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Abstract—In this paper the choice of the Bernoulli distribution
as biased distribution for importance sampling (IS) Monte-Carlo
(MC) simulation of linear block codes over binary symmetric
channels (BSCs) is studied. Based on the analytical derivation
of the optimal IS Bernoulli distribution, with explicit cal culation
of the variance of the corresponding IS estimator, two novel
algorithms for fast-simulation of linear block codes are proposed.
For sufficiently high signal-to-noise ratios (SNRs) one of the
proposed algorithm is SNR-invariant, i.e. the IS estimatordoes
not depend on the cross-over probability of the channel. Also,
the proposed algorithms are shown to be suitable for the
estimation of the error-correcting capability of the code and the
decoder. Finally, the effectiveness of the algorithms is confirmed
through simulation results in comparison to standard Monte
Carlo method.

Index Terms—Binary symmetric channel (BSC), importance
sampling (IS), linear block codes, Monte-Carlo simulation.

I. I NTRODUCTION

T HE Monte-Carlo (MC) simulation is a general method to
estimate performances of complex systems for which an-

alytical solutions are not available or mathematically tractable
and it is extensively used in the analysis and design of
communications systems [1], [2]. The MC method has also
been extensively employed to evaluate the performances of
forward-error-correcting (FEC) codes with different decoding
algorithms, in terms of probability of bit error (BER) or word
error (WER), for which, in many cases, is not possible to
obtain exact closed-form expressions [3]–[5]. In general an
upper bound is available for any linear block code, however
the error correcting capability of the code is required [4],[5].
The MC method is also used as verification tool in the design,
development and implementation of decoding algorithms.

The computational complexity of the MC method is given
by the number of generated random samples that are needed
to obtain a reliable estimate of the parameters of interest.
In the case of FEC codes, estimation of low BER or WER
requires a high number of generated codewords to obtain
results of acceptable or given accuracy, thus leading to pro-
hibitive computational complexity. Furthermore, for verylong
codes the computational complexity is high even for small
number of generated words, since the decoding complexity
increases the simulation time considerably. A practical case
is represented by low-density parity-check (LDPC) codes [6]–
[8], for which it is crucial to examine the performances at
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very low probability of error in order to avoid error floors, i.e.
the rate of decrease of the probability of error is not as high
as at lower SNRs (i.e. in the waterfall region) [9], [10]. One
of the impediments in the adoption of LDPC codes in fiber-
optics communications, where the order of magnitude of the
probability of error of interest is10−12 and below, has been the
inability to rule out the existence of such floors via analysis or
simulations [11]. While for some LDPC codes it is possible
to predict such floors, in many other cases the MC method
is the only tool available. LDPC codes are also employed,
for example, in nanoscale memories [12], where a majority-
logic decoder is chosen instead of soft iterative decoders as
these may not be fast enough for error correction; thereforean
efficient method to estimate the performances of hard-decision
decoding at very low WERs is extremely desirable.

Several mathematical techniques have been proposed in the
literature in order to reduce the computational complexity
of the MC method and estimate low WERs with the same
accuracy1 [13]. Importance sampling (IS) is regarded as one
of the most effective variance-reduction techniques and itis
widely adopted to speed up simulation of rare events, i.e.
events that occur with very low probability [14]. The idea isto
increase the frequency of occurrence of rare events, by means
of a biased distribution. The optimal biased IS distribution is
known, but it cannot be used in practice since it depends on
the parameter to be estimated itself. Therefore, a number of
sub-optimal alternatives have been developed in the literature
[13], [15]. Some of them are obtained by restricting the search
of the biased distribution to a parametric family of simulation
distributions; then the parameters are derived as minimizers
of the estimator variance or other related metrics, such as the
cross-entropy [14], [16]. The choice of the family of biased
distribution is somewhat arbitrary and may depend on the
specific application of the IS method [14]. In the case of
FEC, the rare event corresponds to the decoding error and the
IS method, in order to be effective, needs to generate more
frequently the codewords that are likely to be erroneously
decoded. The mathematical structure of the code, or some
performance parameter of the code, such as the minimum
distance and/or the number of correctable errors or, in the

1One possibility to cope with the computational complexity of the MC
method is to adopt more powerful hardware in order to reduce the generation
and processing time of each codeword; this might constitutea practical
solution to reduce the overall simulation time. Nevertheless, the increased
system complexity requires more time per sample and compensates the
reduction of execution time, thus limiting the achievable gain.
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case of LDPCs, the minimum size of the absorbing sets in
their Tanner graphs, may be taken into account to choose a
good family [17], [18]. In [19], an SNR-invariant IS method is
proposed, which, though independent of the minimum distance
of the code, provides better estimates when the error-correcting
capability of the decoder is available. In this paper we consider
generic linear block codes and we do not make any assumption
on specific parameter or structure of the code.

In this paper a specific problem is considered: (i) which
is the best joint independent Bernoulli distribution that can
be used as biased distribution for IS estimation of block
linear code performances and (ii) what are the strengths and
limitations of this solution. The choice of such family of
distributions is arbitrary and it is motivated by the fact that
the random generator required for the IS method is of the
same type of that required in the standard MC method and
hence is made because of its simplicity rather than taking
into account the specific structure or properties of codes. On
the other hand, since the study is restricted to the parametric
family of the joint independent Bernoulli distributions, the gain
in computational complexity that is obtained is limited by this
choice, as sub-optimal IS distributions that lead to smaller IS
estimator variance may exist.

Another performance measure for FEC codes is the mini-
mum distance of the code and/or the error correcting capability
of the code or decoder, i.e. the maximum number of errors
that a specific couple (code, decoder) are able to correct. The
minimum distance of codes can be estimated to overcome the
computational complexity required by the exhaustive search,
which increases exponentially with the length of the informa-
tion word. In [20] the error impulse method is proposed for
linear codes and is based on the properties of the error impulse
response of the soft-in soft-out decoder and its error-correcting
capability. Due to the sub-optimality of the iterative decoder
employed with LDPC codes, the error impulse method can
lead to wrong estimates of minimum distance. For this class
of codes the method has been improved in [21] and [22]. More
recently, integer programming methods have been used to
calculate either the true minimum distance or an upper bound
[23]. Alternatively, a branch-and-cut algorithm for finding the
minimum distance of linear block codes has been proposed in
[24]. In this paper a novel MC method to estimate the error
correcting capability of the code/decoder is derived.

Summarizing, the main contributions are the following:
(i) analytical derivation of the optimal importance sampling
distribution among the family of Bernoulli distributions,with
explicit calculation of the variance of the corresponding IS
estimator and proof of convexity; (ii) derivation of two al-
gorithms for fast-simulation, one to estimate numericallythe
optimal parameter of the importance sampling distributionand
one that is invariant to SNR; (iii) derivation of one algorithm
for efficiently estimate the number of correctable errors. Some
illustrative numerical examples of application of the proposed
algorithms, for BCH and LDPC codes, are also provided.

The proposed fast-simulation algorithms achieve large gains
over standard MC simulation for a vast variety of communi-
cation systems where linear block codes are employed over
binary symmetric channels (BSC). They are simple to im-

BSC

source encoder BPSK

n

demodulator decoder destination
m c x y z m̂

Figure 1. Illustrative block scheme of a communication system.

plement because they require only small modifications to the
standard MC method, as the same random sample generator
can be maintained and only the parameter of the Bernoulli
generator is changed. Furthermore, in most practical situations
the SNR-invariant version of the algorithm allows to efficiently
obtain entire curves of performance, e.g. WERs corresponding
to various SNRs,by just running one IS simulation at one
sufficiently high SNR. In such a case the gain with respect
to (w.r.t.) the standard MC simulation is even higher, as the
number of simulation runs is dramatically reduced to one.

The outline of the paper is the following: in Sec. II the
system model is introduced and some preliminaries on MC
and IS method are given; the main results of the paper are
presented in Sec. III; in Sec. IV fast-simulation algorithms are
formulated and some examples are shown in Sec. V; finally,
in Sec. VI some concluding remarks are given; proofs are
confined to the appendices.

Notation - Lower-case bold letters denote vectors; the
function wt (z) returns the number of 1’s in the binary
vector z; E [·] and var [·] denote expectation and variance
operators, respectively;⌈·⌉ denotes the ceiling operator;P (·)
andf (·) are used to denote probabilities and probability mass
function (pmf);B (i, p) denotes the pmf of then-dimensional
multivariate independent Bernoulli variablez, with parameter
p, i.e. f (z; p) = pi (1− p)

n−i, where i = wt (z); Ep [·]
and varp [·] denote expectation and variance operators with
respect to the joint Bernoulli distribution of parameterp,
respectively; finally, the symbols∼ and⊕ mean “distributed
as” and “modulo-2 addition”, respectively.

II. SYSTEM MODEL

A communication system where binary codewords are trans-
mitted over a BSC with transition probabilityp is shown in
Fig. 1. A codewordc, belonging to the block codeC ⊂ Xn =
{0, 1}

n is obtained by encoding message wordm ∈ X k;
at the output of the channel a wordz ∈ Xn, corrupted by
noise, is observed. The decoder’s task is to possibly recover m
given the observedz. The BSC may represent, for example, an
additive white Gaussian noise (AWGN) channel with binary
phase-shift keying (BPSK) modulation and hard-decision at
the receiver, as shown in Fig. 1.

Performances of linear block codes over noisy channels are
measured by the probability of decoding error, i.e. the prob-
ability that a decoded word is different from the transmitted
message word, because the block code was not able to correct
the errors due to the channel. This probability is also called
probability of word error or WER. This event occurs when
the error pattern is not a co-set leader (under the assumption
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that syndrome decoding is employed). Calculation of WER is
often very complex and some upper bounds are available [4].

The WER, denoted asP (e) hereinafter, can be expressed
in terms of an indicator functionI(z) that equals to 1 when
the received word is erroneously decoded and 0 otherwise; its
explicit form is given as

P (e) =
∑

z∈Xn

I (z) f (z) = Ep [I (z)] . (1)

Note that the indicator function hides the specific decoding
algorithm employed. The effect of the BSC channel is to flip
some bits, which can be mathematically expressed byz =
c ⊕ e, with e ∼ B (wt (e) , p). Since the code is linear and
the channel symmetric, without loss of generality (w.l.o.g.)
the transmission of the codeword of all zeros is assumed, i.e.
c = 0, and hence the output of the channelz = e, i.e. equals
the error patterne.

A. Monte-Carlo simulation

In the MC simulation method the WER is estimated as
follows

P̂MC (e) =
1

N

N
∑

i=1

I (zi) , (2)

where zi are generated according the distribution of the
random variablez. It is known that the MC estimator (2) is
unbiased and its variance

var
[

P̂MC (e)
]

=
P (e) (1− P (e))

N
(3)

is inversely proportional toN (see, for example, [14]), then it
can be made arbitrarily small asN grows, thus increasing the
accuracy of the estimator. Rather than studying the variance
it is often preferable to consider as accuracy of the estimator
the relative error [14], defined as

κ ,

√

var
[

P̂MC (e)
]

P (e)
. (4)

In standard MC simulationκ becomes

κ =

√

1− P (e)

P (e)N
, (5)

and, for small probabilities of error (P (e) ≪ 1), it is well
approximated as

κ ≃
1

√

P (e)N
. (6)

It follows that the number of generated samples needed to
achieve a givenκ is

N ≃
1

κ2P (e)
. (7)

Eq. (7) shows that the number of samples needed to obtain
a given κ is inversely proportional toP (e) and becomes
soon very high and often impractical asP (e) decreases. For
example with a relative error of10%, at leastN ≃ 102/P (e)
samples are needed to obtain the desired accuracy.

Algorithm 1 Standard MC simulation algorithm

totWords = 0

WERre = 1

while (WERre > re) and (totWords <

maxNumWords) do

z = rand(n, numWords) < p { BSC

output }

m̂ = decode(z) { decoder output }

if wt(m̂) > 0 then

totWErr = totWErr + 1

end if

totWords = totWords + numWords

if totWords > minNumWords then

update WERre { relative error }

end if

end while

Algorithm 1 represents a generic implementation of MC
simulation for estimation ofP (e) in BSCs [1], [14]. The al-
gorithm depends on three parameters:re, minNumWords,
maxNumWords. The first parameter,re, is the relative error
and it is computed according to (5) or its approximation (6),
whereP (e) is replaced byP̂MC (e), i.e. the current estimate.
The second parameter,minNumWords, represents the mini-
mum number of words needed to obtain a sufficiently accurate
estimate ofκ. Once a confident estimate ofκ is obtained,
a stop condition on the relative error can be employed. In
practice in most cases a relative error of10%, i.e.κ = 0.1, may
suffice, as often only the order of magnitude of the estimate is
of interest. Finally,maxNumWords represents the maximum
number of generated words and it is used to implement a
second stop condition that prevents the simulation to run too
long.

Alternative stopping rules for MC simulations can also be
considered. One common rule consists of fixing the number
of generated word before running the simulation and the
accuracy is estimated at the end of simulation [1]. Another
rule, analyzed in [25], is based on the number of errors: when
a given number has been reached, then the simulation stops.
The advantage of this second rule is that it does not require
to know the sample size and can achieve a given accuracy.

B. Importance sampling

In IS simulation the WER is expressed by the following
equivalent of (1)

P (e) =
∑

z∈Xn

I (z)
f (z)

f∗ (z)
f∗ (z) , (8)

wheref∗ (z) is a different pmf for which the sum in (8) exists.
The corresponding estimator is

P̂IS (e) =
1

N

N
∑

i=1

I (zi)
f (zi)

f∗ (zi)
, (9)

=
1

N

N
∑

i=1

I (zi)W (zi) (10)
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wherezi ∼ f∗ (·) and the ratio

W (z) ,
f (z)

f∗ (z)
(11)

is referred to as the likelihood ratio or weighting function.
The estimator in (10) is called theIS estimatorand is a
generalization of the simple MC estimator in (2), that can
be obtained as special case (i.e.f∗ (z) = f (z)).

The distributionf∗ (z) is called the IS or biased distribution
and as long as the random generation of samples is under
our control, as in the case of MC simulation, it is possible
to choose any distribution. However, it is crucial to choose
the IS distribution such that the variance of the IS estimator
is minimized. The optimal distribution is known from theory
(see for example [13], [14]) and it is given by

f∗
opt (z) =

I (z) f (z)

P (e)
. (12)

This distribution leads to zero variance: this comes at no
surprise sincef∗

opt (z) containsP (e) (which is the true value
of the parameter being estimated). For this reason, the optimal
solution cannot be used for MC simulation. Nonetheless,
significant gains in simulation time can be achieved with
sub-optimal biased distributions. Several methods to find sub-
optimal biased distributions have been developed and the in-
terested reader can refer to the comprehensive tutorial in [13].
One important goal in searching a sub-optimal IS distribution
is to obtain a probability distribution from which samples can
be easily generated and that, at the same time, provides a
weighted estimator with as low variance as possible.

III. SUB-OPTIMAL IMPORTANCE SAMPLING

The main problem in the design of IS simulations is to
find sub-optimal distributions that lead to low variance of the
IS estimator. The problem can be simplified if the search is
limited within a parametric family of distributions, sincethe
problem can be recast into a standard optimization w.r.t. a
finite number of parameters. Also, a proper choice of the
parametric family can reduce the computational complexity
due to the generation of random samples. In this paperthe
family of Bernoulli distributions with parameterq is consid-
ered, thus maintaining the simplicity of random generation
of error patterns, since no change of the random generator
is required. In practice the WER for a BSC with cross-over
probabilityp is estimated by simulating the transmission over
a different BSC with a different cross-over probability, denoted
with q. Within this restriction the optimalq, denoted̂q, is the
cross-over probability that minimizes the IS estimator variance
over all possible BSCs. Hereinafter, a general formula forq̂
is derived for any linear block code and for any decoding
algorithm.

Consider the parametric family of joint Bernoulli distribu-
tionsB (wt (z) , q) generated by varyingq as IS distributions.

The IS estimator for WER in (9) specializes to

P̂IS (e) =
1

N

N
∑

i=1

I (zi)
f (zi; p)

f (zi; q)
(13)

=
1

N

N
∑

i=1

I (zi)
pwt(zi) (1− p)

n−wt(zi)

qwt(zi) (1− q)
n−wt(zi)

(14)

=
1

N

N
∑

i=1

I (zi)W (wt(zi); p, q) , (15)

wherezi ∼ B (wt (z) , q). Under the assumptionc = 0, the
estimator can be equivalently expressed as

P̂IS (e) =
1

N

N
∑

i=1

I (ei)W (wt (ei) ; p, q) , (16)

where ei ∼ B (wt (e) , q). The general expression of the
variance for the above estimator is

varq

[

P̂IS (e; q)
]

=
Eq

[

I (e)W 2 (wt (e) ; p, q)
]

− P (e)
2

N
(17)

and clearly depends onq through the weighting functionW (·)
[13]. Therefore, the problem is to find the parameterq that
minimizes (17), i.e.

q̂ = argmin
q

varq

[

P̂IS (e; q)
]

. (18)

The expression of the IS estimator variance in the general
case of linear block codes is given by the following lemma.

Lemma 1. The variance ofP̂IS (e; q) with importance sam-
pling distribution in the parametric familyB (i, q) is given by

varq

[

P̂IS (e; q)
]

=
1

N

n
∑

i=t+1

(

W (i; p, q)Pp (e; i)− Pp (e; i)
2
)

(19)
whereW (i; p, q) is the weighting function of the IS estimator;
Pp (e; i) is the joint probability of decoding error withi errors
over a BSC with cross-over probabilityp; t is the error-
correcting capability of the decoder.

Proof: The proof is given in Appendix A.
The above lemma provides a general expression of the

variance of the IS estimator that depends on the specific de-
coding algorithm employedonly through the error-correcting
capability of the decodert. This parameter represents the
maximum number of errors that the decoder is able to correct
and depends on the structure of the linear block code and the
decoding algorithm [4].

In order to solve the problem given by (18) we need to
search for the equilibrium points of (19) w.r.t.q. The fol-
lowing lemma gives a closed-form expression of the variance
derivative.

Lemma 2. The derivative of the variance of the IS estimator
(16) is given by

∂

∂q
varq

[

P̂IS (e)
]

= −
1

N

n
∑

i=t+1

i− nq

q (1− q)
W (i; p, q)Pp (e; i) .

(20)



5

Proof: The proof is given in Appendix B.
The solution of the minimization problem (18) can be ob-

tained by equating to zero∂
∂q
varq

[

P̂IS (e)
]

if the IS variance
is convex with respect to the variableq. The following lemma
states that the second derivative of the IS estimator is always
positive and then the variance of the IS estimator is convex.

Lemma 3. The IS estimator (16) is a convex function with
respect to the variableq.

Proof: The proof is given in Appendix C.
The following theorem gives the general expression for the

value of q that minimizes the variance of the IS estimator
and for which the estimation requires the minimum number
of generated samples for a fixed relative error.

Theorem 4. The parameterq that minimizes the variance of
the IS estimator given by (16) is

q̂ =
1

n

∑n

i=t+1 iW (i; p, q̂)Pp (e; i)
∑n

i=t+1 W (i; p, q̂)Pp (e; i)
. (21)

Proof: The proof is obtained by solving
∂
∂q
varq

[

P̂IS (e)
]

= 0 and exploiting Lemma 2.
The result in (21) defines implicitly the optimalq and

therefore it is not possible to obtain a closed-form solution.
In some cases, however, (21) assumes a simplified expression.
Whennp ≪ 1 the following approximation holds [4]

varq

[

P̂IS (e)
]

≃
1

N
W (t+ 1; p, q)Pp (e; t+ 1)

−
1

N
Pp (e; t+ 1)

2 (22)

and q̂ can be expressed explicitly, as stated by the following
theorem.

Theorem 5. Under the approximationnp ≪ 1, the parameter
q that minimizes the variance of the IS estimator (16)is

q̂ ≃
t+ 1

n
. (23)

Proof: The proof is given in Appendix D.
A notable consequence of Theorem 5 is the independence

of q̂ from the cross-over probabilityp (which in turn depends
on the SNR), therefore leading to an SNR-invariant IS-MC
simulation. In this case estimation of WERs for a whole range
of SNRs can be obtained by running one IS-MC simulation
with a BSC with parameter̂q given by (23), in the place of one
simulation for each SNR. Thus the whole performance curve
WER versus SNR can be obtained with a dramatic reduction
of the number of samples to be generated. It is also interesting
to note that for the Hamming code(7, 4) Eq. (23) givesq̂ =
2/7 = 0.2857 which confirms the value of̂q that Sadowsky
found empirically in [17]. Furthermore, Sadowsky noted also
the SNR invariance of̂q with respect top, without giving,
unfortunately, any explanation.

Note also that for short codes the assumptionnp ≪ 1 holds
for a large range of SNRs and then (23) is valid for values of
p of interest, while for long codes the same assumption holds
only for high SNRs and (23) may not be useful in practice.

The result of Theorem 5 can also be used conversely to
estimatet if an estimateq̂ is available. In the next section
a method to estimatêq is provided and thent. This method
is particularly useful for long codes when exhaustive search
for dmin becomes computationally very intensive and/or the
decoder is not optimal and no explicit relationship between
dmin and t is known.

IV. A LGORITHMS

The results presented in the previous section are exploited
here to formulate two different IS-MC simulation algorithms
to obtain performance curves in terms of WER vs SNR
and an algorithm to estimate the error correcting capability
of the decoder. The two fast-simulation algorithms compute
the the WER estimate by means of the same IS estimator
(16) and they differ only in the choice of the Bernoulli IS
distribution parameterq. The first algorithm, called basic fast-
simulation algorithm (IS-MC basic), estimates the optimal
valueq̂ and then proceeds with WER estimation. It is the most
general algorithm since no specific assumption is required.
The second algorithm assumesq = (t+ 1) /n, a choice
based on Th. 5, and sinceq is independent on the current
SNR, the algorithm is called SNR-invariant IS-MC algorithm.
Under the assumptionnp ≪ 1 the SNR-invariant IS-MC
algorithm is computationally more efficient with respect to
the IS-MC basic, as the same generated samples can be used
to estimate WERs at different SNRs. The choice between the
two algorithms depends on the code lengthn and cross-over
probabilityp (or, equivalently, the range of SNRs of interest)
and therefore on whether the assumptionnp ≪ 1 holds or not.

Finally, the third algorithm is also based on the result of
Th. 5 and does not estimate the WER, but rather the error
correcting capability of the code.

A. Basic fast-simulation algorithm (IS-MC basic)

The basic version of the algorithm computes an estimate
of the parameter̂q iteratively, i.e. by updatingq at iterationj
from theq at iterationj − 1. In fact, from (21) the following
update rule can be derived

q̂j =
1

n

∑n
i=t+1 iW (i; p, q̂j−1)Pp (e; i)

∑n

i=t+1 W (i; p, q̂j−1)Pp (e; i)
, (24)

that can also be written as

q̂j =
1

n

∑n

i=t+1 iW
2 (i; p, q̂j−1)Pq (e; i)

∑n

i=t+1 W
2 (i; p, q̂j−1)Pq (e; i)

, (25)

sincePp (e; i) = W (i; p, q)Pq (e; i). Finally, the stochastic
counterpart approximating (25) can be written in terms of the
indicator functionI (·)

q̂j =
1

n

∑Nq

i=1 I (zi)wt (zi)W
2 (zi; p, q̂j−1)

∑Nq

i=1 I (zi)W
2 (zi; p, q̂j−1)

, (26)

wherezi ∼ B (wt(zi), q̂j−1).
In practice the IS simulation consists of two major steps.

During the first step an estimate ofq̂ is derived through (26)
with a fixed number of iterations and in the second step the
WER estimation is performed by running the simulation with
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Algorithm 2 IS simulation with embedded estimation ofq̂

totWords = 0

WERre = 1

q̂ = q̂0
while (WERre > re) and (totWords <

maxNumWords) do

z = rand(n, numWords) < q̂ { BSC output

}

m̂ = decode(z) { decoder output }

if q̂ has been estimated then

compute running estimate of the WER

according to (15)
update totWords

if totWords > minNumWords then

update relative error WERre {

relative error }

end if

end if

if totWords < l*minNumWordsIS then

update q̂ according (26)
end if

end while

the IS Bernoulli distribution with parameter̂q estimated in the
first step. Even though an additional step is required to derive
q̂, it is expected that the total number of generated words
will be reduced dramatically w.r.t. the standard MC simulation
givenκ.

Algorithm 2 implements the basic algorithm. Thewhile
loop implements the main part of the simulation that stops
when either the relative errorWERre is less than the given
relative errorre or the total number of generated words is
greater thanmaxNumWords. First iterations of the algorithm
compute the estimate of̂q, with parameterl controlling the
number of iterations required. The number of wordsN is
represented by the variableminNumWordsIS. After q̂ has
been estimated then the algorithm starts estimating the WER.

The search for̂q depends on the starting probabilitŷq0.
A bad choice ofq̂0 may slow down the rate of convergence
of the estimation of̂q and afterl iterationsq̂l might not be
close to the optimal solution at all. It is important to choose
q̂0 such a way that important events can be generated and a
sufficiently number of errors are obtained to get an accurate
estimate of̂q. Obviously, if q̂0 is close to the optimal solution
then a small number of iterations is required. If the number
of correctable errorst is known then a possible choice could
be the q̂ given by (23), even though fornp ≪ 1 a more
computationally efficient simulation algorithm is possible, as
it will be shown in the next section. An alternative choice can
be made by observing that in a typical scenario the algorithm
is run to draw a performance curve as function of the SNRs or
the cross-over probabilityp. One can use thêq estimated with
the simulation at the previous SNR as starting probability for
the current SNR, i.e.̂q0 (SNRi +∆SNR) = q̂l (SNRi), since
for relatively small∆SNR the new optimal̂q is expected to
be in the neighborhood of the previousq̂. Furthermore, at low

SNRs the WER is usually high enough to require a limited and
acceptable number of generated samples even with standard
Monte-Carlo simulation and therefore at low SNRs the choice
of q̂0 is less critical and can be chosen equal to the cross-over
probabilityp.

The structure of the algorithm is very similar in its for-
mulation to that presented in the context of cross-entropy
method for simulation of rare events in [16]. An application
of the cross-entropy method to the estimation of very low
WERs of linear block codes has been proposed in [26]. The
main difference with respect to the algorithm proposed in this
paper is that the WER estimator in [26] has been proven to
minimize the cross-entropy between the optimal IS solution
and the parametric family of the joint Bernoulli distributions.
Differently, the estimator proposed in this paper has minimum
variance, thusleading to a different stochastic update rule
for q̂. The aforementioned update rule is proven to converge
since the IS estimator variance (within the Bernoulli family)
is convex and therefore one (global) minimum exists. Finally,
it is worth noticing that the two approaches lead to the same
SNR-invariant algorithm, as the result of Th. 4 holds in both
cases.

B. SNR–invariant fast-simulation algorithm

The result of the Theorem 5 suggests a more computa-
tionally efficient IS-MC simulation algorithm that improves
the basic algorithm derived in the previous sub-section. In
fact, under the assumptions of the Theorem 5, theq̂ given
by (23) does not depend on the current specific cross-over
probability p of the channel being simulated. Then, the same
set of generated samples witĥq can be used to calculate the
estimate of the WER at different SNRs. More specifically, in
(15) the only term that depends onp is the weight function
W (wt(zi); p, q), which is a deterministic function. Therefore
given one set ofN realization of zi ∼ B (wt(zi); q) it is
possible to compute the estimated WER for anyp for which
the approximationnp ≪ 1 holds. In other words, with just one
IS simulation WERs for any SNR in the range of application
of Theorem 5 can be estimated.

On the other hand, the estimatedκ that controls the number
of words to be generated depends on the current SNR. A
conservative rule for the choice of the relative error to be
used in the stop condition is to select the relative error cor-
responding to the highest SNR in the given range, since, due
to the monotonic decrease of the WER curve, this guarantees
that all the other relative errors will be smaller.

C. Error-correcting capability estimation algorithm

The first step of the basic algorithm can be used to estimate
the error correcting capability of the code and/or decoder,
under the assumption of relatively high SNR, as stated by
Theorem 4. In fact, Eq. (23) can be inverted to derivet from
q̂, that can be estimated. Note that, since the solution must be
an integer, the estimate of̂q may not need to have the same
accuracy as that required for fast-simulation. Note also, that
especially for long codes, the number of generated words to
obtaint is far less than the number of codewords.
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n = 255, k = 231, t = 3, R = .9000 n = 511, k = 466, t = 5, R = .9119
n = 1023, k = 923, t = 10, R = .9022 n = 2047, k = 1849, t = 18, R = .9033
n = 4095, k = 3693, t = 34, R = .9018 n = 8191, k = 7372, t = 63, R = .9000
n = 16383, k = 14752, t = 117, R = .9004 n = 32767, k = 29497, t = 220, R = .9002
n = 65535, k = 58991, t = 414, R = .9001

Figure 2. Estimated WER vs signal-to-noise ratio per uncoded bit (in dB)
with IS-MC basic fast-simulation algorithm for a set of BCH codes with
R ≃ 0.9.

V. EXAMPLES

In this section some examples of applications of the pro-
posed fast-simulation algorithms are shown. The first example
considers the application of the IS-MC basic, by simulating
performances of a set of BCH codes [4] with code rate
R = k/n ≃ 0.9, decoded with the Berlekamp-Massey
algorithm [27], [28]. In Fig. 2 the WER vs signal-to-noise
ratio per uncoded bit in dB,(Eb/N0)dB, is reported, along
with the parameters of the code that have been simulated. Each
curve is obtained by running the basic algorithm at different
SNRs with a stop condition on the relative errorκ = 0.1.
For reliable estimation of the parameterq̂, the simulation of
minNumWords=102 has been assured and only one iteration
has been performed, i.e.l=1. The results of each simulation
run are plotted with points on the interpolated curves, and
correspond to the performances predicted by the theoretical
upper bound for linear block codes [4]. On the same set of
BCH codes the error correcting capability estimation algorithm
has been applied with 100 generated words, and returns the
correct number of correctable errors.

In Fig. 3 it is shown the number of generated words required
by a standard MC simulation withκ = 0.1 for BCH code
(2047, 1849). The number, that includes also the number of
words required to estimatêq, increases with the SNR, but at
some point, in the IS case (blue curve), it reaches a steady
value. This corresponds to the region where the IS distribution
does not depend on the cross-over probability of the channel
(cf. Th. 5).

A second example is shown in Fig. 4 where the perfor-
mances in term of WER vs SNR for the SNR-invariant IS-MC
fast-simulation algorithm are plotted. In this case a different
set of BCH codes is considered, with a code rateR ≃ 0.5. This
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Figure 3. Number of generated words vs signal-to-noise ratio per uncoded
bit (in dB) for IS-MC basic and MC (estimated with (7)), BCH code
(2047, 1849).
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n = 255, k = 131, t = 18, R = .5137 n = 511, k = 259, t = 30, R = .5068
n = 1023, k = 513, t = 57, R = .5015 n = 2047, k = 1024, t = 106, R = .5002
n = 4095, k = 2057, t = 198, R = .5023 n = 8191, k = 4096, t = 366, R = .5001
n = 16383, k = 8200, t = 691, R = .5005 n = 32767, k = 16397, t = 1316, R = .5004
n = 65535, k = 32771, t = 2477, R = .5001

Figure 4. IS-MC SNR-Invariant fast-simulation algorithm for BCH code
with R ≃ 0.5.

set presents a greater number of correctable errors, and thus
the decoding algorithm requires an increased computational
complexity. The stop condition has been set on the relative
error estimated at the highest SNR and only points with
κ < 0.1 has been plotted. The performances in terms of
WER confirm the theoretical results for BCH codes. More
interestingly, it is important to note that each curve has been
obtained with a single simulation run with a total number of
generated words reported in Tab. I: with approximately2×103

words it is possible to obtain theentire curveof performance.
The IS-MC method can be also employed to estimate the

performances of LDPC codes. Fig. 5 shows the results of IS
simulations of a set of LDPC codes taken from [29], [30], in
terms of WER vs SNR per uncoded bit, forκ = 0.1. All codes
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(n, k) # of generated words

(255, 231) 980
(511, 259) 1150
(1023, 513) 1560
(2047, 1024) 2030
(4095, 2057) 2640
(8191, 7372) 1710
(16383, 8200) 2410
(32767, 29497) 2040
(65535, 58991) 2100

Table I
NUMBER OF GENERATED WORDS WITHIS-MC SNR-INVARIANT

ALGORITHM . FOR EACH BCH CODES THE TOTAL NUMBER REQUIRED TO

DRAW AN ENTIRE PERFORMANCE CURVE IS REPORTED.

4 5 6 7 8 9 10 11 12 13 14 15
10−30

10−26

10−22

10−18

10−14

10−10

10−6

10−2

(Eb/N0)dB

W
E
R

n = 273, k = 191 n = 96, k = 48 (96.44.443)

n = 495, k = 433 (495.62.3.2915) n = 999, k = 888 (999.111.3.5543)

n = 1908, k = 1696 (1908.212.4.1383) n = 4376, k = 4094 (4376.282.4.9598)

Figure 5. IS-MC basic fast-simulation algorithm for a set ofLDPC codes.
The code(273, 191) is taken from [3], the others from [29].

are decoded with the bit-flip iterative algorithm describedin
[19], with a number of iterations equal to 20. Estimation of
q̂ has been performed withN = 103 generated words in one
iteration. The same number is the minimum enforced to obtain
a reliable estimate of the relative error.

The total number of generated words as function of the SNR
is shown in Fig. 6. It is interesting to note that, as for BCH
codes, at some point the number of generated words required
to achieve the prescribed relative error (i.e.κ = 0.1) reaches a
steady value. The flat region reflects the independence of the
IS estimator variance on the SNR and identifies the SNR range
over which the SNR-invariant algorithm can be effectively
applied. However, the range of SNRs for which the curve is
flat is different for each linear block code as it depends on the
IS estimator variance which in turn depends on the structureof
the code and the decoding algorithm. Numerical results show
also that the assumptionnp ≪ 1 is too strict, as it would have
as consequence a flat region starting at higher SNR that those
shown in Fig. 6. Furthermore, the number of generated words
in the flat region varies with the codes. Results confirm the
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n = 273, k = 191 n = 96, k = 48 (96.44.443)

n = 495, k = 433 (495.62.3.2915) n = 999, k = 888 (999.111.3.5543)

n = 1908, k = 1696 (1908.212.4.1383) n = 4376, k = 4094 (4376.282.4.9598)

Figure 6. Total number of generated words to obtain results in Fig. 5.

theoretical results obtained in Sec. III.
The error correcting estimation algorithm gives the number

of correctable errors shown in Tab. II. Based on these esti-
mates, the IS-MC SNR-invariant method is employed to draw
the performance curves corresponding to the codes of Fig. 5.
Results are reported in Fig. 7, that, as expected, shows the
same performance results as shown in Fig. 5. The algorithm
sets a stop condition on the relative error corresponding tothe
WER estimate at the higher SNR (in this caseEb/N0 = 15dB)
and only WER estimates with relative error less than the given
κ = 0.1 are plotted. Results show also that the SNR-invariant
algorithm correctly estimates WER for a large range of SNRs.
On the other hand, at very low SNRs, the approximation (21)
becomes sensibly different from the optimal solution. In Fig. 8,
the relative errorκ vsEb/N0 is plotted, where becomes evident
that (21) at low SNRs is not a good choice as the IS estimator
variance increases up to a level that makes the computational
complexity of IS simulation even higher that standard MC
method or, equivalently, the relative error much higher than
the one obtained with the same number of generated words
with the standard MC method. Furthermore, it is interesting
to note that the range of SNRs for which the relative error is
belowκ = 0.1 is larger than it was expected, suggesting that
the assumption in Th. 4 is too strict.

VI. CONCLUSIONS

In this paper an IS estimator for fast-simulation of linear
block codes with hard-decision decoding was presented. The
estimator is optimal, i.e. it has minimum variance, within the
restriction of the parametric family of IS distributions. It is
possible to obtain huge gains w.r.t. the standard MC in termsof
generated words. Although limited to the family of Bernoulli
distributions, numerical examples have shown that in most
practical cases the gains obtained are significant. However,
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code (96, 48) (273, 191) (495, 433) (999, 888) (1908, 1696) (4376, 4094)
t 2 8 1 1 2 2

Table II
ESTIMATED NUMBER OF CORRECTABLE ERRORS FORLDPC CODES OFFIG. (5) WITH BIT-FLIP DECODING [19].
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n = 273, k = 191 n = 96, k = 48 (96.44.443)

n = 495, k = 433 (495.62.3.2915) n = 999, k = 888 (999.111.3.5543)

n = 1908, k = 1696 (1908.212.4.1383) n = 4376, k = 4094 (4376.282.4.9598)

Figure 7. IS-MC SNR-invariant fast-simulation algorithm for a set of LDPC
codes withq̂ = (t + 1) /n and t given by Table II. The code(273, 191) is
taken from [3], the others from [29].
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n = 273, k = 191 n = 96, k = 48 (96.44.443)

n = 495, k = 433 (495.62.3.2915) n = 999, k = 888 (999.111.3.5543)

n = 1908, k = 1696 (1908.212.4.1383) n = 4376, k = 4094 (4376.282.4.9598)

Figure 8. Relative error as function of(Eb/N0)dB corresponding to
WER estimations obtained by application of the SNR-invariant algorithm and
reported in Fig. 7.

the effective gain depends on the code and/or decoder per-
formances in terms of WER. The advantage of the proposed
methods is the low computational complexity and simplicity,
since little modification w.r.t. the standard MC simulationis
required. Finally, higher gains are achievable when the IS
estimator does not depend on the cross-over probability of
the channel being simulated, typically at high SNR.
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APPENDIX A
PROOF OFLEMMA 1

The IS estimator can be rewritten as weighted sum indexed
by the weights of the error patterns

P̂IS (e) =
1

N

n
∑

i=t+1

NiWi (27)

where, for ease of notation, we denoteW (i; p, q) asWi; Ni is
the number of words withi errors;t is the maximum number
of errors that the decoder can correct;N is the total number
of generated samples. Therefore the variance can be written
as

varq

[

P̂IS (e)
]

= varq

[

1

N

n
∑

i=t+1

NiWi

]

(28)

=
1

N2

n
∑

i=t+1

varq [NiWi] , (29)

since generated samples constitute a realization of an i.i.d
sequence of random variables. The variance under the sum-
mation can be also expressed as

varq [NiWi] = varq





N
∑

j=1

Ii (zj)W (wt (zj) ; p, q)



(30)

= varq





N
∑

j=1

Ii (zj)Wi



 (31)

= W 2
i varq





N
∑

j=1

Ii (zj)



 (32)

= W 2
i

N
∑

j=1

varq [Ii (zj)] (33)
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whereIi (·) is the indicator function that returns 1 when the
event “zj containsi errors” occurs. Note that the termWi is
deterministic as it does not depend on the random variablezj ,
j = 1, . . . , N . Now define

Pq (e; i) ,
∑

z

Ii (z) f (z; q) (34)

as the joint probability that a decoding error occurs with an
error pattern of weighti, when the IS distribution is a Bernoulli
with parameterq. The variance of the estimator can be written
as

varq [NiWi] = W 2
i

N
∑

j=1

Pq (e; i) (1− Pq (e; i)) (35)

= NW 2
i Pq (e; i) (1− Pq (e; i)) (36)

The probabilityPq (e; i) can also be expressed in terms of
Pp (e; i). By definition

Pp (e; i) ,
∑

z

Ii (z) f (z; p) (37)

=
∑

z

Ii (z)
f (z; p)

f (z; q)
f (z; q) (38)

= WiPq (e; i) (39)

Finally, the variance of the IS estimator is

var
[

P̂IS (e)
]

=
1

N2

n
∑

i=t+1

W 2
i NPq (e; i) (1− Pq (e; i))

=
1

N

n
∑

i=t+1

W 2
i Pq (e; i) (1− Pq (e; i))

=
1

N

n
∑

i=t+1

W 2
i Pq (e; i)−

1

N

n
∑

i=t+1

W 2
i Pq (e; i)

2

=
1

N

n
∑

i=t+1

WiPp (e; i)−
1

N

n
∑

i=t+1

Pp (e; i)
2
. (40)

APPENDIX B
PROOF OFLEMMA 2

The derivative ofvarq
[

P̂IS (e)
]

can be written as

∂

∂q
varq

[

P̂IS (e)
]

=

∂

∂q

(

1

N

n
∑

i=t+1

(

W (i; p, q)Pp (e; i)− Pp (e; i)
2
)

)

=
1

N

n
∑

i=t+1

∂W (i; p, q)

∂q
Pp (e; i) , (41)

where

Pp (e; i) ,
∑

z

Ii (z) f (z; p) (42)

does not depend onq. After some manipulations the derivative
of W (i; p, q) w.r.t. q can be written as

∂W (i; p, q)

∂q
=

∂

∂q

(

pi (1− p)
n−i

qi (1− q)
n−i

)

= −W (i; p, q)

(

i

q
−

n− i

1− q

)

. (43)

By substituting (43) into (41) we obtain

∂

∂q
varq

[

P̂IS (e)
]

=

= −
1

N

n
∑

i=t+1

W (i; p, q)

(

i

q
−

n− i

1− q

)

Pp (e; i)

= −
1

N

n
∑

k=t+1

i− nq

q (1− q)
W (i; p, q)Pp (e; i) . (44)

APPENDIX C
PROOF OFLEMMA 3

The convexity is proven by showing that
∂2

∂q2
varq

[

P̂IS (e)
]

> 0. The second derivative of the
variance is evaluated as follows (starting from Eq. (19)) :

∂2

∂q2
varq

[

P̂IS (e)
]

=

=
∂

∂q

{

−
1

N

n
∑

i=t+1

i− nq

q (1− q)
W (i; p, q)Pp (e; i)

}

= −
1

N

n
∑

i=t+1

Pp (e; i)

[

∂

∂q

(

i− nq

q (1− q)

)

·W (i; p, q) +
i− nq

q (1− q)
·
∂W (i; p, q)

∂q

]

.

(45)

After some manipulations, derivatives in (45) can be written
as

∂

∂q

(

i− nq

q (1− q)

)

=
i · (2q − 1)− nq2

[q(1− q)]
2 (46)

∂W (i; p, q)

∂q
= −W (i; p, q)

(

i

q
−

n− i

1− q

)

(47)

= −W (i; p, q)

(

i− nq

q(1− q)

)

(48)

After plugging (46) and (48) into (45) the following expression
is obtained

∂2

∂q2
varq

[

P̂IS (e)
]

=

= −
1

N

n
∑

i=t+1

Pp (e; i)

[

i · (2q − 1)− nq2

[q(1− q)]2
·W (i; p, q)−

(

i− nq

q (1− q)

)2

·W (i; p, q)

]

=
1

N

n
∑

i=t+1

Pp (e; i)W (i; p, q)

[

ξ(q, i)

q2(1− q)2

]

(49)
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where ξ(q, i) ,
[

(i− nq)2 + nq2 − i(2q − 1)
]

. The sign of
the second derivative depends only on the termξ(q, i) that
can be rewritten as

ξ(q, i) = i2 − 2inq + n2q2 + nq2 − 2iq + i (50)

= n (1 + n) q2 − 2i (n+ 1) q + i (1 + i) (51)

The discriminant of the quadratic inequalityξ (q, i) > 0 is
given by

∆ = (−2i (n+ 1))2 − 4n (1 + n) i (1 + i) (52)

= 4i2 (n+ 1)2 − 4ni (n+ 1) (i+ 1) (53)

= 4i (n+ 1) [i (n+ 1)− n (i+ 1)] (54)

= 4i (n+ 1) (ni+ i− ni− n) (55)

= 4i (n+ 1) (i− n). (56)

For i < n we have∆ < 0, therefore the corresponding terms
in the sum that defines the second derivative are all positive.
For i = n the termξ (q, n) is given by

ξ (q, n) = (n− nq)
2
+ nq2 − n (2q − 1) (57)

= n (1− q)
2
+ n

(

q2 − 2q + 1
)

(58)

= (n+ 1) (1− q)
2 (59)

which impliesξ (q, n) ≥ 0. The propertyξ (q, n) ≥ 0 readily

implies convexity ofvarq
[

P̂IS (e)
]

.

APPENDIX D
PROOF OFTHEOREM 5

The best IS distribution in the parametric family of
Bernoulli distributions can be obtained by searching the pa-
rameterq that minimizes the variance of the IS estimator (16).
From (22) we have that the only term that depends onq is
W (t+ 1; p, q), denoted for convenience asWt+1. In order to
minimize the variance of the IS estimator the termWt+1 has
to be to minimized, hence

argmin
q

var
[

P̂IS (e)
]

= argmin
q

Wt+1 (60)

or equivalently

argmin
q

var
[

P̂IS (e)
]

= argmin
q

lnWt+1

= argmax
q

ln
[

qt+1 (1− q)
n−t−1

]

. (61)

The solution is obtained by equating the derivative of
ln
[

qt+1 (1− q)n−t−1
]

to zero and, after some manipulations,
results to be

q =
t+ 1

n
(62)

The choice ofq according to the above equation minimizes the
variance of the IS estimator. Note thatq = 0 andq = 1 cannot
be solutions of the minimization problem, ast is always non
negative and upper bounded by⌈(dmin − 1) /2⌉, wheredmin

is the minimum distance of the code that is always less than
n. From (20) it is immediate to see that forq = 0 andq = 1
the variance of the IS estimator presents vertical asymptotes.
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