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Abstract— Decoding of linear space-time block codes (STBCs)
with sphere-decoding (SD) is well known. A fast-version of the
SD known as fast sphere decoding (FSD) has been recently
studied by Biglieri, Hong and Viterbo. Viewing a linear STBC
as a vector space spanned by its defining weight matrices over
the real number field, we define a quadratic form (QF), called
the Hurwitz-Radon QF (HRQF), on this vector space and give
a QF interpretation of the FSD complexity of a linear STBC.
It is shown that the FSD complexity is only a function of the
weight matrices defining the code and their ordering, and not
of the channel realization (even though the equivalent channel
when SD is used depends on the channel realization) or the
number of receive antennas. It is also shown that the FSD
complexity is completely captured into a single matrix obtained
from the HRQF. Moreover, for a given set of weight matrices,
an algorithm to obtain a best ordering of them leading to the
least FSD complexity is presented. The well known classes of
low FSD complexity codes (multi-group decodable codes, fast
decodable codes and fast group decodable codes) are presented
in the framework of HRQF.

I. I NTRODUCTION & PRELIMINARIES

Consider a minimal-delay space-time coded Rayleigh quasi-
static flat fading MIMO channel with full channel state infor-
mation at the receiver (CSIR). The input output relation for
such a system is given by

Y = HX + N, (1)

whereH ∈ Cnr×nt is the channel matrix andN ∈ Cnr×nt is
the additive noise. BothH and N have entries that are i.i.d.
complex-Gaussian with zero mean and variance 1 andN0

respectively. The transmitted codeword isX ∈ Cnt×nt and
Y ∈ Cnr×nt is the received matrix. The ML decoding metric
to minimize over all possible values of the codewordX, is

M (X) =‖ Y − HX ‖2F . (2)

Definition 1: A linear STBC [1]: A linear STBCC over a
real (1-dimensional) signal setS, is a finite set ofnt × nt

matrices, where any codeword matrix belonging to the code
C is obtained from,

X (x1, x2, ..., xK) =

K
∑

i=1

xiAi, (3)

by letting the real variablesx1, x2..., xK take values from a
real signal setS, whereAi are fixednt×nt complex matrices
defining the code, known as the weight matrices. The rate of
this code is K

2nt
complex symbols per channel use.

We are interested in linear STBCs, since they admit Sphere
Decoding (SD) [2] which is a fast way of decoding for the
variables. A further simplified version of the SD known as
the fast sphere decoding (FSD) [3] (also known as conditional
ML decoding) was studied by Biglieri, Hong and Viterbo. The
quadratic form (QF) approach has been used in the context of
STBCs in [4] to determine whether Quaternion algebras or
Biquaternion algebras are division algebras, an aspect dealing
with the full diversity of the codes. This approach has not been
fully exploited to study the other characteristics of STBCs.
In this paper, we use this approach to study the fast sphere
decoding (FSD) complexity of STBCs (a formal definition of
this complexity is given in Subsection II-B).

Designing STBCs with low decoding complexity has been
studied widely in the literature. Orthogonal designs with single
symbol decodability were proposed in [5], [6], [7]. For STBCs
with more than two transmit antennas, these came at a cost
of reduced transmission rates. To increase the rate at the cost
of higher decoding complexity, multi-group decodable STBCs
were introduced in [8], [9], [10]. Fast decodable codes (codes
that admit FSD) have reduced SD complexity owing to the fact
that a few of the variables can be decoded as single symbols
or in groups if we condition them with respect to the other
variables. Fast decodable codes for asymmetric systems using
division algebras have been recently reported [11]. Golden
code and Silver code are also examples of fast decodable codes
as shown in [12] and [13]. The properties of fast decodable
codes and multi-group decodable codes were combined and
a new class of codes called fast group decodable codes were
studied in [14].

A. Hurwitz-Radon Quadratic Form

In this subsection we define the Hurwitz Radon quadratic
form (HRQF) on any STBC. We first recall some basics about
quadratic forms. More details can be seen in [15].

Definition 2: Let F be a field with characteristic not 2, and
V be a finite dimensionalF -vector space. A quadratic form
on V is defined as a mapQ : V −→ F such that it satisfies
the following properties.

• Q (av) = a2Q (v) for all v ∈ V and alla ∈ F .
• The mapB (v,w) = 1

2
[Q (v + w)−Q (v)−Q (w)] for

all v,w ∈ V is bilinear and symmetric.
If we considerV as ann-dimensional vector space overF ,

then we can also consider the quadratic form as a homoge-
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neous polynomial of degree two, i.e., for1 ≤ i, j ≤ n, we
have scalarsmij such that

Q (v) = Q (v1, v2, ..., vn) =
n
∑

i,j=1

mijvivj (4)

for all v = [v1, ..., vn] ∈ V . Hence, we can associate a matrix
M = (mij) with the quadratic form such thatQ (v) = vMvT .

Definition 3: The Hurwitz Radon quadratic form is a map
from the STBCC =

{

X =
∑K

i=1
xiAi

}

to the field of real
numbersR, i.e.,Q : C −→ R given by

Q (X) =
∑

1≤i≤j≤K

xixjdij , (5)

whereX is an element of the STBC and

dij =‖ AiA
H
j + AjA

H
i ‖2F .

Theorem 1:The map defined by (5) is a quadratic form.
Proof: The mapQ needs to satisfy the conditions as

defined in Definition 2. We have

Q (aX) =
∑

i,j

axi.axj .dij = a2
∑

i,j

xi.xj .dij = a2Q (X)

and

B (X,Y) =
1

2
[Q (X + Y)−Q (X)−Q (Y)]

should be bilinear and symmetric whereX =
∑K

i=1
xiAi and

Y =
∑K

i=1
(yiAi). Substituting and simplifying, we get

B (X,Y) =
1

2

∑

i,j

[xiyidii + (xiyj + xjyi) dij ] .

It is clearly seen that this map is bilinear and symmetric.
We can associate a matrix with the HRQF. If we define the

matrix M = (mij) where i, j = 1, 2, ...,K such thatmij =
dij , then we can write the HRQF asQ (x) = xMxT , where
x = [x1 x2 ... xK ]. Notice thatM is a symmetric matrix and
mij = 0 if and only if AiA

H
j + AjA

H
i = 0.

The following example shows that the FSD complexity
depends on the ordering of the weight matrices or equivalently
the ordering of the variables.

Example 1:Let us consider the Silver code given by:

X = Xa (s1, s2) + TX b (z1, z2) , (6)

where Xa and Xb take the Alamouti structure, and

Xa (s1, s2) =

[

s1 −s∗2
s2 s∗1

]

, Xb (z1, z2) =

[

z1 −z∗2
z2 z∗1

]

,

T =

[

1 0
0 −1

]

and [z1, z2]
T = U [s3, s4]

T
, whereU is a

unitary matrix chosen to maximize the minimum determinant

and is given byU = 1√
7

[

1 + j −1 + 2j
1 + 2j 1− j

]

.

Let all the variables take values from a signal set of
cardinalityM . If we order the variables (and hence the weight
matrices) as[s1I , s1Q, s2I , s2Q, s3I , s3Q, s4I , s4Q], then theR
matrix for SD has the following structure

R =























t 0 0 0 t t t t

0 t 0 0 t t t t

0 0 t 0 t t t t

0 0 0 t t t t t

0 0 0 0 t 0 0 0

0 0 0 0 0 t 0 0

0 0 0 0 0 0 t 0

0 0 0 0 0 0 0 t























,

where t denotes non zero entries. We can clearly see that
the Silver code admits fast decoding with this ordering with
FSD complexityM5. However, if we change the ordering to
[s1I , s1Q, s4I , s2Q, s3I , s3Q, s2I , s4Q], then theR matrix for
SD has the following structure

R =























t 0 t 0 t t 0 t

0 t t 0 t t 0 t

0 0 t t t t t 0

0 0 0 t t t t t

0 0 0 0 t t t t

0 0 0 0 0 t t t

0 0 0 0 0 0 t t

0 0 0 0 0 0 0 t























,

wheret denotes non zero entries. With this ordering, the FSD
complexity increases toM7.

The contributions of this paper are as follows:
• We give a formal definition of the FSD complexity of a

linear STBC (Subsection II-B.)
• With the help of HRQF, it is shown that the FSD com-

plexity of the code depends only on the weight matrices
of the code with their ordering, and not on the channel
realization (even though the equivalent channel when SD
is used depends on the channel realization) or the number
of receive antennas.

• A best ordering (not necessarily unique) of the weight
matrices provides the least FSD complexity for the STBC.
We provide an algorithm to be applied to the HRQF
matrix which outputs a best ordering.

The remaining of the paper is organized as follows: In
Section II the known classes of low ML decodable codes,
the system model and the formal definition of the FSD
complexity of a linear STBC are given. In Section III, we
show that the FSD complexity depends completely on the
HRQF and not on the channel realization or the number of
receive antennas. In Section IV, we present an algorithm to
modify the HRQF matrix in order to obtain a best ordering
of the weight matrices to obtain the least FSD complexity.
Concluding remarks constitute Section V.

Notations:Throughout the paper, bold lower-case letters are
used to denote vectors and bold upper-case letters to denote
matrices. For a complex variablex, xI andxQ denote the real
and imaginary part ofx, respectively. The sets of all integers,
all real and complex numbers are denoted byZ,R and C,
respectively. The operation of stacking the columns ofX one
below the other is denoted byvec (X). The Kronecker product
is denoted by⊗, IT andOT denote theT ×T identity matrix
and the null matrix, respectively. For a complex variablex,
the (̌�) operator acting onx is defined as follows

x̌ ,

[

xI −xQ

xQ xI

]

.



The (̌�) operator can similarly be applied to any ma-
trix X ∈ Cn×m by replacing each entryxij by x̌ij

, i = 1, 2, · · · , n, j = 1, 2, · · · ,m, resulting in
a matrix denoted byX̌ ∈ R2n×2m. Given a complex
vector x = [x1, x2, · · · , xn]

T
, x̃ is defined as x̃ ,

[x1I , x1Q, · · · , xnI , xnQ]
T
.

II. SYSTEM MODEL AND DEFINITION OF FSD
COMPLEXITY

For any Linear STBC with variablesx1, x2..., xK given by

(3), the generator matrixG [3] is defined byṽec (X) = Gx̃,
where x̃ = [x1, x2..., xK ]

T . In terms of the weight matrices,
the generator matrix can be written as

G =
[

˜vec (A1) ˜vec (A2) · · · ˜vec (AK)
]

.

Hence, for any STBC, (1) can be written as

ṽec (Y) = Heq x̃ + ṽec (N),

where Heq ∈ R2nrnt×K is given by Heq =
(

Int
⊗ Ȟ

)

G,

and x̃ = [x1, x2..., xK ] , with each xi drawn from a 1-
dimensional (PAM) constellation. Using the above equivalent
system model, the ML decoding metric (2) can be written as

M (x̃) =‖ ṽec (Y)− Heq x̃ ‖2F .

Using QR decomposition ofHeq, we getHeq = QR where
Q ∈ R2nrnt×K is an orthonormal matrix andR ∈ RK×K

is an upper triangular matrix. Using this, the ML decoding
metric now changes to

M (x̃) =‖ QT ṽec (Y)− Rx̃ ‖2F=‖ y
′

− Rx̃ ‖2F . (7)

If we haveHeq = [h1h2..., hK ] , wherehi, i ∈ 1, 2, ...,K are
column vectors, then theQ andR matrices have the following
form obtained by the Gram-Schmidt orthogonalization:

Q = [q1 q2 ... qK ] , (8)

whereqi, i ∈ 1, 2, ...,K are column vectors, and

R =















‖ r1 ‖ 〈q1, h2〉 〈q1, h3〉 · · · 〈q1, hK〉
0 ‖ r2 ‖ 〈q2, h3〉 · · · 〈q2, hK〉
0 0 ‖ r3 ‖ · · · 〈q3, hK〉
...

...
...

. . .
...

0 0 0 · · · ‖ rK ‖















, (9)

wherer1 = h1, q1 = r1
‖r1‖ and for i = 2, ...K,

r i = hi −
i−1
∑

j=1

〈

qj , hi

〉

qj , qi =
r i

‖ r i ‖
.

A. Multi-group decodability, fast decodability and fast group
decodability

In case of a multi-group decodable STBC, the variables can
be partitioned into groups such that the ML decoding metric
is decoupled into submetrics such that only the members of
the same group need to be decoded jointly. It can be formally
defined as [9], [16], [17]:

Definition 4: An STBC is said to beg-group decodable
if there exists a partition of{1, 2, ...,K} into g non-empty
subsetsΓ1,Γ2, ...,Γg such that the following condition is
satisfied:

AlA
H
m + AmAH

l = 0,

wheneverl ∈ Γi andm ∈ Γj and i 6= j.
If we group all the variables of the same group together in (7),
then theR matrix for the SD [2], [18] in case of multi-group
decodable codes will be of the following form:

R =











∆1 0 · · · 0
0 ∆2 · · · 0
...

...
. . .

...
0 0 · · · ∆g











, (10)

where∆i, i = 1, 2, ..., g is a square upper triangular matrix.
Now, consider the standard SD of an STBC. Suppose theR

matrix as defined in (9) turns out to be such that when we fix
values for a set of symbols, the rest of the symbols become
group decodable, then the code is said to be fast decodable.
Formally, it is defined as follows:

Definition 5: An STBC is said to be fast SD if there exists
a partition of {1, 2, ..., L} whereL ≤ K into g non-empty
subsetsΓ1,Γ2, ...,Γg such that the following condition is
satisfied

〈qi, hj〉 = 0 (i < j) , (11)

wheneveri ∈ Γp and j ∈ Γq andp 6= q whereqi andhj are
obtained from theQR decomposition of the equivalent channel
matrix Heq = [h1h2..., hK ] = QR with hi, i ∈ 1, 2, ...,K as
column vectors andQ = [q1 q2 ... qK ] with qi, i ∈ 1, 2, ...,K
as column vectors as defined in (8).

Hence, by conditioningK−L variables, the code becomes
g-group decodable. As a special case, when no conditioning
is needed, i.e.,L = K, then the code isg-group decodable.
TheR matrix for fast decodable codes will have the following
form:

R =

[

∆ B1

0 B2

]

, (12)

where∆ is anL×L block diagonal, upper triangular matrix,
B2 is a square upper triangular matrix andB1 is a rectangular
matrix.

Fast group decodable codes were introduced in [14]. These
codes combine the properties of multi-group decodable codes
and the fast decodable codes. These codes allow each of the
groups in the multi-group decodable codes to be fast decoded.
The R matrix for a fast group decodable code will have the



following form:

R =











R1 0 · · · 0
0 R2 · · · 0
...

...
. . .

...
0 0 · · · Rg











, (13)

where eachRi, i = 1, 2, ..., g will have the following form:

Ri =

[

∆i Bi1

0 Bi2

]

, (14)

where ∆i is an Li × Li block diagonal, upper triangular
matrix, Bi2 is a square upper triangular matrix andBi1 is
a rectangular matrix. The structure of theR matrix for each
of the codes defined above depends upon the ordering of the
weight matrices. If we change the ordering of the weight
matrices, theR matrix may lose its structure and no longer
exhibit the desirable decoding properties. The Silver codeof
Example 1 illustrates this aspect. In the following subsection,
we give a formal definition of the FSD complexity.

B. FSD Complexity of an STBC

In this section we define the FSD complexity of an STBC.
First we consider a single group decodable case and define
the FSD complexity for a particular ordering. We then extend
the definition to a multi-group decodable STBC. LetC be
an STBC with the weight matricesA1, ...,AK , where all the
variables take values from a signal set of cardinalityM . Let
R be the matrix obtained by theQR decomposition used for
SD. Let the ordering of the weight matrices used to obtain the
R matrix beA1, ...,AK . Denote byl1 the number of variables
that need to be conditioned, when we use FSD on theR matrix.
After conditioning l1 variables, let the rest of the variables
be p1-group decodable. In case the code is not fast sphere
decodable, then we setl1 to the total number of variables
in the matrix. Denote byRi1 the submatrix containing the
variables of thei1-th group after conditioningl1 variables in
the R matrix and byni1 the number of variables in thei1-
th group, where1 ≤ i1 ≤ p1. We can use FSD on each of
the Ri1 matrices now. Let us denote byl1,i1 the number of
variables that need to be conditioned, when we use FSD on
the Ri1 matrix. After conditioningl1,i1 variables inRi1 , let
the rest of the variables bep1,i1 -group decodable. Letp2 =
maxi1 (p1,i1). Denote byRi1,i2 the submatrix containing the
variables of thei2-th group after conditioningl1,i1 variables in
theRi1 matrix and byni1,i2 the number of variables in thei2-
th group, where1 ≤ i2 ≤ p2. It may so happen thatp1,i1 < p2
for somei1. In such cases we setni1,i2 = 0 for i2 > p1,i1 . We
continue this process till we cannot apply FSD any more. This
process terminates since there are a finite number of variables
and the number of variables are decreasing with each iteration
of the FSD. Let the process stop afterλ such iterations. In the
(λ− 1) -th iteration, we have the following: Let us denote
by l1,i1,i2,...,iλ−1

the number of variables that need to be
conditioned, when we use FSD on theRi1,i2,...,iλ−1

matrix.
After conditioningl1,i1,i2,...,iλ−1

variables inRi1,i2,...,iλ−1
, let

the rest of the variables bep1,i1,i2,...,iλ−1
-group decodable. Let

pλ = maxi1,i2,...,iλ−1

(

p1,i1,i2,...,iλ−1

)

. Denote byRi1,i2,...,iλ

the submatrix containing the variables of theiλ-th group
after conditioningl1,i1,i2,...,iλ−1

variables in theRi1,i2,...,iλ−1

matrix and byni1,i2,...,iλ the number of variables in theiλ-
th group where1 ≤ iλ ≤ pλ. On the last iteration, we have
l1,i1,i2,...,iλ = ni1,i2,...,iλ for 1 ≤ iλ ≤ pλ.

Let k1,i1,i2,...,ij−1
= maxij

(

l1,i1,i2,...,ij + k1,i1,i2,...,ij
)

for
2 ≤ j ≤ λ, 1 ≤ ij ≤ pj and k1,i1,i2,...,iλ = 0 and k1 =
maxi1 (k1,i1 ).

Definition 6: We define the FSD complexity of a single
group decodable STBC for the given ordering to beM l1+k1 .

In case of a multi-group decodable code withg groups, the
R matrix will be a block diagonal matrix. We then calculate
the FSD complexity of each group independently as described
above and choose the maximum among them as the FSD
complexity of the STBC.

Definition 7: We define the FSD complexity of a multi-
group decodable STBC withg groups to bemaxi

(

M li+ki
)

,

where1 ≤ i ≤ g.
We present a few examples to get a better understanding of

FSD complexity.
Example 2:Let theR matrix be of the form:

R =























a11 a12 0 0 a15 a16 a17 a18

0 a22 0 0 a25 a26 a27 a28

0 0 a33 a34 a35 a36 a37 a38

0 0 0 a44 a45 a46 a47 a48

0 0 0 0 a55 0 0 0

0 0 0 0 0 a66 0 0

0 0 0 0 0 0 a77 0

0 0 0 0 0 0 0 a88























.

Now if we use FSD on this matrix, we will conditionl1 = 4
variables and obtain a2-group decodable code. We have

R1 =

[

a11 a12
0 a22

]

, R2 =

[

a33 a34
0 a44

]

.

Since the number of variables in each of the above matrices
are2, we haven1 = n2 = 2. We cannot condition any more
variables in eitherR1 or R2. So the process stops here and
we setl1,1 = 2 and l1,2 = 2. We have

k1,1 = k1,2 = 0,

k1 = max (l1,1 + k1,1, l1,2 + k1,2) = 2.

The FSD complexity of this STBC for the given ordering is
M l1+k1 = M6.

Example 3:Let theR matrix be of the form:

R =





























a1,1 0 a1,3 a1,4 0 0 0 0 t t

0 a2,2 a2,3 a2,4 0 0 0 0 t t

0 0 a3,3 a3,4 0 0 0 0 t t

0 0 0 a4,4 0 0 0 0 t t

0 0 0 0 a5,5 0 0 a5,8 t t

0 0 0 0 0 a6,6 0 a6,8 t t

0 0 0 0 0 0 a7,7 a7,8 t t

0 0 0 0 0 0 0 a8,8 t t

0 0 0 0 0 0 0 0 t t

0 0 0 0 0 0 0 0 0 t





























.

Now if we use FSD on this matrix, we will conditionl1 = 2
variables and obtain a2-group decodable code. We have

R1 =









a1,1 0 a1,3 a1,4
0 a2,2 a2,3 a2,4
0 0 a3,3 a3,4
0 0 0 a4,4









,



R2 =









a5,5 0 0 a5,8
0 a6,6 0 a6,8
0 0 a7,7 a7,8
0 0 0 a8,8









.

Since the number of variables in each of the above matrices are
4, we haven1 = n2 = 4. Now if we use FSD onR1, we can
condition l1,1 = 2 variables and obtain a2-group decodable
code. If we use FSD onR2, we can conditionl1,2 = 1 variable
and obtain a3-group decodable code. We now have

R1,1 =
[

a1,1
]

, R1,2 =
[

a2,2
]

,

R2,1 =
[

a5,5
]

, R2,2 =
[

a6,6
]

, R2,3 =
[

a7,7
]

,

n1,1 = n1,2 = n2,1 = n2,2 = n2,3 = 1 and n1,3 = 0.

We cannot condition any more variables in any of these
matrices. So the process stops here and we set

l1,1,1 = l1,1,2 = l1,2,1 = l1,2,2 = l1,2,3 = 1.

We have

k1,1,1 = k1,1,2 = k1,2,1 = k1,2,2 = k1,2,3 = 0,

k1,1 = max (l1,1,1 + k1,1,1, l1,1,2 + k1,1,2) = 1,

k1,2 = max (l1,2,1 + k1,2,1, l1,2,2 + k1,2,2, l1,2,3 + k1,2,3) = 1,

k1 = max (l1,1 + k1,1, l1,2 + k1,2) = 3.

The FSD complexity of this STBC for the given ordering
is M l1+k1 = M5.

III. HRQF AND FSD COMPLEXITY

In this section we show that the HRQF matrix is enough to
determine the FSD complexity of an STBC and hence the FSD
complexity is independent of the channel matrix realization
or the number of receive antennas. Towards this end, we
prove that the zeros in theR matrix which determine the FSD
complexity are also zeros in the HRQF matrix. First we define
an ordered partition of a set.

Definition 8: We call a partition of {a1, a2, ..., aK}
into g non-empty subsetsΓ1,Γ2, ...,Γg with cardinalities
K1,K2, ...,Kg an ordered partition if {a1, ..., aK1

} ∈
Γ1, {aK1+1, ..., aK1+K2

} ∈ Γ2 and so on, till
{

a∑g−1

i=1
Ki+1

, ..., a∑g

i=1
Ki

}

∈ Γg.

Now we address the class of multi-group decodable codes.
Lemma 1:Consider an STBCC =

∑K

i=1
xiAi. Let M

denote the HRQF matrix of this STBC. If there exists an
ordered partition of{1, 2, ...,K} into g non-empty subsets
Γ1,Γ2, ...,Γg such thatmij = 0 wheneveri ∈ Γp andj ∈ Γq

andp 6= q, then the code isg-group sphere decodable. In other
words, the FSD complexity of the STBC is determined by the
HRQF matrix.

Proof: Let R be the matrix obtained from the QR
decomposition ofHeq. For the code to beg-group sphere
decodable, we need to prove thatrij = 0, wheneveri ∈ Γp and
j ∈ Γq andp 6= q. We know from [12] that ifAiA

H
j +AjA

H
i =

0 is satisfied for somei, j then the corresponding columns in
the Heq matrix are orthogonal, i.e.,〈hi, hj〉 = 0. We also

know thatmij = 0 if and only if AiA
H
j + AjA

H
i = 0. Let

Lp =
∑p

q=1
|Γq| wherep = 1, 2, ..., g andL0 = 0.

For any groupΓp, we need to prove thatrij = 0 for Lp−1+
1 ≤ i ≤ Lp andLp+1 ≤ j ≤ K. Consider the first groupΓ1.
We havemij = 0 for 1 ≤ i ≤ L1 andL1 + 1 ≤ j ≤ K. We
need to prove that theR matrix has zero entries at the same
locations. The proof for this is by induction.
For i = 1 and for anyj ≥ L1 + 1,

〈q1, hj〉 =
1

‖ h1 ‖
〈h1, hj〉 = 0

sinceq1 = 1

‖h1‖h1. Now, let 〈ql, hj〉 = 0 for all l < i for any
i such that1 ≤ i ≤ L1. We have,

〈qi, hj〉 =
1

‖ r i ‖

[

〈hi −

i−1
∑

l=1

〈ql, hi〉ql, hj〉

]

=
1

‖ r i ‖

[

〈hi, hj〉 −
i−1
∑

l=1

〈ql, hi〉〈ql, hj〉

]

= 0,

since〈hi, hj〉 = 0 asmij = 0 and 〈ql, hj〉 = 0 for l < i, by
induction hypothesis.

Now consider thep-th groupΓp. Let the induction hypoth-
esis be true for all groups1, 2, ...p − 1. Considerrij where
Lp−1 + 1 ≤ i ≤ Lp andLp + 1 ≤ j ≤ K. We have,

rij = 〈qi, hj〉 =
1

‖ r i ‖

[

〈hi −

i−1
∑

l=1

〈ql, hi〉ql, hj〉

]

=
1

‖ r i ‖

[

〈hi, hj〉 −
i−1
∑

l=1

〈ql, hi〉〈ql, hj〉

]

= 0,

since〈hi, hj〉 = 0 asmij = 0 and 〈ql, hj〉 = 0 for l < i by
the induction hypothesis.

We now consider an example to illustrate the above lemma.
Example 4:Consider the2× 2 ABBA code given by [19]:

X =

[

x1 + jx4 −x2 + jx3

−x2 + jx3 x1 + jx4

]

,

wherexi ∈ R for i = 1, 2, 3, 4. This is a two group decodable
code with {x1, x2} belonging to one group and{x3, x4}
belonging to the other. The structure of the HRQF matrixM
and theR matrix are given below with[x1, x2, x3, x4] as the
ordering of the variables and the weight matrices,

M =









t t 0 0
t t 0 0
0 0 t t

0 0 t t









, R =









t t 0 0
0 t 0 0
0 0 t t

0 0 0 t









,

wheret denotes the non-zero entries. As it can be seen, the
upper triangular portion ofM matrix and theR matrix have
the same structure.

Now we move on the class of fast decodable codes.
Lemma 2:Consider an STBCC =

∑K

i=1
xiAi. Let M

denote the HRQF matrix of this STBC. If there exists an
ordered partition of{1, 2, ..., L} whereL ≤ K into g non-
empty subsetsΓ1,Γ2, ...,Γg such thatmij = 0 whenever



i ∈ Γp andj ∈ Γq andp 6= q, then the code is fast decodable
or conditionallyg-group decodable.

Proof: The proof follows from the proof of Lemma 1 by
replacingK with L.

We now consider an example to illustrate the above lemma.

Example 5:Consider the Silver code as mentioned
in Example 1. If we order the variables (and
hence the weight matrices) in the following fashion
[s1I , s1Q, s2I , s2Q, s3I , s3Q, s4I , s4Q], then the HRQF matrix
M and theR matrix will have the following structure:

M =

























t 0 0 0 t t t t

0 t 0 0 t t t t

0 0 t 0 t t t t

0 0 0 t t t t t

t t t t t 0 0 0
t t t t 0 t 0 0
t t t t 0 0 t 0
t t t t 0 0 0 t

























,

R =

























t 0 0 0 t t t t

0 t 0 0 t t t t

0 0 t 0 t t t t

0 0 0 t t t t t

0 0 0 0 t 0 0 0
0 0 0 0 0 t 0 0
0 0 0 0 0 0 t 0
0 0 0 0 0 0 0 t

























,

wheret denotes the non-zero entries. As it can be seen, the
upper triangular portion of the matrixM , has a structure
that admits fast decodability which is conditionally4-group
decodable if considered as theR matrix.

We now turn to the class of fast group decodable codes.
Lemma 3:Consider an STBCC =

∑K

i=1
xiAi. Let M

denote the HRQF matrix of this STBC. If there exists an
ordered partition of{1, 2, ...,K} into g non-empty sub-
setsΓ1,Γ2, ...,Γg with cardinalitiesK1,K2, ...,Kg such that
mij = 0 wheneveri ∈ Γp and j ∈ Γq andp 6= q, and if any
groupΓi admits fast decodability, i.e., there exists an ordered
partition of

{

∑i−1

l=1
Kl + 1,

∑i−1

l=1
Kl + 2, ...,

∑i−1

l=1
Kl + Li

}

whereLi ≤ Ki, into gi non-empty subsetsΥi1 ,Υi2 , ...,Υigi

such thatmrs = 0 wheneverr ∈ Υip ands ∈ Υiq andp 6= q,
i = 1, 2, ..., g, then the code is fast group decodable.

Proof: The proof follows from the proofs of lemmas 1
and 2.
We now consider an example to illustrate the above lemma.

Example 6:Consider the fast group decodable STBC [14]
given in (15) .

Let the ordering of the variables (and hence the weight
matrices) be[s1, s2, ..., s17]. This STBC is two group decod-
able with s1 in one group and{s2, s3, ..., s17} in the other.
The second group is conditionally five group decodable. The
HRQF matrixM and theR matrix are given in (16) and (17)
respectively, wheret denotes the non zero entries.

M =

























































t 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 t 0 0 0 0 t t 0 0 0 0 t t t t t

0 0 t 0 0 0 t 0 t t t 0 0 t 0 t t

0 0 0 t 0 0 0 t t t 0 t t 0 0 t t

0 0 0 0 t 0 t t t 0 t t 0 0 t t 0

0 0 0 0 0 t 0 0 0 t t t t t t t 0

0 t t 0 t 0 t 0 0 t 0 t t 0 0 t 0

0 t 0 t t 0 0 t 0 t t 0 0 t 0 t 0

0 0 t t t 0 0 0 t 0 0 0 t t t t 0

0 0 t t 0 t t t 0 t 0 0 0 0 t t 0

0 0 t 0 t t 0 t 0 0 t 0 t 0 0 t t

0 0 0 t t t t 0 0 0 0 t 0 t 0 t t

0 t 0 t 0 t t 0 t 0 t 0 t 0 0 t 0

0 t t 0 0 t 0 t t 0 0 t 0 t 0 t 0

0 t 0 0 t t 0 0 t t 0 0 0 0 t t t

0 t t t t t t t t t t t t t t t t

0 t t t 0 0 0 0 0 0 t t 0 0 t t t

























































(16)

R =

























































t 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 t 0 0 0 0 t t 0 0 0 0 t t t t t

0 0 t 0 0 0 t 0 t t t 0 0 t 0 t t

0 0 0 t 0 0 0 t t t 0 t t 0 0 t t

0 0 0 0 t 0 t t t 0 t t 0 0 t t 0

0 0 0 0 0 t 0 0 0 t t t t t t t 0

0 0 0 0 0 0 t t t t t t t t t t t

0 0 0 0 0 0 0 t t t t t t t t t t

0 0 0 0 0 0 0 0 t t t t t t t t 0

0 0 0 0 0 0 0 0 0 t t t t t t t t

0 0 0 0 0 0 0 0 0 0 t t t t t t t

0 0 0 0 0 0 0 0 0 0 0 t t t t t t

0 0 0 0 0 0 0 0 0 0 0 0 t t t t t

0 0 0 0 0 0 0 0 0 0 0 0 0 t t t t

0 0 0 0 0 0 0 0 0 0 0 0 0 0 t t t

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t t

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t

























































(17)

As we have seen from Lemmas 1, 2 and 3, the FSD
complexity of the STBC depends only upon the HRQF matrix
M and not on theHeq matrix, i.e., the FSD complexity is
independent of the channel matrix and the number of receive
antennas. It can be completely captured into a single matrix
obtained from the set of weight matrices and their ordering.

IV. A LGORITHM FOR A BEST ORDERING OF THEWEIGHT

MATRICES

As seen in Example 1, the ordering of weight matrices
determines the FSD complexity of an STBC. We have also
seen that the HRQF matrix completely determines the FSD
complexity of an STBC. In this section we present an algo-
rithm that uses the HRQF matrix as an input and manipulates it
in order to obtain a best possible ordering of weight matrices.
We do so by using row and column permutations of the
HRQF matrix. The rows and columns of the HRQF matrix
are in one to one correspondence with the ordering of the
weight matrices. Hence, if we change the ordering of the
weight matrices, the HRQF matrix changes accordingly and
vice verse. For example, any transposition in the ordering of
the weight matrices will result in swapping the corresponding
rows and columns (since HRQF matrix is symmetric) of the
HRQF matrix.

Remark 1:Note that we cannot perform such a manipula-
tion on theR matrix since it depends not only on the order of
weight matrices but on the channel matrix as well. Also, all the
entries of theR matrix do not depict the HR orthogonality of
the weight matrices, i.e., the(i, j)-th entry of the matrix may
not be zero even if thei-th andj-th weight matrices are HR
orthogonal. Hence, theR matrix needs to be calculated each



X =







s1 + js2 + js15 + js16 + js17 s7 + js8 + s13 + js14 s3 + js4 + s11 + js12 −s5 − js6 + s9 + js10
−s7 + js8 − s13 + js14 s1 + js2 + js15 − js16 − js17 s5 − js6 + s9 − js10 s3 − js4 − s11 + js12
−s3 + js4 − s11 + js12 −s5 − js6 − s9 − js10 s1 − js2 + js15 − js16 + js17 s7 − js8 − s13 + js14
s5 − js6 − s9 + js10 −s3 − js4 + s11 + js12 −s7 − js8 + s13 + js14 s1 − js2 + js15 + js16 − js17






(15)

time the ordering of the weight matrices is changed which is
not so in the case of the HRQF matrix.

The algorithm to get a best possible ordering is given in
Algorithm 1 in the next page.

An important structural property of the HRQF matrix:
Before we delve into the proof of correctness of the algorithm,
let us make a few observations regarding the structure of the
HRQF matrix for various scenarios of decoding. LetC be
an STBC with weight matricesA1, ...,AK and corresponding
variablesx1, ..., xK . The codeC can be multi-group decod-
able, fast-decodable, fast group decodable or none of these.
The structure of the upper triangular portion of the HRQF
matrix for the first three of these are shown in the equations
(10), (12) and (13) respectively. In case the code does not allow
any of these forms of decoding, the ordering of the variablesis
immaterial. Let∆ be a best ordering of the variables. Without
loss of generality, let the first variable in this ordering be
labelledx1. Irrespective of the type of decoding provided by
the code, we notice that all the variables that need to be jointly
decoded withx1 are adjacent to it in the HRQF matrix. These
are followed by the set of zeros which indicate all the variables
which are Hurwitz-Radon orthogonal with the previous set.
These are further followed by the variables that are to be
conditioned in order to obtain this group-decodable structure.
In case of multi-group decodable codes, this is a null set.

Proof of Correctness:We need to show that the algorithm
produces a best possible ordering for FSD complexity. The
algorithm uses the structural property of the HRQF matrix
for obtaining a best ordering. Given any orderingΛ, with the
first variable asx1, the algorithm partitions the variables into
three sets -Λ1,Λ2 andΛ3. In case of multi-group decoding
and fast group decoding,Λ1 contains all the variables that
belong to the same group asx1. In case of fast decoding, it
represents the set of variables that need to be jointly decoded
with x1 after conditioning.Λ2 contains all the variables HR
orthogonal withΛ1. Λ3 contains the variables that need to be
conditioned. This will be an empty set in case of multi-group
decoding and hence multi-group decoding can be considered
as fast decoding with no conditioned variables. The algorithm
is recursively run on the setsΛ1 andΛ2 to further order the
variables (as in case of fast group decoding).

First, we fix the first variable in the given ordering. Let it
be xi for some1 ≤ i ≤ K. The algorithm starts with only
xi in Λ1, all variables which are HR orthogonal withxi in
a temporary setΛt and the rest of the variables inΛ3.The
variables HR orthogonal withxi can be easily identified as
they correspond to the zero entries in the first row. For ease of
manipulation, we move all the variables in the setΛt adjacent
xi in the ordering. This is equivalent to grouping all the zeros
in the first row and placing them adjacent to the (1,1) entry,

as these denote all the variables HR orthogonal withxi. The
current ordering of variables is -{xi,Λt,Λ3}. For the working
of the algorithm, the following set operations are synonymous
with the following matrix operations on the HRQF matrix:

• Moving a variablexj into Λ1 - Suppose the variablexj

is thep-th element in the current ordering, we move the
p-th column to the(|Λ1|+ 1)-th column shifting the rest
of the columns to the right and then we move thep-th
row to the(|Λ1|+ 1)-th row shifting the rest of the rows
downwards. Update the ordering accordingly.

• Moving a variablexj into Λ3 - Suppose the variablexj

is thep-th element in the current ordering, we move the
p-th column to the last column shifting the rest of the
columns to the left and then we move thep-th row to the
last row shifting the rest of the rows upwards. Update the
ordering accordingly.

• Moving a variablexj into Λ2 - No change. Only the
cardinalities ofΛ2 andΛt will change accordingly.

The algorithm works in two stages.
• First, we find the largestL ≤ K such that|Λ1|+ |Λ2| =

L.

• In the second stage, since the variables inΛ1 and Λ2

will be decoded separately, we consider the submatrices
representing them as HRQF matrices of some STBC and
run the first step of the algorithm on them recursively.

Let xk be the first variable inΛt. It is currently the second
variable in the overall ordering. We now proceed to find all
the variables that are HR orthogonal withxk and not HR
orthogonal withΛ1, since these will need to be jointly decoded
with the variables inΛ1. This can be found as follows. If
any variable is HR orthogonal withxk, it will have a zero
entry in the column corresponding toxk. Hence we traverse
down the column represented byxk to find the next zero
entry. Let it be found in thep-th row corresponding to the
variablexl. We also need to ensure that this variable is not
HR orthogonal withΛ1. So, we traverse thep-th row from
column 1 to column|Λ1| and check for any non-zero entries.
In case any of them are found, it means that this variable
needs to be jointly decoded withΛ1. We addxl to Λ1. We
now repeat the procedure on the variablexk again until all the
variables have been exhausted. Since there are a finite number
of variables, this process terminates. Note that it is possible
that a few members fromΛt may move intoΛ1 during this
process. These variables will be accounted for later. We now
addxk to Λ2. We have now managed to create two sets which
are HR orthogonal and the current ordering of the variables is
{Λ1,Λ2,Λt,Λ3}.

We now proceed to the next variable inΛt. Let this bexj .
We need to ensure thatxj is HR orthogonal withΛ1. This
can be easily checked by counting the consecutive number



Input : The HRQF matrix -M = (mij), the size of the HRQF matrix -
K ×K, the input ordering -input ordering

Output : The best possible FSD complexity -best dec cmplxty and
its corresponding ordering -best ordering

- current ordering = input ordering
- best dec cmplxty = K; i = 1
repeat

- Shift all the zero entries in the first row next to the first element
- Let the number of zeros in the first row benum zero cols
- grp size = 1; cur zero col = 2. (Var under consideration)
if num zero cols = 0 then

- dec cmplxty = K
end
else

repeat
- flag = 0
- Let no. of consecutive zeros incur zero col ben.
if n < grp size then

- Move thecur zero col-th variable to the end
(Move the corresponding row and column to the end
and moving the rest of the rows and columns
upwards).
- Updatecurrent ordering.
- num zero cols = num zero cols− 1

end
if n ≥ cur zero col− 1 then

- grp size = cur zero col − 1
Marker :
- Find the next zero along thecur zero col column
from thecur zero col row.
- Let the next zero be found in thej-th row.
for t = 1 to grp size do

if mjt 6= 0 then
- flag = 1

end
end
if flag = 1 then

- Move up thej-th variable to the
grp size+ 1-th position. - Update
current ordering.
- grp size = grp size+ 1
- cur zero col = cur zero col+ 1
- jump back toMarker

end
if flag = 0 then

- cur zero col = cur zero col+ 1 (No more
zeros left in this column to check)

end
end

until cur zero col ≤ grp size+ num zero cols ;
- top hrqf matrix = upper leftgrp size× grp size
matrix. (With orderingtop hrqf ordering).
- bot hrqf matrix = square matrix from row, column =
grp size+ 1 to row, column =grp size+ num zero cols.
(With orderingbot hrqf ordering).
Run the current algorithm on the top and bottom matrices
- [top dec cmplxity, best top ordering] =
order hrqf (top hrqf matrix, top hrqf size, top ordering)
- [bot dec cmplxity, best bot ordering] =
order hrqf (bot hrqf matrix, bot hrqf size, bot ordering)
- Updatecurrent ordering with best top ordering and
best bot ordering.
- Number of variables conditioned:
cond vars = K − grp size− num zero cols.
- dec cmplxty =
cond vars +max {top dec cmplxity, bot dec cmplxity}

end
if best dec cmplxty > dec cmplxty then

- best dec cmplxty = dec cmplxty
- best ordering = current ordering

end
- Circularly shift the variables (rows and columns)
- Updatecurrent ordering
- i = i+ 1

until i = K ;
Algorithm 1 : The algorithm to obtain a best ordering of
weight matrices -order hrqf

of zeros in its column from the top of the column. If it is
equal to|Λ1|, thenxj is HR orthogonal withΛ1. We addxj

to Λ2 in this case. Otherwise, we movexj to Λ3. It may so
happen thatxj may be HR orthogonal withΛ1 and the already
existing members ofΛ2. This can be checked by counting the
consecutive numbers of zeros in its column from the top of the
column and matching cardinalities. In such a case, we repeat
the procedure of finding any variable that needs to be jointly
decoded withΛ1 on this variable as well. If any such variable
exists, we move that variable and the pre-existing variables of
Λ2 into Λ1. This is needed for fast group decoding scenarios.
We continue this procedure till we have exhausted all the
variables ofΛt. We have now produced three setsΛ1, Λ2

andΛ3. Λ1 andΛ2 are HR orthogonal w.r.t. one another if we
condition them on the variables ofΛ3.

We still need to processΛ1 and Λ2 further. We repeat
the same procedure on these variables considering them as
independent HRQF matrices. If the cardinality ofΛ1 is the
same as that of the HRQF matrix row/column size, then we
stop this procedure as it cannot be ordered any further and
set the FSD complexity to|Λ1|. This process terminates as
the sizes ofΛ1 andΛ2 keep reducing with each iteration and
there are a finite number of variables. We calculate the FSD
complexity of this ordering as -|Λ3|+max (d1, d2) whered1
andd2 are the FSD complexities ofΛ1 andΛ2 respectively.

Since we are dealing with fast sphere decoding and grouping
the variables as setsΛ1,Λ2 andΛ3 are the only possible ways
to obtain a structure that will allow FS decoding, these are all
the orderings we need to consider if we takexi as the first
variable. Hence, we have exhausted all the possible orderings
which can provide FS decoding withxi as the first variable,
and a best possible FSD complexity for this case has been
found by the above steps. Now, if we run through all the
variables of the STBC making each one of them the first
variable in turn and repeating the above procedure, we can find
out a best possible FSD complexity for all possible orderings.
Since all the variables have been given a chance to be the
first variable, we have exhausted all possible orderings that
offer FS decoding. And hence, the ordering provided by the
algorithm is a best possible ordering for FSD complexity.�

Remark 2:Since the algorithm recursively orders each set,
it is capable of even ordering variables in scenarios where
any group obtained from conditioning of variables admits
conditional decoding.

We now illustrate the working of the algorithm with an
example.

Example 7:Consider the Silver code presented
in Example 1. If we order the variables as
[s1I , s4I , s4Q, s2Q, s3Q, s3I , s2I , s1Q], we get the following
HRQF matrix and theR matrix for this ordering:

M =





















t t t 0 t t 0 0
t t 0 t 0 0 t t
t 0 t t 0 0 t t
0 t t t t t 0 0
t 0 0 t t 0 t t
t 0 0 t 0 t t t
0 t t 0 t t t 0
0 t t 0 t t 0 t





















;



R =





















t t t 0 t t 0 0
0 t t t t t t t
0 0 t t t t t t
0 0 0 t t t t t
0 0 0 0 t t t t
0 0 0 0 0 t t t
0 0 0 0 0 0 t 0
0 0 0 0 0 0 0 t





















.

The FSD complexity for this ordering isM8. And this
ordering does not admit fast decoding as well.

When we run the algorithm on the given HRQF matrix, the
two setsΛ1 and Λ2 are formed, which are HR orthogonal
with each other. In this case,Λ2 = {s2Q, s2I , s1Q} and
Λ1 = {s1I}. The conditioned variables will be present in
the setΛ3 = {s4I , s4Q, s3Q, s3I}. The HRQF matrix at this
stage is as given by (18). The ordering of the variables at
the end of this stage is[s1I , s2Q, s2I , s1Q, s4I , s4Q, s3Q, s3I ].
Now, the variables from both setsΛ1 andΛ2 are run through
the algorithm again. So, the top left1× 1 matrix and the next
block diagonal3 × 3 matrix are both fed to the algorithm.
Since this is already the best possible ordering of these sets,
the matrixM remains the same after this stage. And the fi-
nal ordering obtained is[s1I , s2Q, s2I , s1Q, s4I , s4Q, s3Q, s3I ].
The R matrix for this ordering is given by (19)

M =

























t 0 0 0 t t t t

0 t 0 0 t t t t

0 0 t 0 t t t t

0 0 0 t t t t t

t t t t t 0 0 0
t t t t 0 t 0 0
t t t t 0 0 t 0
t t t t 0 0 0 t

























(18)

R =

























t 0 0 0 t t t t

0 t 0 0 t t t t

0 0 t 0 t t t t

0 0 0 t t t t t

0 0 0 0 t 0 0 0
0 0 0 0 0 t 0 0
0 0 0 0 0 0 t 0
0 0 0 0 0 0 0 t

























(19)

The FSD complexity for thisR matrix is M5 which is the
best possible complexity for the Silver code.

Example 8:Consider the fast group decodable code pre-
sented in Example 6. If we order the variables as
[s2, s3, ..., s10, s1, s11, s12, ..., s17], we get the following
HRQF matrix and theR matrix:

M =

























































t 0 0 0 0 t t 0 0 0 0 0 t t t t t

0 t 0 0 0 t 0 t t 0 t 0 0 t 0 t t

0 0 t 0 0 0 t t t 0 0 t t 0 0 t t

0 0 0 t 0 t t t 0 0 t t 0 0 t t 0

0 0 0 0 t 0 0 0 t 0 t t t t t t 0

t t 0 t 0 t 0 0 t 0 0 t t 0 0 t 0

t 0 t t 0 0 t 0 t 0 t 0 0 t 0 t 0

0 t t t 0 0 0 t 0 0 0 0 t t t t 0

0 t t 0 t t t 0 t 0 0 0 0 0 t t 0

0 0 0 0 0 0 0 0 0 t 0 0 0 0 0 0 0

0 t 0 t t 0 t 0 0 0 t 0 t 0 0 t t

0 0 t t t t 0 0 0 0 0 t 0 t 0 t t

t 0 t 0 t t 0 t 0 0 t 0 t 0 0 t 0

t t 0 0 t 0 t t 0 0 0 t 0 t 0 t 0

t 0 0 t t 0 0 t t 0 0 0 0 0 t t t

t t t t t t t t t 0 t t t t t t t

t t t 0 0 0 0 0 0 0 t t 0 0 t t t

























































,

R =

























































t 0 0 0 0 t t 0 0 0 0 0 t t t t t

0 t 0 0 0 t 0 t t 0 t 0 0 t 0 t t

0 0 t 0 0 0 t t t 0 0 t t 0 0 t t

0 0 0 t 0 t t t 0 0 t t 0 0 t t 0

0 0 0 0 t 0 0 0 t 0 t t t t t t 0

0 0 0 0 0 t t t t 0 t t t t t t t

0 0 0 0 0 0 t t t 0 t t t t t t t

0 0 0 0 0 0 0 t t 0 t t t t t t 0

0 0 0 0 0 0 0 0 t 0 t t t t t t t

0 0 0 0 0 0 0 0 0 t 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 t t t t t t t

0 0 0 0 0 0 0 0 0 0 0 t t t t t t

0 0 0 0 0 0 0 0 0 0 0 0 t t t t t

0 0 0 0 0 0 0 0 0 0 0 0 0 t t t t

0 0 0 0 0 0 0 0 0 0 0 0 0 0 t t t

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t t

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t

























































.

The FSD complexity for thisR matrix is M13 but the best
possible FSD complexity isM12. When we run the algorithm
on the given HRQF matrix, the two setsΛ1 andΛ2 are formed,
which are HR orthogonal with each other. In this case,Λ1 =
{s2, s3, s4, s5, s6, s9, s10, s11, s12, s7, s8, s13, s14, s15, s16}
andΛ2 = {s1}. The setΛ3 is empty as this provides a group
decoding scenario. Now, the variables from both sets are
run through the algorithm again. So, the top left16 × 16
matrix and the bottom right1 × 1 matrix are both fed to the
algorithm. The top left matrix is ordered according to the
fast decoding algorithm as presented in the previous example.
Since the bottom right matrix is a1× 1 matrix, it is returned
without change. The final ordering of variables obtained is
[s2, s3, s4, s5, s6, s7, s8, s13, s14, s15, s16, s9, s10, s11, s12, s1].
The M and theR matrix for this ordering is as shown below.

M =

























































t 0 0 0 0 t t t t t t t 0 0 0 0 0

0 t 0 0 0 t 0 0 t 0 t t t t t 0 0

0 0 t 0 0 0 t t 0 0 t t t t 0 t 0

0 0 0 t 0 t t 0 0 t t 0 t 0 t t 0

0 0 0 0 t 0 0 t t t t 0 0 t t t 0

t t 0 t 0 t 0 t 0 0 t 0 0 t 0 t 0

t 0 t t 0 0 t 0 t 0 t 0 0 t t 0 0

t 0 t 0 t t 0 t 0 0 t 0 t 0 t 0 0

t t 0 0 t 0 t 0 t 0 t 0 t 0 0 t 0

t 0 0 t t 0 0 0 0 t t t t t 0 0 0

t t t t t t t t t t t t t t t t 0

t t t 0 0 0 0 0 0 t t t 0 0 t t 0

0 t t t 0 0 0 t t t t 0 t 0 0 0 0

0 t t 0 t t t 0 0 t t 0 0 t 0 0 0

0 t 0 t t 0 t t 0 0 t t 0 0 t 0 0

0 0 t t t t 0 0 t 0 t t 0 0 0 t 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

























































,



R =

























































t 0 0 0 0 t t t t t t t 0 0 0 0 0

0 t 0 0 0 t 0 0 t 0 t t t t t 0 0

0 0 t 0 0 0 t t 0 0 t t t t 0 t 0

0 0 0 t 0 t t 0 0 t t 0 t 0 t t 0

0 0 0 0 t 0 0 t t t t 0 0 t t t 0

0 0 0 0 0 t 0 t 0 0 t 0 0 t 0 t 0

0 0 0 0 0 0 t 0 t 0 t 0 0 t t 0 0

0 0 0 0 0 0 0 t 0 0 t 0 t 0 t 0 0

0 0 0 0 0 0 0 0 t 0 t 0 t 0 0 t 0

0 0 0 0 0 0 0 0 0 t t t t t 0 0 0

0 0 0 0 0 0 0 0 0 0 t t t t t t 0

0 0 0 0 0 0 0 0 0 0 0 t 0 0 t t 0

0 0 0 0 0 0 0 0 0 0 0 0 t 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 t 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 t 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

























































.

This ordering gives us the FSD complexity ofM12.

V. CONCLUSION

In this paper we have analysed the FSD complexity of an
STBC using quadratic forms. We have shown that the HRQF
completely categorizes the FSD complexity of an STBC and
hence it is independent of the channel and the number of
receive antennas. We have provided an algorithm to obtain
a best ordering of weight matrices to get the best decoding
performance from the code.
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