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Maximum a Posteriori Based Channel Estimation
Strategy for Two-Way Relaying Channels
Xinqian Xie, Mugen Peng, Senior Member, IEEE, Bin Zhao, Wenbo Wang, Member, IEEE,

and Yingbo Hua, Fellow, IEEE

Abstract—Wireless network coding can significantly improve
the spectrum efficiency for relaying transmission when receivers
can acquire accurate channel state information (CSI). In this
paper, the channel estimation problem for two-way relaying
channels is considered where two sources exchange information
through an amplify-and-forward relay employing analog network
coding protocol. By taking advantage of the apriori information
of wireless channels to further improve channel estimation
accuracy, the maximum a posteriori (MAP) based estimation
schemes are developed to estimate the composite source-source
channel coefficients and the amplitude of individual source-
relay channels with apriori knowledge of channel distribution
information (CDI). Variations of MAP estimation algorithms are
also developed for systems under practical constraints where
channel CDI needs to be estimated. In particular, scale MAP
estimator as well as a long term estimation algorithm is developed
to effectively control the negative impact of CDI estimation error
on MAP estimation performance. The simulation results show
that the MAP based estimation strategies consistently outperform
maximum likelihood estimation methods in the measure of mean
square error, thus establishes the advantage of presented MAP
based schemes.

Index Terms—Channel estimation, two-way relay, analog net-
work coding, maximum a posteriori.

I. INTRODUCTION

RECENTLY, wireless relaying has attracted a lot of re-
search interests due to its capability in enhancing long-

range communications and enlarging the coverage of cellular
networks. Half-duplex relay operating in time division duplex
mode would reduce system spectrum efficiency. Cooperative
network coding protocol allows signals from multiple sources
to be mixed at the relay node before being forwarded to their
destination simultaneously, thus has the potential to bring in
significant improvement to system spectrum efficiency [1]. [2]
demonstrates a 2-fold increase in system throughput when
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network coding is deployed in two-way relaying channels
(TWRC). Accurate channel state information (CSI) is required
at each source node in order to recover signal of interest by
subtracting self-interference signal. Most research work on
wireless network coding assume perfect CSI or ideal channel
estimation. Since network coding is very sensitive to channel
estimation error [3] and practical training based estimation
techniques consume both bandwidth and energy overhead [4],
optimal training sequence design has been developed in [5]
to minimize estimation error and to reduce training overhead
for both maximum likelihood estimator and maximum signal-
to-noise ratio estimator. Likewise, with the assistance of
superimposed training sequence [6], individual CSI could be
estimated [7] to support various diversity techniques including
sub-carrier pairing [8], to achieve further improvement of
system performance. In [9], the optimal relay selection scheme
was developed to achieve full diversity for multiple relays sce-
narios, and multiple-input multiple output (MIMO) technology
has shown its advantage to further improve the throughput for
network coded relay networks [10]. It should be noticed that
most channel estimators are developed for systems without the
a priori knowledge of channel fading statistics. When channel
distribution information are available, Bayesian estimation
method could be applied to reduce estimation residue [11].
For example, the maximum a posteriori (MAP) estimator can
be employed to minimize the Bayes risk for a hit-or-miss cost
(HMC) function [16].

In this paper, we use the Bayesian approach to solve
channel estimation problem in TWRC. Particularly, the main
contributions of this work are listed as follows:

• The MAP based channel estimation algorithms are devel-
oped under the assumption of perfect CDI at each source
to estimate both the composite source-source channels
and individual source-relay channel amplitudes. We also
design the MAP based estimation schemes for systems
under practical constraint where noise variance needs to
be estimated.

• Variations of MAP estimation algorithms have been de-
veloped for systems with practical constraints. In par-
ticular, iterative least square-MAP algorithm has been
developed for system with unknown noise variance. An
improved channel estimation strategy is provided where
instantaneous channel estimates are utilized to calculate
the CDI and it back sustains the MAP based instanta-
neous channel estimation. A scale MAP mechanism has
been incorporated into the estimation strategy to control
the negative impact of estimation error.

The rest of this paper is organized as follows. Section II

1536-1276/14$31.00 c© 2014 IEEE
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describes the transmission scheme of two way analog network
coding protocol. In section III, the MAP based estimation
schemes are presented including both composite and individ-
ual channel estimations. Then in section IV, the scale MAP
as well as the improved long term estimation strategy is
presented. The simulation results are shown in section V, and
followed by the conclusions in section VI.

Notations: The transpose, Hermitian and inverse of matrices
are denoted by (·)T , (·)H and (·)−1, respectively. ‖ ·‖ denotes
the two-norm of vectors. | · |, ∠ (·) and R{·} denote the
magnitude, phase and the real part of the complex arguments,
respectively. E{·} denotes the expectation of random variables.

II. SYSTEM MODEL

Consider a two-way relaying channel where two sources
Si (i = 1, 2) exchange information via a relay R operating
in half-duplex mode as shown in Fig.1. All the three nodes
are equipped with a single antenna. The channel coefficient
between Si and R is denoted by hi. PSi denotes transmitting
power of Si and PR denotes transmitting power of R. The
data symbol and training sequence sent from Si are denoted
by si and ti, respectively. Analog network coding (ANC)
protocol for TWRC has two phases. In phase 1, S1 and S2

simultaneously transmit data s1 and s2 to R, respectively. In
phase 2, R forwards the received signal to both sources after
amplifying it by a factor α.

Assumption:

• The channels are assumed to be quasi-static flat fading,
i.e., they stay identical within one transmission block but
vary from block to block.

• The fading coefficient hi is assumed to be circularly
symmetric complex Gaussian random variable with zero
mean and υi variance, and h1 and h2 are assumed to be
independent with each other.

• Both sources and relay has full knowledge of training se-
quences as well as the amplifying factor α. When channel
variance υi and noise variance at relay denoted by σ2

R

are available, α is given by α =
√

PR

υ1PS1+υ2PS2+σ2
R

.

Otherwise, α is set to be a const which is independent
of υi and σ2

R.

Without loss of generality, we only consider the signal detec-
tion at S1. The received signal at S1 can be given as

yS = αh2
1s1 + αh1h2s2 + αh1nR + nS ,

where nR represents the additive white Gaussian noise
(AWGN) with zero mean and σ2

R variance at R, and nS stands
for the AWGN at S1. With full knowledge of s1 and perfect
channel side information (CSI) at S1, the self-interference term
can be completed removed and symbol s2 can be effectively
detected. Therefore, the problem lies in how to estimate the
instantaneous composite channel coefficients ha � h2

1 and
hb � h1h2.

To tackle the problem, the famous training based estimation
technique is utilized where Si transmits the N length training
sequence ti to the relay simultaneously. Thus R can observe

xR = h1t1 + h2t2 +wR, (1)

1h 2h

Fig. 1. The bidirectional communication topology

where wR represents the AWGN vector of N×1 dimension at
R with each entry of zero mean and σ2

R variance. For the j-th
entry of ti, the peak power constraint is holden as ‖ti,j‖2 =
PSi, ∀j ∈ [1, N ]. Then R forwards the superimposed sequence
to both sources after scaling xR by α. Due to the symmetry
of the two sources, we only focus on the channel estimation
issue at S1 and that of S2 can be settled similarly. After relay
forwarding αxR, S1 receives

xS = αh2
1t1 + αh1h2t2 + αh1wR +wS , (2)

where wS is the AWGN vector at S1 with each entry of zero
mean and σ2

S variance. Hence, total 2N symbol periods are
required to accomplish the training process. Since each source
has priori knowledge of ti, effective estimation methods can
be performed to obtain the required channel coefficients in
terms of the observation xS .

III. CHANNEL ESTIMATION WITH MAP BASED

ESTIMATOR

In this section, we present the MAP based estimation
method to obtain the required channel coefficients for TWRC.
The channel variance υi and noise variance σ2

R and σ2
S are

assumed to be known at both sources and relay.

A. MAP-based Composite Channel Estimation

The task of this part is to estimate the composite channel
coefficients ha and hb. Since the under estimated parameters
are complex value, both amplitude and phase are needed to be
obtained. Let a � |ha|, b � |hb| and the phase of ha and hb

are denoted by θa ∈ [0, 2π) and θb ∈ [0, 2π), respectively. The
under estimated parameters can be written in a vector form by
Θ � [a, b, θa, θb]

T .
By definition, the MAP estimation is known to be given by

Θ̂ = argmax
Θ

{p (xS |Θ) p (Θ)}, (3)

where p (xS |Θ) represents the conditional probability density
function (p.d.f) and p (Θ) is the corresponding joint apriori
p.d.f. In this case, p (xS |Θ) can be easily given by

p (xS |Θ) =
1

πN (α2aσ2
R + σ2

S)
N

× exp

{
− ‖xS − αaejθat1 − αbejθbt2‖2

(α2aσ2
R + σ2

S)

}
. (4)

For simplicity, σ2
R and σ2

S are supposed to be equal in follow-
ing parts of this work as σ2

R = σ2
S = σ2

n, and the two sources
are with equal transmitting power as PS1 = PS2 = PS . After
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straightforward derivation shown in the Appendix A, the joint
p.d.f of Θ = [a, b, θa, θb]

T is obtained as

p (Θ) =
b

2π2aυ1υ2
exp

{
−
(

a

υ1
+

b2

υ2a

)}
, a > 0. (5)

After some manipulation, (3) can be transformed as

Θ̂ = argmax
Θ

{
− ‖xS − αaejθat1 − αbejθbt2‖2

σ2
n (α2a+ 1)

−N log
(
α2a+ 1

)− a

υ1
− b2

υ2a
+ log

(
b

a

)}
, (6)

where the terms inside the max operator is denoted by
L (xS |Θ) which is named as the updated log-likelihood
function (l.l.f). Hence, it is effective to obtain the estimates uti-
lizing proper 4-dimensional searching methods which would
endure high computational complexity. In order to reduce the
computational complexity, we adopt following process to solve
the MAP estimation problem.

Note that θb is only related to the first term of L (xS |Θ),
thus θ̂b can be obtained by

θ̂b = argmin
θb

‖xS − αaejθat1 − αbejθbt2‖2 (7)

with given a, b and θa. Then we have

θ̂b = ∠
{
tH2
(
xS − αaejθat1

)
α‖t2‖2

}
. (8)

The equation above, when injected into L (xS |Θ), gives

L1 (xS |a, b, θa) = −‖z1‖2 + α2b2‖t2‖2 − 2α‖zH1 t2‖b
σ2
n (α2a+ 1)

(9)

−N log
(
α2a+ 1

)− a

υ1
− b2

υ2a
+ log

(
b

a

)
,

with z1 � xS −αaejθat1. With given a and θa, b̂ is obtained
by

b̂ = argmax
b

L1 (xS |a, b, θa) (10)

After straightforward calculation, the first order derivative of
(9) is derived as

L̇1 (b) =
∂L1 (xS |a, b, θa)

∂b
= −B1b+B2 +

1

b
, (11)

with

B1 =
2α2‖t2‖2

σ2
n (α

2a+ 1)
+

2

aυ2
, B2 =

2α‖zH1 t2‖
σ2
n (α2a+ 1)

.

By forcing L̇1 (b) = 0, we have b̂ =
±
√

B2
2+4B1+B2

2B1
. Since

limb→−∞ L̇1 (b) → +∞ and limb→∞ L̇1 (b) → −∞, it can

be known that
√

B2
2+4B1+B2

2B1
> 0 is the local maximal point

and
−
√

B2
2+4B1+B2

2B1
< 0 is the local minimal one which is

not effective in this estimation. Therefore, b̂ is derived by

b̂ =

√
B2

2 + 4B1 +B2

2B1
, (12)

with given a and θa. Then substituting (12) into (9),
L (xS |a, θa, b) transforms to L2 (xS |a, θa) which has only two
remaining parameters a and θa. Here, we omit to derive the

TABLE I
ITERATIVE ALGORITHM OF COMPOSITE CHANNEL ESTIMATION

• Initialize {â, θ̂a} with a certain estimator of lower complexity and
Θ̂ = ∅.

• Repeat
- Calculate current θ̂b in terms of (8) with {â, θ̂a} injected into

it.
- Calculate current b̂ by plugging {â, θ̂a} into (12).

- Update θ̂a by θ̂a = ∠
{

tH1

(
xS−αb̂ejθ̂b t2

)

α‖t1‖2

}
.

- Update â by

â = argmax
a

{
−N log

(
α2a+ 1

) − log (a)

− a

υ1
− b̂2

υ2a
− ‖xS − αaejθ̂a t1 − αb̂ejθ̂bt2‖2

σ2
n (α2a+ 1)

}
.(13)

- Renew Θ̂ = {â, b̂, θ̂a, θ̂b}.
• Until termination criterion is satisfied.
• Return Θ̂.

expression of L2 (xS |a, θa)since it is rather complicated. It
can be testified that L2 (xS |a, θa) is non-concave with respect
to a, so that the numerical methods such as 2-dimension
searching can be utilized to achieve feasible estimation and the
computational complexity would be extremely high. In order
to reduce the calculating consumption, we provide the iterative
algorithm as Table I shows to obtain the MAP estimates.
Lemma 1: The proposed iterative algorithm is convergent

and the limit point of iteration is a stationary point.
Proof: Note that, one round of iteration consists of four

steps where each step aims at renewing one entry of Θ. For
notation simplification, we further denote θi to be the i-th
entry of Θ. Consider the step of renewing θi, the renewed
estimate of θi denoted by θ̂newi would satisfy L

(
xS |θ̂newi

)
>

L
(
xS |θ̂i

)
with given other parameters in Θ. This indicates

that the value of L (xS |Θ) would strictly increase after each
step, thus it would also strictly increase after one round
of iteration. Besides, it can be testified that L (xS |Θ) is
continuous with respect to θi and L (xS |Θ) < +∞ for a > 0.
Therefore, we can conclude that the iterative algorithm is
convergent.

Denote the limited point θi to be θ̄i. At the limit point,
the solution will not change if we continue the iteration.
Otherwise, the value of L (xS |Θ) can be further increased
which contradicts its convergence behavior. Since the resultant
estimate in each step is the global maximum as well as the
local maximum, thus we can have

∂L (xS |Θ)

∂θi

(
θi − θ̄i

) ≤ 0 (14)

which implies the stationarity of the iteration result.
Remark:

• The initialization of the algorithm needs to guess the
value of {a, θa}, and it is very important since it affects
the convergence point. So the ML estimator presented in
[5] is recommended to perform the initial guess.

• Focusing on the updating of â, the first order derivation
of the under maximized function can be organized to a
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cubic equation with respect to a so that its peak points
expression can be given. Hence, â can be renewed by the
optimal value among its local maximal points and the end
point a = 0.

B. MAP-Based Individual Channel Estimation

The individual channel coefficients are useful to support
diversity techniques such as subcarrier pairing [8] and relay
selection [9], where only channel amplitude information is
needed. Therefore, we only focus on estimating the individual
channel amplitude denoted by ui = |hi|, i = 1, 2. Note that,
ui can be calculated by straightforward calculation in terms
of composite channel estimates, but the transformation from
composite channel to individual channel would increase the
estimated errors. Intuitively, let â = a+Δa and b̂ = b+Δb,
the normalized MSE of b yields E{ ‖Δb‖2

b2 }. When we utilize
the composite channel estimates â and b̂ to calculate individual
estimate û2, the normalized MSE of u2 can be approximately
computed as E{ ‖Δb‖2

b2 + ‖Δa‖2

2a2 } which is larger than that of b.
This implies that the transformation from composite channel
to individual channel would enlarge estimated errors. Thus we
focus on directly obtaining the estimate of individual channel
with MAP based estimation. The under estimated parameters
is defined by Θ

′
= [u1, u2, θa, θb]

T . Our aim is to estimate
the magnitude ui, while θa and θb are used for assistance.

Since h1 and h2 are independent with each other, p
(
Θ

′
)

is given by

p
(
Θ

′)
=

u1u2

π2υ1υ2
exp

{
−
(
u2
1

υ1
+

u2
2

υ2

)}
. (15)

Recalling the conditional p.d.f in (4), Θ
′

can be obtained by

Θ
′
= argmax

Θ′

{
− ‖xS − αu2

1e
jθat1 − αu1u2e

jθbt2‖2
σ2
n (α2u2

1 + 1)

−N log
(
α2u2

1 + 1
)− (u2

1

υ1
+

u2
2

υ2

)
+ log (u1u2)

}
,(16)

where the terms inside the max operator is denoted by
L
(
xS |Θ′

)
.

Recalling (8), θ̂b can be obtained similarly as

θ̂b = ∠
(

tH2
α‖t2‖2 z

′
1

)
(17)

with given u1, u2 and θa, where z
′
1 � xS − αu2

1e
jθat1.

Substituting above equation into L
(
xS |Θ′

)
, and utilizing

derivative approach, û2 is derived as

û2 =

√
C2

2 + 4C1 + C2

2C1
(18)

with given u1 and θa, where

C1 =
2α2u2

1‖t2‖2
σ2
n (α

2u2
1 + 1)

+
2

υ2
, C2 =

2αu1‖zH1 t2‖
σ2
n (α

2u2
1 + 1)

.

With (17) and (18) substituted into L
(
xS |Θ′

)
, the resultant

L (xS |u1, θa) has only two remaining parameters u1 and θa.
Similar to the composite estimation, the iterative algorithm is

TABLE II
ITERATIVE ALGORITHM OF INDIVIDUAL CHANNEL ESTIMATION

• Initialize {û1, θ̂a} with a certain estimator of lower complexity, and
Θ̂

′
= φ.

• Repeat
- Calculate current θ̂b in terms of (17) with {û1, θ̂a} injected in

it.
- Calculate current û2 by plugging {û1, θ̂a} into (18).

- Update θ̂a by θ̂a = ∠
{

tH1

(
xS−αû1û2e

jθ̂b t2

)

α‖t1‖2

}
.

- Update û1 as

û1 = argmax
u1

{
−N log

(
α2u2

1 + 1
)
+ log (u1)

−u2
1

υ1
− ‖xS − αu2

1e
jθ̂at1 − αu1û2ejθ̂bt2‖2
σ2
n (α2a+ 1)

}
. (19)

- Renew Θ̂
′
= {û1, û2, θ̂a, θ̂b}.

• Until termination criterion is satisfied.
• Return Θ̂

′ .

also effective to obtain û1 and û2 which is shown in Table II.

Remark:

• Above algorithm is convergent and stationary which can
be proved in similar way as the proof of Lemma 1.

• It is necessary to mention that the composite and indi-
vidual channel estimation can achieve same estimates for
|h1| and |h2| utilizing ML estimator. However, the two
estimations would be different utilizing MAP estimator
due to the difference of the chosen apriori p.d.fs. We use
simulations to compare the performance of the two MAP
estimation methods in the simulation part.

C. Asymptotic Behavior of MAP Estimation

The following proposition is given to show the asymptotic
behavior of MAP estimator.
Proposition 1: The MAP estimate converges to ML so-

lution when accumulative training SNR is sufficiently large,
i.e., NPS

σ2
n

→ ∞.

Proof: Define Q � NPS

σ2
n

, and the limitation of the
normalized l.l.f with respect to Q is

lim
Q→∞

LMAP (xS ;Θ)

Q
= −‖xS − αhat1 − αhbt2‖2

NPS (α2a+ 1)

−σ2
n

PS
log
(
α2a+ 1

)− lim
Q→∞

(
a

Qυ1
+

b2

Qaυ2
− 1

Q
log

(
b

a

))
=

LML (xS ;Θ)

Q
	= 0. (20)

Then it yields

lim
Q→∞

Θ̂MAP = lim
Q→∞

{argmax
Θ

LMAP (xS ;Θ)}

= argmax
Θ

lim
Q→∞

LMAP (xS ;Θ)

Q

= argmax
Θ

LML (xS ;Θ)

Q
= Θ̂ML, (21)

thus the proposition is achieved.
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Considering a much stronger constraint, i.e., PS

σ2
n
→ ∞, we

can have

lim
PS
σ2
n
→∞

LMAP (xS ;Θ)

PS/σn2

= −‖xS − αhat1 − αhbt2‖2
PS (α2a+ 1)

(22)

− lim
PS
σ2
n
→∞

(
σ2
n

PS

(
a

υ1
+

b2

aυ2

)
− σ2

n

PS
log

(
b

a

))

− lim
PS
σ2
n
→∞

σ2
n

PS
N log

(
α2a+ 1

)
= −‖xS − αhat1 − αhbt2‖2

PS (α2a+ 1)
.

Then the MAP estimate attains

lim
PS
σ2
n
→∞

Θ̂MAP = argmax
Θ

{−‖xS − αhat1 − αhbt2‖2
PS (α2a+ 1)

}

= argmax
Θ

{−‖xS − αhat1 − αhbt2‖2}
= Θ̂LS . (23)

Hence, it can be concluded that the MAP estimation degrades
to the LS solution when PS

σ2
n

is sufficiently large.
Proposition 2: In memoryless quasi-static flat fading

channel with independent fading coefficients, both MAP and
ML estimation problem are related to minimum Kullback-
Leibler divergence problem when training sequence length N
is sufficiently large.

Proof: See in the appendix B.

D. MSE Comparison Between MAP and ML Estimations

Owing to the nonlinearity of the MAP estimation, it is hard
to derive the closed expression of the MSE or as such. In this
part, the MSE of hb with given ha is analyzed. In [5], it has
been proved that the orthogonal training is the optimal design
for TWRC, thus tH1 t2 = 0 is assumed here.

In [5], the MSE of hb denoted by δ1 for ML estimation is
given as

δ1 =
1

NPS
{σ2

n

(
a+ 1/α2

)︸ ︷︷ ︸
δE

}. (24)

For MAP estimation, recalling (12), the MAP estimate b̂ with
given a is rewritten as

b̂MAP =

√(
B2

2B1

)2

+
1

B1
+

B2

2B1
. (25)

Since ‖t2‖2 = NPS , it is known that B1, B2 ∼ O (N), B2

2B1
∼

O (1) and 1
B1

∼ O
(

1
N

)
, where O (·) represents the equivalent

decreasing or increasing order of the argument. When N is
sufficiently large, we can have 1

B1
� B2

2B1
. Utilizing the Taylor

series expansion, b̂MAP is approximately derived as

b̂MAP ≈ B2

B1
+

1

B2
= g (N)

‖tH2 z1‖
α‖t2‖2 +

1

B2
,

with g (N) = 1

1+
σ2
n(α2a+1)

α2aυ2PSN

. With g (N) expanded, b̂MAP can

be further written as

b̂MAP ≈ (1−B3)
‖tH2 z1‖
α‖t2‖2 +

1

B2
, (26)

with B3 =
σ2
n(α2a+1)

α2aυ2PSN ∼ O
(

1
N

)
. After some derivation, the

MSE of hb with MAP estimation denoted by δ2 can be written
by

δ2 =E
{∥∥ (1−B3)

tH2 z1
‖t2‖2 +

1

B2
ejθ̂b − hb

∥∥2}
= (1−B3)

2 δE
NPS

+B2
3b

2 + E{ 1

B2
2

} − E{ B3hbδE
2tH2 z1/α

}

−E{ B3hbδE

2zH1 t2/α
}+ E{ (1−B3)

2 tH2 nE

‖t2‖2 · δE

2tH2 z1/α
}

+E{ (1−B3)
2
nH
E t2

‖t2‖2 · δE
2zH1 t2/α

}, (27)

since E{tH2 nE} = 0 with nE � anR + nS/α. Note that the
last four terms of above equation contains the term tH2 z1 =
αhb‖t2‖2+tH2 nE in the denominator. Over high SNR region,
we can attain tH2 z1 ≈ αhb‖t2‖2. After tedious calculation, δ2
is approximately derived as

δ2 ≈ (1−B3)
2
δE

NPS
+B2

3b
2 +

[
δE

bNPS +NPSδE

]2
− B3δE

NPS

<
δE

NPS
+

(
δE

NPS

)2(
b2

a2υ2
2

+
1

b2
− 3

aυ2

)

+

(
δE

NPS

)3(
1

aυ2

)
. (28)

It can be observed that all the three terms in above equation
are asymptotically decreasing over N, the last term can be
removed since it has the highest order, i.e., O

(
1
N3

)
. After

some simplification, (28) is rewritten as

δ2 �
δE

NPS
+

(
δE

NPSυ2

)2(
b2

a2
+

υ2
2

b2
− 3υ2

a

)

=
δE

NPS
+

1

a

(
δE

NPSυ2

)2(
c+

υ2
2

c
− 3υ2

)
(29)

with c � b2. Focusing on the function f (c) = c+
υ2
2

c − 3υ2,
it can be testified that f (c) ≤ 0 when 3−√

5
2 υ2 ≤ c ≤

3+
√
5

2 υ2. Since c satisfies the exponential distribution with
parameter 1

υ2
, we can calculate that P{f (c) ≤ 0} ≥∫ 3+

√
5

2 υ2

3−√
5

2 υ2

1
υ2
e
− x

υ2 dx > 0.6 which indicates that

P{δ2 < δ1} ≥ 0.6. (30)

Namely, the MAP estimation performs better than ML esti-
mation with high probability. The average performance of the
MAP and ML estimations are evaluated and compared in the
simulation part.

E. Complexity Comparison

Since the source nodes acquire the knowledge of ti, the
terms such as ‖ti‖2 and tH1 t2 can be obtained utilizing
offline computation. Hence, only the computation of the
terms that contains xS consumes online operations including
multiplication and addition. Consider the iterative step in MAP
estimation algorithm, the complexity is mainly determined by
the calculation of ‖xS‖2, tH1 xS and tH2 xS due to the fact
that their complexity are determined by N . Each of them



XIE et al.: MAXIMUM A POSTERIORI BASED CHANNEL ESTIMATION STRATEGY FOR TWO-WAY RELAYING CHANNELS 455

consists of N multiplication operations and (N − 1) addition
operations. In particular, it is necessary to stress that once the
corresponding terms are calculated, the results can be used
in each iteration. Hence, the computation complexity of each
iteration is independent with N . Then the total computational
complexity of the iteration is approximately written as

3 [N · o (m) + (N − 1) · o (a)] + 4i · o (b) , (31)

where o (m) and o (a) represents the computation complexity
of a complex multiplication and addition, respectively. o (b)
denotes the average complexity in calculating a closed form
expression that is unrelated to N , and i denotes the iterative
time. For the ML solution in [5], its complexity are also mainly
determined by the terms ‖xS‖2, tH1 xS and tH2 xS . Thus its
complexity is calculated as 3 [N · o (m) + (N − 1) · o (a)],
and the ML initialization would not increase the complexity
for the iterative MAP estimation algorithm. Then the total
complexity for MAP estimation is as (31) shows. Obviously,
the complexity of iterative MAP algorithm is always higher
than that of ML solution, and it is affected by the iterative
time. However, their computation complexity are of the same
level for bounded iterative time.

IV. IMPROVED CHANNEL ESTIMATION STRATEGY

In above estimation schemes, both noise variance and CDI
are assumed to be known at the receivers. Here, we first focus
on the occasion of unknown noise variance, then consider the
case of unknown CDI.

A. With Unknown and Partial Information of Noise Variance

In this part, we focus on the two occasions, i.e., the noise
variance σ2

n is unknown at the source, and the statistical
information of σ2

n is acquired.
1) With unknown σ2

n: Obviously, when σ2
n is unknown, the

MAP or ML estimation can not be implemented because the
corresponding l.l.f can hardly be constructed. Intuitively, the
least square (LS) estimator can be effectively utilized since
it only needs the knowledge of ti. Thus the estimates of
composite channels of LS solution are obtained by[

ĥa ĥb

]
=

1

α

(
THT

)−1
TH · xS (32)

with T =
[
t1 t2

]
. Then the estimate of σ2

E =(
α2|ha|σ2

n + 1
)
σ2
n is computed by

σ̂2
E =

1

N
‖xS − αĥat1 − αĥbt2‖2. (33)

Treating σ̂2
E as a deterministic value, the estimate of Θ can

be renewed by

Θ̂ = argmax
Θ

{
− ‖xS − αhat1 − αhbt2‖2

σ̂2
E

− a

υ1
− b2

aυ2

+ log

(
b

a

)}
, (34)

where the terms inside the max operator is denoted by
L (xS |Θ, σ̂2

E

)
. To improve the estimation accuracy, an itera-

tive algorithm is developed which is shown as Table III shows.

We can expect that the estimating accuracy would be
improved compared with conventional LS estimation due to
the usage of apriori information.

TABLE III
ITERATIVE ALGORITHM WITH UNKNOWN NOISE VARIANCE

• Initialize {ĥa, ĥb} with LS estimation in terms of (32).
• Repeat

- Calculate σ̂2
E in terms of (33).

- Renew Θ̂ by Θ̂ = argmaxΘ L (
xS |Θ, σ̂2

E

)
.

- Renew ĥa = âejθ̂a and ĥb = b̂ejθ̂b .
• Until termination criterion is satisfied.
• Return Θ̂.

2) With Partial Information of σ2
n: Here, we concern the

occasion that the distribution information of σ2
n is acquired

at the receiver. Considering σ2
n as one of the remaining

parameters, the MAP estimation is executed as

{Θ̂, σ̂2
n} = argmax

θ,σ2
n

p
(
xS |Θ, σ2

n

)
p
(
Θ, σ2

n

)
, (35)

where p
(
Θ, σ2

n

)
is the joint p.d.f. Obviously, the optimization

problem has total five parameters so that its computational
complexity is extremely high utilizing five dimensional search-
ing method, and the estimation accuracy can not be guaran-
teed. In order to reduce the computational complexity, we treat
σ2
n as a redundant factor and the estimation problem becomes

Θ̂ = argmax
Θ

p
(
xS |Θ, σ2

n

)
p (Θ) . (36)

Obviously, the estimation problem can be hardly solved with
unknown σ2

n. To tackle the problem, the expectation of the
posteriori probability with respect to σ2

n is chosen to be the
objective function, which is given as

Θ̂ = argmaxE{p (xS |Θ, σ2
n

)
p (Θ)}. (37)

Here, it is assumed that Θ and σ2
n are independent of each

other and σ2
n satisfies the inverse-gamma distribution whose

p.d.f is given by

p
(
σ2
n

)
=

λ

σ4
n

exp

(
− λ

σ2
n

)
, (38)

where λ is a positive factor. With the change of ξ � 1
σ2
n

and

the definition of zS � xS − αhat1 − αhbt2, we have

E{p (xS |Θ, σ2
n

)} (39)

=

∫ ∞

0

ξN

[π (α2a+ 1)]N
exp

{
− ‖zS‖2ξ

α2a+ 1

}
· λ exp (−λξ) dξ

=
λ

[π (α2a+ 1)]
N

∫ ∞

0

ξN exp

{
−
( ‖zS‖2ξ
α2a+ 1

+ λ

)
ξ

}
dξ.

After straightforward calculation, above expectation is derived
as

E{p (xS |Θ, σ2
n

)} =
λΓ (N + 1)

πN (α2a+ 1)
N
ηN+1

, (40)

where η = ‖zS‖2ξ
α2a+1 + λ, and Γ (z) is the Gamma function

given by Γ (z) =
∫∞
0 xz−1e−xdx. Hence, the estimation can

be successfully executed since σ2
n has been removed from the

problem.
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B. With Unknown CDI

In this part, we deal with the occasion that CDI is unknown
at the receivers. With the assumption that channels during
each block have independent and identical distributions, the
desired CDI can be obtained in terms of multiple observations
of instantaneous channel coefficients so as to perform MAP
method to enhance instantaneous estimation accuracy.

1) Obtaining Channel Statistic: Consider the long term
transmission which consists of multiple blocks. One may
calculate the CDI by fitting all the instantaneous channel
estimates during current block and previous blocks. But using
fitting methods may result in complicated p.d.fs whose mathe-
matical expression may be hardly obtained. For simplification,
we constrain the channel to satisfy the empirical channel
models such as Rayleigh fading or Nakagami-m channels,
so that the p.d.f expression can be obtained in terms of
its statistic, e.g., mean and variance. In particular, only the
variance υ1 and υ2 are required to be estimated for Rayleigh
fading channels.

Denote the channel variance estimate of υi during the k-
th block by υ̂i (k). For composite channel estimation, the
instantaneous estimates of a (k) and b (k) are denoted by â (k)
and b̂ (k), respectively. Then υ̂i (k) can be estimated by

υ̂1 (k) =
1

k

k∑
l=1

â (l) , υ̂2 (k) =

∑k
l=1

[
b̂ (l)

]2
k · υ̂1 (k) (41)

Proposition 3: The estimation for υi is unbiased when
orthogonal training is utilized, i.e., tH1 t2 = 0, and the symbol
signal-to-noise ratio PS

σ2
n

is sufficiently large.
Proof: The proposition is equivalent to prove

limk→∞ E{υ̂i (k)} = υi, where the expectation is taken with
respect to the noise vectors. It is known that ˆΘMAP → Θ̂LS

when PS

σ2
n

is sufficiently large, thus â (l) and b̂ (l) can be
approximately obtained in terms of the LS estimation as

â (l) =
∣∣∣ tH1
‖t1‖2xS (l)

∣∣∣, b̂ (l) = ∣∣∣ tH2
‖t2‖2xS (l)

∣∣∣. (42)

With tH1 t2 = 0, â (l) can be specifically written as

â (l) =
∣∣∣a (l) ejθa(l) + tH1

‖t1‖2 (αh1nR + nS)
∣∣∣. (43)

It can be observed that â (l) satisfies Rician distribution with

a (l) mean and
[α2a(l)+1]σ2

n

NPS
variance. Thus we have

E{â (l)} =

√
π (α2a (l) + 1)

2NPS
σnL 1

2

(
− a (l)2 NPS

2 (α2a (l) + 1)σ2
n

)
,

(44)
where L 1

2
(x) = e

x
2 [(1− x) I0 (x)− xI1 (x)] and Iβ (x) rep-

resents the modified Bessel function of the first kind with order
β. For L 1

2
(x), the approximation L 1

2
(x) = 2

√
|x|
π is holden

on the condition of x → −∞, which leads to E{â (l)} ≈ a (l).
In accordance with the Law of Large Numbers, we can get
limk→∞ E{υ̂1 (k)} = υ1.

While for υ̂2 (k), we can approximately get

υ̂2 (k)

≈
∑k

l=1 [b (l) + Δbl]
2∑k

l=1 a (l)

⎡
⎢⎣1− 1(

1 +
∑k

l=1
Δal∑k

l=1
a(l)

)2

∑k
l=1 Δal∑k
l=1 a (l)

⎤
⎥⎦(45)

with Δal = â (l) − a (l) and Δbl = b̂ (l) − b (l). When PS

σ2
n

is sufficiently large, it yields E{υ̂2 (k)} ≈
∑k

l=1[b(l)]
2

∑k
l=1 a(l)

which

results in limk→∞ E{υ̂2 (k)} = kυ1υ2

kυ1
= υ2. The proof is

finished.
More specifically, if the two individual channels are of

identical distribution with υ variance, then the channel vari-
ance estimate during the k-th block denoted by υ̂ (k) can be
estimated by

υ̂ (k) =
1

2k

k∑
l=1

[
â (l) +

2

π
b̂ (l)

]
. (46)

Proposition 4: The estimation for υ in (46) is unbiased
when orthogonal training is utilized, i.e., tH1 t2 = 0, and the
symbol signal-to-noise ratio PS

σ2
n

is sufficiently large.

Proof: Similarly to â (l), b̂ (l) also satisfies the Rician
distribution with b (l) mean and the same variance as â (l).
E{b̂ (l)} ≈ b (l) can be obtained in similar way with PS

σ2
n

to be
sufficiently large. Then the expectation of υ̂ (k) yields

E{υ̂ (k)} =
1

2k

k∑
l=1

[
a (l) +

2

π
b (l)

]
. (47)

Utilizing the Law of Large Numbers, limk→∞ E{υ̂ (k)} = υ
is achieved since E{a (l)} = υ and E{b (l)} = π

2υ. This
indicates the estimation is unbiased.

Although υ̂ (k) is unbiased, the estimation accuracy is
strongly determined by k. To evaluate its performance, the
MSE of υ̂ (k) is analyzed as the following corollary shows.
Lemma 2: The MSE of υ̂ (k) is upper bounded by

MSE{υ̂ (k)} ≤
(
1

4
+

1

π2

)
γ

k
+

υ2

π2k
(48)

where γ =
(α2υ+1)σ2

n

NPS
.

Proof: By definition, the MSE of υ̂ (k) is given by

E{|υ̂ (k)− υ|2} = E{υ̂ (k)2} − 2υE{υ̂ (k)}+ υ2, (49)

where the expectation is taken with respect to all the a (l), b (l)
and noise vectors. The first term of above equation yields

E{υ̂ (k)2}= 1

4k2
E

{(
k∑

l=1

â (l)

)2

+
4

π2

(
k∑

l=1

b̂ (l)

)2

+
4

π

(
k∑

l=1

â (l)

)(
k∑

l=1

b̂ (l)

)}
(50)
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Fig. 2. The long term estimation strategy

with

E

{(
k∑

l=1

â (l)

)2}
≈ k

⎛
⎜⎜⎝2υ2 +

(
α2υ + 1

)
σ2
n

NPS︸ ︷︷ ︸
γ

⎞
⎟⎟⎠

+
(
k2 − k

)
υ2, (51)

E

{(
k∑

l=1

b̂ (l)

)2}
≈ k

(
υ2 + γ

)
+
(
k2 − k

) π2

4
υ2,(52)

E

{(
k∑

l=1

â (l)

)(
k∑

l=1

b̂ (l)

)}
� πk2

2
υ2. (53)

Recalling E{υ̂ (k)} = υ, we can finally obtain

E{|υ̂ (k)− υ|2} ≤
(
1

4
+

1

π2

)
γ

k
+

υ2

π2k
(54)

as the lemma shows.
Remark:

• As (54) shows, the MSE of υ̂ (k) is related to its true
value υ and the noise term γ. When γ → 0, the MSE
converges to υ2

π2k which is treated as the innate error
of the estimation. However, the MSE converges to zero
when k is sufficiently large which indicates the estimation
is adequate.

• While for individual estimation, the estimate of υ can be
similarly obtained by

υ̂
′
(k) =

1

2k

k∑
l=1

[
û2
1 (l) + û2

2 (l)
]
,

where û1 (k) and û2 (k) denote the estimates of |h1|
and |h2|, respectively. It is necessary to mention that
υ̂

′
(k) would endure more severe errors than υ̂ (k). As

a consequence, it is recommended to utilize the solution
as (46) shows.

Since the MSE of υ̂k is a decreasing function with respect
to k, for small value of k, the estimate υ̂ (k) may endure
severe estimation error which would lead to imprecise CDI.
As a result, the instantaneous estimation accuracy would be
negatively affected when MAP estimation is adopted.

2) Scale MAP Estimator: Motivated to maintain the im-
provement of MAP estimation and prevent the negative affec-
tion caused by estimated errors of CDI, we develop the scale
MAP (SMAP) estimator as

Θ̂ = argmax
Θ

p (x|Θ) pε (Θ) , (55)

where ε is a given factor. SMAP estimation coincides with
ML solution at ε = 0 whereas it attains the conventional

TABLE IV
LONG TERM CHANNEL ESTIMATION STRATEGY

Begin(In the k-th block)
• Step 1: Construct the apriori p.d.f in terms of υ̂ (k − 1).
• Step 2: Determine the value of ε by ε = ε (k).
• Step 3: Estimate composite channel coefficients utilizing SMAP

estimation.
• Step 4: Renew υ̂ (k) in accordance with (58).

End

MAP estimation at ε = 1. Intuitively, when the estimated
p (θ) is accuracy, ε is recommended to be a large value in
order to take the advantage of apriori information. When the
obtained apriori p.d.f endures estimated errors, the value of ε
should be decreased, and to the extreme, the ML estimation is
implemented instead of MAP estimation. Thus it is possible
to achieve the optimal estimates by selecting an optimal ε. In
general, ε is recommended to be zero or small value in the
beginning transmission period with small k since the estimate
of υ endures severe error. With transmission going on, ε
should be increased due to the declination of estimated error.
When k is large enough, the estimate error of ε can be ignored
so that ε is set by unit value to implement the conventional
MAP estimation. As a result, the scaling factor function is
apparently a non-decrease function with respect to k. Due to
the difficulty in obtaining the optimal design, we present a
simple linear approach to evaluate the effectiveness of SMAP
estimation. Two thresholds kmin and kmax are introduced
where k < kmin indicates that the estimate of υ̂ (k) is not
adequate, and k ≥ kmax means the estimate of variance
converges to its true value. Then we have

ε (k) =

{
0, k < kmin,

1, k ≥ kmax,
(56)

and when kmin ≤ k < kmax, ε (k) is given by

ε (k) =
k − kmin

kmax − kmin
. (57)

3) Proposed Channel Estimation Strategy: The long term
channel estimation strategy with implementing SMAP esti-
mation is shown in Fig.2. Focusing on the k-th block, after
estimating â (k) and b̂ (k), υ̂ (k) is renewed by

υ̂ (k) =
2 (k − 1) · υ̂ (k − 1) + â (k) + 2

π b̂ (k)

2k
, (58)

where υ̂ (0) is set to be zero. Then υ̂ (k) can be utilized to
construct the apriori p.d.f for instantaneous channel estimation
in the (k + 1)-th block. The estimation strategy is shown
in Table IV. The estimation process of SMAP estimation is
similar to that of conventional MAP estimation, thus we omit
its presentation.

C. Extending to A General Scenario

In this part, we consider a more general scenario where M
transmitters transmit training sequence to one receiver simul-
taneously. Let θm denote the composite channel coefficient
from the m-th transmitter to the receiver, and tm denote the
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N length training sequence sent by the m-th transmitter. The
sequence observation vector x is

x =

M∑
m=1

θmtm +wE , (59)

wE is the equivalent noise vector. Since each transmitter-
receiver link is not restricted to a single hop, wE would endure
a complex expression which is relevant to instantaneous chan-
nel coefficients. In that case, the noise variance σ2

E can not
be previously known, thus the iterative algorithm presented in
Table I can be applied.

Actually, if the joint p.d.f of Θ = {θ1, . . . , θM} is known
apriori to the receiver, the MAP estimation algorithm can
be directly applied. However, in a highly complex network,
the channel p.d.f may not be available to the receiver but
the channel mean and variance can be estimated. To take
advantage of the channel statistical information on the condi-
tion of unknown channel distribution, we utilize the Gaussian
distribution to attain a effective solution. Let μm and υm
denote the mean and variance of θm, and all the M parameters
are treated as independent with each other. In accordance with
the definition of MAP estimator, and after some manipulation,
the estimation yields

Θ̂ = argmin
Θ

{‖x−∑M
m=1 θmtm‖2
σ2
E

+

M∑
m=1

‖θm − μm‖2
υm

}
.

(60)

Thus the estimate of θm is obtained by

θ̂m =

tHmwE

NPS
υm +

σ2
E

NPS
μm

σ2
E

NPS
+ υm

. (61)

By straightforward calculation, the average MSE of the MAP
estimation is computed by

δMAP =
σ2
E

NPS

υm

υm +
σ2
E

NPS

, (62)

while that of ML estimation is δML =
σ2
E

NPS
. The inequality

δMAP < δML is always holden which implies that the
estimation can benefit from the acquired channel statistical
information though the specific distribution is unknown.

V. PERFORMANCE EVALUATION

In this section, the Monte Carlo simulations are imple-
mented to numerically examine the performance of the pre-
sented MAP based channel estimation schemes. Since the
MAP estimator belongs to the class of extremum estimators,
the famous ML estimator is chosen for comparison. In particu-
lar, the instantaneous channel h1 and h2 are generated by two
independent complex Gaussian random variables with zero
mean and υ1 = υ2 = υ variance. The typical value of υ is set
to be υ = 1. The transmitting power of source nodes and relay
are set as equal, and the Gaussian noise variance at relay and
source are assumed to be unit value. Hence, the signal-to-noise
ratio (SNR) is defined as PS

σ2
n
= PS . The orthogonal training,

i.e., tH1 t2 = 0 is utilized in the simulation. To evaluate the
channel estimation accuracy, the average mean square error
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Fig. 3. Average MSEs of h2
1 versus SNR for ML and MAP estimations.

(MSE) are computed. The iterative time in the MAP estimation
algorithm is set to be 5 in all the simulations. Totally 104

Monte-Carlo runs are adopted for average.

A. On Composite Channel Estimation

First, we focus on the composite channel estimation where
the average MSE of h2

1 and h1h2 are evaluated. The average
MSE results for h2

1 and h1h2 are shown in Fig.3 and Fig.4,
respectively. It is observed that the MAP estimation attains
lower MSE than that of ML estimation during all SNR region.
Compared the two figures, the MSE gain of h1h2 is much
significant than that of h2

1, e.g., the performance gain of h2
1

is less than 1dB while that of h1h2 which is more than 2dB
on the condition of SNR ≤ 5dB for N = 2. However, the
corresponding gain attained by MAP method is reduced with
increasing SNR. Comparing the MSE curves of different N ,
it is seen that the performance gain becomes less with larger
N , e.g, MAP estimation obtains about 2dB gain of h1h2 for
N = 2 and the gain decreases to less than 1dB for N = 4.
Hence, it indicates that the MAP estimation achieve significant
performance gain over low NPS

σ2
n

region compared with ML
method, and the two methods perform almost the same over
high NPS

σ2
n

region.
Then we compare the proposal with the variance squared

maximum likelihood (VSML) estimator in [12], and the
sample-average estimator (SAE) presented in [13] in terms of
the average MSE of h2

1 which is shown in Fig.5. For VSML
and SAE methods, 8-PSK modulation is utilized for each
training symbol. Focusing on the three curves of the same
N , it can be observed that the proposed MAP algorithm can
achieve the lowest MSE of h2

1 among the three methods which
demonstrates the advantage of our proposal.

Moreover, to show how the variance affects the performance
of MAP algorithm, we simulate the MSEs of h2

1 with different
channel variance υ which is shown in Fig.6. The training
sequence length is set to be N = 2. In accordance with the
curves, it can be seen that the performance improvement of
MAP algorithm differs with different channel variances, and
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the improvement increases a lot with decreasing υ. This im-
plies that the improvement of MAP algorithm highly depends
on the statistical behavior of under estimated parameters.

B. On Individual Channel Estimation

The individual channel estimation is concerned where the
average MSEs for |h1| and |h2| are evaluated. Both the ML
estimation and the composite MAP solution are taken for
comparison. For composite MAP approach, the composite
channels are estimated first, then the individual amplitudes
are calculated by ˆ|h1| =

√
â and ˆ|h2| = b̂√

â
. As the curves in

Fig.7 and Fig.8 shows, the individual MAP estimation attains
lower MSE than the two compared methods. Comparing the
MSE between |h1| and |h2|, it is seen that the MSE of |h2| is
much higher than that of |h1|. This is because the individual
estimation of |h2| would have |h1| in the denominator. Minute
error of |h1| may cause negative impact on the estimation ac-
curacy of |h2| in a large scale. Besides, the MSEs of individual
channels are lower than that calculated by composite channels
because extra calculation between estimates would enlarge the
estimated errors.
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Fig. 6. MSE versus SNR of different channel variance.
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We also investigate the individual estimation at S2 which is
shown in Fig.9 where the MSEs of |h1| and |h2| versus SNR
are plotted of different sequence length. It can be observed
that the MSE of |h2| is much less than that of |h1| which
is different from the estimation results in S1. Combining the
results in Fig.7, Fig.8 and Fig.9, it can be concluded that the
estimation for |hi| is more accuracy than |h−i| at Si where
h−i denotes the opposite channel of hi. This is because the
observation received at Si contains more information about hi

which results in the performance difference.

C. With Unknown Noise Variance

Next, we evaluate the performance of the iterative MAP es-
timation algorithm presented in Section IV. The iterative time
is set to be 5. Restricted to the paper length, the average MSEs
of composite channel coefficients h2

1 is shown in Fig.10. As
the curves show, the MAP estimation achieve lower average
MSE than conventional LS estimation. Thus it indicates that
the apriori CDI can improve estimation accuracy even though
the utilized apriori p.d.f is constructed with calculated noise
variance. Focusing on the curve of N = 2, we can see that the
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MSE performance of the two schemes are almost the same.
This because the calculated noise variance may endure severe
error with small N which would degenerate the performance
gain of MAP estimation. Meanwhile, it can be observed that
the MSE gain of N = 4 is more significant than that of N = 8
for the reason that the MAP estimation always performs better
with low training consumption

D. With Imperfect CDI

After that, we evaluate the performance of the pre-
sented long term estimation strategy in terms of the nor-
malized summation of average MSE of h2

1 and h1h2, i.e,
1
2

[
MSE

(
h2
1

)
+MSE (h1h2)

]
. We simulated 10000 blocks of

transmission, and the factor ε in the k-th block is set to be
ε (k) = k

10000 . The training sequence length is set as N = 2.
The curve in Fig.11 marked MAP-per is assumed to obtain
perfect channel statistic information whereas MAP-imp is the
proposed estimation strategy with linear scale function. It is
seen that the MAP estimation with estimated channel variance
performs worse than that with perfect channel knowledge.
However, the proposed estimation strategy can achieve lower
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Fig. 10. Average MSEs of h2
1 versus SNR for LS and MAP estimations

with unknown noise variance.
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MSE than the ML and LS estimation which indicates that the
linear function of ε is effective in this case. In addition, it
can be expected that the performance of proposed estimation
strategy can be further improved by optimizing the scale
function.

E. Evaluation under More Practical Channel Models

In above parts, all the evaluations are under the quasi-
static flat Rayleigh fading channel model. Here, we evaluate
its performance under the time varying channel following
auto regressive (AR) fading model. The block size is defined
to have 128 symbols, but the equivalent channel coherence
interval spans only 16 symbols. Therefore, each block is
divided into 8 sub-blocks where channel coefficient of each
subblock satisfies the first order AR model [14], and each sub-
block has 2 symbols for training. The channel coefficient in
the k-th subblock follows

hi (k) = �hi (k − 1) + μi (k)
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with μi (k) satisfies complex Gaussian distribution with zero
mean and

(
1− �2

)
υi variance, and � is set to be 0.9 in the

simulation. For comparison, the first 16 symbols of every
128 symbols are used for training in block fading channel.
In accordance with the curves in Fig.12, we can see that the
corresponding MSE of time varying channel is much higher
than that of flat fading channel. This can be expected since the
accumulative training SNR for each channel estimation has
been reduced which results in the performance degradation.
However, the proposed MAP method can also achieve sig-
nificant gain compared with the ML solution which indicates
that the proposed MAP algorithm is effective in time varying
channels.

To investigate the effectiveness of the proposed MAP esti-
mation algorithm to practical channel model, we evaluate its
performance under a more practical channel model, i.e., the
spatial channel model (SCM) presented in the 3rd Generation
Partnership Project (3GPP) [15]. We choose the third scenario
with the following main parameters.

• Power delay profile: Pedestrian B.
• Number of paths: 6.
• Relative path power of each path:

{0.0,−0.9,−4.9,−8.0,−7.8,−23.9}(dB).
• Delay of each path: {0, 200, 800, 1200, 2300, 3700}(ns).
• Mobility speed of source: 30km/h.
• Direction of travel: −22.5 degree.
• Angle of arrival: 22.5 degree (odd numbered paths),

−67.5 degree (even numbered paths).
In Fig.13, the MSE of h2

1 and h1h2 with ML estimation and
MAP solution are plotted with different sequence length. It
can be observed that the MAP method performs better than
ML one which implies the proposal is also effective under
practical channel scenario.

VI. CONCLUSIONS

The training based channel estimation for TWRC is studied
in this paper. To make use of the apriori CDI of channel
coefficients, the MAP based estimation schemes are presented
to perform effective estimation including the estimation of
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Fig. 13. Average MSE of h2
1 and h1h2 versus SNR under SCM scenario.

composite source-source channel coefficients and that of in-
dividual source-relay channels which needs the knowledge
of corresponding channel p.d.f. Considering that CDI is also
needed to be estimated and is not error free, an improved
channel estimation strategy along with the scale MAP esti-
mator is developed where CDI is calculated by instantaneous
channel coefficients block by block, and it can be put back to
implement scale MAP estimator. Simulation results show the
proposed MAP estimators can achieve lower MSE than con-
ventional ML estimator. Meanwhile, it is also testified that the
proposed MAP based estimation strategies also outperforms
the ML estimation since it can achieve lower MSE.

APPENDIX A

The amplitude and phase of a complex variance can be
treated as independent, then the joint p.d.f is given by

p (a, b, θa, θb) = p1 (a, b) p2 (θa, θb) .

Since hi satisfies complex Gaussian distribution with zero
mean and variance υi, the p.d.f of |hi| is given as [17]

f|hi| (x) =
2x

υi
e

x2

υi .

With |h1| = √
a and |h2| = b√

a
, the determinant of Jacobian

matrix is calculated as

J =
∂ (|h1|, |h2|)

∂ (a, b)
=

1

2a
.

Then the joint p.d.f of a and b is obtained by

p1 (a, b) =
1

2a
· 2

√
a

υ1
e−

a
υ1 · 2b

υ2
√
a
e−

b2

υ2a =
2b

aυ1υ2
e
−
(

a
υ1

+ b2

aυ2

)
.

As for θa = mod (2θ1, 2π) and θb = mod ((θ1 + θ2) , 2π)
where mod (y, x) denotes the modulo operation of y over x,
the joint p.d.f can be calculated by p2 (θa, θb) =

1
4π2 , where

θ1, θ2 ∈ [0, 2π). Thus p (a, b, θa, θb) is finally derived as

p (a, b, θa, θb) =
b

2π2aυ1υ2
e
−
(

a
υ1

+ b2

aυ2

)
.
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APPENDIX B

Consider the average MAP estimation log likelihood metric
over N training symbols of a single memoryless fading block,
the estimate yields

Θ̂MAP =argmax
C

{
1

N
log

(
p (C)

N∏
i=1

p (x (i) |C)
)}

=argmax
C

{
1

N

N∑
i=1

log p (x (i) |C) + 1

N
log p (C)

}
,

where x (i) denotes the i-th channel measurement of observa-
tion vector. p(x (i) |C) is the likelihood function of channel
observation for the i-th training symbol assuming channel
coefficient vector C.

Choose N = K�| log p (C) |�, for p (C) > 0, ∀C, where
K → ∞ and �·� is the ceiling operation, then

lim
N→∞

Θ̂MAP

= lim
N→∞

argmax
C

{
1

N

N∑
i=1

log p (x (i) |C) + 1

N
log p (C)

}

=argmax
C

{
lim

N→∞
1

N

N∑
i=1

log p (x (i) |C) + lim
N→∞

1

N
log p (C)

}

=argmax
C

∫
x

log p (x|C) p (x|Θ) dx = lim
N→∞

Θ̂ML,

where p (x|Θ) is the empirical distribution of channel ob-
servation which has converged to its theoretical counterpart
when N → ∞, namely the distribution of channel observation
conditioned on channel coefficient Θ.

It is straightforward to show that it is an optimization prob-
lem with

∫
x
p (x|C) dx = 1. The Kullback-Leibler divergence

formula

−D (p (x|Θ) ‖p (x|C)) =
∫
x

p (x|Θ) log
p (x|C)
p (x|Θ)

≤ 0

leads to∫
x

(x|Θ) log p (x|C) dx ≤
∫
x

(x|Θ) log p (x|Θ) dx.

Thus both MAP and ML estimation are related to mini-
mum Kullback-Leibler divergence problem, where optimal
solution is achieved when D (p (x|Θ) ‖p (x|C)) = 0, e.g.,
p (x|C) = κp (x|Θ) , ∀x, where κ is a constant. Since p (x|C)
and p (x|Θ) are both p.d.f, κ = 1, C = Θ is the unique
optimal solution.
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