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Abstract

This paper studies the newly emerging wireless powered communication network in which one hybrid access

point (H-AP) with constant power supply coordinates the wireless energy/information transmissions to/from a set

of distributed users that do not have other energy sources. A“harvest-then-transmit” protocol is proposed where all

users first harvest the wireless energy broadcast by the H-APin the downlink (DL) and then send their independent

information to the H-AP in the uplink (UL) by time-division-multiple-access (TDMA). First, we study the sum-

throughput maximization of all users by jointly optimizingthe time allocation for the DL wireless power transfer

versus the users’ UL information transmissions given a total time constraint based on the users’ DL and UL

channels as well as their average harvested energy values. By applying convex optimization techniques, we obtain

the closed-form expressions for the optimal time allocations to maximize the sum-throughput. Our solution reveals

an interesting “doubly near-far” phenomenon due to both theDL and UL distance-dependent signal attenuation,

where a far user from the H-AP, which receives less wireless energy than a nearer user in the DL, has to transmit

with more power in the UL for reliable information transmission. As a result, the maximum sum-throughput is

shown to be achieved by allocating substantially more time to the near users than the far users, thus resulting in

unfair rate allocation among different users. To overcome this problem, we furthermore propose a new performance

metric so-called common-throughput with the additional constraint that all users should be allocated with an equal

rate regardless of their distances to the H-AP. We present anefficient algorithm to solve the common-throughput

maximization problem. Simulation results demonstrate theeffectiveness of the common-throughput approach for

solving the new doubly near-far problem in wireless poweredcommunication networks.

Index Terms

Wireless power, energy harvesting, throughput maximization, doubly near-far problem, TDMA, convex opti-

mization.

I. INTRODUCTION

Traditionally, energy-constrained wireless networks, such as sensor networks, are powered by fixed

energy sources, e.g. batteries, which have limited operation time. Although the lifetime of the network

can be extended by replacing or recharging the batteries, itmay be inconvenient, costly, dangerous (e.g.,
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in a toxic environment) or even impossible (e.g., for sensors implanted in human bodies). As an alternative

solution to prolong the network’s lifetime, energy harvesting has recently drawn significant interests since

it potentially provides unlimited power supplies to wireless networks by scavenging energy from the

environment.

In particular, radio signals radiated by ambient transmitters become a viable new source for wireless

energy harvesting. It has been reported that3.5mW and1uW of wireless power can be harvested from

radio-frequency (RF) signals at distances of0.6 and11 meters, respectively, using Powercast RF energy-

harvester operating at915MHz [1]. Furthermore, recent advance in designing highly efficient rectifying

antennas will enable more efficient wireless energy harvesting from RF signals in the near future [2]. It is

worth noting that there has been recently a growing interestin studying wireless powered communication

networks (WPCNs), where energy harvested from ambient RF signals is used to power wireless terminals

in the network, e.g., [3]-[5]. In [3], a wireless powered sensor network was investigated, where a mobile

charging vehicle moving in the network is employed as the energy transmitter to wirelessly power the

sensor nodes. In [4], the wireless powered cellular networkwas studied in which dedicated power-beacons

are deployed in the cellular network to charge mobile terminals. Moreover, the wireless powered cognitive

radio network has been considered in [5], where active primary users are utilized as energy transmitters

for charging their nearby secondary users that are not allowed to transmit over the same channel due to

strong interference. Furthermore, since radio signals carry energy as well as information at the same time,

a joint investigation of simultaneous wireless information and power transfer (SWIPT) has recently drawn

a significant attention (see e.g. [6]-[11] and the references therein).

In this paper, we study a new type of WPCN as shown in Fig. 1, in which one hybrid access point (H-

AP) with constant power supply (e.g. battery) coordinates the wireless energy/information transmissions

to/from a set of distributed users that are assumed to have noother energy sources. All users are each

equipped with a rechargeable battery and thus can harvest and store the wireless energy broadcast by the

H-AP. Unlike prior works on SWIPT [6]-[11], which focused onthe simultaneous energy and information

transmissions to users in the downlink (DL), in this paper weconsider a different setup where the H-

AP broadcasts only wireless energy to all users in the DL while the users transmit their independent

information using their individually harvested energy to the H-AP in the uplink (UL). We are interested

in maximizing the UL throughput of the aforementioned WPCN by optimally allocating the time for the
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Fig. 1. A wireless powered communication network (WPCN) with wireless energy transfer (WET) in the downlink (DL) and wireless

information transmissions (WITs) in the uplink (UL).

DL wireless energy transfer (WET) by the H-AP and the UL wireless information transmissions (WITs)

by different users.

The main contributions of this paper are summarized as follows:

• We propose a protocol termed “harvest-then-transmit” for the WPCN depicted in Fig. 1, where

the H-AP first broadcasts wireless energy to all users in the DL, and then the users transmit their

independent information to the H-AP in the UL using their individually harvested energy by time-

division-multiple-access (TDMA).

• With the proposed protocol, we first maximize the sum-throughput of the WPCN by jointly optimizing

the time allocated to the DL WET and the UL WITs given a total time constraint, based on the users’

DL and UL channels as well as their average harvested energy amount. It is shown that the sum-

throughput maximization problem is convex, and therefore we derive closed-form expressions for the

optimal time allocations by applying convex optimization techniques [12].

• Our solution reveals an interesting new “doubly near-far” phenomenon in the WPCN, when a far

user from the H-AP receives less amount of wireless energy than a nearer user in the DL, but has

to transmit with more power in the UL for achieving the same information rate due to the doubly

distance-dependent signal attenuation in both the DL WET and UL WIT. Consequently, the sum-
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throughput maximization solution is shown to allocate substantially more time to the near users than

the far users, thus resulting in unfair achievable rates among different users.

• To overcome the doubly near-far problem, we furthermore propose a new performance metric referred

to ascommon-throughput with the additional constraint that all users should be allocated with an equal

rate in their UL WITs regardless of their distances to the H-AP. We propose an efficient algorithm

to maximize the common-throughput of the WPCN by re-optimizing the time allocated for the DL

WET and UL WITs. By comparing the maximum sum- versus common-throughput, we characterize

the fundamental throughput-fairness trade-offs in a WPCN.

The rest of this paper is organized as follows. Section II presents the WPCN model and the proposed

harvest-then-transmit protocol. Section III studies the sum-throughput maximization problem, and char-

acterizes the doubly near-far phenomenon. Section IV formulates the common-throughput maximization

problem and presents an efficient algorithm to solve it. Section V presents simulation results on the

sum-throughput versus common-throughput comparison. Finally, Section VI concludes the paper.

II. SYSTEM MODEL

As shown in Fig. 1, this paper considers a WPCN with WET in the DL and WITs in the UL. The

network consists of one H-AP andK users (e.g., sensors) denoted byUi, i = 1, · · · , K. It is assumed

that the H-AP and all user terminals are equipped with one single antenna each. It is further assumed

that the H-AP and all the users operate over the same frequency band. In addition, all user terminals

are assumed to have no other embedded energy sources; thus, the users need to harvest energy from the

received signals broadcast by the H-AP in the DL, which is stored in a rechargeable battery and then

used to power operating circuits and transmit information in the UL.

The DL channel from the H-AP to userUi and the corresponding reversed UL channel are denoted

by complex random variables̃hi and g̃i, respectively, with channel power gainshi = |h̃i|2 andgi = |g̃i|2.

It is assumed that both the DL and UL channels are quasi-static flat-fading, wherehi’s and gi’s remain

constant during each block transmission time, denoted byT , but can vary from one block to another. It is

further assumed that the H-AP knows bothhi andgi, i = 1, · · · , K, perfectly at the beginning of each

block.

The network adopts aharvest-then-transmit protocol as shown in Fig. 2. In each block, the firstτ0T

amount of time,0 < τ0 < 1, is assigned to the DL for the H-AP to broadcast wireless energy to all users,
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Fig. 2. The harvest-then-transmit protocol.

while the remaining time in the same block is assigned to the UL for information transmissions, during

which users transmit their independent information to the H-AP by TDMA. The amount of time assigned

to userUi in the UL is denoted byτiT , 0 ≤ τi < 1, i = 1, · · ·K. Sinceτ0, τ1, · · · , τK represent the

time portions in each block allocated to the H-AP and usersU1, · · · , UK for UL WET and DL WITs,

respectively, we have
K
∑

i=0

τi ≤ 1. (1)

For convenience, we assume a normalized unit block timeT = 1 in the sequel without loss of generality;

hence, we can use both the terms of energy and power interchangeably.

During the DL phase, the transmitted baseband signal of the H-AP in one block of interest is denoted

by xA. We assume thatxA is an arbitrary complex random signal1 satisfyingE[|xA|2] = PA, wherePA

denotes the transmit power at the H-AP. The received signal at Ui is then expressed as

yi =
√

hixA + zi, i = 1, · · · , K, (2)

whereyi andzi denote the received signal and noise atUi, respectively. It is assumed thatPA is sufficiently

large such that the energy harvested due to the receiver noise is negligible. Thus, the amount of energy

harvested by each user in the DL can be expressed as (assumingunit block time, i.e.,T = 1)

Ei = ζiPAhiτ0, i = 1, · · · , K, (3)

where0 < ζi < 1, i = 1 · · · , K, is the energy harvesting efficiency at each receiver. For convenience,

it is assumed thatζ1 = · · · = ζK = ζ in the sequel of this paper.

After the users replenish their energy during the DL phase, in the subsequent UL phase they transmit

independent information to the H-AP in their allocated timeslots. It is assumed that at each user terminal,

1Note thatxA can also be used to send DL information at the same time; however, this usage will not be considered in this paper.

Interested readers may refer to recent works on SWIPT [6]-[11].
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a fixed portion of the harvested energy given by (3) is used forits information transmission in the UL,

denoted byηi for Ui, 0 < ηi ≤ 1, i = 1, · · · , K. Within τi amount of time assigned toUi, we denote

xi as the complex baseband signal transmitted byUi, i = 1, · · · , K. We assume Gaussian inputs, i.e.,

xi ∼ CN (0, Pi), whereCN (µ, σ2) stands for a circularly symmetric complex Gaussian (CSCG) random

variable with meanµ and varianceσ2, andPi denotes the average transmit power atUi, which is given

by

Pi =
ηiEi

τi
, i = 1, · · · , K. (4)

For the purpose of exposition, we assumeηi = 1, ∀i, in the sequel, i.e., all the energy harvested at each

user is used for its UL information transmission. The received signal at the H-AP in theith UL slot is

then expressed as

yA,i =
√
gixi + zA,i, i = 1, · · · , K, (5)

where yA,i and zA,i denote the received signal and noise at the H-AP, respectively, during slot i. It is

assumed thatzA,i ∼ CN (0, σ2), ∀i. From (3)-(5), the achievable UL throughput ofUi in bits/second/Hz

(bps/Hz) can be expressed as

Ri (τ ) = τilog2

(

1 +
giPi

Γσ2

)

= τilog2

(

1 + γi
τ0
τi

)

, i = 1, · · · , K, (6)

whereτ = [τ0 τ1 · · · τK ], andΓ represents the signal-to-noise ratio (SNR) gap from the additive white

Gaussian noise (AWGN) channel capacity due to a practical modulation and coding scheme (MCS) used.

In addition,γi is given by

γi =
ζhigiPA

Γσ2
, i = 1, · · · , K. (7)

From (6), it is observed thatRi (τ ) increases withτ0 for a givenτi. In addition, it can also be shown

that Ri (τ ) increases withτi for a givenτ0. However,τ0 and τi’s cannot be increased at the same time

given their total time constraint in (1). Fig. 3 shows the throughput given in (6) for the special case of one

single user in the network, i.e.,K = 1, versus the time allocated to the DL WET,τ0, with γ1 = 10dB,

assuming that (1) holds with equality, i.e., for the UL WITτ1 = 1−τ0. It is observed that the throughput is

zero whenτ0 = 0, i.e., no time is assigned for WET to the user in the DL and thusno energy is available

for WIT in the UL, as well as whenτ0 = 1 or τ1 = 1 − τ0 = 0, i.e., no time is assigned to the user
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Fig. 3. Throughput versus time allocated to DL WET in a single-user WPCN withγ1 = 10dB.

for WIT in the UL. It is also observed that the throughput firstincreases withτ0 when τ0 < τ ∗0 = 0.42,

but decreases with increasingτ0 when τ0 > τ ∗0 , whereτ ∗0 is the optimal time allocation to maximize the

throughput. This can be explained as follows. With smallτ0, the amount of energy harvested byU1 in the

DL is small. In this regime, asU1 harvests more energy with increasingτ0, i.e., more energy is available

for the information transmission in the UL, the throughput increases withτ0. However, asτ0 becomes

larger thanτ ∗0 , the throughput is decreased more significantly due to the reduction in the allocated UL

transmission time,τ1; as a result, the throughput starts to decrease with increasing τ0. Therefore, there

exists a unique optimalτ ∗0 to maximize the throughput.

III. SUM-THROUGHPUT MAXIMIZATION

In this section, we characterize the maximum sum-throughput of the WPCN presented in Section II

with arbitrary number of users,K. From (6), the sum-throughput of all users is given byRsum (τ ) =
K
∑

i=1

Ri (τ ), which is a function of the DL and UL time allocationτ . Therefore, from (1) the sum-throughput

maximization problem is formulated as
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(P1) : max
τ

Rsum (τ )

s.t.
K
∑

i=0

τi ≤ 1,

τi ≥ 0, i = 0, 1, · · · K. (8)

Lemma 3.1: Ri (τ ) is a concave function ofτ for any giveni ∈ {1, · · · , K}.

Proof: Please refer to Appendix A.

From Lemma 3.1, it follows thatRsum (τ ) is also a concave function ofτ since it is the summation of

Ri (τ )’s. Therefore,(P1) is a convex optimization problem, and thus can be solved by convex optimization

techniques. To solve (P1), we first have the following lemma.

Lemma 3.2: GivenA > 0, there exists a uniquez∗ > 1 that is the solution off (z) = A, where

f (z)
∆
= z ln z − z + 1, z ≥ 0. (9)

Proof: Please refer to Appendix B.

Fig. 4 showsf (z) given in (9) with z ≥ 0. It is observed thatf (z) is a convex function overz ≥ 0

where the minimum is attained atz = 1 with f (1) = 0. Therefore, given0 < A ≤ 1, there are two

different solutions forf (z) = A, among which one is smaller than1 and the other is larger than1, i.e.,
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z∗ > 1. On the other hand, ifA > 1, there is only one solution forf (z) = A, which is larger than1, i.e.,

z∗ > 1. The above observations are thus in accordance with Lemma 3.2.

Proposition 3.1: The optimal time allocation solution for(P1), denoted byτ ∗ = [τ ∗0 τ ∗1 · · · τ ∗K ], is

given by

τ ∗i =

{

z∗−1
A+z∗−1

γi
A+z∗−1

, i = 0

, i = 1, · · · , K
(10)

whereA
∆
=

K
∑

i=1

γi > 0 andz∗ > 1 is the corresponding solution off (z) = A as given by Lemma 3.2.

Proof: Please refer to Appendix C.

It is worth noting thatA > 0 always holds since from (7) we haveγi > 0, i = 1, 2, · · · , K, provided

that hi 6= 0 and gi 6= 0. Hence, given a set of strictly positiveγi’s, according to Lemma 3.2z∗ > 1 is

uniquely determined with the presumedA, thus resulting in a unique solutionτ ∗ for (P1), with τ ∗i > 0,

i = 0, 1, · · · , K, i.e., the time allocated to the DL WET is always greater thanzero, and so is the time

allocated to each user in the UL WIT, provided thatγi > 0, ∀i. Furthermore, from Proposition 3.1 we

have the following corollary.

Corollary 3.1: In the optimal time allocation solution of (P1), τ ∗0 is a monotonically decreasing function

of A > 0.

Proof: Please refer to Appendix D.

From Corollary 3.1, it is inferred that the time allocated tothe DL WET decreases with increasing

γi’s, or channel power gainshi’s and/orgi’s, sinceA =
K
∑

i=1

γi andγi ∝ higi, i = 1, · · · , K, as shown in

(7). As a result,τ ∗i ’s, i = 1, · · · , K, increase withA, i.e., the time allocated to the UL WIT increases

with γi’s. This is an interesting observation implying that when the channel power gains,hi’s and gi’s,

become larger, we should allocate more time to the UL WITs instead of the DL WET to maximize the

sum-throughput. This is because with largerγi’s, the required energy for UL WITs becomes smaller given

any transmission rate; thus, each user can harvest sufficient amount of wireless energy from the H-AP

even with a smaller time allocated to the DL WET.

Note that the sum-throughput maximization solution given in (10) allocates more time to a ‘near’ user

to the H-AP than a ‘far’ user, since in practicehi ∝ D−αd

i , gi ∝ D−αu

i , and γi ∝ higi according to

(7), whereαd ≥ 2 andαu ≥ 2 denote the channel pathloss exponents in the DL and UL, respectively,

andDi denotes the distance between the H-AP andUi. Thus, from (10) it follows thatτ ∗i ∝ D
−(αd+αu)
i ,
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i = 1, · · · , K, which results in an unfair time and throughput allocation among users in the WPCN, a

phenomenon termed “doubly near-far problem”. To further illustrate this issue, Fig. 5 shows the sum-

throughputRsum (τ ) versus UL WIT time allocationτ1 and τ2 for a two-user network withK = 2 and

D1 =
1
2
D2. It is assumed that the channel reciprocity holds for the DL and UL and thushi = gi, i = 1, 2,

with αd = αu = 2. Accordingly, we setγ1 = 22dB andγ2 = 10dB, with γ1/γ2 = (D2/D1)
αd+αu. It is

observed from Fig. 5 thatRsum (τ ) = 0 when τ1 = τ2 = 0, τ0 = 1 − (τ1 + τ2) = 1, or τ1 + τ2 = 1,

τ0 = 0, since no time is allocated to the users for the UL WITs in the former case, while no time is

allocated to the DL WET in the latter case. The numerical result of sum-throughput clearly shows that

Rsum (τ ) is strictly positive when0 < τ1+ τ2 < 1. In addition, it is observed that the optimal DL and UL

time allocation to maximize the sum-throughput isτ ∗ = [0.2441, 0.7114, 0.0445] whereτ ∗1 = 16τ ∗2 , i.e.,

τ ∗1 = (D2/D1)
αd+αuτ ∗2 , which is consistent with (10). Furthermore, at the optimalτ ∗, Rsum (τ ∗) = 4.58

bps/Hz, withR1 (τ
∗) = 4.13 bps/Hz andR2 (τ

∗) = 0.45 bps/Hz, which demonstrates the very unfair

throughput allocation between the two users due to the doubly near-far problem.

For comparison, we consider UL transmissions in a conventional TDMA-based wireless network with

WIT only [13]-[16], where each user is equipped with a constant energy supply, and thus has an equal

energy consumption at each block denoted byĒ. It then follows from (7) thatγi ∝ D−αu

i and thus from
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(10), the optimal time allocation to maximize the sum-throughput of such a conventional TDMA network

should satisfyτ ∗i ∝ D−αu

i , i = 1, · · · , K, andτ ∗0 = 0 (since no DL WET is needed). Clearly, the WPCN

suffers from a more severe near-far problem than the conventional TDMA network. With the same setup

as for Fig. 5, in Fig. 6 we show the optimal throughput ofU2, R2 (τ
∗), normalized by that ofU1, R1 (τ

∗),

in a WPCN versus that in a conventional TDMA network for different values of the pathloss exponent

α, with αd = αu = α. For the WPCN,γ1 is set to be fixed asγ1 = 22dB for U1, while γ2 = 10, 7, 4,

1, and−2dB for α = 2, 2.5, 3, 3.5, and4, respectively, sinceγ1/γ2 = (D2/D1)
2α. For the conventional

TDMA network, Ē for both U1 andU2 are assumed to bēE = 1
2
(E1 + E2) with E1 andE2 denoting

the average harvested energy atU1 andU2 in the WPCN under comparison, respectively; it then follows

that for the conventional TDMA network,γ1 = 13dB andγ2 = 7.1, 5.5, 4.0, 2.4, and0.9dB for α = 2,

2.5, 3, 3.5, and4, respectively. From Fig. 6, it is observed that the throughput ratio of the two users in

the WPNC case decreases twice faster than that in the conventional TDMA in the logarithm scale due to

the more severe (doubly) near-far problem.

IV. COMMON-THROUGHPUT MAXIMIZATION

In this section, we tackle the doubly near-far problem in theWPNC by applying the common-throughput

maximization approach, which guarantees equal throughputallocations to all users and yet maximize their
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sum-throughput. From (1) and (6), the common-throughput maximization problem is formulated as

(P2) : max
R̄,τ

R̄

s.t. Ri (τ ) ≥ R̄, i = 1 · · ·K, (11)

τ ∈ D,

whereR̄ denotes the common-throughput andD is the feasible set ofτ specified by (1) and (8).

Remark 4.1: Problem(P2) is designed to guarantee the throughput of the user with the worst channel

condition, e.g., of the largest distance from the H-AP. Since Ri (τ ) given by (6) is a monotonically

increasing function of bothτ0 andτi, it can be easily shown that the optimal time allocation solution τ ∗

for (P2) should allocate the same optimal throughput to all the users, denoted bȳR∗ = R1 (τ
∗) = · · · =

RK (τ ∗), with
K
∑

i=0

τ ∗i = 1, when the minimum user throughput in the network is maximized. In addition,

allocating equal throughput to all users can be relevant in practice, since one typical application of the

WPCN is sensor network, where all the sensors may need to periodically send their sensing data to a

function center (modelled as the H-AP in our setup) with the same rate.

The maximum common-throughput̄R∗ is the maximum of all the feasible common-throughputR̄ that

satisfies the rate inequalities in (11) of (P2). To solve (P2), given anyR̄ > 0, we first consider the

following feasibility problem:

Find τ

s.t. Ri (τ ) ≥ R̄, i = 1, · · · , K,

τ ∈ D. (12)

Since the problem in (12) is convex, we consider its Lagrangian given by

L (τ ,λ) = −
K
∑

i=1

λi

(

Ri (τ )− R̄
)

, (13)

whereλ = [λ1, · · · , λK ] ≥ 0 (‘≥’ denotes the component-wise inequality) consists of the Lagrange

multipliers associated with theK user throughput constraints in problem (12). The dual function of

problem (12) is then given by

G (λ) = min
τ∈D

L (τ ,λ) . (14)
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The dual functionG (λ) can be used to determine whether problem (12) is feasible, asprovided in the

following lemma.

Lemma 4.1: For a givenR̄ > 0, problem (12) is infeasible if and only if there exists anλ ≥ 0 such

thatG(λ) > 0.

Proof: Please refer to Appendix E.

Next, we obtainG(λ) in (14) for a givenλ ≥ 0 by solving the following weighted sum-throughput

maximization problem, which follows from (13).

max
τ

K
∑

i=1

λiRi (τ )

s.t. τ ∈ D. (15)

Like (P1), the problem in (15) is convex and thus can be solved by convex optimization techniques.

Similar to Proposition 3.1 for the sum-throughput maximization case withλi = 1, ∀i, we obtain the

optimal time allocation solution for the weighted sum-throughput maximization problem in (15), given in

the following proposition.

Proposition 4.1: Givenλ ≥ 0, the optimal time allocation solution for (15), denoted byτ ⋆ = [τ ⋆0 , τ ⋆1 ,

· · · , τ ⋆K ], is

τ ⋆0 =
1

1 +
K
∑

j=1

(

γj/z⋆j
)

, (16)

τ ⋆i =
γi/z

⋆
i

1 +
K
∑

j=1

(

γj/z⋆j
)

, i = 1, · · · , K, (17)

wherez⋆i , i = 1, · · · , K, is the solution of the following equations:

ln (1 + zi)−
zi

1 + zi
=

µ⋆

λi

ln 2, (18)

K
∑

i=1

λiγi
1 + zi

= µ⋆ ln 2, (19)

with µ⋆ > 0 being a constant.

Proof: Please refer to Appendix F.

With Proposition 4.1, we can computeτ ⋆ efficiently as follows. Denote the left-hand sides (LHSs) of

(18) and (19) asQ (zi) andS (z) with z = [z1, z2, · · · , zK ], respectively. Note thatQ (zi) is an increasing

function of zi, i = 1, · · · , K (see Appendix C), whereasS (z) is a decreasing function with respect to
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TABLE I

ALGORITHM TO SOLVE (P2).

1) Initialize Rmin = 0, Rmax > R̄∗.2

2) Repeat

1. R̄ = 1

2
(Rmin +Rmax).

2. Initialize λ ≥ 0.

3. Givenλ, solve the problem in (15) by Proposition 4.1.

4. ComputeG (λ) using (13).

5. If G (λ) > 0, R̄ is infeasible, setRmax ← R̄, go to step 1.

Otherwise, updateλ using the ellipsoid method and the

subgradient ofG (λ) given by (20). If the stopping criteria

of the ellipsoid method is not met, go to step 3.

6. SetRmin ← R̄.

3) Until Rmax−Rmin < δ, whereδ > 0 is a given error tolerance.

each individualzi. Given anyµ > 0, suppose thatzi is the solution ofQ (zi) =
µ

λi
ln 2, i = 1, · · · , K, in

(18). With thesezi’s, there are two possible cases to consider next. If in (19) the resultingS (z) > µ ln 2,

we should increaseµ sincezi’s satisfyingQ (zi) =
µ

λi
ln 2, i = 1, · · · , K, will increase withµ given that

Q (zi), ∀i, is an increasing function ofzi; as a result,S (z) will decrease since it is a decreasing function

of each individualzi. Otherwise,µ should be decreased to satisfy (19) ifS (z) < µ ln 2. Therefore,z⋆i ’s

andµ⋆ can be obtained by iteratively updatingzi’s andµ as above until convergence is reached. Then,

τ ⋆ can be computed from (16) and (17) accordingly.

Given R̄, λ, and the obtainedτ ⋆ by solving problem (15) with Proposition 4.1, we can compute

the correspondingRi (τ
⋆), i = 1, · · · , K, and thusG (λ) in (14) using (13). IfG (λ) > 0, it follows

from Lemma 4.1 that problem (12) is infeasible, i.e.,R̄ > R̄∗. Therefore, we should decreasēR and

solve the feasibility problem in (12) again. On the other hand, if G (λ) ≤ 0, we can updateλ using

sub-gradient based algorithms, e.g. the ellipsoid method [17], with the subgradient ofG (λ), denoted by

υ = [υ1 υ2 · · · υK ]
T , given by

υi = τ ⋆i log2

(

1 +
γiτ

⋆
0

τ ⋆i

)

− R̄, 1 ≤ i ≤ K, (20)

until λ converges toλ∗ with λ∗ denoting the maximizer ofG (λ) or the optimal dual solution for problem

(12). If G (λ∗) ≤ 0, it then follows that problem (12) is feasible and thusR̄ ≤ R̄∗. In this case,̄R should be

increased for solving the feasibility problem in (12) again. Consequently,̄R∗ can be obtained numerically

2The initial value ofRmax can be chosen as any arbitrary large number such that it satisfiesRmax > R̄∗.
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Fig. 7. Common-throughput (in bps/Hz) versus time allocation.

by iteratively updatingR̄ by a simple bisection search [12]. To summarize, one algorithm to solve(P2)

is given in Table I.3

Fig. 7 shows the common-throughput in bps/Hz versusτ1 andτ2 for the same two-user channel setup as

for Fig. 5. It is observed that the optimal time allocation for (P2) is given byτ ∗ = [0.3683, 0.1386, 0.4932],

which results inR̄∗ = R1 (τ
∗) = R2 (τ

∗) = 1.46bps/Hz. Comparing to Fig. 5 where the sum-throughput

is maximized, the time portion allocated to the near user,U1, is decreased substantially from0.7114

to 0.1737, while that to the far user,U2, is greatly increased from0.0445 to 0.4669. Consequently,

the throughput ofU2 is increased from0.45bps/Hz to1.46bps/Hz, while that ofU1 is decreased from

4.13bps/Hz to1.46bps/Hz, the same throughput asU2. This result shows the effectiveness of the proposed

common-throughput approach for tackling the doubly near-far problem in a WPCN.

Fig. 8 shows the ratio of the optimal time allocated to the faruserU2 over that to the near userU1, i.e.,

τ ∗2 /τ
∗
1 , in (P1) versus (P2), with different values of the common pathloss exponentα in both DL and UL,

where the same two-user channel setup as for Fig. 5 is considered. It is assumed thatγ1 for the near user

U1 is fixed asγ1 = 22dB andγ2 for the far userU2 is set the same as for Fig. 6. It is observed that the

3The computational complexity of the proposed algorithm in Table I can be shown to beO(K3) since at each iteration it performs

K one-dimension searches each with the complexity ofO(1) to find τ
⋆, and the ellipsoid method has the complexity ofO(K2) [17] to

converge.



16

j jkl m mkl n nkl
op

qr

op
qs

op
qt

op
u

op
t

op
s

vwxyz{|| }~�{���x �α�

�vo�

�vj�

Fig. 8. Comparison of the ratio of time allocated toU2 andU1 in (P1) versus (P2).

time ratio of (P1) in the logarithm scale decreases linearly withα to maximize the sum-throughput, which

can also be inferred from (10), due to the doubly near-far problem. On the contrary,τ ∗2 /τ
∗
1 is observed

to increase withα to maximize the common-throughput in (P2), since more time is allocated to the far

userU2 instead of the near userU1 as the ratio betweenγ1 andγ2, i.e., γ1/γ2, increases withα.

Notice that (P1) and (P2) deal with two extreme cases of throughput allocation to theusers in a

WPNC where the fairness is completely ignored and a strict equal fairness is imposed, respectively. More

generally, Fig. 9 shows the achievable throughput region ofa two-user WPCN by solving the weighted

sum-throughput maximization problem in (15) with different throughput weights for the near and far

users, under the same channel setup as for Fig. 5. It is observed that the boundary of the throughput

region characterizes all the optimal throughput-fairnesstrade-offs in this two-user WPCN, which include

the throughput pairs obtained by solving (P1) for the maximum sum-throughput and by solving (P2) for

the maximum common-throughput, shown as points (a) and (b) in the figure, respectively.

Remark 4.2: It is worth noting that the common-throughput approach for characterizing the achievable

rate region of multi-user communication systems under strict fairness constraints can be considered as

one special case of the “rate-profile” method proposed in [18]. Hence, the common-throughput approach

investigated in this paper can be easily extended to the general case where the required throughput of
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each user is different using the rate-profile method. GivenR̄ =
[

R̄1 R̄2 · · · R̄K

]

with R̄i denoting

the required throughput of useri, i = 1, · · · , K, the corresponding rate profile vector is defined as

β = [β1 β2 · · · βK ] whereβi = R̄i/
K
∑

j=1

R̄j (Note that the common-throughput maximization problem

(P2) is thus for a special case withβi = 1/K, ∀i). The optimal time allocation solution to maximize the

system sum-throughput subject to the rate fairness constraint with any givenβ can be obtained using

the same algorithm proposed for (P2) in this paper, with the throughput constraint in (11) replaced by

Ri (τ) ≥ βiR̄, i = 1, · · · , K, whereR̄ here denotes the sum-throughput of all users.

V. SIMULATION RESULT

In this section, we compare the maximum sum-throughput by (P1) versus the maximum common-

throughput by (P2) in an example WPCN. The bandwidth is set as1MHz. It is assumed that the channel

reciprocity holds for the DL and UL and thushi = gi, i = 1, · · · , K, with the same pathloss exponent

αd = αu = α. Accordingly, both the DL and UL channel power gains are modeled ashi = gi =

10−3ρ2iD
−α
i , i = 1, · · · , K, whereρi represents the additional channel short-term fading whichis assumed

to be Rayleigh distributed, and thusρ2i is an exponentially distributed random variable with unit mean.

Note that in the above channel model, a30dB average signal power attenuation is assumed at a reference
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Fig. 10. Sum-throughput vs. common-throughput.

distance of1m. The AWGN at the H-AP receiver is assumed to have a white power spectral density of

−160dBm/Hz. For each user, the energy harvesting efficiency for WET is assumed to beζ = 0.5. Finally,

we setΓ = 9.8dB assuming that an uncoded quadrature amplitude modulation (QAM) is employed [19].

Fig. 10 shows the maximum sum-throughput versus the maximumcommon-throughput in the same

WPCN with K = 2, D1 = 5m, andD2 = 10m for different values of transmit power at H-AP,PA, in

dBm, by averaging over1000 randomly generated fading channel realizations, with fixedα = 2. As shown

in Fig. 10, when the sum-throughput is maximized, the throughput ofU1 dominates over that ofU2 due

to the doubly near-far problem, which results in notably unfair rate allocation between the near user (U1)

and far user (U2) in this example. It is also observed that the maximum common-throughput for the two

users is smaller than the normalized maximum sum-throughput by the number of users, i.e.,Rsum (τ ) /K

(K = 2 in this example), which is a cost to pay in order to ensure a strictly fair rate allocation to the two

users regardless of their distances from the H-AP.

Next, by fixing PA = 20dBm, Fig. 11 shows the throughput comparison for different values of the

common pathloss exponentα in both the DL and UL in the same WPCN as for Fig. 10. It is observed

that when the sum-throughput is maximized, the throughput of the near userU1 converges to the maximum

sum-throughput asα increases, whereas that of the far userU2 converges to zero, which indicates that the
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WPCN suffers from a more severe unfair rate allocation between the near and far users as the pathloss

exponent increases, due to the doubly near-far problem. In addition, the maximum common-throughput

for the two users is observed to decrease faster with increasing α than the normalized maximum sum-

throughput. This is because asα increases, (P2) allocates more time to the far userU2 instead of near

userU1 in order to ensure the equal throughput allocation among users since the ratioγ1/γ2 increases

with α, whereas (P1) allocates more time toU1 instead ofU2 asα increases.

At last, Fig. 12 shows the throughput over number of users,K. It is assumed thatK users in the

network are equally separated from the H-AP according toDi =
DK

K
× i, i = 1, · · · K, whereDK = 10m.

The transmit power at the H-AP and the pathloss exponent are set to be fixed asPA = 20dBm andα = 2,

respectively. In addition, we compare with the throughput achievable by equal time allocation (ETA),

i.e., τi = 1
K+1

, i = 0, · · · , K, as a low-complexity time allocation scheme. It is observedthat both the

normalized maximum sum-throughput by solving (P1) and the maximum common-throughput by solving

(P2) decreases with increasingK, and they outperform the sum-throughput and the minimum throughput

(over all users) by the heuristic ETA scheme, respectively.
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VI. CONCLUSION

This paper has studied a new type of wireless RF (radio frequency) powered communication network

with a harvest-then-transmit protocol, where the H-AP firstbroadcasts wireless energy to distributed users

in the downlink and then the users transmit their independent information to the H-AP in the uplink by

TDMA. Our results reveal an interesting new phenomenon in such hybrid energy-information transmission

networks, so-called doubly near-far problem, which is due to the folded signal attenuation in both the

downlink WET and uplink WIT. As a result, notably unfair timeand throughput allocation among the

users occurs when the conventional metric of network sum-throughput is maximized. To overcome this

problem, we propose a new common-throughput maximization approach to allocate equal rates to all

users regardless of their distances from the H-AP by allocating the transmission time to users inversely

proportional to their distances to the H-AP. Simulation results showed that this approach is effective in

solving the doubly near-far problem in the WPCN, but at a costof sum-throughput degradation.
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APPENDIX A

PROOF OFLEMMA 3.1

Denote the Hessian ofRi (τ ) defined in (6) as

∇2Ri (τ ) =
[

d
(i)
j,m

]

, 0 ≤ j,m ≤ K,

where d
(i)
j,m denotes the element of∇2Ri (τ ) at the jth row andmth column. From (6), the diagonal

entries of∇2Ri (τ ), i.e., j = m, can be expressed as

d
(i)
j,j =















− 1
ln 2

γ2
i τ

−1
i β−2

i

− 1
ln 2

γ2
i τ

2
0 τ

−3
i β−2

i

0

, j = 0

, j = i

, otherwise,

(21)

whereβi = 1 + γiτ0
τi

. In addition, the off-diagonal entries of∇2Ri (τ ) can be expressed as

d
(i)
j,m = d

(i)
m,j =

{

1
ln 2

γ2
i τ0τ

−2
i β−2

i

0

, j = i and m = 0

, otherwise.
(22)

Given an arbitrary real vectorv = [v0, v1, · · · , vK ]
T , sinceτi ≥ 0, it can be shown from (21) and

(22) that

v
T∇2Ri (τ )v = − 1

ln 2

1

β2
i

γ2
i

τ 3i
(viτ0 − v0τi)

2

≤ 0,

i.e., ∇2Ri (τ ), ∀i, is a negative semidefinite matrix. Therefore,Ri (τ ) is a concave function ofτ =

[τ0 τ1 · · · τN ]
T [12]. This completes the proof of Lemma 3.1.

APPENDIX B

PROOF OFLEMMA 3.2

From (9), we have

lim
z→0

f (z) = 1, (23)

∂f (z)

∂z
= ln z, (24)

∂2f (z)

∂z2
=

1

z
. (25)

Thus it follows from (24) and (25) thatf (z) is a convex function overz ≥ 0 and its minimum is attained

at z = 1 with f (1) = 0. This implies thatf (z) ≥ 0 with z ≥ 1 and is monotonically increasing withz

in this regime. Therefore, givenA > 0, f (z) = A has a unique solutionz∗ > 1. This completes the proof

of Lemma 3.2.
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APPENDIX C

PROOF OFPROPOSITION3.1

The Lagrangian of(P1) is given by

Lsum (τ , ν) = Rsum (τ )− ν

(

K
∑

i=0

τi − 1

)

, (26)

whereν ≥ 0 denotes the Lagrange multiplier associated with the constraint in (1). The dual function of

(P1) is thus given by

G (ν) = min
τ∈D

Lsum (τ , ν) , (27)

whereD is the feasible set ofτ specified by (1) and (8).

It can be shown from (1) and (8) that there exists anτ ∈ D with τi > 0, i = 0, 1, · · · K, satisfying
K
∑

i=0

τi < 1, and thus strong duality holds for this problem thanks to theSlater’s condition [12]. Since(P1)

is a convex optimization problem for which the strong duality holds, the Karush-Kuhn-Tucker (KKT)

conditions are both necessary and sufficient for the global optimality of (P1), which are given by

K
∑

i=0

τ ∗i ≤ 1, (28)

ν∗

(

K
∑

i=0

τ ∗i − 1

)

= 0, (29)

∂

∂τi
Rsum (τ ∗)− ν∗ = 0, i = 0, · · · , K, (30)

where τ ∗i ’s and ν∗ denote the optimal primal and dual solutions of (P1), respectively. It can be easily

verified that
K
∑

i=0

τ ∗i = 1 must hold for (P1) and thus from (29) without loss of generality, we assume

ν∗ > 0. From (30), it follows that
K
∑

i=1

γi

1 + γi
τ∗
0

τ∗i

= ν∗ln 2, (31)

t

(

γi
τ ∗0
τ ∗i

)

= ν∗ln 2, 1 ≤ i ≤ K, (32)

wheret (x) is defined as

t (x)
∆
= ln (1 + x)− x

1 + x
, x ≥ 0. (33)

Given 1 ≤ i, j ≤ K, from (31) we have

t

(

γi
τ ∗0
τ ∗i

)

= t

(

γj
τ ∗0
τ ∗j

)

, i 6= j. (34)
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It can be easily shown thatt (x) is a monotonically increasing function ofx ≥ 0 since dt (x) /dx =

x(1 + x)−2 ≥ 0 for x ≥ 0. Therefore, equality in (34) holds if and only ifγi
τ∗
0

τ∗i
= γj

τ∗
0

τ∗j
, 1 ≤ i, j ≤ K,

i.e.,
γ1
τ ∗1

=
γ2
τ ∗2

= · · · γK
τ ∗K

= C. (35)

Note that1− τ ∗0 =
K
∑

j=1

τ ∗j andτ ∗j =
γj
γi
τ ∗i from (28) and (35), respectively. Therefore,τ ∗i can be expressed

as

τ ∗i = (1− τ ∗0 )
γi

K
∑

j=1

γj

= (1− τ ∗0 )
γi
A
, (36)

whereA =
K
∑

j=1

γj. In addition, it follows from (30), (35), and (36) that

ln (1 + Cτ ∗0 )−
Cτ ∗0

1 + Cτ ∗0
=

A

1 + Cτ ∗0
, 1 ≤ i ≤ K, (37)

whereC is defined in (35). SinceC = A
1−τ∗

0

from (36), we can modify (37) as

z ln z − z − A+ 1 = 0, (38)

wherez = 1 +
Aτ∗

0

1−τ∗
0

. It is observed thatz > 1 if A > 0 and0 < τ ∗0 < 1. From Lemma 3.2, there exists a

uniquez∗ > 1 that is the solution of (38). Therefore, the optimal time allocation to the DL WET is given

by

τ ∗0 =
z∗ − 1

A+ z∗ − 1
. (39)

In addition, from (36) and (39), the optimal time allocationto the UL WITs,τ ∗i , 1 ≤ i ≤ K, is given by

τ ∗i =
γi

A+ z − 1
. (40)

This thus proves Proposition 3.1.

APPENDIX D

PROOF OFCOROLLARY 3.1

It can be easily shown from (10) thatτ ∗0 = 1 with A = 0. From (38) and (39),τ ∗0 can be alternatively

expressed as

τ ∗0 =
z∗ − 1

z∗ ln z∗
. (41)
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GivenA ≥ 0 and thusz∗ ≥ 1, bothz∗ ln z∗ andz∗ − 1 in (41) increase withA sincez∗ increases withA

as shown in the proof of Lemma 3.2 given in Appendix B. Furthermore, sinced
dz
(z ln z) = 1 + ln z and

d
dz
(z − 1) = 1, it follows that d

dz∗
(z∗ ln z∗) > d

dz∗
(z∗ − 1) with z∗ > 1, i.e., z∗ ln z∗ increases faster with

z∗ thanz∗ − 1. Therefore, it can be verified thatz∗ ln z∗ increases faster withA thanz∗ − 1, and thusτ ∗0

decreases monotonically with increasingA. Finally, it can be shown thatτ ∗0 → 0 asA → ∞ from the

fact thatz∗ increases withA.

This thus completes the proof of Corollary 3.1.

APPENDIX E

PROOF OFLEMMA 4.1

We first prove the “if” part of Lemma 4.1. Ifτ ′ ∈ D is a feasible solution for (12) given̄R > 0, i.e.,

Ri (τ
′) ≥ R̄, i = 1, · · · , K, then for anyλ ≥ 0 it follows from (13) that

G (λ) ≤ L (τ ′,λ) ≤ 0,

and thusmax
λ≥0

G (λ) ≤ 0, which contradicts with the given assumption that there exists anλ ≥ 0 such

thatG (λ) > 0. The “if” part is thus proved.

Next, we prove the “only if” part of Lemma 4.1 by showing that its transposition is true, i.e, the

problem in (12) is feasible ifG (λ) ≤ 0, ∀λ ≥ 0, by contradiction. Suppose that problem (12) is feasible

and there exits anλ′′ ≥ 0 whereG (λ′′) > 0. However, since (12) is assumed to be feasible, there exists

an τ ′′ ∈ D such thatRi (τ
′′) ≥ R̄, ∀i, resulting inλi

′′
(

Ri (τ
′′)− R̄

)

≥ 0 sinceλ′′ ≥ 0. From (13) and

(14), we thus have

G (λ′′) ≤ −
∑K

i=1
λi

′′
(

Ri (τ )− R̄
)

≤ 0.

This contradictsG (λ′′) > 0, and thus problem (12) is feasible ifG (λ) ≤ 0, ∀λ ≥ 0. The “only if” part

is thus proved.

Combining the above proofs of both “if” and “only if” parts, Lemma 4.1 thus follows.

APPENDIX F

PROOF OFPROPOSITION4.1

Givenλ ≥ 0, the Lagrangian of problem (15) is given by

LWSR (τ , µ) =
K
∑

i=1

λiRi (τ )− µ

(

K
∑

i=0

τi − 1

)

, (42)
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whereµ ≥ 0 denotes the Lagrange multiplier associated with the constraint in (1). The dual function of

problem (15) is thus given by

GWSR (µ) = min
τ∈D

LWSR (τ , µ) . (43)

Similar to (P1), it can be easily shown that the problem in (15) is convex with zero duality gap. Therefore,

the following KKT conditions must be satisfied by the optimalprimal and dual solutions of problem (15):

ln

(

1 + γi
τ ⋆0
τ ⋆i

)

−
γi

τ⋆
0

τ⋆i

1 + γi
τ⋆
0

τ⋆i

=
µ⋆

λi

ln 2, i = 1, · · · , K, (44)

K
∑

i=1

λiγi

1 + γi
τ⋆
0

τ⋆i

= µ⋆ ln 2, (45)

K
∑

i=0

τ ⋆i = 1, (46)

whereµ⋆ > 0 is the optimal dual solution. We then obtain (18) and (19) by changing variables as

zi = γi
τ ⋆0
τ ⋆i

, i = 1, · · · , K, (47)

in (44) and (45), respectively. It is worth noting thatz1 · · · zK andµ∗ satisfying both (18) and (19) are

uniquely determined sinceK+1 variables are solutions ofK+1 independent equations andln (1 + zi)−
zi

1+zi
is a monotonically increasing function ofzi. In addition, since1−τ ⋆0 =

K
∑

i=1

τ ⋆i from (46) andτ ⋆i = τ ⋆0
γi
zi

from (47), it follows that

τ ⋆0

(

1 +
K
∑

i=1

γi
zi

)

= 1, (48)

from which we obtain (16). Finally, we obtain (17) from (47) and (48).

This thus completes the proof of Proposition 4.1.
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