second TDMA

scheme (TDMA2), onlyNr of K transmitters operate at each time so thatNr/K DoF is achieved at each

transmitter.

Fig. 6 shows the achievable rates of each transmitter for various user selection schemes in IBC when

there are 4 transmitters and each transmitter has 10 users with three receive antennas each. It is confirmed

that the achievable rates are saturated in the high SNR region and the achievable DoF per transmitter

becomes zero for the fixed number of users.

Now, we show that the target DoF can be achievable if the number of users properly scales. In Fig. 7,

the number of users scales asN ∝ P d(K−Nr), i.e.,N ∝ P for the target DoF one. Specifically, two user

scalingN = P andN = 0.5P are considered, and other configurations except the number of users are

the same as those in Fig. 6. Fig. 7 verifies that the MIN-INR andthe MAX-SINR schemes achieve DoF

one per transmitter as predicted in Theorem 3 and Lemma 6.

In Fig. 8, we consider two different user scalingN = P 0.5 andN = P 1 from those in Fig. 7. According

to Theorem 3 and Lemma 6, the achievable DoF at each transmitter by either the MAX-SINR scheme or

the MIN-INR scheme isd when the number of users scales asN ∝ P d. As predicted, Fig. 8 shows that

the achieved DoF per transmitter is 0.5 and 1 whenN = P 0.5 andN = P 1, respectively, by either the

MIN-INR scheme or the MAX-SINR scheme.

VIII. C ONCLUSIONS

We first studied the optimal way of exploiting multiuser diversity in the K-transmitter SIMO IBC

where each transmitter with a single antenna selects a user and the number of transmitters is larger than

the number of receive antennas at each user. We proved that the multiuser dimensions should be used

first for decreasing the DoF loss caused by interfering signals; the whole multiuser dimensions should
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be exploited to reduce the DoF loss term to1 − d for the target DoFd ∈ [0, Nt], while the multiuser

dimensions should be devoted to making the DoF loss zero and then to increasing the DoF gain term tod

for the target DoFd ∈ [Nt,∞). We also derived the sufficient user scaling for the target DoF. The DoF per

transmitterd ∈ [0, Nt] is obtained when the number of users scales asN ∝ P (d/Nt)(KNt−Nr), and the DoF

per transmitterd ∈ [Nt,∞) is achieved when the number of users scales asN ∝ eP
(d/Nt−1)

P (KNt−Nr).

Also, we extended the results to theK-transmitter MIMO IBC where each transmitter having the multiple

antennas supports the multiple users.
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Fig. 1. System model. Each transmitter selects and serves a single user in each group.
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3 case.
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Fig. 3. Graphical representations of the interfering channels and interference alignment measures.
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Fig. 4. Two-stage user selection scheme.
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Fig. 7. Achievable rates per transmitter using various schemes when the number of users in each group scales asN = P andN = 0.5P ,

respectively.
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