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Abstract—In this paper the choice of the Bernoulli distribution  very low probability of error in order to avoid error floorsg.i
as biased distribution for importance sampling (IS) MonteCarlo  the rate of decrease of the probability of error is not as high
(MC) simulation of linear block codes over binary symmetric as at lower SNRs (i.e. in the waterfall region) [9].]10]. One
channels (BSCs) is studied. Based on the analytical derivan - - . . 7 L
of the optimal IS Bernoulli distribution, with explicit cal culation of t_he 'mpEd'm?mS_ in the adoption of LDPC COd(_:"S in fiber-
of the variance of the corresponding IS estimator, two novel Optics communications, where the order of magnitude of the
algorithms for fast-simulation of linear block codes are poposed. probability of error of interest i$0~'2 and below, has been the
For sufficiently high signal-to-noise ratios (SNRs) one offte jnability to rule out the existence of such floors via analymi
proposed algorithm is SNR-invariant, i.e. the IS estimatordoes simulations [[T1]. While for some LDPC codes it is possible

not depend on the cross-over probability of the channel. Als, . .
the proposed algorithms are shown to be suitable for the to predict such floors, in many other cases the MC method

estimation of the error-correcting capability of the code and the IS the only tool available. LDPC codes are also employed,
decoder. Finally, the effectiveness of the algorithms is ofirmed  for example, in nanoscale memoriési[12], where a majority-

through simulation results in comparison to standard Monte |ogic decoder is chosen instead of soft iterative decodsrs a
Carlo method. these may not be fast enough for error correction; therefore
Index Terms—Binary symmetric channel (BSC), importance efficient method to estimate the performances of hard-ubecis
sampling (IS), linear block codes, Monte-Carlo simulation decoding at very low WERSs is extremely desirable.
Several mathematical techniques have been proposed in the
. INTRODUCTION literature in order to reduce the computational complexity
HE Monte-Carlo (MC) simulation is a general method tof the MC method and estimate low WERs with the same
estimate performances of complex systems for which aaecuracg [L3]. Importance sampling (IS) is regarded as one
alytical solutions are not available or mathematicallgtale of the most effective variance-reduction techniques and it
and it is extensively used in the analysis and design widely adopted to speed up simulation of rare events, i.e.
communications system5s|[1]./[2]. The MC method has alssents that occur with very low probability [14]. The idedds
been extensively employed to evaluate the performancesimérease the frequency of occurrence of rare events, by snean
forward-error-correcting (FEC) codes with different ddity of a biased distribution. The optimal biased IS distribntis
algorithms, in terms of probability of bit error (BER) or wbr known, but it cannot be used in practice since it depends on
error (WER), for which, in many cases, is not possible tthe parameter to be estimated itself. Therefore, a number of
obtain exact closed-form expressions [B]-[5]. In general &ub-optimal alternatives have been developed in the fiteza
upper bound is available for any linear block code, howev§3], [15]. Some of them are obtained by restricting the clear
the error correcting capability of the code is required [B], of the biased distribution to a parametric family of simidat
The MC method is also used as verification tool in the desigglistributions; then the parameters are derived as minigize
development and implementation of decoding algorithms. of the estimator variance or other related metrics, suctheas t
The computational complexity of the MC method is giverross-entropy([14],[[16]. The choice of the family of biased
by the number of generated random samples that are needetribution is somewhat arbitrary and may depend on the
to obtain a reliable estimate of the parameters of interespecific application of the IS method [14]. In the case of
In the case of FEC codes, estimation of low BER or WEREC, the rare event corresponds to the decoding error and the
requires a high number of generated codewords to obta# method, in order to be effective, needs to generate more
results of acceptable or given accuracy, thus leading te pfeequently the codewords that are likely to be erroneously
hibitive computational complexity. Furthermore, for véong decoded. The mathematical structure of the code, or some
codes the computational complexity is high even for smalerformance parameter of the code, such as the minimum
number of generated words, since the decoding complexdistance and/or the number of correctable errors or, in the
increases the simulation time considerably. A practicaleca
is represented by low-density parity-check (LDPC) codés [6 10ne possibility to cope with the computational complexitytoe MC
[8], for which it is crucial to examine the performances atethod is to adopt more powerful hardware in order to redbeegeneration
and processing time of each codeword; this might constitutpractical
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case of LDPCs, the minimum size of the absorbing sets in

their Tanner graphs, may be taken into account to choose a i 3 ;
good family [17], [18]. In [19], an SNR-invariant IS methogl i [ = |f acater p{ e |0 e
proposed, which, though independent of the minimum digtanc 3

of the code, provides better estimates when the error-ctimge Bsc

capability of the decoder is available. In this paper we maTs
generic linear block codes and we do not make any assumptiigure 1. lllustrative block scheme of a communication eyst
on specific parameter or structure of the code.
In this paper a specific problem is considered: (i) which
is the best joint independent Bernoulli distribution thainc plement because they require only small modifications to the
be used as biased distribution for IS estimation of blocktandard MC method, as the same random sample generator
linear code performances and (ii) what are the strengths arah be maintained and only the parameter of the Bernoulli
limitations of this solution. The choice of such family ofgenerator is changed. Furthermore, in most practicaltsings
distributions is arbitrary and it is motivated by the facatth the SNR-invariant version of the algorithm allows to effitig
the random generator required for the 1S method is of tladtain entire curves of performance, e.g. WERs correspondi
same type of that required in the standard MC method at@l various SNRspy just running one IS simulation at one
hence is made because of its simplicity rather than takisgfficiently high SNRIn such a case the gain with respect
into account the specific structure or properties of codes. @ (w.r.t.) the standard MC simulation is even higher, as the
the other hand, since the study is restricted to the paramettumber of simulation runs is dramatically reduced to one.
family of the joint independent Bernoulli distributionbgtgain The outline of the paper is the following: in Sdcl Il the
in computational complexity that is obtained is limited hyst system model is introduced and some preliminaries on MC
choice, as sub-optimal IS distributions that lead to smafie and IS method are given; the main results of the paper are
estimator variance may exist. presented in SeE]ll; in Sec. 1V fast-simulation algorithare
Another performance measure for FEC codes is the mifiermulated and some examples are shown in Béc. V; finally,
mum distance of the code and/or the error correcting capabilin Sec.[V] some concluding remarks are given; proofs are
of the code or decoder, i.e. the maximum number of errotenfined to the appendices.
that a specific couple (code, decoder) are able to correet. Th Notation - Lower-case bold letters denote vectors; the
minimum distance of codes can be estimated to overcome fhaction wt (z) returns the number of 1's in the binary
computational complexity required by the exhaustive dearo/ector z; E[-] and var[-] denote expectation and variance
which increases exponentially with the length of the infarm operators, respectively;| denotes the ceiling operatap, (-)
tion word. In [20] the error impulse method is proposed faasnd f (-) are used to denote probabilities and probability mass
linear codes and is based on the properties of the error Bapufunction (pmf); B (i, p) denotes the pmf of the-dimensional
response of the soft-in soft-out decoder and its errorembing  multivariate independent Bernoulli variabde with parameter
capability. Due to the sub-optimality of the iterative ddeo p, i.e. f(z;p) = p'(1—p)" ", wherei = wt(z); E,[]
employed with LDPC codes, the error impulse method camd var, [-] denote expectation and variance operators with
lead to wrong estimates of minimum distance. For this classspect to the joint Bernoulli distribution of parametgr
of codes the method has been improved_in [21] and [22]. Morespectively; finally, the symbols: and & mean “distributed
recently, integer programming methods have been usedaty and “modulo-2 addition”, respectively.
calculate either the true minimum distance or an upper bound
[23]. Alternatively, a branch-and-cut algorithm for findithe
minimum distance of linear block codes has been proposed in
[24]. In this paper a novel MC method to estimate the error A communication system where binary codewords are trans-
correcting capability of the code/decoder is derived. mitted over a BSC with transition probabilify is shown in
Summarizing, the main contributions are the followingFig.[d. A codeword:, belonging to the block codé c xX™ =
(i) analytical derivation of the optimal importance samgli {0,1}" is obtained by encoding message waidl € X*;
distribution among the family of Bernoulli distributionwjth  at the output of the channel a womle X™, corrupted by
explicit calculation of the variance of the correspondii®y Inoise, is observed. The decoder’s task is to possibly reanve
estimator and proof of convexity; (ii) derivation of two al-given the observed. The BSC may represent, for example, an
gorithms for fast-simulation, one to estimate numericéily additive white Gaussian noise (AWGN) channel with binary
optimal parameter of the importance sampling distribuéiod phase-shift keying (BPSK) modulation and hard-decision at
one that is invariant to SNR; (iii) derivation of one algbrit the receiver, as shown in Figl 1.
for efficiently estimate the number of correctable erromng Performances of linear block codes over noisy channels are
illustrative numerical examples of application of the ppepd measured by the probability of decoding error, i.e. the prob
algorithms, for BCH and LDPC codes, are also provided. ability that a decoded word is different from the transnditte
The proposed fast-simulation algorithms achieve largeggaimessage word, because the block code was not able to correct
over standard MC simulation for a vast variety of communthe errors due to the channel. This probability is also dalle
cation systems where linear block codes are employed opeobability of word error or WER. This event occurs when
binary symmetric channels (BSC). They are simple to inthe error pattern is not a co-set leader (under the assumptio
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that syndrome decoding is employed). Calculation of WER fJgorithm 1 Standard MC simulation algorithm

often very complex and some upper bounds are available [4]. _
The WER, denoted a®(e) hereinafter, can be expressed ;;;Y:risl_ 0

in terms of an indicator functior(z) that equals to 1 when .

the received word is erroneously decoded and 0 otherwise; it while (WERre > re) and (totWords <

.. . maxNumWords) do
explicit form is given as
z = rand(n, numWords) < p { BSC

P(e)= Y 1(2)f(2) =By [I(2)]. (1)  output )
ZEXT m = decode (z) { decoder output }
if wt(m) >0 then
totWErr = totWErr + 1
end if
totWords = totWords + numWords
if totWords > minNumWords then
update WERre { relative error }
end if
end while

Note that the indicator function hides the specific decoding
algorithm employed. The effect of the BSC channel is to flip
some hits, which can be mathematically expressedz by

c @ e, with e ~ B(wt(e),p). Since the code is linear and
the channel symmetric, without loss of generality (w.L.p.g
the transmission of the codeword of all zeros is assumed, i.e
c = 0, and hence the output of the channek e, i.e. equals
the error patterre.

A. Monte-Carlo simulation Algorithm [I represents a generic implementation of MC
In the MC simulation method the WER is estimated a§mulation for estimation of’ (¢) in BSCs [1], [14]. The al-
follows gorithm depends on three parameters, minNumWords,
N 1 & maxNumWords. The first parametet;e, is the relative error
Puc(e) =+ > I(z), (2) and it is computed according tbl (5) or its approximatich (6),
=1 whereP (e) is replaced byPyc (e), i.e. the current estimate.

where z; are generated according the distribution of th&he second parametefinNumWords, represents the mini-
random variablez. It is known that the MC estimato[](2) is mum number of words needed to obtain a sufficiently accurate
unbiased and its variance estimate ofx. Once a confident estimate af is obtained,
R P(e)(1—P(e)) a stqp c_ondition on the rela_ltive error can be employed. In

var {PMC‘ (6)} =— N (3) practice in most cases a relative erroi 6%, i.e.x = 0.1, may
. ) . suffice, as often only the order of magnitude of the estinste i
is inversely proportional tov (see, for examplel [14]), then it ¢ nerest. FinallymaxNumWords represents the maximum
can be made arbitrarily small & grows, thus increasing the |, mper of generated words and it is used to implement a

accuracy of the estimator. Rather than studying the VaBlaGs cond stop condition that prevents the simulation to ron to
it is often preferable to consider as accuracy of the esuma§0ng

the relative error([14], defined as Alternative stopping rules for MC simulations can also be

considered. One common rule consists of fixing the number

LV [PMC (e)} of generated word before running the simulation and the
k=" (4) accuracy is estimated at the end of simulatioh [1]. Another
P (e) : .
. ) rule, analyzed in_[25], is based on the number of errors: when
In standard MC simulation becomes a given number has been reached, then the simulation stops.
1—P(e) The advantage of this second rule is that it does not require
K= m, (5) to know the sample size and can achieve a given accuracy.

and, for small probabilities of error{(e) < 1), it is well B. Importance sampling

approximated as In IS simulation the WER is expressed by the following

1
~ 6) equivalent of
K O (6) eq [() "
z *
It follows that the number of generated samples needed to Ple)= > I(z) Iz (Z)f (z), (8)
achieve a givemn: is zZEX™
1 wheref* (z) is a different pmf for which the sum ifi](8) exists.
N ~ 2P ()’ (7)  The corresponding estimator is
N
Eq. () shows that the number of samples needed to obtain s 1 \ f(z)
a given k is inversely proportional toP (e) and becomes Ps(e) = N Zl(zl) f*(z)’ ©

soon very high and often impractical #5(e) decreases. For i?
example with a relative error afo%, at leastN ~ 10%/P (e) _ 1 ZI () W (z:) (10)
samples are needed to obtain the desired accuracy. N P}



wherez; ~ f*(-) and the ratio The IS estimator for WER if{9) specializes to

s f(2) Profe) — L L (zip) 13
Wi e L an - Psl) = g2 D 49
) o ) ) ) ) 1 N pwt(zi) (1 _ p)"*“”f(zm)
is referred to as the likelihood ratio or weighting function = — Z”Zi) : P (14)
The estimator in[(10) is called thtS estimatorand is a NI qv=) (1 —q) '
generalization of the simple MC estimator inl (2), that can 1 &
be obtained as special case (ifé.(z) = f (z)). = ¥ > I (zi) W (wt(z:);p,q), (15)
i=1

The distributionf* (z) is called the IS or biased distribution
and as long as the random generation of samples is undéerez; ~ B (wt(z),q). Under the assumptioa = 0, the
our control, as in the case of MC simulation, it is possiblestimator can be equivalently expressed as
to choose any distribution. However, it is crucial to choose N
the IS distribution such that the variance of the IS estimato Prs(e) = 1 Z”ei) W (wt (e;);p,q), (16)
is minimized. The optimal distribution is known from theory N &~

(see for example [13]/[14]) and itis given by where e; ~ B(wt(e),q). The general expression of the

1(2) f (2) variance for the above estimator is
Jonr (2) = =5 (12) 1 E,[I(e)W2(wt(e);p.q)] - P(e)’
var, {PIS (e,q)} = ~
This distribution leads to zero variance: this comes at no (17)

surprise sincef, (z) containsP (e) (which is the true value and clearly depends atthrough the weighting functiol’ (-)

opt . .
of the parameter being estimated). For this reason, thenapti [1.3].' Therefore, .the problem is 1o find the paramejethat
inimizes [17), i.e.

solution cannot be used for MC simulation. NonethelesS!
significant gains in simulation time can be achieved with
sub-optimal biased distributions. Several methods to fird s

optimal biased distributions have been developed and the inThe expression of the IS estimator variance in the general
terested reader can refer to the comprehensive tutoridl3h [ case of linear block codes is given by the following lemma.

One important goal in searching a sub-optimal IS distrduti ) . o
is to obtain a probability distribution from which samplesnc L€Mma 1. The variance offs (e; ¢) with importance sam-
be easily generated and that, at the same time, provide®!Igg distribution in the parametric familj8 (i, ¢) is given by

weighted estimator with as low variance as possible.

¢ = argminvarg [PIS (e; q)} . (18)
q

n

. 1 _ _ .
varg [PIS (e; q)} =5 Z (W (4;p,q) Py (e51) — Py (e; 1)2)
1=t+1
(19)
whereW (i; p, q) is the weighting function of the IS estimator;

P, (e; i) is the joint probability of decoding error witherrors

The main problem in the design of IS simulations is tgyer 3 BSC with cross-over probability, ¢ is the error-
find sub-optimal distributions that lead to low variance loé t correcting capability of the decoder.

IS estimator. The problem can be simplified if the search is

limited within a parametric family of distributions, sin¢ke Proof: The proof is given in AppendikA. ]

problem can be recast into a standard optimization w.r.t. aThe above lemma provides a general expression of the

finite number of parameters_ AISO, a proper choice of th@riance of the IS estimator that depends on the SpeCifiC de-

parametric family can reduce the computational complexifpding algorithm employednly through the error-correcting

due to the generation of random samples. In this paper capability of the decodet. This parameter represents the

family of Bernoulli distributions with parameter is consid- maximum number of errors that the decoder is able to correct

ered thus maintaining the simplicity of random generaﬁoﬁnd depends on the structure of the linear block code and the

of error patterns, since no change of the random genera#§coding algorithmi[4].

is required. In practice the WER for a BSC with cross-over In order to solve the problem given by {18) we need to

probability p is estimated by simulating the transmission ove§eéarch for the equilibrium points of (19) w.r4. The fol-

a different BSC with a different cross-over probabilityndeed lowing lemma gives a closed-form expression of the variance

with ¢. Within this restriction the optimaj, denoted;, is the derivative.

cross-over probability that minimizes the IS estimatoiaree | emma 2. The derivative of the variance of the IS estimator

over qll possible BS_Cs. Hereinafter, a general formula(jfo_r@) is given by

is derived for any linear block code and for any decoding .

algorithm. o [A } _ 1 i —ng N g
Consider the parametric family of joint Bernoulli distribu quarq Prs (o)) = N izt 4 (1- Q)W (6:2.0) Py (e:).

tions B (wt (z) , q) generated by varying as IS distributions. (20)

Ill. SUB-OPTIMAL IMPORTANCE SAMPLING



Proof: The proof is given in AppendixIB. ] The result of Theorerhl5 can also be used conversely to
The solution of the minimization problern (18) can be obestimatet if an estimateg is available. In the next section
tained by equating to ZGI‘%V&IQ Prs (e)| if the IS variance @ method to estimatg is provided and them. This method
is convex with respect to the variabje The following lemma S particularly useful for Iong codes whe_n exhgustlve dearc
states that the second derivative of the IS estimator isyswd0" dmin Decomes computationally very intensive and/or the

positive and then the variance of the IS estimator is conve>s.e‘30derdi3_”CI’(t optimal and no explicit relationship between
., and¢ is known.
Lemma 3. The IS estimator[(16) is a convex function with e

respect to the variabla. V. ALGORITHMS

Proof: The proof is given in Appendik]C. [ | The results presented in the previous section are exploited
The following theorem gives the general expression for there to formulate two different IS-MC simulation algoritem
value of ¢ that minimizes the variance of the IS estimatoto obtain performance curves in terms of WER vs SNR
and for which the estimation requires the minimum numband an algorithm to estimate the error correcting capgbilit
of generated samples for a fixed relative error. of the decoder. The two fast-simulation algorithms compute
Theorem 4. The parameter; that minimizes the variance ofthe the WER e;timate by means O.f the same 1S esti.mator

the IS estirﬁator given by T16) is (I_E)_anc_i they differ only |n_the ch0|_ce of the Bernpulll IS
distribution parametey. The first algorithm, called basic fast-
LY iW (550, q) Py (e37) 21 simulation algorithm (IS-MC basic), estimates the optimal
n S W (i3p.q) Py (e3d) (21) valueg and then proceeds with WER estimation. It is the most
general algorithm since no specific assumption is required.
Proof:  The proof is obtained by solvingThe second algorithm assumes = (¢+1)/n, a choice
a%varq {st (6)} = 0 and exploiting Lemma]2. B Dbased on Th]5, and sinagis independent on the current
The result in [[2L) defines implicitly the optimal and SNR, the algorithm is called SNR-invariant IS-MC algorithm
therefore it is not possible to obtain a closed-form solutioUnder the assumptiomp < 1 the SNR-invariant 1S-MC
In some cases, howevdr, {21) assumes a simplified express@dgorithm is computationally more efficient with respect to

q:

Whennp < 1 the following approximation holds [4] the 1S-MC basic, as the same generated samples can be used
to estimate WERs at different SNRs. The choice between the
. 1 two algorithms depends on the code lengtland cross-over
varg {PIS (6)] = NW (t+1p,q) Pp(est+1) probability p (or, equivalently, the range of SNRs of interest)
1 9 and therefore on whether the assumptign< 1 holds or not.
- NPP (e;t+1) (22) Finally, the third algorithm is also based on the result of

Th. [ and does not estimate the WER, but rather the error

and ¢ can be expressed explicitly, as stated by the fOHOWingorrecting capability of the code

theorem.

Theorem 5. Under the approximationp < 1, the parameter A Basic fast-simulation algorithm (IS-MC basic)
¢ that minimizes the variance of the IS estimator (16)is The basic version of the algorithm computes an estimate

t+1 of the parametef iteratively, i.e. by updating at iteration;
—_— (23) . . .
n from the ¢ at iteration;j — 1. In fact, from [21) the following
Proof: The proof is given in AppendixD. m update rule can be derived
A notable consequence of Theor€in 5 is the independence L0, W (45, G5—1) Py (e51)
A ) - S G; = — =i=t+l e Z. (24)
of ¢ from the cross-over probability (which in turn depends j ) _ )
i ; ; n Zi:HlW(z,p,qJ,l)Pp (e51)
on the SNR), therefore leading to an SNR-invariant IS-MC _
simulation. In this case estimation of WERs for a whole rand@at can also be written as
of SNRs can be obtained by running one I1S-MC simulation I WP (i5p, Gi—1) Py (1)
WIth a E_SSC with parametef given by [23), in the place of one %= Z?:H»l W2 (isp,4j—1) Py (€;7)
simulation for each SNR. Thus the whole performance curve ) ) o )
WER versus SNR can be obtained with a dramatic reducti§ifce F» (e;) = W (i;p,q) Py (e;1). Finally, the stochastic
of the number of samples to be generated. It is also integestFounterpart approximating (25) can be written in terms ef th
to note that for the Hamming cod&, 4) Eq. [23) givesj = indicator functionl ()

q =~

(25)

2/7 = 0.28_5_7 Wh|qh cqnflrms the value of that Sadowsky o1 sz'v:q1 I (z:)wt (z;) W2 (253 p, Gj—1)
found empirically in [1¥]. Furthermore, Sadowsky notedbals 45 == N, PP ) (26)
the SNR invariance ofj with respect top, without giving, 2 1 (2i) W2 (245 p, 4j-1)
unfortunately, any explanation. wherez; ~ B (wt(z;),§j-1)-
Note also that for short codes the assumptipn« 1 holds In practice the IS simulation consists of two major steps.

for a large range of SNRs and thén](23) is valid for values &furing the first step an estimate gfis derived through[{26)
p of interest, while for long codes the same assumption holdéth a fixed number of iterations and in the second step the
only for high SNRs and(23) may not be useful in practice. WER estimation is performed by running the simulation with



Algorithm 2 IS simulation with embedded estimation @f  SNRs the WER is usually high enough to require a limited and
acceptable number of generated samples even with standard
Monte-Carlo simulation and therefore at low SNRs the choice
of §o is less critical and can be chosen equal to the cross-over
probability p.

The structure of the algorithm is very similar in its for-
mulation to that presented in the context of cross-entropy
method for simulation of rare events in_[16]. An application
of the cross-entropy method to the estimation of very low
WERSs of linear block codes has been proposed_in [26]. The
main difference with respect to the algorithm proposed ia th
paper is that the WER estimator in_[26] has been proven to
minimize the cross-entropy between the optimal IS solution
and the parametric family of the joint Bernoulli distribaris.
Differently, the estimator proposed in this paper has miumm
variance, thudeading to a different stochastic update rule
for §. The aforementioned update rule is proven to converge
since the IS estimator variance (within the Bernoulli famil
is convex and therefore one (global) minimum exists. Fpall
it is worth noticing that the two approaches lead to the same
SNR-invariant algorithm, as the result of TH. 4 holds in both
cases.

totWords = 0
WERre = 1
q = qo
while (WERre > re) and (totWords <
maxNumWords) do
z = rand(n, numWords) < ¢ { BSC output
}
m = decode (z) { decoder output }
if ¢ has been estimated then
compute running estimate of the WER
according to (I8)
update totWords
if totWords > minNumWords then
update relative error WERre {
relative error }
end if
end if
if totWords < lxminNumWordsIS then
update § according (28)
end if
end while

B. SNR-invariant fast-simulation algorithm

the IS Bernoulli distribution with parameterestimated in the _ 1"€ result of the Theorerl] 5 suggests a more computa-
first step. Even though an additional step is required tovderifionally efficient IS-MC simulation algorithm that improse
g, it is expected that the total number of generated worllde basic algorithm derived in the previous sub-section. In

will be reduced dramatically w.r.t. the standard MC simiofat [2Ct, under the assumptions of the Theorigm 5, ghgiven
given k. by (23) does not depend on the current specific cross-over

Algorithm [2 implements the basic algorithm. Theii e probability p of the channel being simulated. Then, the same

loop implements the main part of the simulation that stoﬁ?t. of gen?rerl]te?/vssé‘r\ple;_f\;v@hcans't\)&us;\e/ld 0 calcgllate”th(_e
when either the relative errafERre is less than the given estimate of the at different s. viore specifically, in

relative errorre or the total number of generated words i ) the only term that depends gnis the weight function

greater thamaxNumWords. First iterations of the algorithm (wt(z;); p, q), which is a deterministic function. Therefore

compute the estimate af, with parameterl controlling the 91VeN one set ofV realization ofz; ~ B(wt(z);q) it is
number of iterations required. The number of wordsis possible to compute the estimated WER for gnfor which

represented by the variabiei nNumiWordsTs. After § has the approximatiomp < 1 holds. In other words, with just one

been estimated then the algorithm starts estimating the WEL% simulation WERs for any SNR in the range of application

. ) . Theorenid can be estimated.
The sea_rch fOArq depends on the starting probabiligy. On the other hand, the estimatedhat controls the number
A bad choice ofgy, may slow down the rate of convergence

of the estimation ofj and afterl iterationsg, might not be of words to be generated depends on the current SNR. A

. . o conservative rule for the choice of the relative error to be
close to the optimal solution at all. It is important to cheos : . i
saed in the stop condition is to select the relative error cor

go such a way that important events can be generated and

.- ; responding to the highest SNR in the given range, since, due
sufficiently number of errors are obtained to get an accuraté . .

. . ) R ; . 10'the monotonic decrease of the WER curve, this guarantees
estimate ofj. Obviously, if 4y is close to the optimal solution

then a small number of iterations is required. If the numb(t-:-tgat all the other relative errors will be smaller.

of correctable errorg is known then a possible choice could ] . o )

be the§ given by [23), even though fonp < 1 a more C. Error-correcting capability estimation algorithm
computationally efficient simulation algorithm is possibhs  The first step of the basic algorithm can be used to estimate
it will be shown in the next section. An alternative choica cathe error correcting capability of the code and/or decoder,
be made by observing that in a typical scenario the algorithumder the assumption of relatively high SNR, as stated by
is run to draw a performance curve as function of the SNRs Bheoreni#. In fact, EQ[(23) can be inverted to detifeom

the cross-over probability. One can use thé estimated with ¢, that can be estimated. Note that, since the solution must be
the simulation at the previous SNR as starting probabibty fan integer, the estimate ¢f may not need to have the same
the current SNR, i.ejy (SNR; + ASNR) = ¢; (SNR;), since accuracy as that required for fast-simulation. Note alkat t
for relatively smallASNR the new optimalj is expected to especially for long codes, the number of generated words to
be in the neighborhood of the previogisFurthermore, at low obtaint is far less than the number of codewords.
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Figure 2. Estimated WER vs signal-to-noise ratio per unddoié (in dB)
with 1S-MC basic fast-simulation algorithm for a set of BClddes with
R~0.9.
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V. EXAMPLES o
o

In this section some examples of applications of the pro-§
posed fast-simulation algorithms are shown. The first examp
considers the application of the 1S-MC basic, by simulating
performances of a set of BCH codes [4] with code rate
R = k/n ~ 0.9, decoded with the Berlekamp-Massey
algorithm [27], [28]. In Fig.[2 the WER vs signal-to-noise
ratio per uncoded bit in dB(&,/No), 5, is reported, along i \
with the parameters of the code that have been simulateth. Eac '+ 5 ¢ 7 s 9 10 1 1
curve is obtained by running the basic algorithm at différen (E6/No)as
SNRs with a stop condition on the relative error= 0.1. e n=255k=131,¢t = 18 R = 5137 —o—n =511,k = 259, ¢ = 30, R = .5068
For reliable estimation of the parametgrthe simulation of 5 = e = 0 r = o o~ doee.t 300, fi— 2001
minNumWords=102 has been assured and only one iteratio ——n = 16383, k = 8200, = 691, R = .5005 n = 32767,k = 16397, ¢ = 1316, R = .5004
has been performed, i.e=1. The results of each simulation ~ "~ **F = ¥t =247 =501
run are plotted with points on the interpolated curves, arl‘—%ure 4. 1S-MC SNR-Invariant fast-simulation algorithrar fBCH code
correspond to the performances predicted by the theoketigah r ~ 0.5.
upper bound for linear block codes| [4]. On the same set of
BCH codes the error correcting capability estimation adthar
has been applied with 100 generated words, and returns #a¢ presents a greater number of correctable errors, asd thu
correct number of correctable errors. the decoding algorithm requires an increased computdtiona

In Fig.[3 it is shown the number of generated words requiredmplexity. The stop condition has been set on the relative
by a standard MC simulation witk = 0.1 for BCH code error estimated at the highest SNR and only points with
(2047,1849). The number, that includes also the number @f < 0.1 has been plotted. The performances in terms of
words required to estimat@ increases with the SNR, but atWER confirm the theoretical results for BCH codes. More
some point, in the IS case (blue curve), it reaches a steddterestingly, it is important to note that each curve hasnbe
value. This corresponds to the region where the IS distohut obtained with a single simulation run with a total number of
does not depend on the cross-over probability of the changenerated words reported in Tab. I: with approximagekyl 03
(cf. Th.[B). words it is possible to obtain thentire curveof performance.

A second example is shown in Figl 4 where the perfor- The IS-MC method can be also employed to estimate the
mances in term of WER vs SNR for the SNR-invariant IS-M@erformances of LDPC codes. FIg. 5 shows the results of IS
fast-simulation algorithm are plotted. In this case a défe simulations of a set of LDPC codes taken frdm|[29]./[30], in
set of BCH codes is considered, with a code fate 0.5. This  terms of WER vs SNR per uncoded bit, for= 0.1. All codes
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| (n, k) | # of generated wordg 108 F

(255, 231) 980
(511, 259) 1150
(1023, 513) 1560
(2047, 1024) 2030 1071
(4095, 2057) 2640 g
(8191, 7372) 1710 ;
(16383, 8200) 2410 T
(32767, 29497) 2040 2 100
(65535, 58991) 2100 £
Table | o
o
I

10° £

NUMBER OF GENERATED WORDS WITHS-MC SNR4NVARIANT
ALGORITHM. FOR EACHBCH CODES THE TOTAL NUMBER REQUIRED TO
DRAW AN ENTIRE PERFORMANCE CURVE IS REPORTED

10* |
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10-6 (&/No)as
—e—n =273,k =191 —o—n = 96, k = 48 (96.44.443)
—e—n =495, k = 433 (495.62.3.2915) ——n =999, k = 888 (999.111.3.5543)

10-10
n = 1908, k = 1696 (1908.212.4.1383) —&—n = 4376, k = 4094 (4376.282.4.9598)

Figure 6. Total number of generated words to obtain resnlfSig.[3.

theoretical results obtained in Sécl lIl.

The error correcting estimation algorithm gives the number
of correctable errors shown in Tdb] Il. Based on these esti-
mates, the 1IS-MC SNR-invariant method is employed to draw
the performance curves corresponding to the codes of Fig. 5.
‘ Results are reported in Fifl 7, that, as expected, shows the

(&s/No)as same performance results as shown in Elg. 5. The algorithm
101 6k 15 G6.4043) sets a st(_)p condition on the relativ_e error correspondirtgego
en— 495,k — 433 (495.623.2015) < — 999, k — 88 (999.111.3.5543) WER estimate at the higher SNR (in this c&$¢Ny = 15dB)
n = 1908, k = 1696 (1908.212.4.1383) ——n = 4376, k = 4004 (4376.282.4.9508)  and only WER estimates with relative error less than themgive

x = 0.1 are plotted. Results show also that the SNR-invariant

Figure 5. IS-MC basic fast-simulz?\tion algorithm for a setL@PC codes. algorithm correctly estimates WER for a large range of SNRs.

The code(273,191) is taken from|[[3], the others fron [29]. On the other hand, at very low SNRs, the approximation (21)

becomes sensibly different from the optimal solution. 19. B,

the relative errok vs &, /Ny is plotted, where becomes evident

[19], with a number of iterations equal to 20. Estimation ottha.t (22) gt low SNRs is not a good choice as the IS esum_ator

i has been performed with’ — 10° generated words in onevarlance_mcreases_up to_a level that_ makes the computéationa
complexity of IS simulation even higher that standard MC

iteration. The same number is the minimum enforced to obtain - . .
: . . method or, equivalently, the relative error much highemtha
a reliable estimate of the relative error.

The total ber of ted d functi fthe S e one obtained with the same number of generated words
. € total number ot generated words as function of tne th the standard MC method. Furthermore, it is interesting
is shown in Fig[B. It is interesting to note that, as for BC

. 1o note that the range of SNRs for which the relative error is
codes, at some point the number of generated words requi qp

! . . : fefow s = 0.1 is larger than it was expected, suggesting that
to achieve the prescribed relative error (ke= 0.1) reaches a the assumption in TH 4 is too strict
steady value. The flat region reflects the independence of tne '
IS estimator variance on the SNR and identifies the SNR range
over which the SNR-invariant algorithm can be effectively
applied. However, the range of SNRs for which the curve is In this paper an IS estimator for fast-simulation of linear
flat is different for each linear block code as it depends @n tibhlock codes with hard-decision decoding was presented. The
IS estimator variance which in turn depends on the struatfireestimator is optimal, i.e. it has minimum variance, withe t
the code and the decoding algorithm. Numerical results shogstriction of the parametric family of IS distributiong. is
also that the assumptiotp < 1 is too strict, as it would have possible to obtain huge gains w.r.t. the standard MC in te&fms
as consequence a flat region starting at higher SNR that thgemerated words. Although limited to the family of Bernoull
shown in Fig[®. Furthermore, the number of generated wordsstributions, numerical examples have shown that in most
in the flat region varies with the codes. Results confirm th@actical cases the gains obtained are significant. However
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are decoded with the bit-flip iterative algorithm described
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(96,48) | (273,191) | (495, 433)

(999, 888) | (1908, 1696) | (4376, 4004)

2 8

1 2 2

Table Il
ESTIMATED NUMBER OF CORRECTABLE ERRORS FORDPC CODES OFFIG. (H) WITH BIT-FLIP DECODING[19].
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——n =273k =191

—o—n = 495, k = 433 (495.62.3.2915)
n = 1908, k = 1696 (1908.212.4.1383) ——n = 4376, k = 4094 (4376.282.4.9598)

(&v/No)an

—o—n =96, k = 48 (96.44.443)

——n =999, k = 888 (999.111.3.5543)

Figure 7. IS-MC SNR-invariant fast-simulation algorithior &2 set of LDPC
codes withg = (¢ + 1) /n and¢ given by Tableéll. The cod¢273,191) is
taken from [[3], the others from [29].

100 ¢

relative error K

—e—n =273,k =191

—e—n =495, k = 433 (495.62.3.2915)
n = 1908, k = 1696 (1908.212.4.1383) —=—n = 4376, k = 4094 (4376.282.4.9598)
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(&/No)as

——n = 96,k = 48 (96.44.443)

——n =999, k = 888 (999.111.3.5543)

14

15

Figure 8. Relative error as function of,/No),z corresponding to
WER estimations obtained by application of the SNR-invaregorithm and

reported in Fig[l7.

the effective gain depends on the code and/or decoder per-
formances in terms of WER. The advantage of the proposed
methods is the low computational complexity and simplicity
since little modification w.r.t. the standard MC simulatiizn
required. Finally, higher gains are achievable when the IS
estimator does not depend on the cross-over probability of
the channel being simulated, typically at high SNR.
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APPENDIXA
PROOF OFLEMMA [1I

The IS estimator can be rewritten as weighted sum indexed
by the weights of the error patterns

N 1 &
Prs (e) = + > NW; (27)
i=t+1

where, for ease of notation, we dendte(i; p, ) asW;; N; is

the number of words with errors;t is the maximum number

of errors that the decoder can corredt;is the total number

of generated samples. Therefore the variance can be written
as

1 n
varg N Z NZW1 (28)
i=t+1

varg {PIS (e)}

1 n
= m Z Varq [NlWZ], (29)
i=t+1
since generated samples constitute a realization of ah i.i.
sequence of random variables. The variance under the sum-
mation can be also expressed as

N
varg [N;W;] = var, Z I; (z;) W (wt (z5) ; p, q) |(30)
j=1
[~
= varg Iz (Zj) Wl (31)
_J:1
N
= Whvar, Z I; (z;) (32)
Jj=1

N
= Wi2 Z varg [Ii (Zj)] (33)
j=1
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whereI; (-) is the indicator function that returns 1 when theloes not depend an After some manipulations the derivative
event z; contains: errors” occurs. Note that the terf; is of W (i;p, ¢) W.r.t. ¢ can be written as

deterministic as it does not depend on the random variaple _

j=1,...,N. Now define oW (isp,q) 0 (Pi(l—p)nl>

9¢  9q\g(1-q)""
i) £ ZIi (Z)f(ZQQ) (34) i n—i
7 —wira (L-120). @
as the joint probability that a decoding error occurs with 3By substituting [4B) into[d1) we obtain

error pattern of weight, when the IS distribution is a Bernoulli

with parameter;. The variance of the estimator can be written 0 -
——varg {PIS (e)} =

as 0q
J— T n—1
== Wisp,q) | - — Py (€1
varg [N;W;] = WQZP e;i) (1 — P, (e;i)) (35) N i:tZH (6:7,9) <q 1 - Q> b (1)
. 1 « i —ng ) )
= NWqu(v 1) (1= Py (e34)) (36) - N Z 1- )W(z;p,q)Pp(e;l). (44)
k=it 4 4
The probability P, (e; i) can also be expressed in terms of
P, (e;i). By definition APPENDIXC
PROOF OFLEMMA 3
P, (e;i) = Z*’i (z) f (z;p) (37) The convexity is proven by showing that
g—;varq {PIS ()] > 0. The second derivative of the
- I ( ) . 38) Vvariance is evaluated as follows (starting from Hqgl (19)) :
f 0 f(z;q) (38)
_ 9 2
= Py (e319) (39) a—q2varq [PIS (e)] =
Finally, the variance of the IS estimator is 0 I «— i—-n
= D W (i5p,q) Py (e51)
dq | N 47 a(1-q)
_ 15 w2 i n
var [PIS ] =2 Z NP, (e;4) (1 — Py (e51)) _ 1 Z P, (e:)
i=t+1
= — W2P, (e;i) (1 — P, (e;4)) [8 ( i—ng > , i—ng  OW(i;p,q)
szq’ L = Wp,o+ :
i=t+1 9g \q(1—q) tip.g) q(1—q) 9q
= W2P, (e;i W2P, (e;i) )
N itZJrl i Fa(esd) - N itZJrl i Fa (o) After some manipulations, derivatives in_[45) can be wnitte
as
:—ZWP e;i) ZP 622. (40) Q(i—nq) B i (2 —1) = ng? (45)
i=t+1 i=t+1 dq \ q (1 _ Q) [q(l _ q)]2
ow (i;p,q) N i n—i
APPENDIXB 94 = —W(ip.q) . 1.4 (47)

PROOF OFLEMMA [2

= Wi () @)

The derivative ofvar, {PIS (e)] can be written as
After plugging [46) and{48) intd_(45) the following expréss

is obtained
—var, | Prs (e)| = .
6q { 1o } a—zvarq [P]S (8)} =
9 <l zn: (W (i:p,q) Py (e34) — P (e-i)2)> o n
0q N2 o o :—%ZP(ez)
_i n 8W(z,p,q) i i=t+1 ,
— Ni:;ﬂ o P, (e;i), (41) lz ([Qq(l— 1) )—]2an W Giprq) — (qz(l— m;)) ~W(i;p,q)]
q\l —q o
where _ 1 Z": P, (e:d) W (i; ){M} (49)
Py(e:i) 2 I (2) f (2:p) (42) N A Ve

i=t+41



where&(q,i) £ [(i —ng)? + ng® —i(2¢ — 1)]. The sign of
the second derivative depends only on the teifm i) that
can be rewritten as

&(q,1)

(1]

2 _2ing+n?¢* +ng® — 2ig+i (50)

n(l4+n)g®—2(n+1)q+i(l+i) (61 3

(3]
(4]

The discriminant of the quadratic inequaliff(q,i) > 0 is
given by

A (—2i (n+1)°—4n(14+n)i(l+i) (52) [
= 4(n+1)2 —4ni(n+1)(i+1) (53) [6]
= 4diln+1)[iln+1)—n(i+1) (54) 71
= 4iln+1)(ni+i—ni—n) (55)
= 4i(n+1)(i—n). s6)
Fori < n we haveA < 0, therefore the corresponding terms[gl

in the sum that defines the second derivative are all positive
For i = n the term¢ (¢, n) is given by [

¢ (g,n) (n—ng)* +ng®> —n(2¢—1)  (57)
= n(l-¢?+n(*—2¢+1) (58) [11]
= (n+1)(1-q)? (59)

[12]
which implies¢ (¢,n) > 0. The property¢ (¢, n) > 0 readily
implies convexity ofvar, [PIS (e)].

[13]

APPENDIXD

PROOF OFTHEOREM[H [14]

The best IS distribution in the parametric family of15]
Bernoulli distributions can be obtained by searching the pa
rameterg that minimizes the variance of the IS estimafor (165?6
From [22) we have that the only term that dependsgdn
W (t + 1;p, q), denoted for convenience &8, 1. In order to [17]
minimize the variance of the IS estimator the teif,; has

to be to minimized, hence [18]

arg min var |:p]5‘ (e)} = argmin W; 4 (60)

q q [19]
or equivalently
R [20]
arg mqin var {PIS (e)] = arg mqin In Wiy

= argmax|In [q”l (1-— q)n_t_l} . (61) o
q

The solution is obtained by equating the derivative of
In |¢gt*t (1 — q)"_t_l} to zero and, after some manipulationsyy;

results to be L1
q=— (62)
n

The choice of; according to the above equation minimizes the
variance of the IS estimator. Note that 0 andg = 1 cannot

be solutions of the minimization problem, ass always non |24
negative and upper bounded b, ;,, — 1) /2], whered,,;,,

is the minimum distance of the code that is always less tth
n. From [20) it is immediate to see that for=0 andq =1

the variance of the IS estimator presents vertical asyraptot

[23]

11

REFERENCES

M. C. Jeruchim, P. Balaban, and K. S. Shanmugdgimulation of com-
munication systems: modeling, methodology, and techsiqi@duwer
Academic, 2nd ed., 2002.

W. Tranter, Principles of communication systems simulation with wire-
less applications Prentice Hall, 2004.

R. Morelos-ZaragozaThe art of error correcting coding John Wiley,
2006.

S. Benedetto and E. BiglieriPrinciples of digital transmission: with
wireless applications Kluwer Academic, 1999.

J. Proakis and M. SalehiPigital Communications McGraw-Hill
International Edition, McGraw-Hill Higher Education, 280

R. Gallager, “Low-Density Parity-Check CodedRE Transactions on
Information Theoryvol. 8, pp. 21-28, Jan. 1962.

D. J. MacKay, “Good Error-Correcting Codes Based on V8parse
Matrices,” IEEE Trans. Inf. Theoryvol. 45, pp. 399-431, Mar. 1999.
S. Lin and D. CostelloError control coding: fundamentals and appli-
cations Pearson-Prentice Hall, 2004.

T. Richardson, “Error floors of LDPC codes,” iroc. of the 41st An-
nual Allerton Conference on Communication, Control, andrpating
vol. 41, pp. 1426-1435, 2003.

10] S. Chilappagari, S. Sankaranarayanan, and B. VasigptB-loors of

LDPC Codes on the Binary Symmetric Channel,” Bmoc. of IEEE
International Conference on Communications 2006 (ICC 2006l. 3,
pp. 1089-1094, June 11-15, 2006.

B. P. Smith and F. R. Kschischang, “Future Prospect$-f€ in Fiber-
Optic Communications fJEEE J. Sel. Topics Quantum Electrowol. 16,
pp. 1245-1257, Sept. 2010.

S. Ghosh and P. D. Lincoln, “Dynamic LDPC Codes for Narabs
Memory with Varying Fault Arrival Rates,” irProc. of the 6th Inter-
national Conference on Design & Technology of Integratedte&ys in
Nanoscale Era (DTIS)Apr. 2011.

P. Smith, M. Shafi, and H. Gao, “Quick Simulation: A Revieof
Importance Sampling Techniques in Communications SysteltBE&EE
J. Sel. Areas Commuyrvol. 15, pp. 597-613, May 1997.

R. Y. Rubinstein and D. P. Kroes&imulation and the Monte Carlo
Method Wiley, 2nd ed., 2008.

R. Srinivasan,Jmportance Sampling: Applications in Communications
and Detection Springer-Verlag, 2002.

] R.Y. Rubinstein and D. P. Kroeséhe Cross-Entropy Method: A Unified

Approach to Monte Carlo Simulation, Randomized Optimizatand
Machine Learning Springer Verlag, 2004.

J. S. Sadowsky, “A New Method for Viterbi Decoder Sintida Using
Importance Sampling JEEE Trans. Communvol. 38, no. 9, pp. 1341—
1351, 1990.

B. Xia and W. E. Ryan, “On Importance Sampling for LineBliock
Codes,” inProc. of IEEE International Conference on Communications
2003 (ICC 2003) pp. 2904-2908, May 11-15, 2003.

A. Mahadevan and J. M. Morris, “SNR-Invariant ImporteanSampling
for Hard-Decision Decoding Performance of Linear Block EetIEEE
Trans. Commun.vol. 55, pp. 100-111, Jan. 2007.

C. Berrou, S. Vaton, M. Jezequel, and C. Douillard, “Garing the
Minimum Distance of Linear Codes by the Error Impulse Methaal
Proc. of the Global Telecommunications Conference 20020BECOM
2002) vol. 2, pp. 1017-1020, Nov. 17-21, 2002.

X.-H. Hu, M. P. Fossorier, and E. Eleftheriou, “On ther@Quutation of
the Minimum Distance of Low-Density Parity-Check Codes,"Hroc.
of IEEE International Conference on Communications 20G4(R004)
vol. 2, pp. 767-771, June 20-24, 2004.

F. Daneshgaran, M. Laddomada, and M. Mondin, “An akhoni for
the computation of the minimum distance of LDPC codésjiopean
Transactions on Telecommunication®l. 17, no. 1, pp. 57-62, 2006.
M. Punekar, F. Kienle, N. Wehn, A. Tanatmis, S. Ruzikad &1. W.
Hamacher, “Calculating the minimum distance of linear kloodes via
Integer Programming,” ifProc. of the 6th International Symposium on
Turbo Codes & lterative Information Processingp. 329-333, IEEE,
Sept. 2010.

A. Keha and T. Duman, “Minimum distance computation dDRC
codes using a branch and cut algorithtsEE Trans. Communvol. 58,
pp. 1072-1079, Apr. 2010.

] L. Mendo and J. M. Hernando, “A simple sequential stogpiule for

Monte Carlo Simulation,1IEEE Trans. Communvol. 54, pp. 231-241,
Feb. 2006.



[26] G. Romano, A. Drago, and D. Ciuonzo, “Sub-optimal intpoce
sampling for fast simulation of linear block codes over B3armels,”
in Proc. of the 8th International Symposium on Wireless Conication
Systems (ISWCS 201pp. 141-145, Nov. 2011.

S. Wicker, Error control systems for digital communication and stagag
Prentice Hall, 1995.

E. Berlekamp Algebraic Coding TheoryNo. M-6, Aegean Park Press,

[27]
(28]
[29]

(30]

1984.

D. J.

http://www.inference.phy.cam.ac.uk/mackay/codes/dil.
R. H. Morelos-Zaragoza, “The art of error correctinglc.” http://the-
art-of-ecc.com.

MacKay, “Encyclopedia of sparse graph codes|

12

Domenico Ciuonzo (S'11was born in Aversa (CE),
Italy, on June 29th, 1985. He received the B.Sc.
(summa cum laudethe M.Sc. summa cum laude
degrees in computer engineering and the Ph.D. in
electronic engineering, respectively in 2007, 2009
and 2013, from the Second University of Naples,
Aversa (CE), Italy. In 2011 he was involved in
the Visiting Researcher Programme of the former
NATO Underwater Research Center (now Centre
for Maritime Research and Experimentation), La
Spezia, Italy; he worked in the "Maritime Situation

Awareness" project. In 2012 he was a visiting scholar at tleetical and

Computer Engineering Department of University of Conreitti(UConn),

Storrs, US. He is currently a postdoc researcher at Dept.ndtistrial

and Information Engineering of Second University of Napleiss research
interests are mainly in the areas of Data and Decision Fusstatistical

Signal Processing, Target Tracking and Probabilistic Gicgb Models. Dr.

Ciuonzo is a reviewer for several |IEEE, Elsevier and Wileyrj@ls in the

areas of communications, defense and signal procesdiadhas also served
as reviewer and TPC member for several IEEE conferences.

Gianmarco Romano (M’11) is currently Assistant

Professor at the Department of Information Engi-
neering, Second University of Naples, Aversa (CE),
Italy. He received the “Laurea” degree in Electronic
Engineering from the University of Naples “Federico
II” and the Ph.D. degree from the Second University
of Naples, in 2000 and 2004, respectively. From

2000 to 2002 he has been Researcher at the Na-

tional Laboratory for Multimedia Communications
(C.N.L.T.) in Naples, Italy. In 2003 he was Visiting
Scholar at the Department of Electrical and Elec-

tronic Engineering, University of Conncticut, Storrs, US8ince 2005 he
has been with the Department of Information Engineeringo8é University
of Naples and in 2006 has been appointed Assistant Profddsoresearch
interests fall within the areas of communications and dignacessing.



	I Introduction
	II System model
	II-A Monte-Carlo simulation
	II-B Importance sampling

	III Sub-optimal Importance Sampling
	IV Algorithms
	IV-A Basic fast-simulation algorithm (IS-MC basic)
	IV-B SNR–invariant fast-simulation algorithm
	IV-C Error-correcting capability estimation algorithm

	V Examples
	VI Conclusions
	VII Acknowledgments
	Appendix A: Proof of Lemma ??
	Appendix B: Proof of Lemma ??
	Appendix C: Proof of Lemma ??
	Appendix D: Proof of Theorem ??
	References
	Biographies
	Gianmarco Romano (M'11)
	Domenico Ciuonzo (S'11)


