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Joint Source–Relay Optimization for Fixed
Receivers in Multi–Antenna Multi–Relay Networks
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Abstract—We jointly optimize the source and relay precoders
for multi–antenna multi–relay networks employing a prefixed re-
ceiver. Prefixed receivers are of practical interest since theyenable
low complexity at the end–user’s receiver as well as backward
compatibility. To compute the source and relay precoders, we
consider two different criteria. The objective of the first criter ion
is to maximize the worst stream signal–to–interference–plus–
noise ratio (SINR) at the output of the receiver subject to source
and relay transmit power constraints. Under the second criterion,
we minimize the source and relay transmit powers subject to a
certain quality–of–service constraint. Both optimization problems
are non–convex. To solve them, we propose iterative alternating
algorithms, where, in each iteration, we compute the precoders
alternately, i.e., for each precoder optimization, we fix all the
precoders except the one which is optimized. For both criteria,
we formulate the optimization problem for the computation
of the source precoder as a second order cone programming
(SOCP) problem, for which the optimal solution can be found
using interior point algorithms. For each relay precoder, we
formulate the optimization problem as a semidefinite relaxation
(SDR) problem for which ready–to–use solvers exist. If the
solution to the SDR problem is not of rank one, matrix rank–
one decomposition or randomization is applied. We also provide
sufficient conditions for the convergence of the proposed iterative
alternating algorithms to a fixed point. Simulation results show
that the performance of the proposed algorithms is close to the
performance achieved if the source, relay, and receiver filters are
jointly optimized.

Index Terms—Cooperative relaying, multiple–input multiple–
output, joint optimization of source and relays, prefixed receivers.

I. I NTRODUCTION

Cooperative communication has been one of the most active
areas of research over the last decade. It enables reliable
communication and expands the coverage of wireless networks
[1]–[3]. It is expected that relaying will be a key feature of
all future wireless standards. In fact, relaying is one of the
key features of the LTE–advanced standard [4], [5]. Recently,
multiple–input multiple–output (MIMO) relay networks have
attracted a lot of interest due to their ability to significantly
increase the spectral efficiency and reliability [6], [7]. The
joint design of source and relay precoders has been extensively
considered in the literature [7]–[14]. Different criteria, such
as mutual information [7], [8] and mean square error (MSE)
[11], were considered for the optimization of the source and
relay precoders. For example, in [12], the authors proposed
a unified framework to jointly optimize the source and relay
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precoding matrices based on majorization theory for a one–
way three–node amplify–and–forward relay network. In [12],
a linear minimum mean square error (MMSE) equalizer was
assumed at the destination. In [15], a nonlinear decision
feedback equalizer (DFE) at the destination was considered.
The optimization of the source precoder, relay precoder, and
receiver via minimization of the sum of the source and relay
powers subject to a quality–of–service (QoS) constraint was
studied in [16] for single relay networks and in [17] for multi–
relay networks. The case of multiuser MIMO relay networks
was studied in [18], [19]. An excellent reference on precoder
design for MIMO relay networks is [20]. In all the above
works, an equalizer was assumed at the destination and it
was jointly optimized with the source and relay precoders.
In particular, if the receiver is jointly optimized with the
source and relay, i.e., the receiver is a function of the source
and relay precoders, it was proven that the optimal solution
for the source and relay precoders diagonalizes the end-to-
end channel [12], [13], which allows simplifying the matrix-
valued optimization problem to a scalar power allocation
optimization problem. In general, the resulting scalar power
allocation problem is not convex due to the product of the
power allocation parameters of the source and relay. To solve
the non-convex scalar power allocation problem, alternating
optimization can be used, i.e., the scalar power allocation
parameters of one node are updated while fixing the power
allocation parameters of the other node [12].

In this paper, we consider the practical case of multi–relay
networks, where the receiver at the user side is prefixed,
and jointly optimize the source and relay precoders for this
scenario. The motivation behind this work, and more specif-
ically behind the assumption of a prefixed receiver at the
destination, is that the use of MIMO relays in the downlink of
future wireless networks requires some modifications of the
transmitter at the source (base station) and/or the receiver at
the destination (end–user) compared to the current networks.
In addition to the fact that modifying the transmitter at the
base station is much easier and less costly than modifying
the receiver at the end–user, using prefixed receivers ensures
backward compatibility. Moreover, to keep the complexity at
the end–user as low as possible, equalization may not be used
at all [21], [22]. The design of the transmitter in the case
of a prefixed receiver for MIMO point–to–point systems was
studied in [22], [23]. However, to the best of our knowledge,
there is no previous work that considers joint source and relay
optimization for a fixed receiver in relay networks.

The main contributions of this paper are summarized as
follows:

• We are the first to consider the joint design of the
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source and relay precoders for a prefixed receiver at the
destination, which is a very interesting and challenging
problem from both practical and theoretical points of
view.

• We consider two different criteria for optimization of the
source and relay precoders for a prefixed receiver. Under
the first criterion, we maximize the worst stream signal–
to–interference–plus–noise ratio (SINR) at the output of
the receiver subject to source and relay transmit power
constraints. This criterion is of interest if the system
wants to maximize the worst stream SINR given strict
constraints on the source and relay powers. Under the
second criterion, we minimize the source–relay power
subject to a certain QoS constraint. This criterion is of
interest when the system tries to ensure a certain required
QoS while minimizing the used power. Both criteria lead
to non–convex optimization problems.

• We also discuss the feasibility of both optimization prob-
lems. In particular, we show that for the two optimization
problems to be feasible the number of antennas at each
node should be greater or equal to the number of signal
streams.

• We propose iterative alternating algorithms [24] to solve
the two non–convex optimization problems, where, in
each iteration, we compute the precoders alternately,
i.e., all precoders are fixed except the one which is
optimized. We show that the optimization problem for the
computation of the source precoder can be formulated as
a second order cone programming (SOCP) problem, for
which the optimal solution can be found using interior
point algorithms. Similarly, for the optimization of each
relay precoder, we formulate the optimization problem
as a semidefinite relaxation (SDR) problem, for which
ready–to–use solvers exist.

• Since the proposed algorithms are iterative, we also dis-
cuss their convergence and provide sufficient conditions
for it. The feasibility study of the optimization problems
and the sufficient conditions for the convergence of the
proposed algorithm provide us with some insight on how
to design the system.

We note that, unlike the case of joint optimization of the source
and relay precoders along with the equalizer [12], [13], fora
prefixed receiver, the obtained solution does not diagonalize
the end–to–end channel in general.

The remainder of this paper is organized as follows. In
Section II, the system model is presented. The SINR maxi-
mization problem under transmit power constraints is studied
in Section III, and the power minimization problem under
QoS constraints is investigated in Section IV. In Section V,
numerical results are presented, and conclusions are drawnin
Section VI.

Notation: Throughout this paper, we use small and capital
boldface letters to denote vectors and matrices, respectively.
The operators(·)∗, (·)T , (·)H , and (·)† denote the complex
conjugate, the transpose, the Hermitian transpose, and the
pseudo-inverse, respectively.[A]ij denotes the(i, j)th entry of
matrix A. vec(A) denotes stacking the columns ofA in one
column vectora while vec−1(a) denotes the inverse operation.

(Prefixed)

Fig. 1. Relay network with one source, one destination, andM relays. The
source, relay, and destination nodes are equipped withNS , NR, andND

antennas, respectively. The receiver matrixW is assumed to be prefixed.

⊗ denotes the Kronecker product.tr(·) andE[·] denote the
trace and statistical expectation operators, respectively. A � 0
means thatA is a Hermitian positive semidefinite matrix.IK is
theK×K identity matrix andIK×L denotes aK×L diagonal
matrix with ones on the main diagonal and zeros elsewhere.
‖ · ‖ and | · | denote the Euclidean norm of a vector and the
absolute value of a complex scalar, respectively. Finally,ei is
an all–zeros vector except for theith position where its entry
is one.

II. SYSTEM MODEL

We consider a relay network with one source,S, one
destination,D, andM relays,R1, ..., RM , see Fig. 1. The
source node, the destination node, and each relay are equipped
with NS , ND, andNR antennas, respectively. Note that for
notational convenience and without loss of generality, we
assume that all relays have the same number of antennas. It is
straightforward to extend the proposed schemes to the general
case where the relays may have different numbers of antennas.
We assume a half–duplex protocol and each transmission is
organized in two time slots. In the first time slot, the source
node transmits signals to all relays. In the second time slot,
the relays filter the received signals and forward them to
the destination node. At the destination, the signals received
during the second time slot are processed and detected. We
assume that there is no direct link between the source node and
the destination node. We assume spatial multiplexing where
the source node transmitsL different signal streams. We also
assume that the relays are perfectly synchronized and full
channel state information (CSI) is available at the source.In
practice, each relay node estimates its source–relay channel
via a training sequence (known by the relays) that is sent by
the source node to all relays. The destination estimates all
relay–destination channels in a similar fashion. Subsequently,
the destination and the relays send back the estimated channels
to the source via error–free feedback channels.

The signal received at the relays during the first time slot
is given by

yi = HiUs+ nri, i ∈ {1, ...,M}, (1)

wheres ∈ L is the transmit vector whose elements are in-
dependent and identically distributed (i.i.d.) and drawn from a
scalar symbol alphabetA such as phase–shift keying (PSK) or
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quadrature amplitude modulation (QAM) with unit variance,
i.e.,E[ssH ] = IL. U ∈ NS×L is the precoding matrix at the
source node.Hi ∈ NR×NS , i ∈ {1, ...,M}, is the channel
matrix between the source node and relayi. nri ∈ NR×1 is
the additive (spatially and temporally) white Gaussian noise
(AWGN) vector at relayi and its elements have varianceσ2

nr
,

i.e.,E[nrin
H
ri] = σ2

nr
INR

. yi ∈ NR×1 is the signal received
at theith relay.

The signal received at theith relay is filtered by precoder
Fi ∈ NR×NR . The signal at the output of theith relay is
given by

ti = FiHiUs+ Finri, i ∈ {1, ...,M}. (2)

The signal received at the destination during the second time
slot is given by

r =
M
∑

i=1

GiFiHiUs+
M
∑

i=1

GiFinri + n, (3)

whereGi ∈ ND×NR is the channel matrix between relay
i and the destination, andn ∈ ND×1 is AWGN at the
destination with varianceσ2

n, i.e.,E[nnH ] = σ2
nIND

. At the
receiver, a linear equalizer matrixW ∈ L×ND is utilized
to recover the transmit signals. Throughout this paper, we
assume that the equalizer matrixW is prefixed. We assume
that the prefixed equalizer matrixW is a function of theR–
D channel and the destination is oblivious to the existence
of a precoder at the relay. For a single relay network, i.e.,
M = 1, we assume that the receiver can use either no
equalizer or a low-complexity equalizer (e.g., zero-forcing
(ZF) or MMSE equalizer). In particular, if the receiver uses
no equalizer, we haveW = IL×ND

. However, if the receiver
uses a ZF equalizer, i.e.,W = G

†
1, or an MMSE equalizer,

i.e., W = GH
1

(

σ2
nIND

+G1G
H
1

)−1
, we assumeNR = L

andND ≥ L so as to recover theL signal streams sent by
the source at the equalizer output. For the multi-relay case,
i.e., M ≥ 2, we assume that the receiver uses no equalizer,
i.e., W = IL×ND

, or an equalizer matrixW ∈ L×ND . The
signal at the output of the equalizer can be written as

ŝ = Wr = W

M
∑

i=1

GiFiHiUs+W

M
∑

i=1

GiFinri+Wn. (4)

For future use, we compute the source and relay transmit
powers. Since the transmitted symbols are i.i.d. and of unit
variance, the source transmit power is given by

Ps = tr
(

UUH
)

. (5)

From (2), it can easily be shown that the relay transmit power
is given by

Pr =

M
∑

i=1

tr
(

FiHiUUHHH
i FH

i + σ2
nr
FiF

H
i

)

=

M
∑

i=1

tr
(

Fi

(

HiUUHHH
i + σ2

nr
INR

)

FH
i

)

. (6)

Hence, the total transmit power is

PT = Ps + Pr

= tr
(

UUH
)

+

M
∑

i=1

tr
(

Fi

(

HiUUHHH
i +σ2

nr
INR

)

FH
i

)

. (7)

As mentioned before, the computation of the precoders is done
at the source node. The reason behind this assumption is to
keep the complexity of the receiver at the destination as low
as possible. Exploiting the full CSI of all links, the source
computes all precoders and forwards the relay precoders to the
relays. We note that, unlike our scheme, the schemes where
the source, relay, and destination filters are jointly optimized
require that the source sends the receiver filter coefficients
(or the source and relay precoders coefficients if the receiver
filter is computed at the destination) to the destination [12].
Hence, the signaling overhead of the scheme with a prefixed
receiver in terms of forwarding the precoder coefficients is
smaller than that of the schemes where the receiver filter is
jointly optimized with the source and relay precoders.

In the following, we design the precoders at the source
and relays according to two different criteria, namely SINR
maximization subject to source and relay transmit power
constraints, and source and relay transmit power minimization
under QoS constraints.

III. SINR M AXIMIZATION UNDER SOURCE AND RELAY

TRANSMIT POWER CONSTRAINTS

In this section, to compute the source and relay precoders,
we propose to maximize the QoS, here the worst stream SINR,
which is closely related to the bit error rate (BER), subjectto
source and relay power constraints. Here, we assume that the
source and relays are subject to separate power constraints.
This assumption is more practical than a joint power constraint
for the source and relays since source and relays are usually
geographically separated and have their own power supplies.
We first assume a joint transmit power constraint for all relays.
The case of individual relay transmit power constraints will be
discussed in Subsection III-C. The optimization problem for
the joint relay power constraint can be formulated as

max
U,F1,...,FM

min
j∈{1,...,L}

SINRj

s. t. Ps ≤ Ps,max

Pr ≤ Pr,max, (8)

wherePs,max andPr,max are the maximum available transmit
powers at the source and relays, respectively. The SINR of the
jth signal stream at the receiver can be obtained as

SINRj=

∣

∣

∣

∣

∣

[

M
∑

i=1

WGiFiHiU

]

jj

∣

∣

∣

∣

∣

2

L
∑

k 6=j

∣

∣

∣

∣

∣

[

M
∑

i=1

WGiFiHiU

]

jk

∣

∣

∣

∣

∣

2

+σ2
nr

M
∑

i=1

NR
∑

k=1

∣

∣

∣[WGiFi]jk

∣

∣

∣

2

+σ̄2
n,j

,

(9)
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where σ̄2
n,j = σ2

n

ND
∑

k=1

∣

∣

∣[W]jk

∣

∣

∣

2

. Note that the max–min crite-

rion in (8) ensures fairness among the signal streams, i.e.,the
optimal solution satisfiesSINR1 = SINR2 = ... = SINRL.

It can easily be shown that (8) is always feasible provided
that min(NS , NR, ND) ≥ L. For example, one feasible
suboptimal solution is

U =

√

Ps,max

L
INS×L, (10)

Fj =

√

√

√

√Pr,max/
M
∑

i=1

tr
(

HiUUHHH
i + σ2

nr
INR

)

INR
,

j = 1, ...,M. (11)

Optimization problem (8) is non–convex and in general NP–
hard. Hence, it is very difficult, if not impossible, to solve
it optimally. Notice that the non–convexity has its origin in
the product of the precoders. In the following, we propose an
iterative alternating algorithm to solve optimization problem
(8). In particular, in each iteration of the algorithm, we
compute the source and relay precoders alternately. First,we
fix all the relay precoders and optimize the source precoder
U by solving (8). Then, we use the obtainedU and fix all
the relay precoders except one, sayFi, and optimize it by
solving (8), and so on for the other relay precoders. Having
the new source and relay precoders, we repeat the same
procedure till convergence. The convergence of the iterative
alternating algorithm will be discussed later in this section. In
the following, we describe the computation of the precoders
in more detail.

A. Computation of the Source PrecoderU

Let us assume that the relay precoders are fixed and compute
the source precoder that maximizes the cost function in (8).
Rewriting optimization problem (8) and after some simplifi-
cations, we obtain

max
U,λ

λ

s. t.

∣

∣

∣
[TU]jj

∣

∣

∣

2

L
∑

k 6=j

∣

∣

∣[TU]jk

∣

∣

∣

2

+ αj

≥ λ, j = 1, . . . , L

tr
(

UUH
)

≤ Ps,max

M
∑

i=1

tr
(

FiHiUUHHH
i FH

i

)

≤ P1, (12)

whereλ is a real–valued slack variable,T =
M
∑

i=1

WGiFiHi,

αj = σ2
nr

M
∑

i=1

NR
∑

k=1

∣

∣

∣[WGiFi]jk

∣

∣

∣

2

+ σ̄2
n,j , andP1 = Pr,max −

σ2
nr

M
∑

i=1

tr
(

FiF
H
i

)

.

The first constraint in (12) can be rewritten as [23]

1

λ

∣

∣

∣
[TU]jj

∣

∣

∣

2

≥
∑

k 6=j

∣

∣

∣
[TU]jk

∣

∣

∣

2

+ αj

≥
L
∑

k=1

∣

∣

∣[TU]jk

∣

∣

∣

2

+ αj −
∣

∣

∣[TU]jj

∣

∣

∣

2

.(13)

Then,

(

1 +
1

λ

)

∣

∣

∣
[TU]jj

∣

∣

∣

2

≥
L
∑

k=1

∣

∣

∣
[TU]jk

∣

∣

∣

2

+ αj . (14)

From (12), we can see that ifU is an optimal solution so
is Udiag{ejθ1 , ..., ejθL}, whereθi, i = 1, ..., L, are arbitrary
phases. Then, without loss of generality, we can assume that
[TU]jj ≥ 0. Therefore, (14) becomes

√

1 +
1

λ
[TU]jj ≥

∥

∥

∥

∥

UHTHej√
αj

∥

∥

∥

∥

, (15)

whereej is an all zeros vector except with a one at thejth
position.

Using
tr
(

UHU
)

= ‖vec (U)‖2 , (16)

the second constraint in (12) can be written as

‖vec (U)‖ ≤
√

Ps,max. (17)

Furthermore, the left hand side of the third constraint in (12)
can be simplified as

M
∑

i=1

tr
(

FiHiUUHHH
i FH

i

)

=tr

(

UH

(

M
∑

i=1

HH
i FH

i FiHi

)

U

)

.

(18)

Using Cholesky decomposition, we have

M
∑

i=1

HH
i FH

i FiHi = LHL. (19)

Combining (16), (18), and (19), the third constraint in (12)
can be rewritten as

‖vec (LU)‖ ≤
√

P1. (20)

Finally, optimization problem (12) can be recast as

max
U,λ

λ

s. t.

√

1 +
1

λ
[TU]jj ≥

∥

∥

∥

∥

UHTHej√
αj

∥

∥

∥

∥

, j = 1, . . . , L

‖vec (U)‖ ≤
√

Ps,max

‖vec (LU)‖ ≤
√

P1. (21)

Note that for a givenλ, optimization problem (21) is an SOCP
feasibility problem. Therefore, for a givenλ, optimization
problem (21) can be solved optimally using interior point
algorithms [25], and the optimalλ can be found using a simple
bisection search [26].
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B. Computation of Relay PrecodersFi

Now, let us assume that all source and relay precoders are
fixed except the precoder at relaym, Fm. The optimization
problem forFm becomes

max
Fm

min
j∈{1,...,L}

∣

∣

∣

∣

∣

[

M
∑

i=1

QiFiPi

]

jj

∣

∣

∣

∣

∣

2

L
∑

k 6=j

∣

∣

∣

∣

∣

[

M
∑

i=1

QiFiPi

]

jk

∣

∣

∣

∣

∣

2

+σ2
nr

M
∑

i=1

NR
∑

k=1

∣

∣

∣[QiFi]jk

∣

∣

∣

2

+σ̄2
n,j

s. t. tr
(

Fm

(

PmPH
m + σ2

nr
INR

)

FH
m

)

≤ Pm, (22)

where Qi = WGi, Pi = HiU, and Pm = Pr,max −
M
∑

i=1

i 6=m

tr
(

Fi

(

PiP
H
i + σ2

nr
INR

)

FH
i

)

. Optimization problem

(22) can be recast as (see Appendix for the details)

max
fm

min
j∈{1,...,L}

fHmAm,jfm + fHmam,j + aHm,jfm + am,j

fHmVm,jfm + fHmvm,j + vH
m,jfm + vm,j

s. t. fHmDmfm ≤ Pm, (23)

where fm = vec(Fm) and Dm =
(

PmPH
m + σ2

nr
INR

)T ⊗
INR

, and Am,j , am,j , and am,j are defined after (46), and
Vm,j , vm,j , and vm,j are given in (52), (53), and (54),
respectively. Optimization problem (23) is a non–convex frac-
tional quadratically constrained quadratic program (QCQP)
and is NP–hard. To solve (23), we propose to relax it into
a semidefinite program (SDP) referred to as semidefinite
relaxation (SDR). Note that the cost function in (23) is in
inhomogeneous form. Let us first write (23) as a homogeneous
fractional QCQP. We define

D̄m =

[

Dm 0
0 0

]

, Bm,j =

[

Am,j am,j

aHm,j am,j

]

,

Cm,j =

[

Vm,j vm,j

vH
m,j vm,j

]

, and f̄m =

[

fm
t

]

, (24)

where|t|2 = 1. Using (24), optimization problem (23) can be
written as a homogeneous fractional QCQP as follows

max
f̄m

min
j∈{1,...,L}

f̄HmBm,j f̄m

f̄HmCm,j f̄m

s. t. f̄Hm D̄mf̄m ≤ Pm

f̄HmΓf̄m = 1, (25)

whereΓ =

[

0 0

0 1

]

. Letting Φ̄m = f̄mf̄Hm and using the

fact thatxHAx = tr(AxxH), optimization problem (25) can
be written equivalently as

max
Φ̄m

min
j∈{1,...,L}

tr
(

Bm,jΦ̄m

)

tr
(

Cm,jΦ̄m

)

s. t. tr
(

D̄mΦ̄m

)

≤ Pm

tr
(

ΓΦ̄m

)

= 1

Φ̄m � 0

rank
(

Φ̄m

)

= 1. (26)

Optimization problem (26) is still non–convex because the
rank constraint is not convex. By relaxing (dropping) the rank

constraint in (26), we obtain the SDR of (26), which is a
generalized quasiconvex problem and can be efficiently solved
by a bisection search [25]. In particular, by introducing a new
variableλ, the SDR of problem (26) can be written as

max
Φ̄m,λ

λ

s. t. tr
(

Bm,jΦ̄m

)

≥ λtr
(

Cm,jΦ̄m

)

, j = 1, . . . , L

tr
(

D̄mΦ̄m

)

≤ Pm

tr
(

ΓΦ̄m

)

= 1

Φ̄m � 0. (27)

For the special case of one relay, i.e.M = 1, problem (23) is
a homogeneous fractional QCQP since in this case we have
am,j = 0, am,j = 0, vm,j = 0, and vm,j = σ̄2

n,j . Hence,
problem (27) reduces to

max
Φm,λ

λ

s. t. tr (Am,jΦm) ≥ λtr (Vm,jΦm) + λvm,j , j=1,. . .,L

tr (DmΦm) ≤ Pm

Φm � 0. (28)

whereΦm = fmfHm .
Note that for a givenλ, both optimization problems (27)

and (28) reduce to feasibility problems that can be solved
efficiently using software packages like the convex optimiza-
tion toolbox CVX [27]. The optimalλ can easily be found
using a simple bisection search [25], [26]. It is worth noting
that the obtained solution is not necessarily of rank one.
Nevertheless, we can obtain a rank–one solution via rank
reduction techniques [26], [28]. Let̄Φ⋆

m denote the obtained
optimal solution of problem (27). Depending on the rank of
Φ̄⋆

m, we have the following two cases:
Case 1 (rank

(

Φ̄⋆
m

)

= 1): If Φ̄⋆
m is of rank one, then this

solution is also optimal for the rank–constrained optimization
problem (26) since problems (26) and (27) are equivalent in

this case. We can get̄f⋆m =
[

f̃⋆Tm , t⋆
]T

from Φ̄⋆
m by eigen–

decomposition. Then, we computef⋆m = f̃⋆m/t
⋆. Finally, we

get F⋆
m = vec−1 (f⋆m). For the case of a single relay, i.e.,

M = 1, letΦ⋆
m denote the obtained optimal rank–one solution

of problem (28). In this case,f⋆m is obtained fromΦ⋆
m by

eigen–decomposition andF⋆
m = vec−1 (f⋆m).

Case 2 (rank
(

Φ̄⋆
m

)

> 1): Our aim in this case is to extract
an optimal rank–one solution from̄Φm if possible, and if
not, a suboptimal rank–one solution. We have the following
proposition.

Proposition 1: An optimal rank–one solution for problem
(27) can always be obtained from̄Φ⋆

m if either L = 2 (∀M )
or L ≤ 3 (if M = 1); otherwise, only suboptimal rank–one
solutions can be obtained.

Proof: The proof is based on the following lemma.
Lemma 1:The SDR of a complex–valued homogeneous

QCQP withK constraints has an optimal solution with rank
r ≤

⌊√
K
⌋

, where ⌊x⌋ denotes the largest integer smaller
than or equal tox. Moreover, for a feasibility problem
with K quadratic constraints, an optimal solution with rank
r ≤

⌊√
K − 1

⌋

for its SDR exists.
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We refer the reader to [29], [30] for the proof of the first part
of the lemma, and [26] for the second part.

Then, if L = 2, we haveK = 4 constraints (without
Φ̄m � 0). According to Lemma 1, in this case, problem (27)
has an optimal solution with rankr ≤

⌊√
3
⌋

= 1, i.e., it has an
optimal rank–one solution. The optimal rank–one solution can
then be extracted from̄Φ⋆

m using the rank reduction technique
in [28]. Once we have the rank–one solution,F⋆

m can be
computed in a similar way as in Case 1 above.

Now, for the special case of one relay, i.e.,M = 1, problem
(28) hasK = L+ 1 constraints. Hence, according to Lemma
1, for M = 1, problem (28) has always an optimal rank–one
solution if L ≤ 3. Again, the optimal rank–one solution can
be extracted fromΦ⋆

m using the rank reduction technique in
[28]. Once we have the rank–one solution, we can getF⋆

m in
a similar way as in Case 1 above.

In all other cases, i.e.,L ≥ 3 (if M > 1) or L ≥ 4 (if
M = 1), we cannot ensure the extraction of an optimal rank–
one solution when the rank of the obtained optimal solution
Φ̄⋆

m of problem (27) (or (28) ifM = 1) is greater than one.
However, we can extract a suboptimal rank–one solution using
the randomization technique in [26]. This concludes the proof.

All relay precoders are computed in the described manner. We
repeat the procedure of computing the precoders alternately in
each iteration till convergence.
Algorithm 1 summarizes the steps for solving optimization
problem (8).

Since optimization problem (8) is non–convex, the obtained
solution provided by the proposed iterative alternating algo-
rithm is not guaranteed to be globally optimal and in general
the algorithm converges to a fixed point. We have the following
proposition.

Proposition 2: If the obtained solution for each precoder is
optimal, the proposed iterative alternating algorithm converges
to a fixed point. Otherwise, the convergence to a fixed point
is not guaranteed.

Proof: We first prove the first part of the proposition.
We note that the cost function is upper bounded. Also, if the
obtained solution for each precoder is optimal, then the cost
function in (8) is nondecreasing after each iteration. Hence,
since the cost function is upper bounded and nondecreasing
after each iteration, the convergence of Algorithm 1 to a fixed
point is guaranteed [31]. Therefore, according to Proposition 1,
a sufficient condition for convergence to a fixed point is either
L = 2 (∀M ) or L ≤ 3 (if M = 1). We now prove the second
part of the proposition. If the obtained solution for one of
the precoders is suboptimal, we cannot guarantee that the cost
function in (8) is nondecreasing after each iteration. Hence,
even if the cost function is upper bounded, the convergence
to a fixed point is not guaranteed in this case.
Note that according to Proposition 1, if eitherL > 2 (∀M ) or
L > 3 (if M = 1), the iterative alternating algorithm is not
guaranteed to converge to a fixed point. In this case, to get the
best possible solution, we propose to keep the best value of the
cost function and its corresponding precoders after updating
each precoder. It is worth mentioning that the case ofL = 2,
which corresponds to the transmission of two signal streams, is

Algorithm 1 Algorithm for solving optimization problem (8)

Input: Hi,Gi, i = 1, ...,M , σ2
nr, andσ2

n.
Output: Solution:U⋆,F⋆

1, ...,F
⋆
M .

1: Set feasibleU,F1, ...,FM .
2: Set the precisionǫ, initial cost functionCF (0), m = 0.
3: repeat
4: m = m+ 1.
5: ObtainU⋆ by solving problem (21).
6: for i = 1 →M do
7: if M = 1 then
8: ObtainΦ⋆

i by solving problem (28).
9: if rank (Φ⋆

i ) = 1 then
10: SetΦ1,⋆

i = Φ⋆
i .

11: else if L ≤ 3 then
12: Obtain optimal rank–one solutionΦ1,⋆

i

from Φ⋆
i using the rank reduction

technique in [28].
13: else
14: Obtain suboptimal rank–one solution

Φ
1,⋆
i from Φ̄⋆

i using the randomization
technique in [26].

15: end if
16: Obtain f⋆i from rank–one solutionΦ1,⋆

i

through eigen–decomposition.
17: else
18: Obtain Φ̄⋆

i by solving problem (27).
19: if rank

(

Φ̄⋆
i

)

= 1 then
20: Set Φ̄1,⋆

i = Φ̄⋆
i .

21: else ifL = 2 then
22: Obtain optimal rank–one solution̄Φ1,⋆

i

from Φ̄⋆
i using the rank reduction

technique in [28].
23: else
24: Obtain suboptimal rank–one solution

Φ̄
1,⋆
i from Φ̄⋆

i using the randomization
technique in [26].

25: end if
26: Obtain f̄⋆i from rank–one solutionΦ̄1,⋆

i

through eigen–decomposition.

27: Let f̄⋆i =
[

f̃⋆Ti , t⋆
]T

.

28: Evaluatef⋆i = f̃⋆i /t
⋆.

29: end if
30: SetF⋆

i = vec−1 (f⋆i ).
31: end for
32: Compute the cost function in (8):CF (m) =

min
j∈{1,...,L}

SINRj .

33: until |CF (m) − CF (m−1)| ≤ ǫ

of practical interest since at the end–user we have a constraint
on power consumption and size, and hence on the number of
antennas. Thus, accommodating more than two signal streams
may be challenging in practice. For the case ofL = 2 and
for any number of relays the proposed iterative alternating
algorithm converges to a fixed point.
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C. Individual Relay Transmit Power Constraints

In this subsection, we discuss the practical case where the
relays have individual power constraints. From (2), theith
relay transmit power is given by

Pr,i = tr
(

Fi

(

HiUUHHH
i + σ2

nr
INR

)

FH
i

)

. (29)

The optimization problem for individual relay transmit power
constraints is the same as that in (8) except that the total relay
transmit power constraint (second constraint) is replacedby
individual relay transmit power constraints given by

Pr,i ≤ Pr,i,max, i = 1, . . . ,M (30)

where Pr,i,max is the maximum available transmit power
at relay i. Following the same reasoning as in Subsection
III-A, we can show that the resulting optimization problem for
the source precoderU when individual relay transmit power
constraints are used is given by

max
U,λ

λ

s. t.

√

1 +
1

λ
[TU]jj ≥

∥

∥

∥

∥

UHTHej√
αj

∥

∥

∥

∥

, j = 1, . . . , L

‖vec (U)‖ ≤
√

Ps,max

‖vec (FiHiU)‖ ≤
√

P1,i, i = 1, . . . ,M (31)

whereP1,i = Pr,i,max−σ2
nr
tr
(

FiF
H
i

)

. Optimization problem
(31) is an SOCP feasibility problem and therefore, similar to
optimization problem (21), for a givenλ, it can be solved
optimally using interior point algorithms [25].

The optimization problem for relay precoderFm is exactly
the same as that in (22) except thatPm on the right hand side
of the inequality in the constraint is replaced by the maximum
available transmit power at relaym, Pr,m,max. It is worth not-
ing that in the computation of relay precoderFm, the source
and the other relay transmit power constraints are not active
since they do not depend onFm. Therefore, the resulting
optimization problem for precoderFm with individual relay
transmit power constraints can be solved exactly in the same
manner as problem (22) and hence Proposition 1 regarding the
optimality of the solution holds. Moreover, the convergence
result in Proposition 3 also holds for the maximization of
the SINR under source and individual relay transmit power
constraints problem. In particular, the alternating iterative
algorithm converges to a fixed point if all the precoders are
solved optimally in each iteration; otherwise, the convergence
is not guaranteed.

IV. SOURCE–RELAY TRANSMIT POWER M INIMIZATION

UNDER QOS CONSTRAINTS

In some applications, we are interested in ensuring a given
QoS with the smallest transmit power possible. The QoS
metric here is the worst stream SINR which is closely related
to the BER. Here, we aim at minimizing the total transmit
power of the source and the relays. The optimization problem
in this case can be expressed as

min
U,F1,...,FM

PT

s. t. min
j∈{1,...,L}

SINRj ≥ γ, (32)

whereγ > 0 is the given worst stream SINR.
Optimization problem (32) is non–convex and in general

NP–hard. To solve it we adopt the iterative alternate procedure
proposed in Section III. In particular, in each iteration, we
compute the precoders alternately, i.e., in each iteration, we
fix all the precoders except one and optimize the non–fixed
precoder, and similarly for the other precoders.

A. Feasibility of Problem (32)

Before describing how to optimize the source and relay pre-
coders, we first verify the feasibility of optimization problem
(32). To this end, we need to check whether for a given worst
stream SINRγ0, a solution exists such that [23]

min
j

∣

∣

∣

∣

∣

[

M
∑

i=1

WGiFiHiU

]

jj

∣

∣

∣

∣

∣

2

L
∑

k 6=j

∣

∣

∣

∣

∣

[

M
∑

i=1

WGiFiHiU

]

jk

∣

∣

∣

∣

∣

2

+σ2
nr

M
∑

i=1

NR
∑

k=1

∣

∣

∣[WGiFi]jk

∣

∣

∣

2

+σ̄2
n,j

≥ γ0. (33)

Similar to [23], we consider the signal–to–interference ratio
(SIR) to verify the feasibility since this is simpler compared
to using the SINR1. It should be noted that the SIR is used
instead of SINR only to verify the feasibility of optimization
problem (32) but for the design of the precoders we always
use the SINR. We have

∣

∣

∣

∣

∣

[

M
∑

i=1

WGiFiHiU

]

jj

∣

∣

∣

∣

∣

2

L
∑

k 6=j

∣

∣

∣

∣

∣

[

M
∑

i=1

WGiFiHiU

]

jk

∣

∣

∣

∣

∣

2

+σ2
nr

M
∑

i=1

NR
∑

k=1

∣

∣

∣[WGiFi]jk

∣

∣

∣

2

+σ̄2
n,j

<

∣

∣

∣

∣

∣

[

M
∑

i=1

WGiFiHiU

]

jj

∣

∣

∣

∣

∣

2

L
∑

k 6=j

∣

∣

∣

∣

∣

[

M
∑

i=1

WGiFiHiU

]

jk

∣

∣

∣

∣

∣

2 . (34)

The following proposition gives us a condition for the feasi-
bility.

Proposition 3: For a given worst stream SINRγ0, a solu-
tion such that

min
j

∣

∣

∣

∣

∣

[

M
∑

i=1

WGiFiHiU

]

jj

∣

∣

∣

∣

∣

2

L
∑

k 6=j

∣

∣

∣

∣

∣

[

M
∑

i=1

WGiFiHiU

]

jk

∣

∣

∣

∣

∣

2 ≥ γ0 (35)

exists if

γ0 ≤ 1
L

min

(

L,
M
∑

i=1

min(rank(Hi),rank(Gi))

) − 1
. (36)

1Note that the difference between SINR and SIR can be made negligible
by scalingU by a large factor which corresponds to the high SNR regime.
This makes the noise terms negligible compared to the interference.
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Proof: The proof is based on the proof of Proposition 1
in [23]. From [23], we can show that

γ0 ≤ 1
L

rank(
∑

M
i=1

WGiFiHi)
− 1

. (37)

Moreover, using the inequalities rank(A +
B) ≤ rank(A) + rank(B) and rank(AB) ≤
min (rank(A), rank(B)) in (37), we obtain (36). This
concludes the proof.
For example, in case of one relay, to ensure the fea-
sibility of the problem for any γ0, we need to have
min(rank(H1), rank(G1)) ≥ L. Assuming random channels,
H1 and G1 are full rank with probability one. Therefore,
the feasibility condition of the problem for anyγ0 reduces
to min(NS , NR, ND) ≥ L.

Assuming that problem (32) is always feasible, we now
focus on the computation of the source and relay precoders.

B. Computation of the Source PrecoderU

As in Subsection III-A, let us assume that the relay
precoders are fixed and compute the source precoder that
minimizes the cost function in (32). Rewriting optimization
problem (32) and after some simplifications, we obtain

min
U

tr
(

UUH
)

+

M
∑

i=1

tr
(

FiHiUUHHH
i FH

i

)

s. t. min
j∈{1,...,L}

∣

∣

∣
[TU]jj

∣

∣

∣

2

∑

k 6=j

∣

∣

∣[TU]jk

∣

∣

∣

2

+ αj

≥ γ. (38)

Similar to the development in Subsection III-A, it can be
shown that optimization problem (38) can be written in the
form of an SOCP as follows

min
U

‖vec (LU)‖

s. t.

√

1+
1

γ
[TU]jj ≥

∥

∥

∥

∥

UHTHej√
αj

∥

∥

∥

∥

, j=1, . . . , L.(39)

This SOCP problem can be solved optimally using interior
point algorithms [25].

C. Computation of Relay PrecodersFi

Assume now that all precoders are fixed exceptFm. Solving
problem (32) with respect toFm is equivalent to solving the
following optimization problem

min
Fm

tr
(

Fm

(

PmPH
m + σ2

nr
INR

)

FH
m

)

s. t.

∣

∣

∣

∣

∣

[

M
∑

i=1

QiFiPi

]

jj

∣

∣

∣

∣

∣

2

∑

k 6=j

∣

∣

∣

∣

∣

[

M
∑

i=1

QiFiPi

]

jk

∣

∣

∣

∣

∣

2

+σ2
nr

M
∑

i=1

NR
∑

k=1

∣

∣

∣
[QiFi]jk

∣

∣

∣

2

+σ̄2
n,j

≥γ,

j = 1, . . . , L. (40)

The SDR of (40) can be obtained, in a similar way as that in
Subsection III-B, as

min
Φ̄m

tr
(

D̄mΦ̄m

)

s. t. tr
(

Bm,jΦ̄m

)

≥ γtr
(

Cm,jΦ̄m

)

, j = 1, . . . , L

tr
(

ΓΦ̄m

)

= 1

Φ̄m � 0. (41)

Problem (41) can be solved efficiently using software packages
like the convex optimization toolbox CVX [27]. Note that the
obtained solution is not necessarily of rank one. Nevertheless,
we can obtain a rank–one solution via rank reduction tech-
niques [26], [28]. The observations regarding how to extract
the rank–one solution, its optimality, and convergence of the
iterative alternating algorithm made in Subsection III-B also
hold true here.

The algorithm for solving problem (32) is similar to Al-
gorithm 1 except that in line 5,U⋆ is obtained by solving
problem (39), in line 18,̄Φ⋆

i is obtained by solving problem
(41), in line 32, we compute the cost function in (32) and put
CF (m) = PT , and in line 8,Φ⋆

i is obtained by solving the
following optimization problem

min
Φm

tr (DmΦm)

s. t. tr (Am,jΦm) ≥ γtr (Vm,jΦm) + γvm,j , j=1,. . . ,L

Φm � 0. (42)

V. NUMERICAL RESULTS

In this section, we assess the performance of the proposed
iterative alternating algorithms. We refer to the maximization
of the worst SINR and minimization of the total power
schemes as “Proposed Max–Min SINR” and “Proposed Min
Power”, respectively. We compare the proposed algorithms
with the case where the receiver is not fixed, i.e., the receiver
is equipped with an equalizer which is jointly optimized with
the source and relay precoders [12], [16], [17], [32]. The
comparison with the case where the equalizer at the receiveris
jointly optimized with the source and relay precoders allows
us to evaluate how much we loose in performance by using
prefixed receivers. Ref. [12] assumed single relay networks
where several cost functions were studied. Here, for the sake
of comparison, we consider the cost function based on the
minimization of the maximum mean square error (MSE),
since it is equivalent to the maximization of the minimum
SINR cost function used in our proposed scheme, and refer
to it as “Min–Max MSE with Equalizer”. For the multiple
relay case, since there are no works in the literature that
consider the maximization of the minimum SINR for the joint
design of source, relays, and destination, we compare with
the scheme in [32] in which the precoders are optimized for
minimization of the sum of MSEs of the signal streams subject
to source and relay power constraints. We will refer to the
scheme in [32] as “Min Sum MSE with Equalizer”. For the
minimization of the total power consumption subject to QoS
constraints, we compare our scheme with the scheme in [16]
which will be referred to as “Min Power with Equalizer”
and the scheme in [17] which will be referred to as “Min
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Power with Equalizer 1” for a single relay and multiple
relays, respectively. Furthermore, we compare the proposed
algorithms with point–to–point MIMO transmission without
relaying, where the destination is also equipped with a prefixed
receiver [23]. We refer to the maximization of the worst stream
SINR and the minimization of the transmit power in [23] as
“Max–Min SINR without Relaying” and “Min Power without
Relaying”, respectively. To evaluate the BER of the schemes,
we assume that the transmitted symbols are drawn from a 4–
QAM constellation. The entries of the channel matricesHi

andGi are modeled as i.i.d. zero mean complex Guaussian
random variables. Moreover, we assume that the relays are
located in the middle between the source and the destination,
and the path–loss exponent is3.5. Unless specified otherwise,
we assume that the source–relay and relay–destination links
have the same average SNR, i.e.,SNRSR = SNRRD = SNR,
Ps,max = 1, andPr,max = 1. In case of multiple relays and
individual relay transmit power constraints,Pr,max is divided
evenly among all relays, i.e., each relay has a maximum
transmit powerPr,max/M . For fairness reasons, we assume
that the maximum available transmit power for the scheme
without relaying isPmax = 2.

A. SINR Maximization Under Source and Relay Transmit
Power Constraints

In Fig. 2, we investigate the convergence rate of the
proposed iterative alternating optimization algorithm for the
Max–Min SINR scheme. We show the instantaneous SINR
vs. the number of iterations for several random realizations
of the channels. We assumeM = 1 and M = 2 relays,
L = NS = NR = ND = 2, andSNR = 25 dB. We observe
that the algorithm converges relatively quickly. It is clear that
the convergence speed depends on the channel realizations.
For the case of one relay, we can see that the performance
gain between the first iteration and steady state is in general
relatively small. However, for the case of two relays, the
performance improvement over the iterations is significant.

In Fig. 3, we show the performance of the proposed Max–
Min SINR scheme in terms of BER vs. SNR for three different
prefixed receiver structures referred to as Max–Min SINR,
Max–Min SINR ZF, and Max–Min SINR MMSE. In Max–
Min SINR, we assume thatW = IL×ND

, i.e., the prefixed
receiver does not perform any equalization. In Max–Min
SINR ZF and Max–Min SINR MMSE, we assume that the
prefixed receivers are the linear ZF equalizer and linear MMSE
equalizer for the relay–destination channel, respectively. It
should be noted that the ZF and MMSE equalizers equalize
only the relay–destination channel since the prefixed receiver
is oblivious to the existence of the relay precoder and was
designed for point–to–point systems. As a baseline scheme,
we consider the Min–Max MSE with Equalizer scheme. Recall
that in Min–Max MSE with Equalizer, the MMSE equlizer
is jointly optimized with the source and relay precoders and
it equalizes the end–to–end channel including the precoders
at source and relay. In this figure, we adoptM = 1 relay,
L = 2 signal streams and each node is equipped with two
antennas, i.e.,NS = NR = ND = 2. We observe that the
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Fig. 2. SINR vs. number of iterations for several random realizations of the
channels. We assumeM = 1 andM = 2 relays,L = NS = NR = ND =

2, and SNR = 25 dB.
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Fig. 3. BER vs. SNR for three different choices for the prefixed receiver.
We assumeM = 1, L = NS = NR = ND = 2.

three structures provide comparable performance. This is due
to the fact that the prefixed ZF and MMSE equalizers do
not consider the end–to–end channel and thus, do not offer
an advantage compared to the receiver without equalization.
Hence, knowing the CSI at the destination does not improve
the performance in the case of prefixed receivers. As expected
the Min–Max MSE scheme performs better than the schemes
with prefixed receivers because the MMSE equalizer of the
former is jointly optimized with the source and relay pre-
coders. In the following simulations, we consider only the
prefixed receiver without equalizer, i.e.,W = IL×ND

.
Fig. 4 compares the performance of the proposed Max–Min

SINR scheme with the schemes in [12] and [23] in terms of
BER vs. SNR for various numbers of antennas at the relay.
We adoptM = 1 relay,L = 2 signal streams, and each node
is equipped with two antennas, i.e.,NS = NR = ND = 2.
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Fig. 4. BER vs. SNR for various numbers of antennas at the relay. We adopt
M = 1, L = NS = ND = 2.

We observe that increasing the number of antennas at the relay
significantly improves the performance. In fact, increasing the
number of antennas at the relay, allows a better cancelationof
inter–antenna interference and hence better performance.We
also notice that the Min–Max MSE with Equalizer scheme
performs better than the proposed Min–Max SINR and that
the gap between them slightly increases as the number of
antennas at the relay increases especially in the high SNR
region. This is due to the fact that the equalizer of the Min–
Max MSE with Equalizer scheme is jointly optimized with the
source and relay precoders contrary to the proposed scheme
where a prefixed receiver is assumed. We also observe that,
as expected, the scheme without relaying provides the worst
performance. This figure shows that the performance loss due
to using a prefixed receiver is relatively small compared with
the scheme in which the equalizer is jointly optimized with
the source and relay precoders.

In Fig. 5, we show BER vs. SNR for various numbers of
relays. We considerL = NS = NR = ND = 2. For the
multiple relay case (here,M = 2 andM = 3), we compare
our proposed Max–Min SINR scheme with the scheme in
[32]. We note that the relay power constraint in [32] is at
the output of the relay–destination channel, which may lead
to a very high power at the output of the relays. We observe
that, as expected, increasing the number of relays allows to
considerably improve the performance. Furthermore, the Min–
Max MSE with Equalizer and Min Sum MSE with Equalizer
schemes perform better than the proposed Max–Min SINR
scheme. This is due to the fact that the MMSE equalizers
of the Min–Max MSE with Equalizer and Min Sum MSE
with Equalizer schemes are jointly optimized with the source
and relay precoders contrary to the proposed scheme where a
prefixed receiver is assumed. We note that, contrary to the Min
Sum MSE criterion where the worst signal stream dominates
the performance, in our scheme the Max–Min SINR criterion
ensures fairness among the signal streams. As expected, the
scheme without relaying provides the worst performance.
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Fig. 5. BER vs. SNR for various numbers of relays. We adoptL = NS =

NR = ND = 2.

Therefore, Figs. 4 and 5 suggest that we can compensate for
the performance loss introduced by the prefixed receiver at the
destination node by increasing the number of antennas at the
relay and/or the number of relays.

In Fig. 6, we evaluate the performance of the proposed
algorithm in terms of BER vs. SNR in the case where con-
vergence is not guaranteed. In particular, we considerM = 2
and L = NS = NR = ND = 3, for which, according to
the convergence analysis in Section III, the convergence of
the proposed algorithm is not guaranteed. For the sake of
comparison, we also consider the case whereM = 1 and
L = 3, for which the convergence of the proposed algorithm
is guaranteed. Interestingly, we observe that the proposed
Max-Min SINR scheme performs very closely to the Min–
Max MSE with Equalizer for one relay and the Min Sum
MSE with Equalizer scheme for two relays. It should be
noted that the convergence conditions we derived are sufficient
but not necessary. Moreover, we observe that increasing the
number of relays results in a huge performance gain. From this
figure, we can clearly see that the proposed algorithm provides
satisfactory performance even in cases where its convergence
cannot be guaranteed.

In Fig. 7, we investigate the effect of using individual relay
transmit power constraints instead of a total relay transmit
power constraint on the performance of the proposed algo-
rithm. We show BER vs. SNR for different numbers of relays.
We observe that the performance of the proposed algorithm
with total relay transmit power constraint is slightly better than
that with individual relay transmit power constraints. This is
expected since with total relay transmit power constraint the
relays can share the total available power to achieve the best
performance.

B. Source–Relay Transmit Power Minimization Under QoS
Constraints

Fig. 8 compares the performance of the proposed scheme
with the schemes in [16] and [23] in terms of total power
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ND = 3.
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Fig. 7. BER of the proposed algorithm with total and individual relay transmit
power constraints vs. SNR forM = 2 andM = 3 relays andL = NS =

NR = ND = 2.

consumption vs. required QoSγ. We assumeM = 1 relay,
L = 2 streams and each node is equipped with two antennas,
i.e., NS = NR = ND = 2. We observe that the total
power consumption increases linearly with increasing required
QoS γ. As expected, the Min Power with Equalizer scheme
outperforms the proposed scheme and the scheme without
relaying.

Now, for the case of multiple relays, we compare our
scheme with the Min Power with Equalizer 1 scheme [17].
In the scheme in [17], the source and relay precoders as well
as the receiver are jointly optimized through the minimization
of the relay power subject to QoS constraints under the
assumption that the source transmit power isconstant. To
have a fair comparison between our scheme and the scheme
in [17], we modify our optimization problem such that we
only minimize the relay power under the assumption of a
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Fig. 8. Total power consumption vs.γ. We assumeM = 1, L = NS =

NR = ND = 2, and the noise variance at each receive relay and destination
antenna is equal to−25 dB.

constant source transmit power. We refer to our modified
scheme as “Proposed Min Power 1”. It is important to note
that under the assumption of constant source transmit power
both the optimization problem in [17] and our problem may be
infeasible. In Fig. 9, we show the feasibility of the optimization
problems (in %) for different values of source transmit powers
Ps. We observe that the feasibility percentage of the Min
Power with Equalizer 1 scheme is higher than that of our
modified scheme. This is due to the fact that our scheme is
iterative and as the required SINRγ increases, it becomes
more challenging to find a feasible initial solution to startwith.
By increasing the source transmit powerPs the feasibility of
both problems improves and the gap between them decreases.
Note that as shown in Section IV, our considered optimization
problem is always feasible if we jointly minimize the source
and relay powers.

In Fig. 10, we compare our proposed Min Power 1 scheme
and the Min Power with Equalizer 1 scheme [17]. We plot the
total power consumption vs. required SINRγ for different
values of source transmit powerPs. We observe that, as
expected, the Min Power with Equalizer 1 scheme outperforms
our scheme. This is due to the fact that the Min Power with
Equalizer 1 scheme optimizes its equalizer along with the
source and relay precoders and provides the optimal solution.
We also notice that for small to moderate required SINRγ, the
smaller the source transmit power the smaller the total power
consumption. This is due to the fact that small source and
relay powers are sufficient to satisfy small required SINRs and
hence the total transmit power largely depends on the adopted
constant source transmit power. We also observe that for a
required SINR around20 dB, the total power consumption for
Ps = 1 becomes greater than that forPs = 2. This is due to
the fact that for large required SINR, small source powers limit
the performance and a large relay transmit power is required
to meet the SINR constraint.
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Fig. 9. Feasibility of optimization problem (in %) vs.γ for various different
values of source transmit powerPs. We assumeM = 2 relays,L = NS =

ND = 2 antennas, and the noise variance at each receive relay and destination
antenna is equal to−25 dB.
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VI. CONCLUSION

In this paper, we studied the problem of joint optimization of
the source and relay precoders for prefixed receivers in multi–
antenna multi–relay networks. We considered two different
criteria, namely the maximization of the worst stream SINR
subject to source and relay power constraints, and the mini-
mization of the joint source and relay powers while ensuringa
certain QoS. Both optimization problems are non–convex and
to solve them we proposed iterative alternating algorithms. For
both problems, we have shown that the optimization of the
source and relay precoders can be formulated as SOCP and
SDR problems, respectively. Since the proposed alternating al-
gorithms are iterative, we provided sufficient conditions under
which convergence to a fixed point is guaranteed. From our

simulation results, we conclude that prefixed receivers provide
low complexity at the cost of a performance loss compared to
non-prefixed receivers where the equalizer is jointly designed
with the source and relay precoders. The proposed design
provides a good complexity and performance tradeoff and is
suitable for systems where receiver complexity is an issue.
However, if the receiver can afford high complexity, the joint
design of the source, relays, and destination may be preferred
due its superior performance.

APPENDIX

In this appendix, we express the terms in the denominator
and numerator of the cost function in (22) as functions of
optimization variablefm = vec(Fm). We have

[

M
∑

i=1

QiFiPi

]

jk

=






QmFmPm +

M
∑

i=1

i 6=m

QiFiPi







jk

= [QmFmPm]jk + ψm,jk, (43)

whereψm,jk = [Ψm]jk =





M
∑

i=1

i 6=m

QiFiPi





jk

.

Moreover, we have

[QmFmPm]jk = fTm (pm,k ⊗ q̄m,j) = fTmbm,jk, (44)

whereq̄m,j is thejth column vector ofQT
m, pm,k is thekth

column vector ofPm, andbm,jk = pm,k ⊗ q̄m,j .
Plugging (44) into (43) yields

[

M
∑

i=1

QiFiPi

]

jk

= fTmbm,jk + ψm,jk. (45)

Using (45), the numerator of the cost function in (22) is given
by
∣

∣

∣

∣

∣

∣

[

M
∑

i=1

QiFiPi

]

jj

∣

∣

∣

∣

∣

∣

2

=
∣

∣fTmbm,jj + ψm,jj

∣

∣

2

= fHmAm,jfm + fHmam,j + aHm,jfm + am,j , (46)

whereAm,j = b∗
m,jjb

T
m,jj , am,j = ψm,jjb

∗
m,jj , andam,j =

|ψm,jj |2. Again, using (45) the first term in the denominator
of the cost function in (22) is given by

L
∑

k=1

k 6=j

∣

∣

∣

∣

∣

∣

[

M
∑

i=1

QiFiPi

]

jk

∣

∣

∣

∣

∣

∣

2

=

L
∑

k=1

k 6=j

∣

∣fTmbm,jk + ψm,jk

∣

∣

2

= fHm







L
∑

k=1

k 6=j

b∗
m,jkb

T
m,jk






fm + fHm







L
∑

k=1

k 6=j

ψm,jkb
∗
m,jk







+







L
∑

k=1

k 6=j

ψ∗
m,jkb

T
m,jk






fm+

L
∑

k=1

k 6=j

|ψm,jk|2 . (47)
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Now, we compute the second term in the denominator of the
cost function in (22). We have

M
∑

i=1

NR
∑

k=1

∣

∣

∣[QiFi]jk

∣

∣

∣

2

=

NR
∑

k=1

∣

∣

∣[QmFm]jk

∣

∣

∣

2

+ φm,j , (48)

whereφm,j =
M
∑

i=1

i 6=m

NR
∑

k=1

∣

∣

∣[QiFi]jk

∣

∣

∣

2

.

Moreover, we have

[QmFm]jk = fTm (ek ⊗ q̄m,j) = fTmxm,jk, (49)

wherexm,jk = ek ⊗ q̄m,j .
Therefore, substituting (49) into (48) yields

M
∑

i=1

NR
∑

k=1

∣

∣

∣[QiFi]jk

∣

∣

∣

2

=

NR
∑

k=1

∣

∣fTmxm,jk

∣

∣

2
+ φm,j

= fHm

(

NR
∑

k=1

x∗
m,jkx

T
m,jk

)

fm + φm,j . (50)

Using (47) and (50), the denominator of the cost function in
(22) can be written as

L
∑

k 6=j

∣

∣

∣

∣

∣

∣

[

M
∑

i=1

QiFiPi

]

jk

∣

∣

∣

∣

∣

∣

2

+ σ2
nr

M
∑

i=1

NR
∑

k=1

∣

∣

∣
[QiFi]jk

∣

∣

∣

2

+ σ̄2
n,j

= fHmVm,jfm + fHmvm,j + vH
m,jfm + vm,j , (51)

where

Vm,j =

L
∑

k=1

k 6=j

b∗
m,jkb

T
m,jk + σ2

nr

NR
∑

k=1

x∗
m,jkx

T
m,jk, (52)

vm,j = λ

L
∑

k=1

k 6=j

ψm,jkb
∗
m,jk, (53)

vm,j = σ̄2
n,j +

L
∑

k=1

k 6=j

|ψm,jk|2 + σ2
nr
φm,j . (54)

Furthermore, using the equality tr
(

ABAH
)

=
vec(A)H

(

BT ⊗ I
)

vec(A), the constraint in (22) can
be recast as

tr
(

Fm

(

PmPH
m + σ2

nr
INR

)

FH
m

)

= vec(Fm)H
(

(

PmPH
m + σ2

nr
INR

)T ⊗ INR

)

vec(Fm)

= fHmDmfm, (55)

where fm = vec(Fm) and Dm =
(

PmPH
m + σ2

nr
INR

)T ⊗
INR

. Using (46), (51), and (55) in (22) results in (23).
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