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Abstract— Decoding of linear space-time block codes (STBCs) We are interested in linear STBCs, since they admit Sphere
with sphere-decoding (SD) is well known. A fast-version oftte  Decoding (SD) [2] which is a fast way of decoding for the

SD known as fast sphere decoding (FSD) has been recently,, . ; s ;
studied by Biglieri, Hong and Viterbo. Viewing a linear STBC variables. A further simplified version of the SD known as

as a vector space spanned by its defining weight matrices overthe fast sphere deCOdm_g (FSD)_ [3_] (filso known as conditiona
the real number field, we define a quadratic form (QF), called ML decoding) was studied by Biglieri, Hong and Viterbo. The
the Hurwitz-Radon QF (HRQF), on this vector space and give quadratic form (QF) approach has been used in the context of
a QF interpretation of the FSD complexity of a linear STBC. STBCs in [4] to determine whether Quaternion algebras or
It is shown that the FSD complexity is only a function of the i aternion algebras are division algebras, an aspetindea
weight matrices defining the code and their ordering, and not . . . .

of the channel realization (even though the equivalent charel with the fuI.I diversity of the codes. This appro_th has narbe
when SD is used depends on the channel realization) or the fully exploited to study the other characteristics of STBCs
number of receive antennas. It is also shown that the FSD In this paper, we use this approach to study the fast sphere
complexity is completely captured into a single matrix obtined decoding (FSD) complexity of STBCs (a formal definition of
from the HRQF. Moreover, for a given set of weight matrices, this complexity is given in SubsectiGil-B).

an algorithm to obtain a best ordering of them leading to the A . . .
least FSD complexity is presented. The well known classes of D€Signing STBCs with low decoding complexity has been

low FSD complexity codes (multi-group decodable codes, fas Studied widely in the literature. Orthogonal designs witigte
decodable codes and fast group decodable codes) are presaht symbol decodability were proposed in [5], [6], [7]. For ST8C

in the framework of HRQF. with more than two transmit antennas, these came at a cost
|. INTRODUCTION & PRELIMINARIES of rgduced tran_smission ratgs. To increase the rate at ste co
Consid inimal-del " ded Ravieiah of higher decoding complexity, multi-group decodable SEBC
onsidera minimal-aelay space-lime coded Raylelgn uagla .o introduced in [8], [9], [10]. Fast decodable codes é=od
statl_c flat fading Ml.MO channel with full channel State_'morthat admit FSD) have reduced SD complexity owing to the fact
matrl]on at the receiver (ESIR)' The input output relation f%at a few of the variables can be decoded as single symbols
such a system Is given by or in groups if we condition them with respect to the other
Y =HX +N, (1) variables. Fast decodable codes for asymmetric systemg usi
division algebras have been recently reported [11]. Golden
code and Silver code are also examples of fast decodabls code
; X ) as shown in [12] and [13]. The properties of fast decodable
complex-Gaussian with zero mean and variance 1 2pd codes and multi-group decodable codes were combined and

respectively._ The trans_mitted cheword)(se Cntx_nt and _a new class of codes called fast group decodable codes were
Y € C"*™ is the received matrix. The ML decoding metriG, died in [14]

to minimize over all possible values of the codewdtdis
M (X) =[] Y — HX || . )

whereH € C"*"t s the channel matrix andl € C"*"t is
the additive noise. Botiid and N have entries that are i.i.d.

A. Hurwitz-Radon Quadratic Form

In this subsection we define the Hurwitz Radon quadratic
Definition 1: A linear STBC [1]: A linear STBCC over a form (HRQF) on any STBC. We first recall some basics about
real (1-dimensional) signal sef, is a finite set ofny x n,  quadratic forms. More details can be seen in [15].
matrices, where any codeword matrix belonging to the codepefinition 2: Let £ be a field with characteristic not 2, and

C is obtained from, V be a finite dimensional’-vector space. A quadratic form
K onV is defined as a maf) : V. — F such that it satisfies
X (z1,22, ..., TK) = inAi, (3) the following properties.
i=1

e Q(av) =a?Q(v) forallveV and alla € F.
by letting the real variables,, z»..., rx take values froma o The mapB (v,w) = 1 [Q (V+w) — Q (v) — Q (w)] for
real signal setS, whereA; are fixedn, x n, complex matrices all v,w € V is bilinear and symmetric.
defining the code, known as the weight matrices. The rate oflf we considerl” as ann-dimensional vector space ove;
this code is% complex symbols per channel use. then we can also consider the quadratic form as a homoge-
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neous polynomial of degree two, i.e., for< 4,5 < n, we
have scalarsn,; such that

Q (V) =Q (v1,v2,...,0) = Z M ViV 4) "=

i,j=1

OO OO OO O =+
DO OO OO +0O
OO OO O +0OO
OO OO +0O0 00O
OO O o+ ok ok ok ook
O O =+ O ok ok ok
O o+ O O o ok o
+ OO O o ok

for all v = [vy,...,v,] € V. Hence, we can associate a matrix
M = (mn;;) with the quadratic form such tha& (v) = vMv”. where ¢ denotes non zero entries. We can clearly see that
the Silver code admits fast decoding with this ordering with
Definition 3: The Hurwitz Radon quadratic form is a mapFSD complexity M. However, if we change the ordering to
from the STBCC = <X = Zszl szz} to the field of real [Slj,le, 8471, 52Q, S31,53Q, S2I 5 S4Q], then theR matrix for

numbersR, i.e., @ : C — R given by SD has the following structure
t 0 t 0 t t 0 t
Q(X) = Z z;xjd;j, %) 0t t 0 t t 0 ¢t
1<i<i<K o o t t t t t 0
=== o 0 0 t t t t t
whereX is an element of the STBC and R=lo 00 0 ¢ ¢ t ¢
o o0 o o0 o0 t t t
o 0 O O O O t t
dij =| AVAT + AAT |17 00 0 0 0 0 0 ¢t

Theorem 1:The map defined by{5) is a quadratic form. ) _ ) )
Proof: The map(Q needs to satisfy the conditions advheret denotes non zero entries. With this ordering, the FSD

defined in Definitiof 2. We have complexity increases t‘M?-
The contributions of this paper are as follows:
Q(aX) = awsavydy = a® Yy wpwydy = a’Q (X) « We give a formal definition of the FSD complexity of a
i3 iJ linear STBC (Subsectidn I[IB.)
and o With the help of HRQF, it is shown that the FSD com-
B(X,Y) = 1 QX +Y)—Q(X)—Q(Y)] plexity of the qode dgpends_only on the weight matrices
2 of the code with their ordering, and not on the channel

realization (even though the equivalent channel when SD
is used depends on the channel realization) or the number
of receive antennas.
1 o A best ordering (not necessarily unique) of the weight
BXY:_ iidii 1Yq ldl . . .
(X, Y) 2 Z [wiidii + (@iy; + 2595) dig] matrices provides the least FSD complexity for the STBC.

We provide an algorithm to be applied to the HRQF
It is clearly seen that this map is bilinear and symmetrm. matrix which outputs a best ordering.

We can associate a matrix with the HRQF. If we define the The remaining of the paper is organized as follows: In

matrix M = (m;;) wherei,j = 1,2,..., K such thT"’ltmij = Section[D the known classes of low ML decodable codes,
dij, then we can write the HRQF &3 (x) = xMx™, where he system model and the formal definition of the FSD
X = [r1 a2 ... axc]. Notice thatM is a symmetric matrix and complexity of a linear STBC are given. In Sectibil Ill, we
mij =0 if and only if A;A;" +A;A;" = 0. _show that the FSD complexity depends completely on the
The following example shows that the FSD complexityror and not on the channel realization or the number of
depends on the ordering of the weight matrices or equiMglenfaceive antennas. In SectiGnl IV, we present an algorithm to

should be bilinear and symmetric wheXe= Zfil z;A; and
Y = Zfil (yiA;). Substituting and simplifying, we get

]

the ordering F’f the variables. _ _ ~ modify the HRQF matrix in order to obtain a best ordering
Example 1:Let us consider the Silver code given by: ot the weight matrices to obtain the least FSD complexity.
X = Xq (51,82) + TX (21, 22) (6) Concluding remarks constitute Sectioh V.

Notations:Throughout the paper, bold lower-case letters are
where X, and X, take the Alamouti structure, andused to denote vectors and bold upper-case letters to denote

Xq (s1,80) = LTy (21,22) = oTE matr_ices..For a complex variakx_he xy andzg denote the real
52 51 22 21 and imaginary part of, respectively. The sets of all integers,
1|1 0| and [21, 20)7 = U[ss, 54", whereU is a all real_and complex ngmbers are_denotedZ;)R and C,
. 0 -1 _ . . respectively. The operation of stacking the column&abne
unitary matrix chosen to maximize the minimum determinai, ;o the other is denoted by (X). The Kronecker product
and is given byU = % 11_:_2]], _11 jjj is denoted by, | andOr denote theél’ x T identity matrix

Let all the variables take values from a signal set
cardinality M. If we order the variables (and hence the weigﬁ e(.)
matrices) asftsl], 51Q, 821, 52Q, S31, 53Q, S4I, S4Q], then theR P A Ty —xQ
matrix for SD has the following structure | 2o rr |’

nd the null matrix, respectively. For a complex variable
011 operator acting on: is defined as follows



The (:) operator can similarly be applied to any maA. Multi-group decodability, fast decodability and fasobgp
trix X € C™™ by replacing each entrys;; by &;; decodability

R 1;3;%”' > resulting in In case of a multi-group decodable STBC, the variables can
a matrix denoted byX & ITR{ L legn a co~mpIAex be partitioned into groups such that the ML decoding metric
vector x = [z1,22, o %n]”, X is defined asx = o decoupled into submetrics such that only the members of
211,21, Tur, 2ng]” - the same group need to be decoded jointly. It can be formally
defined as [9], [16], [17]:
1. SYSTEM MODEL AND DEFINITION OF FSD Definition 4: An STBC is said to bey-group decodable
COMPLEXITY if there exists a partition of1,2,..., K} into g non-empty

subsetsI'y, I'y, ...,I'y such that the following condition is
For any Linear STBC with variables,, @...,/:_ci(/given by satisfied:

(3), the generator matri& [3] is defined byvec (X) = GX, AAE LA AT =0,
wherex = [1‘1,1‘2...7$K]T. In terms of the weight matrices,
the generator matrix can be written as wheneverl € I'; andm € I'; andi # j.
If we group all the variables of the same group togethellin (7)
G— [vec (A1) vee (Ag) --- vee (Ax) } . then theR matrix for the SD [2], [18] in case of multi-group
decodable codes will be of the following form:
Hence, for any STBC[{1) can be written as A, 0 -~ 0
o 0 Ay -~ O
vec(Y) = HegX + vec (N), R= . S . ) (10)
where H., € R?">*K is given byH., = (I,,, ®H) G, 0 0 - Ay
and X = [r1,22..,xx], with eachz; drawn from a 1- \hereA, i = 1,2, ..., ¢ is a square upper triangular matrix.

dimensional (PAM) constellati_on. Using the above eql_JivaIe Now, consider the standard SD of an STBC. Suppos&the
system model, the ML decoding metr[d (2) can be written ga4rix as defined in({9) turns out to be such that when we fix
values for a set of symbols, the rest of the symbols become
M (%) = vec (Y) = HegX || - group decodable, then the code is said to be fast decodable.
Formally, it is defined as follows:
Using QR decomposition oH.,, we getH., = QR where  Definition 5: An STBC is said to be fast SD if there exists
Q € R¥™*X is an orthonormal matrix an® € R**% 3 partition of {1,2,..., L} where L < K into g non-empty

is an upper triangular matrix. Using this, the ML decodingubsetsT';, s, ...,I', such that the following condition is
metric now changes to satisfied

(@i, hy) =00 <), (11)

wheneveri € T', andj € I'; andp # ¢ whereq; andh; are
If we haveH., = [hihs...,hk], whereh;,i € 1,2,..., K are obtained from th&R decomposition of the equivalent channel
column vectors, then th® andR matrices have the following matrix He, = [hiha...,hx] = QR with h;,i € 1,2,..., K as

M (%) =[| Q7vec (Y) = RX |2=]y —RX|[Z. (7)

form obtained by the Gram-Schmidt orthogonalization: column vectors an® = [g; 5 ... Qx] Withq,,i € 1,2,..., K
as column vectors as defined [d (8).
Q=1[a;, 9y ... dg]), (8) Hence, by conditionind< — L variables, the code becomes
g-group decodable. As a special case, when no conditioning
whereq,,i € 1,2, ..., K are column vectors, and is needed, i.e.. = K, then the code ig-group decodable.
The R matrix for fast decodable codes will have the following
[rofl (g, h2) (ay,hs) - (ay,hk) form:
0 [r2l  (doshs) -+ (dy,hik) R — { A B } : (12)
R— 0 0 [rsll -+ (as.hx) | (9) 0 B
: : : E : whereA is anL x L block diagonal, upper triangular matrix,
0 0 0 e |l B is a square upper triangular matrix aBd is a rectangular
matrix.
wherer; =h;, q; = ”H” and fori = 2,...K, Fast group decodable codes were introduced in [14]. These
codes combine the properties of multi-group decodablesode
il r and the fast decodable codes. These codes allow each of the

=hi=) (aph)a. ai=

j=1

groups in the multi-group decodable codes to be fast decoded
The R matrix for a fast group decodable code will have the



following form: PA = MAX;, g, ir_y (Plisis,..in_, ). DENOtE BYR;, iy iy
R 0 ... 0 the submatrix containing the variables of thgth group
01 R .. 0 after_ conditioningl ;, 4,,....i,_, variables in t_hERi] Ji,eemix 1
’ (13) matrix and byn;, ,,...;, the number of variables in th& -

th group wherel < iy < py,. On the last iteration, we have

dimaoin = Miyin,..iy TOr 1<y < pjy.
where eactR;,i = 1,2, ..., g will have the following form: Let'ku] dzyenijon = MAXG (Wivizsesiy + Kis iz ) TO
2 <7< N1 <id; <pjandkygi,,..i, = 0andk =

R, = |: Ai Bi] :| ’ (14) maxl-l_(/ﬁjil). - . -

0 B, Definition 6: We define the FSD complexity of a single
where A; is an L; x L; block diagonal, upper triangulargroup decodable STBC for the given ordering toé <1,
matrix, B;, is a square upper triangular matrix alg, is In case of a multi-group decodable code witigroups, the
a rectangular matrix. The structure of tRematrix for each R matrix will be a block diagonal matrix. We then calculate
of the codes defined above depends upon the ordering of tA@& FSD complexity of each group independently as described
weight matrices. If we change the ordering of the weig@Pove and choose the maximum among them as the FSD
matrices, theR matrix may lose its structure and no longeFOMPplexity of the STBC. _ _
exhibit the desirable decoding properties. The Silver cole  Definition 7: We define the FSD complexity oflakmultl-
Examplel. illustrates this aspect. In the following sukisect 9roup decodable STBC with groups to bemax; (M"*5:) |

we give a formal definition of the FSD complexity. wherel <i < g. _
We present a few examples to get a better understanding of

B. FSD Complexity of an STBC FSD complexity. )
In this section we define the FSD complexity of an STBC. Example 2:Let the R matrix be of the form:

First we consider a single group decodable case and define an a1z 00 ais e a7 ais
. . . 0 a2z 0 0 azs a2 a7  ass
the FSD complexity for a particular ordering. We then extend 0 0 ass ass ass ass asr  ass
the definition to a multi-group decodable STBC. L@tbe R=| o 0 0 a0 i airais
an STBC with the weight matrice&,, ..., Ak, where all the 0 0 0 0 o ags 0 0
variables take values from a signal set of cardinalify Let P O
88

R be the matrix obtained by th@R decomposition used for ) ) ) : »
SD. Let the ordering of the weight matrices used to obtain th%‘qw if we use FSP on this matrix, we will conditioh = 4
R matrix beAq, ..., Ax. Denote byl; the number of variables variables and obtain 2-group decodable code. We have
that need to be conditioned, when we use FSD orRtheatrix. R, — | @1 a1 R, _ | @33 Gz

After conditioningl, variables, let the rest of the variables Y7100 ap |7 270000 aw |

be pi-group decodable. In case the code is not fast Sphesg,ce the number of variables in each of the above matrices
decodable, then we sét to the total number of variables 5re 9 e haven, = n, = 2. We cannot condition any more

in the matrix. Denote byR;, the submatrix containing the ariaples in eitheiR; or R,. So the process stops here and
variables of thei;-th group after conditioning, variables in 4 setl, ; = 2 andl, » = 2. We have
the R matrix and byn;, the number of variables in tha- " '
th group, wherel < i; < p;. We can use FSD on each of ki1 =Fki2=0,
the R;, matrices now. Let us denote Wy, the number of ky =max (Iy1 + ki1, lio + ko) = 2.
variables that need to be conditioned, when we use FSD on o o o
the R;, matrix. After conditioningl ;, variables inR;,, let The FSD complexity of this STBC for the given ordering is
the rest of the variabl -group decodable. Let, = M{ " =M. :

e rest of the variables be ;,-group decodable. Lég, Example 3:Let the R matrix be of the form:
max;, (p14,). Denote byR;, ;, the submatrix containing the i

. X .. . . . 0 0 0 0 0 t t 1
variables of the,-th group after conditioning; ;, variables in ‘0 aas ass as 0 0 0 0 ¢ ¢
theR;, matrix and byn;, ;, the number of variables in thig- 8 8 a%,s a3,4 8 8 8 8 i i

. ’ as,4
th group, wherd < iy < p,. It may so happen that ;, < p2 r_| o 0 0 0 ass O 0 ass t t
for somei;. In such cases we set, ;, = 0 for ix > py;,. We 8 8 8 8 8 96,0 0 ass i i
. . . . a a
continue this process till we cannot apply FSD any more. This o 0o 0 0 0 0 0 ays t t
process terminates since there are a finite number of vasabl 8 8 8 8 8 8 8 8 8 i

and the number of variables are decreasing with each erati ) ] ) ] -
of the FSD. Let the process stop aftesuch iterations. In the NOW if we use FSD on this matrix, we will conditiah = 2
(A —1) -th iteration, we have the following: Let us denot&/ariables and obtain 2-group decodable code. We have
bY 11,1 ,is,....in_, the number of variables that need to be a
conditioned, when we use FSD on tRg, ;, . ;, , matrix. R,

After conditioningly ;, i,.....i,_, variables inR;, ;, .., _,, let L=
the rest of the variables g ;, ... -group decodable. Let

11 0 a3 aigs
0 ags2 a3 aoy
O O a373 a314 ’
0 0 0 Q4.4

Sia—1



ass 0 0 ass know thatm,; = 0 if and only if A;AY + A;A = 0. Let

Ry — 8 (lg,e‘ 0 ags | Ly, =3"_,|Ty| wherep=1,2,...,g and Ly = 0.
ar7  arg For any groud",,, we need to prove that; = 0 for L, +
0 0 0 oagg 1<i<L,andL,+1 < j < K. Consider the first group.

Since the number of variables in each of the above matriees ¥¥e havem;; =0for 1 <i < L;andL; +1<j < K. We
4, we haven; = ny = 4. Now if we use FSD orR;, we can nheed to prove that thR matrix has zero entries at the same
condition/; ; = 2 variables and obtain a-group decodable locations. The proof for this is by induction.
code. If we use FSD oR», we can conditior; » = 1 variable Fori =1 and for any;j > L1 +1,
and obtain &8-group decodable code. We now have (b} —
d;,ny

Rii=[a1], Ria=][az ]|,

Roi=[ass |, Roo=[ase |, Rosz=[ars], Sinceq; = m th Now, let(q;,h;) = 0 for all [ <4 for any
7 such tha < 1 < L. We have,

h,h‘ =0
Ty et

ni1=mni12="n21 ="nN22 ="N23 = 1 and nis3 = 0.

i—1
We cannot condition any more variables in any of these (q;,h;) = ﬁ l(hi —Z(ql,hi)ql,hj)]
matrices. So the process stops here and we set L =1

1—1
hapi1=bi2=lp1=li22=1123=1. _ 1 th;, h;) _
o o = = = - s qa qv =0,
T | e - 2 hia

We have
since(h;,h;) = 0 asm;; = 0 and(q,,h;) = 0 for [ < i, by

induction hypothesis.

kig=max (110 + kil +kiae) =1, Now consider the-th groupl’,,. Let the induction hypoth-
esis be true for all groups, 2,...p — 1. Considerr;; where

L, 1+1<i<L,andL,+1<j<K.We have,

kl,l,l = k1,1,2 - k1,2,1 = k1,2,2 = k1,2,3 = Oa

k1o =max(l1 21+ k21,1122 +ki22,li23+ki23) =1,
ki =max (1,1 + ki,1,l12 + k12) = 3. i1

1
The FSD complexity of this STBC for the given ordering 7 = (Q;,h;) = Tl [<hi = (a,.hi)ay, hj>]
is Mh+kr = pf5. =

1. HRQF AND FSD COMPLEXITY 1 lh“h Z a;,hi)(q;, h 1 =0,

In this section we show that the HRQF matrix is enough to ” il
determine the FSD complexity of an STBC and hence the F&fce (h;,h;) = 0 asm;; = 0 and (q;, h;) = 0 for [ < i by
complexity is independent of the channel matrix realizatiohe |nduct|on hypothesis. m
or the number of receive antennas. Towards this end, wewe now consider an example to illustrate the above lemma.

prove that the zeros in the matrix which determine the FSD  gxample 4: Consider the2 x 2 ABBA code given by [19]:
complexity are also zeros in the HRQF matrix. First we define

an ordered partition of a set. X — [ T1+jrs T2+ s ]
Definition 8: We call a partition of {a1,as,...,ax} —T2+Jr3  T1+ )74
into g non-empty subsetd’s, I'z, ..., I'y with cardinalities \yherez; € R for i = 1,2,3, 4. This is a two group decodable
K1, Ks, ..., K, an ordered partition if{a1,..,ax,} € code with {x;,z,} belonging to one group andzs,z,}
Iy, a1, a0k 4k,), € Tzoand so on, till pejonging to the other. The structure of the HRQF malifix
L S i GNEERRTLC) 3L Ki} ely. and theR matrix are given below wittjxl,xg, :v?,,x4] as the
Now we address the class of multi-group decodable codesdering of the variables and the weight matrices,
Lemma 1:Consider an STBQC = .5 z;A;. Let M

denote the HRQF matrix of this STBC. If there exists an bt 00 bt 00
. . t t 0 0 0 ¢t 0 0

ordered partition of{1,2,..., K} into g non-empty subsets M = , R= ,
. . 00 t ¢ 0 0 ¢t t
I'1,Iy, ...,y such thatn;; = 0 wheneveri ¢ I';, andj € I, 00 + ¢+ 00 0 ¢

andp # ¢, then the code ig-group sphere decodable. In other

words, the FSD complexity of the STBC is determined by theheret denotes the non-zero entries. As it can be seen, the

HRQF matrix. upper triangular portion oM matrix and theR matrix have
Proof: Let R be the matrix obtained from the QRthe same structure.

decomposition ofH.,. For the code to be-group sphere  Now we move on the class of fast decodable codes.

decodable, we need to prove that = 0, whenevei € I, and Lemma 2:Consider an STBCC = Zfil ;A;. Let M

j € T'y andp # ¢. We know from [12] that ifA; AH+A AH denote the HRQF matrix of this STBC. If there exists an

Ois satlsfled for some, j then the correspondmg columns inordered partition of{1,2,...,L} where L < K into ¢ non-

the H., matrix are orthogonal, i.e(h;,h;) = 0. We also empty subsetd’;,I';,...,I'y such thatm;; = 0 whenever



i eI, andj € I'; andp # ¢, then the code is fast decodable

or conditionallyg-group decodable. Tt 00000 O0O0O OO0 OO0O0O0O0 0 0]
. o ¢t 0 o0 o0 o0 ¢t t 0 0 0 o0 ¢t t t t t
Proof. The proof follows from the proof of Lemnid 1 by 0 0t 000+t 0t it o0 o0
replacing K with L. ] 000 ¢t 000 Tt ¢t ¢t 0 ¢t ¢t 00 t ¢t
i H o o0 o0 o0t o0 ¢t t t 0 t t 0 0 t t O
We now consider an example to illustrate the above lemma. 000001000ttt i ttto
o ¢t ¢t o t 0 t 0 0 ¢t O t t 0 0 t O
. H ; H ot o0t ¢t 0 0 ¢t 0 ¢t t 0 0 t 0 t O
_ Example 5:Consider the Silver code as mentionedy, _ | o o+ + ¢t 000t 000ttt t 0 (16)
in Example [1. If we order the variables (and 00 ¢t t 0 ¢t ¢t t 0Ot 0000 ¢t t 0
H H H H H o o0 ¢t o ¢t ¢t 0o t 0 0 t 0 t 0 0 t t
hence the weight matrices) in the following fashlon 00 0 ¢ttt 10000+t 0¢to0 1t 1
[SlI,SlQ,SQI,SQQ,Sg[,SgQ,S4[,S4Q], then the HRQF matrix 0ot 0 ¢t 0 ¢t t 0 ¢t 0 t 0 t 0 0 ¢t O
: : H . ot ¢t 0 0 ¢t 0 ¢t t 0 0 ¢t 0 t 0 t O
M and theR matrix will have the following structure: 0t 00 Lt 00+ t0000 1ttt
o ¢t ¢t ¢t t ¢t t t ¢t t t t t t t t t
r t 00 0 t t t t 7] LO ¢t ¢t t 0 0 0 0 0O O ¢t ¢t 0 0 t t t ]
0Ot 0 0 ¢t t t t
rt«e o o 0o 0o 00O 0O0OO 0O O0OO0OO0O0 0 01
00 ¢t 0 ¢ t t t ot 0 o0 o0 o0t t O 0 0 0 t t t t t
M 0O 0 0 ¢t t t t t 00 ¢t 00O Tt O0 Tt t t OO0 t 0 t ¢t
— 5 o o0 o0 ¢t 0 0 o0 ¢t t t 0 t t 0 0 t t
t t t t t 000 o0 o0 o0t o0 ¢t t t 0ot t 0 0 t t 0
t ¢t t t 0 t 0 0 000O0GOTtO0O0O0 Tt t t t t t t O
o o0 o0 o o0 o0t t t t t t t t t t t
t t t t 0 0 t 0 o o0 o0 o0 o0 o0o0 ¢t t t t t t t t t t
t t t t 0 0 0 ¢ R=|0 00 0O0O0UOU Ot ¢t t t t t t t 0] (7
- - 0O 0 o0 o0 o0 o0 o000 ¢t t t t t t t t
~ - O o0 o0 o0 o0 o000 o0o0 ¢t t t t t t t
t 00 0 t t t t 0000O0UO0UO0OUOOO0O0 t t t t t t
o 0 o0 o0 0 0 0 0 O0O0O0©O0 ¢t t t t t
0 ¢t 0 0 ¢ t t ¢ O 0 o0 o0 0 0 0 0 o0 O0O0O0OO0OTtT Tt t t
0O 0 ¢t 0 t t t t 00 00O0OUOUOUOOOOOOO0 t t ¢t
o o0 o0 o0 o0 0 0 0 o0 o0O0O0O0OO0OTUO0O °t t
R = 000 ¢ ¢ t t ¢ , L0 0 0 0O 0O0O O 0O 0O 0 O0 0 0 0 0 0 t ]
0000 ¢ 000 As we have seen from Lemmas [ 2 and 3, the FSD
0 00O0O0 ¢t 00 complexity of the STBC depends only upon the HRQF matrix
000O0O0O0CTtTO0 M and not on theH., matrix, i.e., the FSD complexity is
L0 00 0 0 0 0 ¢ | independent of the channel matrix and the number of receive

wheret denotes the non-zero entries. As it can be seen,
upper triangular portion of the matrifM, has a structure
that admits fast decodability which is conditionallygroup

decodable if considered as tRematrix.

We now turn to the class of fast group decodable codes.

Lemma 3:Consider an STBQC = Y 5 z;A;. Let M

denote the HRQF matrix of this STBC. If there exists a

ordered partition of{1,2,..., K} into g non-empty sub-
setsI'y, I'y, ..., I'y with cardinalitiesK, Ko, ..., K, such that
my; = 0 wheneveri € '), andj € I';, andp # ¢, and if any

groupI'; admits fast decodability, i.e., there exists an order

partition of{Z}: K+ 1L, K +2,., 0 K+ Li}
where L, < K, into g; non-empty subset¥;,, Y,,, ey Liy,
such thatmn,., = 0 whenever € T;, ands € T;, andp # g,

i1=1,2,...,g, then the code is fast group decodable.

%ntennas. It can be completely captured into a single matrix
the, . . . . .
obtained from the set of weight matrices and their ordering.

IV. ALGORITHM FOR A BESTORDERING OF THEWEIGHT
MATRICES

As seen in Exampléll, the ordering of weight matrices
determines the FSD complexity of an STBC. We have also
Been that the HRQF matrix completely determines the FSD
complexity of an STBC. In this section we present an algo-
rithm that uses the HRQF matrix as an input and manipulates it
in order to obtain a best possible ordering of weight masrice
(We do so by using row and column permutations of the
HRQF matrix. The rows and columns of the HRQF matrix
are in one to one correspondence with the ordering of the
weight matrices. Hence, if we change the ordering of the
weight matrices, the HRQF matrix changes accordingly and

Proof: The proof follows from the proofs of lemmé&$ lvice verse. For example, any transposition in the ordering o

and[2. ]

the weight matrices will result in swapping the correspagdi

We now consider an example to illustrate the above lemmaows and columns (since HRQF matrix is symmetric) of the
Example 6:Consider the fast group decodable STBC [14HRQF matrix.

given in [I5) .

Remark 1:Note that we cannot perform such a manipula-

Let the ordering of the variables (and hence the weigtibn on theR matrix since it depends not only on the order of

matrices) b€sy, so, ..., s17]. This STBC is two group decod-

able with s; in one group and{s, ss, ..., s17} in the other.

weight matrices but on the channel matrix as well. Also,tal t
entries of theR matrix do not depict the HR orthogonality of

The second group is conditionally five group decodable. Thiee weight matrices, i.e., th@, j)-th entry of the matrix may
HRQF matrixM and theR matrix are given in[(16) and(17) not be zero even if thé-th andj-th weight matrices are HR

respectively, where denotes the non zero entries.

orthogonal. Hence, thB matrix needs to be calculated each



s1+ js2 +jsis +jsie + jsit 87 + jss + s13 + jsia s3 + Jsa + s11 + Jsi2 —85 — jse + So + jsio

_ —s7 +jss — s13 + jsi1a s1+js2 + jsis — jsie — Jsir S5 — jseé + 89 — jsio 83 — Jjsa — s11 + js12
X = ] ] : . 5~ Js ) ) ] ] (15)
—s3 +jsa — s11 + jsi2 —S85 — JS6 — S9 — JS10 51— js2 +Js15s — jsie + Jsi7 S7 — jsg — s13 + JS14
S5 — jse — S9 + jsio —83 — jsa + s11 + jsi2 —s7 — jss + 813 + js1a 81 — js2 + jsis + jsie — jsiz

time the ordering of the weight matrices is changed which & these denote all the variables HR orthogonal wijthThe

not so in the case of the HRQF matrix. current ordering of variables is{«;, A;, A3}. For the working
The algorithm to get a best possible ordering is given #@f the algorithm, the following set operations are synonysio
Algorithm [T in the next page. with the following matrix operations on the HRQF matrix:
An important structural property of the HRQF matrix: ~ « Moving a variablez; into A; - Suppose the variable;
Before we delve into the proof of correctness of the algarith is thep-th element in the current ordering, we move the
let us make a few observations regarding the structure of the p-th column to the(|A;] + 1)-th column shifting the rest
HRQF matrix for various scenarios of decoding. L&tbe of the columns to the right and then we move fih
an STBC with weight matrice, ..., Ax and corresponding row to the(|A1| + 1)-th row shifting the rest of the rows
variablesz, ..., zx. The codeC can be multi-group decod- downwards. Update the ordering accordingly.

able, fast-decodable, fast group decodable or none of these Moving a variablez; into A3 - Suppose the variable;

The structure of the upper triangular portion of the HRQF is thep-th element in the current ordering, we move the

matrix for the first three of these are shown in the equations p-th column to the last column shifting the rest of the

(I0), (I12) and[(IB) respectively. In case the code does mt al columns to the left and then we move thh row to the

any of these forms of decoding, the ordering of the variaisles ~ last row shifting the rest of the rows upwards. Update the

immaterial. LetA be a best ordering of the variables. Without ~ ordering accordingly.

loss of generality, let the first variable in this ordering be « Moving a variablez; into A, - No change. Only the

labelledz; . Irrespective of the type of decoding provided by  cardinalities ofA, and A; will change accordingly.

the code, we notice that all the variables that need to béyoinThe algorithm works in two stages.

decoded withr; are adjacent to it in the HRQF matrix. These o First, we find the largest < K such thatlA;| + |Ay| =

are followed by the set of zeros which indicate all the vdaab L.

which are Hurwitz-Radon orthogonal with the previous set. « In the second stage, since the variablesAin and A,

These are further followed by the variables that are to be will be decoded separately, we consider the submatrices

conditioned in order to obtain this group-decodable stmect representing them as HRQF matrices of some STBC and

In case of multi-group decodable codes, this is a null set. run the first step of the algorithm on them recursively.
Proof of CorrectnessWe need to show that the algorithm Let x;, be the first variable in\,. It is currently the second

produces a best possible ordering for FSD complexity. Th@riable in the overall ordering. We now proceed to find all

algorithm uses the structural property of the HRQF matrihe variables that are HR orthogonal wiihi and not HR

for obtaining a best ordering. Given any orderihgwith the orthogonal withA+, since these will need to be jointly decoded

first variable asr,, the algorithm partitions the variables intowith the variables inA;. This can be found as follows. If

three sets A;, A; and A3. In case of multi-group decodingany variable is HR orthogonal withy, it will have a zero

and fast group decoding); contains all the variables thatentry in the column corresponding .. Hence we traverse

belong to the same group as. In case of fast decoding, it down the column represented hy, to find the next zero

represents the set of variables that need to be jointly d&todntry. Let it be found in the-th row corresponding to the

with z; after conditioning.A, contains all the variables HR variable ;. We also need to ensure that this variable is not

orthogonal withA;. A3 contains the variables that need to beiR orthogonal withA;. So, we traverse the-th row from

conditioned. This will be an empty set in case of multi-grougolumn 1 to ColumdA1| and check for any non-zero entries.

decoding and hence multi-group decoding can be considefadcase any of them are found, it means that this variable

as fast decoding with no conditioned variables. The algorit needs to be jointly decoded with,. We addz; to A;. We

is recursively run on the set$; and A, to further order the now repeat the procedure on the variabjeagain until all the

variables (as in case of fast group decoding). variables have been exhausted. Since there are a finite numbe
First, we fix the first variable in the given ordering. Let itof variables, this process terminates. Note that it is jbessi

be x; for somel < i < K. The algorithm starts with only that a few members from; may move intoA; during this

x; in A4, all variables which are HR orthogonal witly in process. These variables will be accounted for later. We now

a temporary set\; and the rest of the variables if;.The addz; to A>. We have now managed to create two sets which

variables HR orthogonal witle; can be easily identified asare HR orthogonal and the current ordering of the variatsles i

they correspond to the zero entries in the first row. For edse{a\1, A2, Ay, As}.

manipulation, we move all the variables in the detadjacent ~ We now proceed to the next variable Ag. Let this bez;.

x; in the ordering. This is equivalent to grouping all the zerdd/e need to ensure that; is HR orthogonal withA;. This

in the first row and placing them adjacent to the (1,1) entrgan be easily checked by counting the consecutive number



Input: The HRQF matrix -M = (m;;), the size of the HRQF matrix -
K x K, the input ordering 4nput_ordering
Output: The best possible FSD complexitybest_dec_cmplaty and
its corresponding ordering best_ordering
- current_ordering = input_ordering
- best_dec_emplxty = K; i =1
repeat
- Shift all the zero entries in the first row next to the firstreént
- Let the number of zeros in the first row beim_zero_cols
- grp-size = 1; cur_zero_col = 2. (Var under consideration)
if num_zero_cols = 0 then
| - dec_cemplaty = K
end
else
repeat
- flag =10
- Let no. of consecutive zeros itur_zero_col ben.
if n < grp_size then
- Move thecur_zero_col-th variable to the end
(Move the corresponding row and column to the end
and moving the rest of the rows and columns
upwards).
- Updatecurrent_ordering.
- num-zero_cols = num_zero_cols — 1

nd
f n > cur_zero_col — 1 then
- grp-size = cur_zero-col — 1
Marker :
- Find the next zero along theur_zero_col column
from the cur_zero_col row.
- Let the next zero be found in thgth row.
for t =1 to grp_size do
if mj; # 0 then
| - flag=1
end

= o

end

if flag =1 then

- Move up thej-th variable to the
grp-size + 1-th position. - Update
current_ordering.

- grp-size = grp_size + 1

- cur_zero-col = cur_zero_col + 1
- jump back toMarker

end
if flag =0 then
- cur_zero_col = cur_zero_col + 1 (No more

zeros left in this column to check)
end

end

until cur_zero_col < grp_size + num_zero_cols ;

- top_hrqf_matriz = upper leftgrp_size X grp_size

matrix. (With orderingtop_hrqf_ordering).

- bot_hrqf_matriz = square matrix from row, column =
grp-size + 1 to row, column =grp_size + num_zero_cols.
(With orderingbot_hrqf_ordering).

Run the current algorithm on the top and bottom matrices

- [top_dec_cmplxity, best_top_ordering] =

order_hrqf (top-hrqf-matriz, top_hrqf_size,top-ordering)
- [bot_dec_cmplzity, best_bot_ordering] =

order_hrqf (bot_hrqf_-matriz, bot_hrqf_size,bot_ordering)
- Updatecurrent_ordering with best_top_ordering and
best_bot_ordering.

- Number of variables conditioned:

condvars = K — grp_size — num_zero_cols.

- dec.emplaty =

condvars + mazx {top-dec_cmplxity, bot_dec_.cmplwity}

end
if best_dec_emplaty > dec_.emplaty then
- best_dec_cmplxty = dec_cmplxty

- best_ordering = current_ordering
end

- Circularly shift the variables (rows and columns)
- Updatecurrent_ordering

=i 1

until i = K ;

Algorithm 1: The algorithm to obtain a best ordering of

weight matrices order_hrqf

of zeros in its column from the top of the column. If it is
equal to|A4], thenz; is HR orthogonal withA;. We addz;

to Ao in this case. Otherwise, we mowg to As. It may so
happen that; may be HR orthogonal witih; and the already
existing members of,. This can be checked by counting the
consecutive numbers of zeros in its column from the top of the
column and matching cardinalities. In such a case, we repeat
the procedure of finding any variable that needs to be jointly
decoded withA; on this variable as well. If any such variable
exists, we move that variable and the pre-existing vargbfe

A5 into A;. This is needed for fast group decoding scenarios.
We continue this procedure till we have exhausted all the
variables of A;. We have now produced three sets, Ao
andAs. A; andA, are HR orthogonal w.r.t. one another if we
condition them on the variables dfs.

We still need to procesg\; and A, further. We repeat
the same procedure on these variables considering them as
independent HRQF matrices. If the cardinality &f is the
same as that of the HRQF matrix row/column size, then we
stop this procedure as it cannot be ordered any further and
set the FSD complexity tdA;|. This process terminates as
the sizes ofA; and A, keep reducing with each iteration and
there are a finite number of variables. We calculate the FSD
complexity of this ordering as|As| +max (d1, d2) whered;
andd, are the FSD complexities of; and A, respectively.

Since we are dealing with fast sphere decoding and grouping
the variables as sef§s;, A; and A3 are the only possible ways
to obtain a structure that will allow FS decoding, these #re a
the orderings we need to consider if we takeas the first
variable. Hence, we have exhausted all the possible ogkerin
which can provide FS decoding with, as the first variable,
and a best possible FSD complexity for this case has been
found by the above steps. Now, if we run through all the
variables of the STBC making each one of them the first
variable in turn and repeating the above procedure, we cdn fin
out a best possible FSD complexity for all possible ordesing
Since all the variables have been given a chance to be the
first variable, we have exhausted all possible orderings tha
offer FS decoding. And hence, the ordering provided by the
algorithm is a best possible ordering for FSD complexily.

Remark 2:Since the algorithm recursively orders each set,
it is capable of even ordering variables in scenarios where
any group obtained from conditioning of variables admits
conditional decoding.

We now illustrate the working of the algorithm with an

example.

Example 7:Consider the Silver code presented
in Example [1. If we order the \variables as
[s11, Sar, S4Q, S2Q, $3Q, S31, S21, S1¢], We get the following
HRQF matrix and thé&k matrix for this ordering:

OO+ o+ O o+
OO O
OO o+ O+
OO * &+ o+ o+ o+ O
+ o+ O+ OO+
+ ok O+ OO
O+ &+ + O+ + O
+ O &+ + O &+ &+ O



QOO OO0 O+
QOO OO O o+
OO O OO o+ o+ o+
OO OO *+ &+ + O
OO O &+ & ~+ o o+
O O o+ o+ o+ o o ok
O &+ &+ o+ O
+ O ok O

The FSD complexity for this ordering i$/%. And this
ordering does not admit fast decoding as well.

When we run the algorithm on the given HRQF matrix, th
two setsA; and A, are formed, which are HR orthogonal
with each other. In this casels = {s20, 521,510} and

Ay = {s17}. The conditioned variables will be present in

the setAs = {sur, 540, 530, s3r}. The HRQF matrix at this
stage is as given by _(I18). The ordering of the variables
the end of this stage i&11, s2¢, s21, 510, Sa1, 40, 530, S31)-

Now, the variables from both sets; and A, are run through
the algorithm again. So, the top lgft< 1 matrix and the next
block diagonal3 x 3 matrix are both fed to the algorithm.

Since this is already the best possible ordering of these setR =
the matrixM remains the same after this stage. And the fi-

nal Ordering obtained i&l], 52Q, 521, 51Q 5 S4I, S4Q, 53Q> 83]].
The R matrix for this ordering is given by (19)

[t 0 0 0 t t t t]
0 ¢t 0 0 ¢t t t t
00 ¢t 0 ¢t t t t
000 t t ¢t t t
M=l v v ¢t ¢t 000 (18)
t t t t 0t 00
t t t t 00 t 0
|ttt t 00 0 t |
[+ 0 0 0 ¢t t t t]
0t 00 t ¢t t t
00 ¢t 0 ¢t t t t
000 ¢t t t t t
R=10000¢000 (19)
000 0O0T¢ETO0O0
000 0O0UO0TLTO
0000000 ¢

The FSD complexity for thiR matrix is M which is the
best possible complexity for the Silver code.

Example 8:Consider the fast group decodable code pre-
sented in Example[]6. If we order the variables as

[82, 83, ..0558105, 51,511, 5125 -+ 817], we get the fOIIOWing
HRQF matrix and th&R matrix:

Tt 0000 ¢t ¢t000 00 ¢t ¢t t t t
0t 000 ¢t 0 ¢t ¢t 0 ¢t 00 t 0 ¢ ¢t
00 ¢t 000 Tt ¢t ¢t 00t ¢t 00 ¢t ¢t
000 ¢t 0 ¢t ¢t ¢t 00 ¢ ¢t 00 ¢ ¢t 0
0000 ¢t 000t 0 ¢ ¢t ¢t ¢t ¢t ¢t 0
t t 0t 0 ¢t 00 ¢t 00 ¢t ¢to0 0t 0
t 0t ¢t 00 ¢t 0t o0t O0O0¢t o0t o0
0 ¢t ¢t ¢t 000 ¢ 0000 ¢ ¢t ¢t ¢t 0

M=|0 ¢ ¢ 0 ¢ ¢t ¢t 0¢000O0GO0Tt ¢t 0],

00 00O0O0OOOTEt 000000 0
0t 0t t 0t 000 T¢tOoTtoo ¢t t
00 t ¢t t ¢t 000O0O0TEtO0 Tt 0 ¢t ¢t
t 0 ¢t 0 ¢t t 0 ¢ 00 ¢t 0 ¢t 00 ¢t O

e t t 00 ¢t 0 ¢t ¢t 000 T¢tO0 ¢t 0 ¢t 0
t 00 ¢t ¢t 00 ¢t ¢t 00000 ¢t ¢ ¢
t t ¢t t t t t t t 0 ¢t t t t t t t

lt ¢t t 000O0O0O0O 0Tt ¢t 00 ¢t t t|

Tt 00 00 t ¢t 00000 t ¢t t t t1

at 0t 000 ¢t 0 ¢t t 0t 00 ¢t 0 t f
00t 000 Tt ¢t ¢t 00t ¢t 00 ¢t
000 ¢t 0 ¢ ¢t ¢t 00 ¢ ¢t 00 ¢ ¢t 0
0000 ¢t 000 {0 ¢ t ¢t ¢t ¢ ¢t 0
o o0 o0 o o0 ¢t ¢t t t 0 t t t t t t t
o o0 o0 oo o ¢t t t 0 t t t t t t t
00000 O0O 0 ¢ ¢t 0 ¢ t ¢t ¢t ¢t ¢t 0
000 0O0O0O0O0 ¢t 0 ¢ t ¢ ¢t t ¢ ¢
0000O0O0O0O0OTEt 0000000
000 0O0O0O0OO0O 0 ¢t t ¢t t t ¢t
0000O0O0O0O OO0O OO0t ¢t t t ¢t
0000O0O0O 0O O0O0O0O0 ¢ ¢t t ¢ t
0000O0DO0O0OO0O0GO0O0 0 ¢t ¢t ¢ t
0000O0DO0O0OO0OOO0O00O0 ¢t ¢ ¢
0 000O0O0O0® OO OO0O00 00 ¢ t

L0 00 0O0OO0O0OO0OOO0O0O0O0 0 ¢t |

The FSD complexity for thidR matrix is M3 but the best
possible FSD complexity i8/'2. When we run the algorithm
on the given HRQF matrix, the two sets andA, are formed,
which are HR orthogonal with each other. In this cate—
{s2, 53, 84, 55, 56, 59, 510, 511, 512, 57, 58, 513, 514, 515, 516 }
andAs = {s1}. The setA; is empty as this provides a group
decoding scenario. Now, the variables from both sets are
run through the algorithm again. So, the top léft x 16
matrix and the bottom right x 1 matrix are both fed to the
algorithm. The top left matrix is ordered according to the
fast decoding algorithm as presented in the previous exampl
Since the bottom right matrix is &x 1 matrix, it is returned
without change. The final ordering of variables obtained is
[52, 83, 54, 85, 56, 57, 58, 513, 514, 515, 5165 59, 510, 511, 512, 51]-

The M and theR matrix for this ordering is as shown below.

rt o o o0 o0t ¢ t t t t t 00 0 0 O
ot 0 o0 o0t 00 ¢t 0 ¢t t t t t 0 0
oot o0 oot t 00t t t t 0 t 0
o oo ¢t o0t t 0 0 ¢t ¢t 0 t 0 t t O
o000 ¢t o0 o0 ¢t ¢t t ¢t 0 0 t t t O
t t 0t 0 ¢t 0 t 0 0 ¢t 0 0 ¢t 0 t O
t 0t t 0 0 ¢t 0 t 0 t 0 0 t t 0 0
t 0t 0t ¢t 0t 0 0 t 0 t 0 t 0 O

M = t ¢t 00t 0 ¢t 0 ¢t 0 ¢t 0 t 0 0 t 0],
t 00t ¢t 0 0 0 0 ¢t ¢t ¢t t t 0 0 0
t t t t t ¢t t t t t t t t t t t 0
t t ¢t 0 0 0 0 0 0 ¢t ¢t t 0 0 t t O
ot ¢t ¢t 0 0 0 ¢t ¢t ¢t ¢t 0 ¢t 0 0 0 0
ot ¢t o0 ¢t ¢t t 0 0 ¢t ¢t 0 0 ¢t 0 0 0
ot o t ¢t 0 t ¢t 0 0 ¢t ¢t 0 0 t 0 0
oo ¢t t t t 00 ¢t 0 ¢t ¢t 0 0 0 t O
LO 0O 0O 0 0 0 0O 0 0 0 0O O0O O0OO0OO0OO0 0]




t 00 0 O0 ¢t ¢t ¢t ¢t t t t 0 0 0 0 0
ot 000t 0 0t 0 ¢t t t t t 00
o o0t o0 o0o0o ¢t t 00t t t t 0 t 0
o oo ¢t o0 ¢t t 00 ¢t t 0 ¢t 0 t t O
o000 ¢t o0 o0 ¢t t ¢t t 0 0 t t t 0
0o o0 o0o0o0 ¢t 0t 00t 00t 0t O
0o o0 o0o0Oo0o0¢t¢t 0t 0t O0O0 ¢t t 00
0 00 O0O0OO0OO0OTZ®®T oot ot 0t 00
R=|0 00 O0OUOOUOTZTTOTtT Ot 00 t O
000000000 ¢t t t t t 0 00
000 O0O0OO0OO0OO0OO0ODO0O Tt Tt t t t t O
0o 00 0O0OO0OO0OO0OO0ODO0ODO0OTETOO0OTtTTtTLOo
0o 00000000000 t¢t 00 00
0o 0000000000001t 000
o o0 0000000000001t 00
0 00 O0O0OO0OO0OO0OO0ODO0OTO OO OO OTOT®OTtTO
LO 0O 0O 0 0OOO 00 0 0O 0O O0 0 O0 0 0]

This ordering gives us the FSD complexity bf 2.

V. CONCLUSION

In this paper we have analysed the FSD complexity of
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