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Abstract—The capacity of wireless networks is fundamentally
limited by interference. However, little research has focused on
the interference correlation, which may greatly increase the local
delay (namely the number of time slots required for a node
to successfully transmit a packet). This paper focuses on the
question whether increasing randomness in the MAC, specifically
frequency-hopping multiple access (FHMA) and ALOHA, helps
to reduce the effect of interference correlation. We deriveclosed-
form results for the mean and variance of the local delay for the
two MAC protocols and evaluate the optimal parameters that
minimize the mean local delay. Based on the optimal parameters,
we identify two operating regimes, the correlation-limited regime
and the bandwidth-limited regime. Our results reveal that while
the mean local delays for FHMA with N sub-bands and for
ALOHA with transmit probability p essentially coincide when
p =

1
N

, a fundamental discrepancy exists between their variances.
We also discuss implications from the analysis, including an
interesting mean delay-jitter tradeoff, and convenient bounds on
the tail probability of the local delay, which shed useful insights
into system design.

Index Terms—ALOHA, frequency-hopping, interference cor-
relation, local delay, Poisson point process, stochastic geometry.

I. I NTRODUCTION

A. Motivation

A main limitation to the capacity of wireless communication
systems is interference, which depends upon a number of
factors, including the locations of interfering transmitters.
The issue of interference has been studied extensively in the
literature; however, much less attention has been paid to the
topic of interference correlation until recently. Interference
correlation generally captures the fact that the interference
created by interfering transmitters is a correlated stochastic
process both spatially and temporally. It is well recognized
that correlated fading reduces the performance gain in multi-
antenna communications [1]. Likewise, it has recently been
also proved that interference correlation decreases the diversity
gain [2] [3]. Interference correlation partially comes come
from correlated channel attenuation, like correlated fading
and shadowing, but more importantly, such correlation stems
from the spatial distribution of transmitters and the MAC
protocols since they determine the locations and the active
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pattern of the interferers, which then determine the structure
of the interference. The lines of recent research can be divided
into three categories based on different configurations forthe
receiver:

• Correlation between different time slots: Assume that
the receiver is equipped with a single antenna. This line
of research explored the interference correlation at the
same receiver between different time slots. Related works
include [3]–[6].

• Correlation between different receive antennas:As-
sume that the receiver is equipped with co-located multi-
ple antennas. The correlation between different antennas
exists because the interferences received by different
antennas come from the same source of transmitters.
Related works include [2].

• Correlation between different receivers:This refers to
the interference correlation between different receivers
which are separated (a few wavelengths apart). Since
the network may make use of relay and cooperative
transmission, it is necessary to consider this type of
interference correlation for an accurate analysis. Related
works include [5].

In this work, we focus on the interference correlation
between different time slots at the same receiver, i.e., the
temporal correlation. The interference power constitutesa
stochastic process, wherein the randomness comes from three
sources: the spatial distribution of nodes, the fading and the
MAC. The interferences at two different time slots are corre-
lated because they come from correlated sets of transmitters
and the fading, shadowing and traffic may also be correlated.
In this paper, we only focus on the correlation caused by the
spatial distribution of transmitters and the MAC, assumingthat
fading and shadowing are independent. This type of correlation
brings about the fact that if transmission fails in a previous
time slot, there is a significant probability that the subsequent
transmission will also fail in the next few time slots [3]
[5]. Thus a simple retransmission mechanism may not be
an effective method. The most direct impact of this type of
correlation is the increase of the local delay. Local delay is
defined as the number of time slots required by a node to
successfully transmit a packet to its next-hop node1.

As a motivating example, consider a spatial network without
mobility or fading and without a MAC coordinating. Hence the
interference power experienced by a receiver remains fixed for

1The definition of local delay in our work is consistent with [7]. In some
other works, like [6], the local delay denotes themean number of time slots
required to successfully transmit a packet.
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all time slots; it is a randomly variable uniquely determined by
the spatial distribution of nodes. The local delay, as a random
variable, in that extreme case is two-valued: either one frame
(good realization of the spatial distribution of nodes) or infinite
(bad realization of the spatial distribution of nodes). In this
case, the transmission success events are fully correlated(one
success implies success in each time slot, and vice versa), and
the mean local delay is infinite.

In view of this, we consider some forms of man-made
randomization by introducing MAC dynamics to reduce the
interference correlation. The following analysis will be carried
out in parallel under two different kinds of MAC protocols:

• FHMA (Frequency-hopping multiple access):FHMA
is implemented by simply dividing the entire frequency
band intoN sub-bands and letting each transmitter in-
dependently choose a sub-band uniformly randomly in
each time slot. We focus on slow frequency-hopping,
i.e., hopping at the time scale of a time slot, not at
the time scale of a symbol. There are three benefits by
splitting the entire frequency bands into sub-bands. First
and foremost, it increases the uncertainty in the active
pattern of interfering nodes, thereby reducing the effect
of interference correlation. Second, the interference fora
given transmission is also reduced because the intensity
of the interfering transmitters are scaled by1

N . Third, the
noise power is also scaled by1N since each transmission
occurs in a narrow sub-band. Meanwhile, on the other
side, splitting into sub-bands scales down the rate.

• ALOHA: In ALOHA, if a packet is to be transmitted
during a time slot, the packet will only be transmitted
with a certain probability using the entire frequency
band. Decreasing the transmit probability increases the
uncertainty in the active pattern of interfering nodes and
reduces the interference, while the noise power will not be
reduced. Meanwhile, transmitting probabilistically scales
down the rate.

Since FHMA is often viewed as a spread-spectrum tech-
nique, we briefly comment on DS-CDMA. For synchronous
orthogonal CDMA like those using Walsh codes, a receiver
can in theory completely reject arbitrarily strong signalsfrom
interfering transmitters using different spreading sequences;
thus, only those transmitters using the same spreading se-
quence as the desired link will cause interference. If the
spreading sequence is randomly chosen for each transmission,
the analysis and results of the local delay are exactly the
same as that for FHMA. For asynchronous CDMA using
pseudo-noise (PN) sequences, the interference comes from all
transmitters and is usually approximated as Gaussian noise
in the literature. The works in [8] and [9] have discussed the
difference between asynchronous CDMA and FHMA in terms
of outage probability and throughput. In asynchronous CDMA,
although the desired signal is increased by the processing gain,
the interference still comes from all transmitters. Therefore,
the analysis of the local delay is similar as that for FHMA
with N = 1, i.e., no bandwidth splitting is employed. We will
show that in this case the distribution of the local delay hasa
heavy tail, which results in an infinite mean local delay.

B. Related Works

Recently, the tools from stochastic geometry [10] have
been used extensively in modeling and analysis of wireless
communication systems; see, e.g., [11]–[14] and references
therein. This mathematical framework permits the derivation
of closed-form results for various system metrics and makes
it possible to evaluate the interference correlation. A number
of works considering the related problems are as follows.
In [5] the authors evaluated the spatio-temporal correlation
coefficient of the interference and the joint probability of
success in ALOHA networks, and in [4] the authors calcu-
lated the correlation coefficient of interference under different
assumptions of dependence. The framework for the analysis
of the local delay was provided in [6] [7] [15] [16], where
different scenarios were considered and it was observed that
the mean local delay may be infinite under certain system
parameters. The work in [17] extended the results to the case
of finite mobility. In [18], a new model, which characterizes
different degrees of temporal dependence, was proposed to
evaluate the local delay by using joint interference statistics.
In [19], the optimal power control policies for different fading
statistics were proposed to minimize the mean local delay. All
the above works are based on the Poisson point process (PPP)
model, while the work in [20] analyzed the local delay in
clustered networks.

C. Contributions

In this work, we focus on the question that whether in-
creasing randomness in the MAC helps reduce the local delay.
We apply the so-called Poisson bipolar model (see [13, Sec.
5.3]), and derive the mean and variance of the local delay
under FHMA and ALOHA. Based on the mean and variance
of the local delay we have derived, we explore the essential
difference between the two MAC protocols. We also evaluate
the optimal number of sub-bands for FHMA and the optimal
transmit probability for ALOHA that minimize the mean
local delay. The issue of optimizing the number of sub-bands
was also considered in [21], where the optimal number of
sub-bands is derived to maximize the number of concurrent
transmissions. However, such outage-based framework used
in [21] cannot capture the effects of correlated interference.
In the last part of our work, we evaluate the mean delay-jitter
tradeoff and the bounds on the tail probability of the local
delay, both of which are critical issues for the system design.

Our results reveal that the means of the local delay of
the two protocols, FHMA and ALOHA, coincide when the
number of sub-bandsN in FHMA is equal to the reciprocal
of the transmit probabilityp in ALOHA (with thermal noise
ignored). However, the variances of the local delay for the
two protocols are drastically different: whenp = 1

N and
N → ∞, the variance in FHMA converges to a constant which
is typically small, while in ALOHA the variance scales as
Θ(N2). Moreover, we calculate bounds on the complementary
cumulative distribution function (ccdf) of the local delaywhen
no MAC dynamic is introduced. In that case, the distribution
of the local delay has a heavy tail, which results in an infinite
mean local delay. By employing the MAC randomness of
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either FHMA or ALOHA, the ccdf of the local delay will
decay fast, and the mean local delay will then be finite. This
observation reveals the underlying mechanism why even such
simple MAC protocols can greatly reduce the local delay.

The remaining part of this paper is organized as follows.
Section II describes the network model and the MAC proto-
cols. Section III then establishes the main analytical results of
this paper, including the mean and variance of the local delay
for FHMA and for ALOHA. Section IV evaluates the optimal
number of sub-bands for FHMA and the optimal transmit
probability for ALOHA that minimize the mean local delay.
Section V evaluates the optimal SINR threshold that minimizes
the mean local delay. Section VI presents the mean delay-jitter
tradeoff and the bounds on the tail probability of the local
delay, and Section VII offers the concluding remarks.

II. SYSTEM MODEL

A. Network Model

To obtain the most essential features, we consider the widely
used Poisson bipolar model. In this model, the locations of
the transmitters are modeled as a PPPΦ = {xi} ⊂ R

d of
intensity λ. Each transmitter is associated with one receiver
which is at a fixed distancer0 to the corresponding transmitter.
In the analysis, we will condition on a particular desired
transmitterx0 ∈ Φ, and denote byr0 = |x0| the distance
from this transmitter to the origin where the receiver resides.
Such conditioning is equivalent to adding the pointx0 to the
PPP and guarantees that the link betweenx0 and the origin is
a typical link, in the sense that this link behaves statistically
the same as all other links (see [13, Ch. 8]).

Interferer

Desired Transmitter

Receiver
r0

O x0

Fig. 1. Spatial distribution of different network entities.

We assume that the time is divided into discrete slots with
equal duration. Each transmission attempt occupies one time
slot, and if a transmission fails in a certain time slot, a
retransmission will be conducted. The local delay is definedas
the number of time slots until a packet is successfully received
[6] [7]. In this paper, we assume fully backlogged nodes so
that whenever a node is scheduled to access the channel it
always has data to transmit. The local delay is thus basically
the transmission delay, but not the queueing delay.

For the propagation model, we consider the common path
loss l(r) = κr−α, whereα is the path loss exponent andκ

is a constant. We will further discuss the effect of bounded
path lossl(r) = κ(rα + ε)−1 in the subsection III-E. We
assume that the power fading coefficients are spatially and
temporally independent with exponential distribution of unit
mean (i.e., Rayleigh fading), and lethk,x be the fading
coefficient between transmitterx and the considered receiver
located at origino in time slotk. Without loss of generality,
we assume that all transmitters transmit at a normalized power
level of unity. This constant power assumption is consistent
with the bipolar network model, in which all link distances are
identical. The thermal noise is assumed to be white Gaussian
with power spectral densityNr. To simplify the notations,
we introduce the normalized noise power spectral density as
N0 = Nr/κ.

We assume that the SINR threshold model is applied. That
is, for each time-frequency resource block, as long as the
SINR is above a thresholdθ, it can be successfully used
for information transmission at spectral efficiencylog2(1+ θ)
bits per second per Hz. We also assume that a packet of a
fixed size needs exactly one time slot to be transmitted if it is
allocated the entire frequency bandW under SINR threshold
θ and successfully transmitted in that time slot. In that way,
in the FHMA case if the entire frequency band is split into
N sub-bands, a packet will needN successful time slots.
Meanwhile, in the ALOHA case, each active transmission
will make use of the entire frequency band; thus, only one
successful time slot is needed. Notice that the local delay is
measured by the number of time slots. Since different system
configurations may apply different durations of time slot, we
should normalize the local delay so that the actual delays of
different system configurations can be compared fairly. The
duration of each time slot is proportional to 1

log2(1+θ) because
the size of a packet is fixed and the spectral efficiency is
proportional tolog2(1 + θ). Therefore, when comparing the
actual delays under different SINR thresholdsθ, we normalize
the local delay by 1

log2(1+θ) as the metric.
In static or moderately mobile network, the locations of the

transmitters during all time slots are deemed to be correlated,
resulting in the temporal interference correlation. This type
of correlation decreases the successful probability for retrans-
missions if the first transmission attempt failed, thus increasing
the local delay. In order to reduce the effect of interference
correlation, we study two kinds of MAC randomness described
as follows.

B. FHMA

In the FHMA case, we assume that the total frequency
band W is divided into N sub-bands and each transmitter
chooses a sub-band uniformly randomly, independently of the
location and the time slot (i.e., memoryless both spatiallyand
temporally). Lets ∈ S = {1, 2, · · · , N} be the sub-band
index, and letSk(x) ∈ S denote the index of the sub-band
used by nodex ∈ Φ in time slotk. With these notations, the
interference at the typical receiver located at the origino in
time slotk is given by

Ik =
∑

x∈Φ\{x0}

hk,xκ|x|
−α

1(Sk(x) = Sk(x0)), (1)
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where 1(·) is the indicator function and|x| denotes the
distance betweenx and the origino. Note that the exclusion
of x0 from the sum over the point process does not imply that
x0 /∈ Φ, but it ensures that when we condition onx0 ∈ Φ, the
power received from this node is not counted as interference.

Besides reducing the interference and breaking the corre-
lation, introducing FHMA has the additional benefit that the
noise power decreases fromWκN0 to W

N κN0. By taking this
noise scaling into consideration, we obtain the SINR of the
typical receiver in time slotk as

SINRk =

hk,x0
r−α
0

WN0

N +
∑

x∈Φ\{x0}
hk,x|x|−α1(Sk(x) = Sk(x0))

. (2)

C. ALOHA

In the ALOHA case, letΦk be the transmitting set in time
slot k. The interference at the typical receiver located at the
origin o in time slotk is

Ik =
∑

x∈Φ\{x0}

hk,xκ|x|
−α

1(x ∈ Φk). (3)

Unlike FHMA, the noise scaling effect does not exist for
ALOHA since the entire frequency band is used for each
transmission. The SINR of the typical receiver in time slot
k is

SINRk =
hk,x0

r−α
0

WN0 +
∑

x∈Φ\{x0}
hk,x|x|−α1(x ∈ Φk)

. (4)

III. M EAN AND VARIANCE OF THE LOCAL DELAY

In this section, we derive the mean and variance of the local
delay for FHMA and for ALOHA respectively.

A. FHMA

1) Mean local delay: The following theorem gives the
mean local delay in FHMA networks.

Theorem 1: In FHMA with N sub-bands, the mean local
delay is

D(N) = N exp

(
A

(N − 1)1−δN δ
+

B

N

)
, (5)

where A = λcdr
d
0θ

δC(δ), B = θrα0WN0, δ = d/α,
C(δ) = 1/sinc(δ), and cd = |b(o, 1)| is the volume of the
d-dimensional unit ball2.

Proof: Let CΦ be the event that a transmission succeeds
conditioned on the PPPΦ. The probability for successful
transmission givenΦ is the same for each time slot. Our
analysis below is conditioned onΦ having a point atx0. This
means that the probability measure of the point process is the
Palm probabilityPx0 (see Ch. 8 in [13]). Correspondingly,
the expectation, denoted byEx0 , is taken with respect to the
measurePx0 . With this notation, by setting the SINR threshold
to beθ, we denote the probability of successful transmission

2Since the equation (5) has implied thatD(1) = ∞, without loss of
generality, we can regard the domain ofD(N) asN > 1 with D(1) = ∞.

conditioned onΦ asPx0(CΦ) = P
x0(SINRk > θ | Φ), which

can be evaluated as

P
x0(CΦ) = P

x0(SINRk > θ | Φ)

= P
x0

(
hk,x0

r−α
0 > θ

(W
N

N0 + Ik

)
| Φ
)

(a)
= E

x0

(
exp

(
− θrα0

(W
N

N0 + Ik

))
| Φ
)

= E
x0

(
exp

(
− θrα0

W

N
N0 −

∑

x∈Φ\{x0}

θrα0 hk,x|x|
−α

1(Sk(x) = Sk(x0))
)
| Φ
)

= exp
(
−

θrα0WN0

N

)

∏

x∈Φ\{x0}

E
x0
(
exp

(
−θrα0 hk,x|x|

−α
1(Sk(x) = Sk(x0))

)
| Φ
)

= exp
(
−

θrα0WN0

N

)

∏

x∈Φ\{x0}

( 1

N
E
x0
(
exp

(
−θrα0 hk,x|x|

−α
)
| Φ
)
+

N − 1

N

)

(b)
= exp

(
−

θrα0WN0

N

) ∏

x∈Φ\{x0}

( 1

N

1

1 + θrα0 |x|
−α

+
N − 1

N

)
.

(6)

In steps (a) and (b) of the derivation above, we have
applied the property that the fading coefficientshk,x are i.i.d.
random variables with exponential distribution of unit mean.
The number of time slots needed until a successful time slot
appears, denoted by∆, is a random variable calleddelay till
success (DTS) [19]. Conditioned uponΦ, the success events in
different time slots are independent with probabilityP

x0(CΦ);
therefore, the DTS with givenΦ, denoted by∆Φ, is a random
variable with geometric distribution given by

P
x0 (∆Φ = k) = (1− P

x0(CΦ))
k−1

P
x0(CΦ). (7)

The conditional expectation of∆Φ is taken w.r.t. the fading
and the MAC, given byEx0 (∆Φ) = 1/Px0(CΦ). Noticing
that a packet will needN successful time slots to finish
transmission in FHMA, the mean local delay can be evaluated
as

D(N) = NE
x0 (∆)

= NE
x0

Φ (Ex0 (∆Φ))

= NE
x0

Φ

( 1

Px0(CΦ)

)

(a)
= N exp

(θrα0 WN0

N

)

E
x0

Φ

(
1

∏
x∈Φ\{x0}

(
1
N

1
1+θrα0 |x|−α + N−1

N

)
)

= N exp

(
θrα0WN0

N

)

E
x0

Φ

( ∏

x∈Φ\{x0}

1
1
N

1
1+θrα0 |x|−α + N−1

N

)
. (8)
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where (a) follows from (6). By applying the probability
generating functional (PGFL) of the PPP, we obtain

D(N)

= N exp

(
θrα0 WN0

N

)

exp

(
− λ

∫

Rd

(
1−

1
1
N

1
1+θrα0 |x|−α + N−1

N

)
dx

)

= N exp

(
θrα0 WN0

N
+ λcdd

∫ ∞

0

rd−1

N
θrα0

rα +N − 1
dr

)

= N exp

(
λcdr

d
0θ

δC(δ)

(N − 1)1−δN δ
+

θrα0WN0

N

)
. (9)

where δ = d/α, C(δ) is given by C(δ) =
Γ (1 + δ) Γ (1− δ) = 1

sinc(δ) , and cd = |b(o, 1)| is the
volume of thed-dimensional unit ball.

The result in Theorem 1 is closed-form and easy to evaluate
and interpret. The value ofA is determined by the interference
and that ofB is due to the thermal noise. From (5), we have

D(N) = N exp

(
A

(
1−

1

N

)δ−1
1

N
+

B

N

)

= N exp

(
A

(
1−

δ − 1

N
+O

(
1

N2

))
1

N
+

B

N

)

= N exp

(
A+B

N
+O

(
1

N2

))

= N +A+B +O

(
1

N

)
. (10)

The result shows that whenN is large, the mean local delay
increases linearly withN . SinceD(1) is infinity, there exists
an optimal number of sub-bandsNopt that minimizes the
mean local delay. InspectingD(N), we see that there are
two effects by splitting the entire frequency band intoN sub-
bands: first, the mean local delayD(N) tends to decrease due
to the reduced interference correlation; second,D(N) tends
to increase since the number of time slots needed becomes
N times larger. In view of this, we introduce two regimes,
correlation-limited regime andbandwidth-limited regime. For
N < Nopt, the first effect outweighs the second one, and
the network operates in the correlation-limited regime. For
N > Nopt, it is the opposite and the network operates in the
bandwidth-limited regime.

In the above, we have derived results under the assumption
that the frequency allocation is dynamic (i.e., the sub-bands
are allocated randomly and independently in each time slot).
Alternatively, one could consider the case where the frequency
allocation is static over time. That case is exactly the sameas
the case where no frequency splitting is applied, with the only
difference that the intensity of the interfering transmitters is
scaled down toλ/N . The mean local delay in that case is also
infinite. This fact explains that even though frequency splitting
is introduced, if the sub-bands are not reallocated randomly
temporally, the mean local delay will still be infinite. This
is a nontrivial observation since it reveals that the reduction
of the mean local delay by introducing FHMA does not come
from reducing the interference or the thermal noise, but mainly
comes from reducing the interference correlation.

Based on Theorem 1, we show how the normalized mean
local delay D(N)

log2(1+θ) varies withN numerically. As for the
parameters, we ignore the thermal noise (N0 = 0) and set the
intensity of transmitters asλ = 0.01m−2 by default, which
means that the coverage area of each transmitter is100m2 on
average, reasonable for a typical deployment of WLAN. The
path loss exponent is set asα = 4 by default, and the distance
between the receiver and the typical desired transmitter isr0 =
5m. Let θ be the outage threshold for SINR. The relationship
between D(N)

log2(1+θ) andN is depicted in Fig. 2.

By changing the values ofα and λ respectively, we get
the curves in Fig. 2. Comparing the curves in Fig. 2(a) with
those in Fig. 2(b) and Fig. 2(c), we observe that the optimal
number of sub-bands increases whenα decreases or when
λ increases. This observation is consistent with the intuition:
Smallerα implies that the signal strength decays more slowly
with distance, and largerλ implies that more transmitters
exist in the same region, so in both cases more interference
is created. Therefore, the entire frequency band should be
divided into more sub-bands, namely largerNopt, to reduce
the interference and interference correlation.

2) Variance of the local delay: The mean local delay
discussed above has characterized the mean number of time
slots needed until a packet is successfully transmitted. Inorder
to better understand the distribution of the local delay, wealso
derive its variance. The following theorem gives the variance
of the local delay for FHMA.

Theorem 2: In FHMA with N sub-bands, the variance of
the local delay is

V (N) = N (N + 1) exp

(
(2N − 1− δ)A

N δ(N − 1)2−δ
+

2B

N

)

−D(N)−D2(N). (11)

Proof: In order to transmit a packet in FHMA,N
successful transmissions are needed. Letting∆i (1 ≤ i ≤ N)
be the DTS of theith transmission, we get the local delay of
a packet as

∑N
i=1 ∆i. For 1 ≤ i, j ≤ N andi 6= j, ∆i and∆j

are dependent because the interference of theith transmission
and that of thejth transmission are correlated. However, if
we condition onΦ, {∆i} are i.i.d. random variables with
geometric distribution given by (7). With these notations,we
obtain the variance of the local delay as

V (N) = E
x0




(

N∑

i=1

∆i

)2


−

(
E
x0

(
N∑

i=1

∆i

))2

= E
x0




N∑

i=1

∆2
i +

N∑

i,j=1

i6=j

2∆i∆j


 −

(
N∑

i=1

E
x0 (∆i)

)2

(a)
=

N∑

i=1

E
x0
(
∆2

i

)
+

N∑

i,j=1

i6=j

2Ex0 (∆i∆j)−D2(N),
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(a) λ = 0.01 andα = 4.
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(b) λ = 0.01 andα = 3.
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Fig. 2. The normalized mean local delayD(N)
log2(1+θ)

as a function of the
number of sub-bandsN , whend = 2, r = 5m, and thermal noise ignored.

where(a) follows from the definition of the mean local delay.
By applying the total expectation formula, we have

V (N) =

N∑

i=1

E
x0

Φ

(
E
x0
(
∆2

i | Φ
))

+

N∑

i,j=1

i6=j

2Ex0

Φ (Ex0 (∆i∆j | Φ))−D2(N)

(b)
= NE

x0

Φ

(
2− P

x0(CΦ)

(Px0(CΦ))2

)

+N (N − 1)Ex0

Φ

(
1

(Px0(CΦ))2

)
−D2(N)

= N (N + 1)Ex0

Φ

(
1

(Px0(CΦ))2

)

−NE
x0

Φ

(
1

Px0(CΦ)

)
−D2(N)

= N (N + 1)Ex0

Φ

(
1

(Px0(CΦ))2

)

−D(N)−D2(N), (12)

where(b) follows from the second moment of the geometri-
cally distributed random variable.

From (6), we have

E
x0

Φ

(
1

(Px0(CΦ))2

)

= exp

(
2θrα0WN0

N

)

E
x0

Φ

(
1

∏
x∈Φ\{x0}

(
1
N

1
1+θrα0 |x|−α + N−1

N

)2

)

(c)
= exp

(
2θrα0WN0

N

−λ

∫

Rd

(
1−

1
(

1
N

1
1+θrα0 |x|−α + N−1

N

)2

)
dx

)

= exp
(2θrα0WN0

N

−λcdd

∫ ∞

0

(
1−

N2(1 + θrα0 r
−α)2

(N + (N − 1)θrα0 r
−α)

2

)
rd−1dr

)

= exp

(
2θrα0WN0

N
+

λcdr
d
0θ

δC(δ)(2N − 1− δ)

N δ(N − 1)2−δ

)
,

(13)

where(c) follows by applying the PGFL of the PPP. Plugging
(13) into (12), we get the variance of the local delay as in
Theorem 2.

B. ALOHA

The fundamental difference between FHMA and ALOHA
is that if a packet is to be transmitted during a time slot,
in FHMA the packet will be surely transmitted by randomly
choosing a sub-band, while in ALOHA the packet will only
be transmitted with a given probability. Similar to the analysis
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of FHMA, we also assume that a packet needs exactly one
time slot if it is allocated the entire frequency bandW under
SINR thresholdθ and successfully transmitted in that time
slot. We assume that each node transmits with probabilityp
in each time slot and if it transmits, it will make use of the
entire frequency band. In that way, only one successful time
slot is needed to transmit a packet, and the local delay is the
DTS of one transmission, denoted by∆.

1) Mean local delay: The following theorem gives the
mean local delay for ALOHA.

Theorem 3: In ALOHA with transmit probability p, the
mean local delay is

D̃(p) =
1

p
exp

(
pA

(1− p)1−δ
+B

)
. (14)

Proof: In each time slot, a packet will be transmitted
with probability p and the transmission will be successful
with probability P

x0(SINRk > θ | Φ) conditioned uponΦ.
Therefore, similar to the derivation of (6), the probability for
successfully transmitting a packet conditioned uponΦ in a
time slot is

P
x0(CΦ)

(a)
= pPx0(SINRk > θ | Φ)

= pPx0
(
hk,x0

r−α
0 > θ (WN0 + Ik) | Φ

)

(b)
= pEx0 (exp (−θrα0 (WN0 + Ik)) | Φ)

= pEx0

(
exp

(
− θrα0 WN0

−
∑

x∈Φ\{x0}

θrα0 hk,x|x|
−α

1(x ∈ Φk)
)
| Φ
)

= p exp (−θrα0WN0)∏

x∈Φ\{x0}

E
x0
(
exp

(
−θrα0 hk,x|x|

−α
1(x ∈ Φk)

)
| Φ
)

= p exp (−θrα0WN0)∏

x∈Φ\{x0}

(
pEx0

(
exp

(
− θrα0 hk,x|x|

−α
)
| Φ
)
+ 1− p

)

(c)
= p exp

(
− θrα0WN0

) ∏

x∈Φ\{x0}

( p

1 + θrα0 |x|
−α

+ 1− p
)
.

(15)

where(a) is because a transmission occurs with probabilityp,
and (b) and (c) follows because the fading coefficientshk,x

are i.i.d. random variables with exponential distributionof unit
mean. Then, the mean local delay for ALOHA is given by

D̃(p) = E
x0

Φ

( 1

Px0(CΦ)

)

=
1

p
exp

(
θrα0WN0

−λ

∫

Rd

(
1−

1
p

1+θrα0 |x|−α + 1− p

)
dx
)

=
1

p
exp

(
λcdr

d
0θ

δC(δ)p

(1 − p)1−δ
+ θrα0WN0

)
.

(16)

Applying the definition ofA andB in Theorem 1, we obtain
the result in Theorem 3.

2) Variance of the local delay: The variance of the local
delay in ALOHA is given by the following theorem.

Theorem 4: In ALOHA with transmit probability p, the
variance of the local delay is

Ṽ (p) =
2

p2
exp

((2− p− δp)pA

(1− p)2−δ
+ 2B

)

−D̃(p)− D̃2(p). (17)

Proof: In the ALOHA case, in order to transmit a packet,
one successful transmission is needed. The variance of local
delay for ALOHA is thus

Ṽ (p) = E
x0
(
∆2
)
− (Ex0 (∆))

2

(a)
= E

x0

Φ

(
E
x0
(
∆2|Φ

))
− D̃2(p)

(b)
= E

x0

Φ

(
2− P

x0(CΦ)

(Px0(CΦ))2

)
− D̃2(p)

= 2Ex0

Φ

(
1

(Px0(CΦ))2

)
− D̃(p)− D̃2(p),

(18)

where (a) follows from the total expectation formula, and
(b) follows from the second moment of the geometrically
distributed random variable. From (15), we have

E
x0

Φ

(
1

(Px0(CΦ))2

)

= p−2 exp
(
2θrα0WN0

)

E
x0

Φ

(
1

∏
x∈Φ\{x0}

(
p 1
1+θrα0 |x|−α + 1− p

)2
)

(c)
= p−2 exp

(
2θrα0WN0

−λ

∫

Rd

(
1−

1
(
p 1
1+θrα0 |x|−α + 1− p

)2
)
dx

)

=
1

p2
exp

(
2θrα0WN0 +

λcdr
d
0θ

δC(δ)(2 − p− δp)p

(1− p)2−δ

)
,

(19)

where(c) follows from the probability generating functional
(PGFL) of the PPP. Plugging (19) into (18) and applying the
definition of A andB in Theorem 1, we get the variance of
the local delay in Theorem 4.

C. Comparison Between FHMA and ALOHA

1) Mean local delay: The mean local delay in FHMA is
given byD(N) in (5), and that in ALOHA is given bỹD(p)
in (14). In ALOHA, if the transmit probabilityp is set as1

N ,
by comparingD̃( 1

N ) to the result of FHMA,D(N) given in
(5), we observe that the only difference lies in the thermal
noise term. In FHMA, the entire frequency band is divided
into a number of sub-bands, thus reducing the noise power.
However, with ALOHA, the noise scaling effect does not exist
since the entire frequency band is used for transmission. The
mean local delays of the two schemes are the same if we
ignore the thermal noise term and setp = 1

N .



8

2) Variance of the local delay: Comparing (11) and (17),
we observe that even if the noise is ignored and the transmit
probability is set asp = 1

N in ALOHA, there is still
an significant difference between the variances of the two
schemes whenN > 1: in FHMA, a factorN (N + 1) exists
in the first term, while in ALOHA the factor is2N2. When
N > 1, we haveV (N) < Ṽ ( 1

N ) and this illustrates that
the variance of the local delay for FHMA is less than that for
ALOHA (see Fig. 3). We further observe from Fig. 3 that when
N → ∞, the variance for FHMA stabilizes at a typically small
value, while for ALOHA, the variance increases quickly with
N . To understand the limiting characteristics quantitatively,
we evaluate how the variances of the local delay scale with
N in the following proposition.

Proposition 1: For FHMA with number of sub-bandsN >
1, the variance of the local delay is

V (N) = (2− δ)A+B +O

(
1

N

)
= Θ(1). (20)

For ALOHA with transmit probabilityp = 1
N < 1, the

variance of the local delay is

Ṽ (
1

N
) = Θ(N2). (21)

Proof: For FHMA with number of sub-bandsN > 1,
from (5), we have

D(N) = N exp

(
A+B

N
+

(1− δ)A

N2
+O

(
1

N3

))

= N + (A+B)

+

(
(A+B)2

2
+ (1− δ)A

)
1

N
+O

(
1

N2

)
.

(22)

Then,D2(N) is given by

D2(N) = N2 + 2(A+B)N + 2(A+B)2

+2(1− δ)A+O

(
1

N

)
. (23)

From (11), we have the variance of the local delay as

V (N) = N(N + 1) exp

(
2B

N
+

2A

N
−

3(δ − 1)A

N2

+O

(
1

N3

))
−D(N)−D2(N)

= N2 + (2A+ 2B + 1)N + 2(A+B)

+2(A+B)2 − 3(δ − 1)A

−D(N)−D2(N) +O

(
1

N

)
. (24)

Plugging (22) and (23) into (24), we get the result in (20).
The derivations of the limiting for ALOHA is similar, and we
omit the details of that proof.

D. Finiteness of the Mean Local Delay

To understand why the mean local delay goes to infinity
whenN is set to one, let us consider the expression for the
mean local delayD = NE

x0

Φ

(
1

Px0(CΦ)

)
in FHMA, where
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Fig. 3. Normalized variances of the local delay for FHMA, V (N)
(log2(1+θ))2

,

and for ALOHA,
Ṽ ( 1

N
)

(log2(1+θ))2
, as a function of the number of sub-bandsN ,

whend = 2, λ = 0.01m−2, α = 4, r = 5m, and thermal noise ignored.

1
Px0(CΦ) is a random variable with support set(1,+∞) because
it is the reciprocal of the successful transmit probability
conditioned upon the PPPΦ. WhenN = 1, the expectation
E
x0

Φ

(
1

Px0(CΦ)

)
is infinity because the ccdf of 1

Px0(CΦ) has a
heavy tail. To show the heavy tail behavior, let us derive a
lower bound for the ccdf of the local delay whenN = 1.
Ignoring the thermal noise term in (6), forN = 1 and any
t ∈ (1,+∞), we have

P
x0

(
1

Px0(CΦ)
> t

)
= P

x0

( ∏

x∈Φ\{x0}

(
1 + θrα0 |x|

−α
)
> t

)

> P
x0
(
1 + θrα0 |xmin|

−α > t
)

> P
x0
(
θrα0 |xmin|

−α > t
)

= P
x0

(
|xmin| < θ

1
α t−

1
α r0

)
, (25)

wherexmin = argminx∈Φ\{x0}|x| is the nearest interfering
transmitter to the receiver. The distance between the receiver
and its nearest interfering transmitter has cumulative distribu-
tion function (cdf) asb(r) = 1 − exp(−cdλr

d). Substituting
this cdf into (25) and lettingδ = 2

α , we get

P
x0

(
1

Px0(CΦ)
> t

)
> 1− exp

(
−cdλθ

δt−δrd0
)

(26)

∼
cdλθ

δrd0
tδ

, t → ∞. (27)

The functiong(t) = 1−exp
(
−C0t

−δ
)
, whereC0 = cdλθ

δrd0 ,
gives a lower bound for the ccdf of the local delay when
N = 1 (see Fig. 4).

By the identity ofE(X) =
∫∞

0 P(X > t)dt for any non-
negative random variableX and the inequalitye−x < 1−x+
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x2

2 for x > 0, we have

E
x0

Φ

(
1

Px0(CΦ)

)
=

∫ ∞

0

(
P
x0

(
1

Px0(CΦ)
> t

))
dt

= 1 +

∫ ∞

1

(
P
x0

(
1

Px0(CΦ)
> t

))
dt

> 1 +

∫ ∞

1

(
1− exp

(
−C0t

−δ
))

dt

> 1 +

∫ ∞

1

(
C0t

−δ −
1

2
C2

0 t
−2δ

)
dt

= ∞. (28)
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Fig. 4. Lower bound for the ccdf of the local delay, given by (26), when
N = 1 in the 2-dimensional case (d = 2). The intensity of transmitters is
λ = 0.01m−2 and the path loss exponent isα = 4.

When FHMA is applied withN > 1, there is an additional
term N−1

N in the success probability given by (6), which
preventsPx0(CΦ) from getting too small when|x| approaches
zero. It can be interpreted intuitively that, although there
are some interfering transmitters very close to the receiver,
the application of FHMA guarantees that there is always
a relatively large probability that those transmitters do not
continuously cause interference to the receiver.

E. The effect of bounded path loss function

In the discussion above, we have considered the unbounded
path loss functionl(r) = κr−α. Though the unbounded
path loss function is an idealized model, it gives an effective
approximation to the actual path loss and results in concise
results [22], [23]. In this subsection, we compare the results
derived under the unbounded path loss function to that under
the bounded path loss functionl(r) = κ(rα + ε)−1, where
ε > 0. The unbounded path loss function is the limiting case
of the bounded path loss function asε → 0.

Without loss of generality, we take FHMA as an example.
By replacing l(r) = κr−α with l(r) = κ(rα + ε)−1 in
the derivations of Theorem 1 and Theorem 2, we obtain the
mean and variance of the local delay under the assumption of
bounded path loss function as follows.

Dε(N) = N exp

(
(rα0 + ε)θWN0

N

+
λcd(r

α
0 + ε)θC(δ)

(Nε+ (N − 1)θ(rα0 + ε))1−δN δ

)
, (29)

Vε(N) = N (N + 1) exp

(
2θrα0WN0

N

+
(2Nε+ (2N − 1− δ)θ(rα0 + ε))λcd(r

α
0 + ε)θC(δ)

N δ(Nε+ (N − 1)θ(rα0 + ε))2−δ

)

−Dε(N)−D2
ε(N). (30)

WhenN = 1, both Dε(1) and Vε(1) are finite if ε > 0.
Settingε = 0 reproduces the results for the unbounded model,
as expected. As can be seen, the difference between the results
for the unbounded model and the bounded one decreases
with increasingr0 or decreasingθ. In order to evaluate the
difference, we setε as the typical valueκ (i.e., the path
loss becomesl(r) = κ(rα + κ)−1) such that the received
power never exceeds the transmitted one without fading. The
value ofκ is the path loss at1m TX-RX separation, which is
rather small, typically like−30dB [24, Ch. 3]. Therefore, as
ε = κ → 0, the mean local delay forN = 1 is approximated
as

Dε(1) ∼ exp

(
θrα0WN0 +

λcdr
α
0 θC(δ)

ε1−δ

)
, ε → 0. (31)

It is observed thatDε(1) increases exponentially with respect
to 1/ǫ1−δ asε → 0. For the realistic bounded path loss model,
in which ε is rather small, the mean local delay whenN = 1
is finite though extremely large. Thus, we can conclude that
for the realistic bounded path loss model, whenN > 2 the
boundedness of the path loss has only negligible effect on the
mean and the variance of the local delay; whenN = 1 the
mean local delay is extremely large and thus can be considered
as infinity for practical purposes.

IV. OPTIMAL PARAMETERS TO M INIMIZE MEAN LOCAL

DELAY

In this section, we analyze the optimal number of sub-bands
in FHMA and optimal transmit probability in ALOHA to min-
imize the mean local delay. Deriving the optimal parametersis
difficult, and the results may not be compact; thus, we resort
to deriving tight bounds for the optimal values.

A. FHMA

In the derivation, we relaxN to be continuous and subse-
quently take the actual optimal number to be a nearby integer.
The following theorem gives the bounds of the optimal number
of sub-bands.

Theorem 5: The bounds of the optimal number of sub-
bands that minimizes the mean local delay are given by

Nopt ∈ [⌊t0⌋, ⌈t0⌉+ 2], t0 = λcdr
d
0θ

δC(δ) + θrα0 WN0.

(32)
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Proof: Based on the result of (5), we get the derivative
of the mean local delayD′(N) whenN > 1 as follows

D′(N) = f(N) exp
(
λcdr

d
0θ

δC(δ)(N − 1)δ−1N−δ

+ θrα0WN0N
−1
)
, (33)

where

f(N) = 1−
1

N

(
λcdr

d
0θ

δC(δ)

(
N

N − 1

)1−δ
N − δ

N − 1

+ θrα0WN0

)
. (34)

We observe thatf(N) is strictly monotonically increasing in
N ; this means that there is only one optimal valueNopt that
satisfiesD′(Nopt) = 0, which is given byf(Nopt) = 0. From
f(Nopt) = 0, we get

Nopt = λcdr
d
0θ

δC(δ)

(
Nopt

Nopt − 1

)2−δ
Nopt − δ

Nopt

+θrα0WN0. (35)

SinceNopt/(Nopt − 1) > 1 and0 < δ < 1, we have

Nopt > λcdr
d
0θ

δC(δ)

(
Nopt

Nopt − 1

)2−δ
Nopt − 1

Nopt

+θrα0WN0

> λcdr
d
0θ

δC(δ) + θrα0WN0, (36)

This gives a lower bound for the optimal valueNopt. Next we
derive an upper bound forNopt. From (35), we have

Nopt < λcdr
d
0θ

δC(δ)

(
Nopt

Nopt − 1

)2

+ θrα0WN0

<
(
λcdr

d
0θ

δC(δ) + θrα0WN0

)( Nopt

Nopt − 1

)2

.

Then, we have

(Nopt − 1)2

Nopt
< λcdr

d
0θ

δC(δ) + θrα0WN0.

Nopt − 2 +
1

Nopt
< λcdr

d
0θ

δC(δ) + θrα0WN0.

Nopt < λcdr
d
0θ

δC(δ) + θrα0 WN0 + 2. (37)

Combining (36) and (37) and noting thatN is an integer, we
get the bounds ofNopt.

The bounds given here are rather simple and tight. If
frequency splitting is not applied (the case ofN = 1), the
mean local delay will surely be infinite. To guarantee a finite
mean local delay, the value ofN should be at least two. It
is valuable to investigate for which range of parameters the
optimal valueNopt will be two. The following corollary gives
such a condition.

Corollary 1: If the intensity of transmittersλ satisfies the
following inequality,

λ <
ln 3

2 − 1
6θr

α
0 WN0

cdrd0θ
δC(δ)(2−δ − 2δ−13−δ)

, (38)

the optimal number of sub-bandsNopt that minimizes the
mean local delay will be two.

Proof: Since we have proved that mean local delayD(N)
is a function that first decreases and then increases withN ,
the condition forNopt = 2 is D(2) < D(3). By substituting
the expression of mean local delay (5) intoD(2) < D(3),
we get the condition in the corollary. Notice that the right
side of the inequality in (38) may be negative, in which case
the condition forλ cannot be satisfied and then the optimal
number of sub-bands will never be two.

In Fig. 5, we plot the optimal number of sub-bandsNopt

and its bounds given in (32) as a function of the path loss
exponent for differentθ. The optimal numberNopt is obtained
by numerical calculation of the solution of the equation (35).
We observe from Fig. 5 that the bounds are quite tight and
give excellent approximation of the valueNopt. This figure
also shows that the optimal valueNopt decreases with in-
creasing path loss exponent, which verifies our aforementioned
discussion regarding Fig. 2. The curves show that when the
path loss exponent is fixed, the optimal numberNopt is an
increasing function of the SINR thresholdθ, which can be
also perceived from the expression (32). This is reasonable
since with larger SINR threshold, the condition for successful
transmission becomes harsher, and more sub-bands are needed
to meet the stronger requirements. In Fig. 6, we plot the
minimum value of the normalized mean local delay when
the optimum number of sub-bandsNopt is used. We observe
from Fig. 6 that there are intersection points between different
curves, implying that the choice of SINR thresholdθ has direct
impact on the mean local delay. In Section V, we will try to
obtain the optimal SINR threshold.
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Fig. 5. Optimal number of sub-bandsNopt and its bounds(t0, t0 + 2) as
a function of the path loss exponent for varyingα.

B. ALOHA

Since the expressions of the mean local delays for ALOHA
and for FHMA are the same whenp = 1/N and thermal
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Fig. 6. Minimum of the normalized mean local delay
D(Nopt)
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as a function

of the path loss exponentα.

noise ignored, we give the optimal transmit probability in the
following theorem directly and omit the proof.

Theorem 6: The bounds of the optimal transmit probability
which minimizes the mean local delay is

popt ∈

(
1

λcdrd0θ
δC(δ) + 2

,
1

λcdrd0θ
δC(δ)

)
. (39)

V. OPTIMAL SINR THRESHOLDθ

In the discussion above, we have already derived tight
bounds for the optimal number of sub-bandsNopt and the
optimal transmit probabilitypopt to minimize the mean local
delay when the SINR thresholdθ is fixed. The following
analysis will focus on deriving the optimal thresholdθopt or
its bounds when the number of sub-bandsN or the transmit
probability p is fixed. However, as mentioned in Section II,
the duration of each time slot is proportional to 1

log2(1+θ) .
In order to characterize the actual delay, we slightly modify
the optimization objective as the normalized mean local delay,
i.e., D(N)

log2(1+θ) for FHMA and D̃(p)
log2(1+θ) for ALOHA. In the

following analysis, we consider two asymptotic regimes: the
interference-limited regime and the noise-limited regime. The
interference-limited regime is typically encountered in cellular
radio systems like CDMA networks, where the interference
dominates over the thermal noise. The noise-limited regime
is appropriate if the distance between concurrent transmitters
is much larger than the distance of the typical link, in which
case the interference in the network is negligible.

A. FHMA

The following theorem gives the optimal thresholdθopt and
its bounds for FHMA in the interference-limited regime and
noise-limited regime respectively.

Theorem 7: In the noise-limited regime, the optimal thresh-
old θopt that minimizes the normalized mean local delay

D(N)
log2(1+θ) for FHMA is given by

θopt = exp

(
W

(
N

rα0WN0

))
− 1, (40)

where W(z) is the Lambert W function which solves
W(z)eW(z) = z. In the interference-limited regime, the
bounds ofθopt are given by

θopt ∈
(
b
−1/(δ+1)
0 − 1, b

−1/δ
0

)
,

b0 = λcdr
d
0δC(δ)(N − 1)δ−1N−δ. (41)

Proof: The derivative of the normalized mean local delay
with respective toθ is

∂
(

D(N)
log2(1+θ)

)

∂θ
=

h(θ)θδ−1N

log2(1 + θ)
exp

(
θrα0WN0N

−1

+λcdr
d
0θ

δC(δ)(N − 1)δ−1N−δ
)
, (42)

whereh(θ) is as follows

h(θ) = λcdr
d
0δC(δ)(N − 1)δ−1N−δ

+rα0WN0N
−1θ1−δ −

1

θδ−1(1 + θ) ln(1 + θ)
. (43)

Next, we prove thath(θ) is a strictly increasing function of
θ, then we show that the equationh(θ) = 0 has a unique
solution. Letl(θ) = θδ−1(1 + θ) ln(1 + θ) and the derivative
of l(θ) is as follows

l′(θ) = ((δ − 1)θδ−2 + δθδ−1) ln(1 + θ) + θδ−1

> ((δ − 1)θδ−2 + δθδ−1)θ + θδ−1

> 0.

Thus, l(θ) is a strictly increasing function ofθ. This implies
that h(θ) is also a strictly increasing function ofθ. Since
limθ→0+ h(θ) = −∞ and limθ→∞ h(θ) = +∞, the equation
h(θ) = 0 has a unique solutionθopt that minimizes the mean
local delay.

In the noise-limited regime, the equationh(θ) = 0 has the
form

rα0WN0N
−1θ1−δ −

1

θδ−1(1 + θ) ln(1 + θ)
= 0. (44)

Solving this equation we obtain (40).
In the interference-limited regime, the noise is ignored, and

h(θ) = 0 has the form

λcdr
d
0δC(δ)(N − 1)δ−1N−δ

−
1

θδ−1(1 + θ) ln(1 + θ)
= 0. (45)

A closed-form solution for the above equation does not exist.
By applying the inequalities θ

1+θ < ln(1+ θ) < θ to (45), we
get the following inequalities

1

(1 + θ)δ+1
<

1

θδ(1 + θ)

< λcdr
d
0δC(δ)(N − 1)δ−1N−δ <

1

θδ
. (46)

From the above inequalities, we get the bounds in (41)
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B. ALOHA

Based on the similarity between the expressions of the
normalized mean local delays for ALOHA and for FHMA,
we obtain the optimal threshold for ALOHA directly.

Theorem 8: In noise-limited regime, the optimal threshold
θopt that minimizes the normalized mean local delay for
ALOHA is as follows

θopt = W

(
exp

(
1

rα0WN0

))
− 1. (47)

In interference-limited regime, the bounds ofθopt are given
by

θopt ∈
(
b
−1/(δ+1)
0 − 1, b

−1/δ
0

)
,

b0 = λcdr
d
0δC(δ)p(1 − p)δ−1. (48)

VI. D ESIGN INSIGHTS

A. Mean Delay-Jitter Tradeoff

The jitter of delay, typically characterized by the packet
delay variation, is defined in [25] and [26]. In the system
design, the delay variation is an important measure that
characterizes the fluctuation of delay [27]. For interactive real-
time applications, e.g., VoIP, large delay variance can be a
serious issue. To the best of our knowledge, the variance of
local delay has not been explored in the existing work. The
optimal value ofN that minimizes the mean local delay is
often not the one that minimizes the variance; thus there is
a tradeoff between the mean and the variance of the local
delay. Fig. 7(a) and Fig. 7(b) visualize the relationship between
the mean and the variance of the normalized local delay
for FHMA and for ALOHA respectively. From Fig. 7(a) we
observe that in FHMA the favorable operating point has a
reasonably wide tuning range because the variance stabilizes
fast asN increases. In contrast, we observe from Fig. 7(b)
that in ALOHA the curves turn sharply.

B. Tail Probability of the Local Delay

The tail probability is an important measure of the system
performance since one may require (as a QoS constraint) that
the probability that the local delay exceeds a certain threshold
is less than a predefined value. Based on the mean and variance
we have derived and by applying the one-tailed Chebyshev’s
inequality, we obtain an upper bound for the tail probability.

For example, in FHMA withN > 1, lettingX =
∑N

i=1 ∆i

be the local delay, the tail probability is upper bounded as
follows

P{X > T0} ≤
V (N)

V (N) + (T0 −D(N))2
, for T0 > D(N).

(49)
For example, if we let the design requirement be that the
probability that the local delay exceeds10 is less than5%.
Then, when the threshold of the local delay is fixed as
T0 = 10, the upper bound of the tail probability given by
(49) with varyingN is shown in Fig. 8. We observe that in
order to achieve the probability5%, the number of sub-bands
N for the case whenθ = 1, 10, 100 should be chosen larger
than15, 50, 95 respectively.
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Fig. 7. Mean delay-jitter tradeoff.

The bounds based on Chebyshev’s inequality will typically
not provide the tightest bounds. However, it generally cannot
be improved if only the mean and variance are available. On
the other hand, if further statistical information is provided,
a number of methods may be developed to improve the
sharpness of the bounds, for example, through the use of
semivariances if some samples are available, or through the
use of Bhattacharyya’s inequality or large-deviations based
inequalities if higher moments or even the moment generating
functions are available.

VII. C ONCLUSIONS

In this work, we studied the problem of reducing the effect
of interference correlation by introducing MAC dynamics. We



13

20 40 60 80 100 120 140
10

−4

10
−3

10
−2

10
−1

10
0

Number of frequency bands (N)

P
ro

ba
bi

lit
y

 

 

θ = 1

θ = 10

θ = 100

5%

Fig. 8. Upper bounds of the tail probability of local delay given by (49) as
a function of the number of sub-bandsN when fixingT0 = 10 in FHMA.

derived the mean and variance of the local delay and evaluated
how the interference correlation can be reduced by FHMA and
ALOHA. We also evaluated the optimal number of sub-bands
in FHMA and the optimal transmit probability in ALOHA that
minimize the mean local delay.

The results reveal that there exist two operation regimes for
the network, the correlation-limited regime and bandwidth-
limited regime, which are separated by the optimal number
of sub-bands in FHMA and the optimal transmit probability
in ALOHA. If no MAC dynamics is employed, the local
delay has a heavy tail distribution which results in infinite
mean local delay; meanwhile, employing FHMA and ALOHA
will greatly decrease the mean local delay. By comparing the
results of FHMA and ALOHA, we observed that while the
mean local delays of the two protocols are the same for certain
parameters, the variances are rather different. Accordingto
the results established herein, FHMA outperforms ALOHA
if implementation costs like overhead are not taken into
consideration; however, when considering the implementation
costs, the overhead for FHMA may be much higher than
ALOHA because in FHMA each transmitter should inform
the corresponding receiver which sub-band to listen on.
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