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Abstract—The capacity of wireless networks is fundamentally
limited by interference. However, little research has focsed on
the interference correlation, which may greatly increase he local
delay (namely the number of time slots required for a node

pattern of the interferers, which then determine the stnect
of the interference. The lines of recent research can bdetivi
into three categories based on different configurationgHer
receiver:

to successfully transmit a packet). This paper focuses on ¢h
guestion whether increasing randomness in the MAC, specifidly
frequency-hopping multiple access (FHMA) and ALOHA, helps
to reduce the effect of interference correlation. We deriveclosed-
form results for the mean and variance of the local delay for he
two MAC protocols and evaluate the optimal parameters that
minimize the mean local delay. Based on the optimal paramets,
we identify two operating regimes, the correlation-limited regime o
and the bandwidth-limited regime. Our results reveal that while
the mean local delays for FHMA with N sub-bands and for
ALOHA with transmit probability p essentially coincide when
p= % a fundamental discrepancy exists between their variances
We also discuss implications from the analysis, including
interesting mean delay-jitter tradeoff, and convenient bainds on
the tail probability of the local delay, which shed useful irsights
into system design.

o Correlation between different time slots: Assume that

the receiver is equipped with a single antenna. This line

of research explored the interference correlation at the

same receiver between different time slots. Related works

include [3]-6].

Correlation between different receive antennas:As-

sume that the receiver is equipped with co-located multi-

ple antennas. The correlation between different antennas

exists because the interferences received by different

antennas come from the same source of transmitters.

Related works include [2].

« Correlation between different receivers: This refers to
the interference correlation between different receivers
which are separated (a few wavelengths apart). Since
the network may make use of relay and cooperative
transmission, it is necessary to consider this type of
interference correlation for an accurate analysis. Relate
works include [[5].

A. Motivation In this work, we focus on the interference correlation

A main limitation to the capacity of wireless communicatioetween different time slots at the same receiver, i.e., the
systems is interference, which depends upon a numbertefporal correlation. The interference power constitudes
factors, including the locations of interfering transmiift stochastic process, wherein the randomness comes from thre
The issue of interference has been studied extensivelyein tources: the spatial distribution of nodes, the fading dned t
literature; however, much less attention has been paiddo WMAC. The interferences at two different time slots are corre
topic of interference correlation until recently. Inteace lated because they come from correlated sets of transmitter
correlation generally captures the fact that the interfeee and the fading, shadowing and traffic may also be correlated.
created by interfering transmitters is a correlated ststita In this paper, we only focus on the correlation caused by the
process both spatially and temporally. It is well recogdizespatial distribution of transmitters and the MAC, assumnthrag
that correlated fading reduces the performance gain inimufading and shadowing are independent. This type of coioglat
antenna communications|[1]. Likewise, it has recently bedmings about the fact that if transmission fails in a pregiou
also proved that interference correlation decreases teesiy time slot, there is a significant probability that the sulssq
gain [2] [3]. Interference correlation partially comes a@mtransmission will also fail in the next few time slots] [3]
from correlated channel attenuation, like correlated rfgdi [5]. Thus a simple retransmission mechanism may not be
and shadowing, but more importantly, such correlation steran effective method. The most direct impact of this type of
from the spatial distribution of transmitters and the MAGorrelation is the increase of the local delay. Local deky i
protocols since they determine the locations and the actilefined as the number of time slots required by a node to
successfully transmit a packet to its next-hop fode

As a motivating example, consider a spatial network without
mobility or fading and without a MAC coordinating. Hence the
interference power experienced by a receiver remains fized f

Index Terms—ALOHA, frequency-hopping, interference cor-
relation, local delay, Poisson point process, stochastiegmetry.
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1The definition of local delay in our work is consistent wiff.[h some
other works, like[[6], the local delay denotes timean number of time slots
required to successfully transmit a packet.
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all time slots; it is a randomly variable uniquely deterndriyy B. Related Works
the_spatia_\l distribution of nodes_. The local dela_y, as a oand Recently, the tools from stochastic geometiy][10] have
variable, in that extreme case is two-valued: either oneéa peen ysed extensively in modeling and analysis of wireless
(good realization of the spatial distribution of nodes)dmite o mmunication systems; see, e.4..][1I]1[14] and refeence
(bad realization of the spatial distribution of nodes). st herein. This mathematical framework permits the derorati
case, the transmission success events are fully correflated o cjosed-form results for various system metrics and makes
success implies success in each time slot, and vice versa), g hossible to evaluate the interference correlation. A bam
the mean local delay is infinite. of works considering the related problems are as follows.
In view of this, we consider some forms of man-madg [5] the authors evaluated the spatio-temporal corretati
randomization by introducing MAC dynamics to reduce theoefficient of the interference and the joint probability of
interference correlation. The following analysis will berded success in ALOHA networks, and in [4] the authors calcu-
out in parallel under two different kinds of MAC protocols: |ated the correlation coefficient of interference undefedént

« FHMA (Frequency-hopping multiple access):FHMA assumptions of dependence. The framework for the analysis
is implemented by simply dividing the entire frequencf the local delay was provided inl[6]I[7] [15] [16], where
band into N sub-bands and letting each transmitter irdifferent scenarios were considered and it was observed tha
dependently choose a sub-band uniformly randomly the mean local delay may be infinite under certain system
each time slot. We focus on slow frequency-hoppin@,arameters- The work in_[17] extended the results to the case
i.e., hopping at the time scale of a time slot, not Af finite mobility. In [18], a new model, which characterizes
the time scale of a symbol. There are three benefits Bifferent degrees of temporal dependence, was proposed to
splitting the entire frequency bands into sub-bands. Figyaluate the local delay by using joint interference diatis
and foremost, it increases the uncertainty in the actif@ [19], the optimal power control policies for differentliag
pattern of interfering nodes, thereby reducing the effestatistics were proposed to minimize the mean local deldy. A
of interference correlation. Second, the interferenceafortn® above works are based on the Poisson point process (PPP)
given transmission is also reduced because the intendftdel, while the work in[[20] analyzed the local delay in
of the interfering transmitters are scaled $y Third, the clustered networks.
noise power is also scaled %f since each transmission
occurs in a narrow sub-band. Meanwhile, on the othey. Contributions
side, splitting into sub-bands scales down the rate.

. ALOHA: In ALOHA. if a packet is to be transmitted In this work, we focus on the question that whether in-

X . . . reasing randomness in the MAC helps reduce the local delay.
dgrlng a t'm? slot, the_ packeF will only b.e transmitteq apply the so-called Poisson bipolar model (seé [13, Sec.
with a certam_ probability using the gpurg frequencyé_g’])' and derive the mean and variance of the local delay
band. Decrgasmg thg transmit prqbab|l|t){ Increases ’t.lgfder FHMA and ALOHA. Based on the mean and variance
uncertainty N the active patt_ern of mFerferlng nodes ang the local delay we have derived, we explore the essential
reduces the |nterfgrence, wh|_le_the hoise p_(_)w_erwnl not IEfﬁfference between the two MAC protocols. We also evaluate
reduced. Meanwhile, transmitting probabilistically ssal the optimal number of sub-bands for FHMA and the optimal
down the rate. transmit probability for ALOHA that minimize the mean
Since FHMA is often viewed as a spread-spectrum teclocal delay. The issue of optimizing the number of sub-bands
nique, we briefly comment on DS-CDMA. For synchronougas also considered in_[21], where the optimal number of
orthogonal CDMA like those using Walsh codes, a receiveub-bands is derived to maximize the number of concurrent
can in theory completely reject arbitrarily strong signfatsn  transmissions. However, such outage-based framework used
interfering transmitters using different spreading seqes; in [21] cannot capture the effects of correlated interfeeen
thus, only those transmitters using the same spreading bethe last part of our work, we evaluate the mean delayrjitte
quence as the desired link will cause interference. If theadeoff and the bounds on the tail probability of the local
spreading sequence is randomly chosen for each transmissttelay, both of which are critical issues for the system desig
the analysis and results of the local delay are exactly theOur results reveal that the means of the local delay of
same as that for FHMA. For asynchronous CDMA usinthe two protocols, FHMA and ALOHA, coincide when the
pseudo-noise (PN) sequences, the interference comes froomamber of sub-band8’ in FHMA is equal to the reciprocal
transmitters and is usually approximated as Gaussian naigehe transmit probability in ALOHA (with thermal noise
in the literature. The works in_[8] and|[9] have discussed thignored). However, the variances of the local delay for the
difference between asynchronous CDMA and FHMA in termsvo protocols are drastically different: whem = % and
of outage probability and throughput. In asynchronous CODMAV — oo, the variance in FHMA converges to a constant which
although the desired signal is increased by the processiing gis typically small, while in ALOHA the variance scales as
the interference still comes from all transmitters. Theref ©(N?). Moreover, we calculate bounds on the complementary
the analysis of the local delay is similar as that for FHMAumulative distribution function (ccdf) of the local delafen
with N =1, i.e., no bandwidth splitting is employed. We willno MAC dynamic is introduced. In that case, the distribution
show that in this case the distribution of the local delay dasof the local delay has a heavy tail, which results in an irdinit
heavy tail, which results in an infinite mean local delay. = mean local delay. By employing the MAC randomness of



either FHMA or ALOHA, the ccdf of the local delay will is a constant. We will further discuss the effect of bounded
decay fast, and the mean local delay will then be finite. Thigath lossi(r) = x(r® + ¢)~! in the subsectiof III-E. We
observation reveals the underlying mechanism why even suadsume that the power fading coefficients are spatially and
simple MAC protocols can greatly reduce the local delay. temporally independent with exponential distribution afitu

The remaining part of this paper is organized as followsean (i.e., Rayleigh fading), and lét,, be the fading
Section[]) describes the network model and the MAC protaoefficient between transmittar and the considered receiver
cols. Sectiofi Tl then establishes the main analyticalltesf located at origiro in time slotk. Without loss of generality,
this paper, including the mean and variance of the localydelve assume that all transmitters transmit at a normalizecepow
for FHMA and for ALOHA. Sectior TV evaluates the optimallevel of unity. This constant power assumption is conststen
number of sub-bands for FHMA and the optimal transmiwith the bipolar network model, in which all link distancega
probability for ALOHA that minimize the mean local delay.identical. The thermal noise is assumed to be white Gaussian
Sectior Y evaluates the optimal SINR threshold that mingmizwith power spectral densityV,. To simplify the notations,
the mean local delay. SectibnlVI presents the mean delay-jitwe introduce the normalized noise power spectral density as
tradeoff and the bounds on the tail probability of the locaVy = N,./k.

delay, and Section Ml offers the concluding remarks. We assume that the SINR threshold model is applied. That
is, for each time-frequency resource block, as long as the
1. SYSTEM MODEL SINR is above a threshold, it can be successfully used

for information transmission at spectral efficierlog, (1 + 0)
A. Network Mooel bits per second per Hz. We also assume that a packet of a
To obtain the most essential features, we consider the widgked size needs exactly one time slot to be transmitted it i
used Poisson bipolar model. In this model, the locations gfiocated the entire frequency bafid under SINR threshold
the transmitters are modeled as a PPP= {z;} C R? of ¢ and successfully transmitted in that time slot. In that way,
intensity A. Each transmitter is associated with one receivgf the FHMA case if the entire frequency band is split into
which is at a fixed distance to the corresponding transmitter.;y sub-bands, a packet will neel successful time slots.
In the analysis, we will condition on a particular desirefieanwhile, in the ALOHA case, each active transmission
transmitterzy € @, and denote by, = [zo| the distance will make use of the entire frequency band; thus, only one
from this transmitter to the origin where the receiver resid syccessful time slot is needed. Notice that the local deday i
Such conditioning is equivalent to adding the poigtto the measured by the number of time slots. Since different system
PPP and guarantees that the link betwegmnd the origin is configurations may apply different durations of time sloe w
a typical link, in the sense that this link behaves staiic should normalize the local delay so that the actual delays of
the same as all other links (see [13, Ch. 8]). different system configurations can be compared fairly. The
durati.on of each time ;Iot Fs proportional foegz)(ll—w be-cguse _
the size of a packet is fixed and the spectral efficiency is
w proportional tolog,(1 + 6). Therefore, when comparing the
actual delays under different SINR threshollsve normalize
* % the local delay bym as the metric.
% % Interferer In static or moderately mobile network, the locations of the
0 Desired Transmitter transmitters during all time slots are deemed to be coed|at
e A<—2—0O A Receiver resulting in the temporal interference correlation. Thipet
* ° X Y of correlation decreases the successful probability foans-
missions if the first transmission attempt failed, thuseéasing
the local delay. In order to reduce the effect of interfeeenc
% w correlation, we study two kinds of MAC randomness described
as follows.

Fig. 1. Spatial distribution of different network entities B. FHMA

We assume that the time is divided into discrete slots Wibh In the .FHMA ca;e, we assume that the total frequ_ency
. o . .pand W is divided into N sub-bands and each transmitter
equal duration. Each transmission attempt occupies one ti

. L L Sk Chooses a sub-band uniformly randomly, independently ®f th
slot, and if a transmission fails in a certain time slot, R cation and the time slot (i.e., memoryless both spatiafig
retransmission will be conducted. The local delay is defiaed o Y P

. : . ~temporally). Lets € S = {1,2,---,N} be the sub-band
the number of time slots until a packet is successfully reszbi . . i
[6] [7]. In this paper, we assume fully backlogged nodes S|8dex, and letS(x) € S denote the index of the sub-band

. LiSE['d by node: € ® in time slotk. With these notations, the
that whenever a node is scheduled to access the channel | . . S
. . . ||nterference at the typical receiver located at the origiim
always has data to transmit. The local delay is thus ba;ucatl o
L . ime slotk is given by

the transmission delay, but not the queueing delay.

For the propagation model, we consider the common path I, = E hi zklx]*1(8k(z) = Sk(z0)), (1)
lossi(r) = kr—*, wherea is the path loss exponent and 2€d\ {0}



where 1(-) is the indicator function andz| denotes the conditioned on® asP* (Cg) = P**(SINRy > 6 | ®), which
distance betweenm and the origino. Note that the exclusion can be evaluated as
of xg from the sum over the point process does not imply that

xo ¢ ®, but it ensures that when we condition om € @, the ]P’””"((?@) ]P’””“(SINRk >0| D)
power received from this node is not counted as interference b WN 7 o
Besides reducing the interference and breaking the corre- ( Fol (N 0+ k) | )
lation, introducing FHMA has the additional benefit that thea) zo
noise power decreases froifik N, to NnNo. By taking this E (e ( ory ( No+ Ik)) | (I))
noise scaling into consideration, we obtain the SINR of the IE””“(ex ( ore EN B
typical receiver in time slok as B P 0N
SINR,, = > Orfhealal 1(Su(x) = $x(20))) | @)
o 1oraa ze®\{z0}
’ . 2 Org W Ny
TR Y v oo} Palal #1(Sk(x) = Su(0)) = exp (- =)
E*° (exp (=0r8 hi |2 “1(Sk(2) = Si(x P
. ALOHA mECIHmo} (exp (=078 he| x| ~*1(81(x) = 8k(0))) | @)
In the ALOHA case, letd;, be the transmitting set in time Org W No
slot k. The interference at the typical receiver located at the ©XP ( N )
origin o in time slotk is H (IEIO( ( 0r h | |7a)|q))+N—1)
-— exp | — 7’0 k,x x ——
o N N
I, = Z hkymlﬁ|117| 1(17 € (I)k). (3) z€®\{zo}
ze®\{zo} ) exp ( B GTSWNO) H (i 1 N — 1)
Unlike FHMA, the noise scaling effect does not exist for N ooy N 1+ 06l N
ALOHA since the entire frequency band is used for each (6)
transmission. The SINR of the typical receiver in time slot
kis In steps(a) and (b) of the derivation above, we have
his 2o @ applied the property that the fading coefficiehis, are i.i.d.

SINRj, = WNy + Zme@\{mo} hiolz|-01(z € OF) ) random variables with exponential distribution of unit mea

The number of time slots needed until a successful time slot
appears, denoted b¥, is a random variable calledelay till
success (DTS) [19]. Conditioned uporp, the success events in
In this section, we derive the mean and variance of the 10Ggkerent time slots are independent with probability (Cs);
delay for FHMA and for ALOHA respectively. therefore, the DTS with givet®, denoted byA g, is a random
variable with geometric distribution given by

IIl. M EAN AND VARIANCE OF THELOCAL DELAY

A. FHMA

1) Mean local delay: The following theorem gives the
mean local delay in FHMA networks.
Theorem 1. In FHMA with N sub-bands, the mean local

P* (Ag = k) = (1 — P™(Cq))" 1 P¥(Cy). (7)

The conditional expectation chg is taken w.r.t. the fading
and the MAC, given byE* (Ag) = 1/P*°(Cs). Noticing

delay is that a packet will needV successful time slots to finish
A B transmission in FHMA, the mean local delay can be evaluated
D(N) = N —_— { — 5 ’
(W) P ((N —1yoN N) O N

where A = A\cgrd0°C(8), B = OrgWNy, § = d/a, D(N)
C(6) = 1/sinc(d), andcqg = |b(o,1)| is the volume of the
d-dimensional unit bail

Proof: Let Cy be the event that a transmission succeeds N]Efpo( )
conditioned on the PPR. The probability for successful Pro(Co)
transmission givend is the same for each time slot. Our @ N exp (9 aWNo)
analysis below is conditioned ob having a point atry. This N
means that the probability measure of the point processeis th R0 ( 1 )
Palm probabilityP*e (see Ch. 8 in[[113]). Correspondingly, @ (L 1 + u)
the expectation, denoted 7, is taken with respect to the v€®\{ro} \ N 140rgfal™ = N
measuré®®, With this notation, by setting the SINR threshold ~ Nexp <97’3WN0>

— NE™ (A
— NEZ (E™ (As)
1

~—

—~
s}
=

to bed, we denote the probability of successful transmission N
1
2Since the equation(5) has implied tha&t(1) = oo, without loss of E?( H T T N_1 ) 8
generality, we can regard the domain@{N) as N > 1 with D(1) = oo z€®\{xo} N T+0rgla[—2 + 5



Based on Theoreid 1, we show how the normalized mean

local delayh)glzgiﬁze) varies with N numerically. As for the

parameters, we ignore the thermal noidg & 0) and set the

where (a) follows from (8). By applying the probability
generating functional (PGFL) of the PPP, we obtain

D(N : . . .
(V) 0roTV N intensity of transmitters ag = 0.01lm~2 by default, which
= Nexp (M) means that the coverage area of each transmitted(is* on
N average, reasonable for a typical deployment of WLAN. The

path loss exponent is set as= 4 by default, and the distance
between the receiver and the typical desired transmitter is
5m. Let 6 be the outage threshold for SINR. The relationship
betweenbﬁiﬁze) and N is depicted in Fig[2.

By changing the values ofv and A respectively, we get

— dx)
+ )
d—1
" d7’>

1
exp<—/\/ (1—1 T
R\ NIRRT

Or&W N, h
N exp (%—l-/\cdd/
0

e%ro‘—i—N—l
0

~ Nexp Aearg0°C(8) | 0rgWNo (9) the curves in Figl2. Comparing the curves in ffig. 2(a) with
(N —1)1-8 N9 N ' those in Fig[ 2() and Fig. 2(c), we observe that the optimal
where § = d/a, C(§) is given by C(5) = number of sub-bands increases wherdecreases or when

1 and ¢; = |b(o,1)| is the A increases. This observation is consistent with the irmiti

F(1+0)I(1-9) ROL - :
volume of thed-dimensional unit ball. m Smallera implies that the signal strength decays more slowly

The result in Theorefl 1 is closed-form and easy to evalud¥éh distance, and largei implies that more transmitters
and interpret. The value of is determined by the interference€Xist in the same region, so in both cases more interference
and that ofB is due to the thermal noise. Frof (5), we hav® created. Therefore, the entire frequency band should be

N1, g divided into more sub-bands, namely larg¥g,., to reduce
_ _ = -4 2 the interference and interference correlation.
D(N) = Nexp (A(l N) N+N)

2) Variance of the local delay: The mean local delay

= Nexp <A (1 — 5__1 + 0(i>) 1 + E) discussed above has characterized the mean number of time
N N2JJN N slots needed until a packet is successfully transmittedrdier
~ New <A + B N O<i>) to better understand the distribution of the local delayalse
N N2 derive its variance. The following theorem gives the vaz&an
1 of the local delay for FHMA.
= N+A+B+ O<N>' (10) Theorem 2: In FHMA with N sub-bands, the variance of

The result shows that wheN is large, the mean local delaythe local delay is

increases linearly withV. Since D(1) is infinity, there exists

an optimal number of sub-bands,,; that minimizes the VIN) = N (N + 1) exp ((2N— 1-0)A n @)
mean local delay. Inspecting(N), we see that there are NO(N —-1)?27% N

two effects by splitting the entire frequency band iosub-

bands: first, the mean local deld@y( V) tends to decrease due

to the reduced interference correlation; secoRd)V) tends — D(N) — D*(N). (11)

to increase since the number of time slots needed becomes
N times larger. In view of this, we introduce two regimes,
correlation-limited regime andoandwidth-limited regime. For

N < Nopt, the first effect outweighs the second one, angl, 1o pTs of thath transmission, we get the local delay of
the network operates in the correlation-limited regimer Fq packet a3 ™  A;. Forl <i,j < N andi # j, A; andA,

. . . i=1 S >ty ) > ’ 1 i
N > Nop, it is the opposite and the network operates in thgo jependent because the interference oftthéransmission

bandwidth-limited regime. . and that of thejth transmission are correlated. However, if
In the above, we have derived results under the assumption” - diion ond, {A,} are iid. random variables with

Proof: In order to transmit a packet in FHMAN
r}s(}tjccessful transmissions are needed. Letfing1 < ¢ < N)

that the frequency allocation is dynamic (i.e., the subdsan
are allocated randomly and independently in each time.slo
Alternatively, one could consider the case where the fraque
allocation is static over time. That case is exactly the same
the case where no frequency splitting is applied, with thig on
difference that the intensity of the interfering transenist is
scaled down to\/N. The mean local delay in that case is also
infinite. This fact explains that even though frequencytspl

is introduced, if the sub-bands are not reallocated rangoml
temporally, the mean local delay will still be infinite. This
is a nontrivial observation since it reveals that the reiduct
of the mean local delay by introducing FHMA does not come
from reducing the interference or the thermal noise, buhigai
comes from reducing the interference correlation.

eometric distribution given by (7). With these notations,

tain the variance of the local delay as

S (z) (e @Ai)f

N N N
E | Y AT+ > 2000 | -
=1

o) (3

i=1
i#£]

N N
DOET (A7) + Y 2E™ (Aidy) - DX(N),
=1 i,j=1

7]

E® (Az‘)>

(a

=



Fig. 2.

Normalized mean local delay D(N)/Iogz(1+8) Normalized mean local delay D(N)/Iogz(1+9)
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() A=0.04 anda = 4.

D(N)

The normalized mean local delqgm as a fun.ctlo.n of the
number of sub-band8/, whend = 2, » = 5m, and thermal noise ignored.

where(a) follows from the definition of the mean local delay.
By applying the total expectation formula, we have

N
V(N) = 3 Ep (E™ (A7 @)
N
+ 2By (B (A4 | ) — D*(N)
vo (2= P%(Co)
Ve <<Pwo<eq>>>2>
1

+N (N - 1)Eg° (7@?’%(6@))2) — D*(N)

— N (N +1)E <m>

— N(N41)E (;>

(Pro(Co))?
—D(N) — D?*(N), (12)

IS

where (b) follows from the second moment of the geometri-
cally distributed random variable.
From [8), we have

o (W)
- (26’r0 ]\v]VNO)

1
E2
* <H 11N 2)
z€®\{zo} \ N I4+0rg[z]~« N

© o (208N
Xp N

L)

1
N T+0rg[z]—> N
(26‘7‘8WNO
= exp|————
N

[e%s) 2 . —a\2
—/\cdd/ 1-— N1+ 0r§77) 5 Tdildr)
0 (N + (N =1)0rgr—)
oy (2076 NG Aeard@®C(6)(2N — 1 —6)
- N NO(N —1)2° ’

(13)

where(c) follows by applying the PGFL of the PPP. Plugging
(@3) into [I2), we get the variance of the local delay as in
Theoren 2. [

B. ALOHA

The fundamental difference between FHMA and ALOHA
is that if a packet is to be transmitted during a time slot,
in FHMA the packet will be surely transmitted by randomly
choosing a sub-band, while in ALOHA the packet will only
be transmitted with a given probability. Similar to the arsid



of FHMA, we also assume that a packet needs exactly one?) Variance of the local delay: The variance of the local
time slot if it is allocated the entire frequency bard under delay in ALOHA is given by the following theorem.

SINR thresholdf and successfully transmitted in that time Theorem 4: In ALOHA with transmit probability p, the
slot. We assume that each node transmits with probabilityvariance of the local delay is

in each time slot and if it transmits, it will make use of the

entire frequency band. In that way, only one successful time ﬁ(p) = 32 exp (M + 23)
slot is needed to transmit a packet, and the local delay is the p B (1 ~P)
DTS of one transmission, denoted By, —D(p) — D*(p). 17)

1) Mean local delay: The following theorem gives the i )
mean local delay for ALOHA. Proof: In the ALOHA case, in order to transmit a packet,

Theorem 3: In ALOHA with transmit probability p, the one successful transmission is needed. The variance df loca

mean local delay is delay for ALOHA is thus

~ 1 A V(p) = E™ (A?) — (B (A))?
D(p) = -—exp (7(1 _p )1_5+B>. (14) (?) @ (&%) i ( ))~2
p = Ey (E™ (A%|®)) — D*(p)
Proof: In each time slot, a packet will be transmitted ®) o (2~ P (Cs) ~,
with probability p and the transmission will be successful = Eg ( (P70 (Cq))2 ) —D%(p)
with probability P*° (SINR; > ¢ | ®) conditioned upond. 1 B _
Therefore, similar to the derivation dfl(6), the probalifior = 2E3° (72) — D(p) — D?*(p),
- " - (P70 (€a))
successfully transmitting a packet conditioned upbrin a 18
time slot is (18)
" w here (a) follows from the total expectation formula, and
P (@ pP™ (SINR;, > 6 | D) w :
(wf’) ( k>0 (b) follows from the second moment of the geometrically
= P (hiworo @ > 0 (WNo + Ii) | @) distributed random variable. From {15), we have
2 pE" (exp (~r5 (WNo + 1)) | @) Sy ——
= pE™® (exp ( — Or§ W Ny * A\ (P (Cp))?
—2 o
o —a = p “exp (20rg W N,
> Orfheale 1@ e @) | @) (26r W o) X
ze€®P\{zo} cwpo < I 2>
= pexp (—0rg W Ny) oo (wo Promg== +1-7)
[T E® (exp (—0rg hiolzl 1(z € @1)) | @) @ )2 exp <2%YW Ny
ze€®\{zo}
= pexp (—0r§ W Np) _/\/ (1_ : 1 z)dx)
H (pEmO(exp (= Or§hyalz| =) | (I>) +1- p) R (pW +1-p)
we\{zo} 1 Aeagrd@C(6)(2 —p—46
o X ) = —exp (29r8WN0+ 469 CO2 —p p)p),
:pexp(—@rOWNo)H(W—i—l—p). p (1-p)
2€®\ {z0} "ol® (19)

(15) where(c) follows from the probability generating functional

where(a) is because a transmission occurs with probability (PGFL) of the PPP. Plugging (19) intd {18) and applying the
and (b) and (c) follows because the fading coefficierntis , definition of A and B in TheorenllL, we get the variance of

are i.i.d. random variables with exponential distributagrunit  the local delay in Theorein 4. [ ]

mean. Then, the mean local delay for ALOHA is given by
5@) — Eo (PIOEG ) C. Comparison Between FHMA and ALOHA
@) 1) Mean local delay: The mean local delay in FHMA is

- lexp (9r8WN0 given by D(N) in (B), and that in ALOHA is given byD(p)

p in (4). In ALOHA, if the transmit probability is set as+,

_/\/ (1 _ . 1 )dx) by comparingD(%) to the result of FHMA,D(N) given in

Rd Trorelal = T 1—p (B), we observe that the only difference lies in the thermal

1 Acardd®C(8)p N noise term. In FHMA, the entire frequency band is divided
= —& (W +0rg WN0> : into a number of sub-bands, thus reducing the noise power.
(16) However, with ALOHA, the noise scaling effect does not exist
since the entire frequency band is used for transmissioa. Th
Applying the definition ofA and B in TheorenlL, we obtain mean local delays of the two schemes are the same if we
the result in Theoreri] 3. B ignore the thermal noise term and get %



2) Variance of the local delay: Comparing[(Ill) and (17),
we observe that even if the noise is ignored and the transmi
probability is set asp = % in ALOHA, there is still
an significant difference between the variances of the two
schemes wheV > 1: in FHMA, a factor N (N + 1) exists
in the first term, while in ALOHA the factor i V2. When
N > 1, we haveV(N) < V() and this illustrates that
the variance of the local delay for FHMA is less than that for
ALOHA (see Fig[B). We further observe from Fig. 3 that when
N — oo, the variance for FHMA stabilizes at a typically small
value, while for ALOHA, the variance increases quickly with
N. To understand the limiting characteristics quantitdyive
we evaluate how the variances of the local delay scale with
N in the following proposition.

Proposition 1: For FHMA with number of sub-band¥ >
1, the variance of the local delay is

—e—0=1
—=—0=10
—— 6=100

Normalized variances of the local delay

20 25

Number of sub-bands (N)

1
VIN)=2-0)A+B+0(— | =06(1). 20
( ) ( ) Tt <N> ( ) ( ) Fig. 3. Normalized variances of the local delay for FHMW
. . o Viy ;
For ALOHA with transmit probabilityp = % < 1, the andfor ALOHA’mgzéfNﬁW'as a function of the number of sub-ban¥is
variance of the local delay is whend = 2, A = 0.0lm~2, a = 4, » = 5m, and thermal noise ignored.
~ 1

Proof: For FHMA with number of sub-band® > 1,
from (), we have

D(N) = Nexp (A;B e ]‘V;”A +O(N13)>
= N+(A+B)
+<@+(1—5)A>%+0($).
(22)
Then, D?(N) is given by
D?(N) N% 4+ 2(A+ B)N +2(A+ B)?
+2(1-60)A+0 (%) (23)

From [11), we have the variance of the local delay as
2B 24 3(0-1A

Vi) NN NE

N(N +1)exp (

+O(%>) — D(N) — D*(N)
= N?+ (2A+2B+1)N +2(A+ B)
+2(A+B)* -3(6-1)A

—D(N) - D*(N)+ O (%) .

Plugging [22) and[(23) intd (24), we get the result [in](20).
The derivations of the limiting for ALOHA is similar, and we

omit the details of that proof. [ ]

D. Finiteness of the Mean Local Delay

Py e is a random variable with support g8t +-cc) because

it is t¥1e reciprocal of the successful transmit probability
conditioned upon the PP®. When N = 1, the expectation
Ez° (WQ is infinity because the ccdf o@m(l—eb) has a
heavy tail. To show the heavy tail behavior, let us derive a
lower bound for the ccdf of the local delay whewi = 1.
Ignoring the thermal noise term if(6), fa&¥ = 1 and any

€ (1,400), we have
Wi 1 T « —Q
€2\ {xzo}

> [Pro (1 + 07 |zmin|”¢ > t)
> P¥o (9 |xmin|7°‘ > t)

= P¥o (|£Cmm| <Qat™ aro) (25)

where z,;, = argminwe@\{wo}|x| is the nearest interfering
transmitter to the receiver. The distance between thewecei
and its nearest interfering transmitter has cumulativeitis
tion function (cdf) ash(r) = 1 — exp(—cqAr?). Substituting
this cdf into [25) and letting = 2, we get

(24) ¥y 1 64—0,.d
P (W > t) >1-— exp (—CdAe t T'O) (26)
S .d
N CdAti RN 27)

The functiong(t) = 1—exp (—Cot %), whereCy = cqA0°r{,
gives a lower bound for the ccdf of the local delay when

To understand why the mean local delay goes to infinity — 1 (see Fig[#4).

when N is set to one, let us conS|der the expression for the By the identity of E(X f
0

mean local delayD = NIE””O( ) in FHMA, where

—on(e )

P(X > t)dt for any non-
negative random vanabl& and the mequallt)e r<l—a+



2
5 for z > 0, we have

— 14 /100 (PIO (m > t>) dt T E\Jffd(_”(%;;(%@i(j)))l_éj\[g)’ 29)

> 1+/ (1 —exp (—Cot™°)) dt N
p ‘@(N)ZN(N-I-l)@(p(w

> 1+ /1 (Oot " - 300t 25) d (2Ne + (2N — 1 — §)0(rs + &) Aca(rs + £)0C(5)
= . o T T e )
— D.(N) — DZ(N). (30)

When N = 1, both D_(1) and V(1) are finite ife > 0.
Settinge = 0 reproduces the results for the unbounded model,
as expected. As can be seen, the difference between thesresul
for the unbounded model and the bounded one decreases
with increasingry or decreasindg. In order to evaluate the
difference, we set as the typical values (i.e., the path
loss becomed(r) = k(r® + x)~1) such that the received
power never exceeds the transmitted one without fading. The
value ofx is the path loss atm TX-RX separation, which is
rather small, typically like—30dB [24, Ch. 3]. Therefore, as
e =k — 0, the mean local delay folV = 1 is approximated
as

ccdf

D.(1) ~ exp <0r3‘WN0 n Acd?lif@) . 0. (31)

107

560 1dOO 1560 2(;00 25;00 3060 35‘00 4600
Local defay It is observed thaD, (1) increases exponentially with respect
to 1/¢' =9 ase — 0. For the realistic bounded path loss model,
Fig. 4. Lower bound for the ccdf of the local delay, given bBX2when —jn which ¢ is rather small, the mean local delay whan= 1
N = 1 in the 2-dimensional casel (= 2). The intensity of transmitters is . .. .
A = 0.0lm—2 and the path loss exponentds= 4. is finite though extremely large. Thus, we can conclude that
for the realistic bounded path loss model, wh&n> 2 the
When FHMA is applied withV > 1, there is an additional boundedness of the path loss has only negligible effect en th
term % in the success probability given byl (6), whichmean and the variance of the local delay; whEn= 1 the
preventsP™ (Cg) from getting too small wheh| approaches mean local delay is extremely large and thus can be considere
zero. It can be interpreted intuitively that, although theras infinity for practical purposes.
are some interfering transmitters very close to the receive
the application of FHMA guarantees that there is alwaysV. OpTIMAL PARAMETERS TO MINIMIZE MEAN LOCAL
a relatively large probability that those transmitters dut n DELAY

continuously cause interference to the receiver. . . .
y In this section, we analyze the optimal number of sub-bands

. in FHMA and optimal transmit probability in ALOHA to min-
E. The effect of bounded path loss function imize the mean local delay. Deriving the optimal parameiters
In the discussion above, we have considered the unboungglcult, and the results may not be compact; thus, we resort

path loss functioni(r) = xr~. Though the unboundedto deriving tight bounds for the optimal values.
path loss function is an idealized model, it gives an eféecti

approximation to the actual path loss and results in concise
results [22], [[28]. In this subsection, we compare the tesuf™ FHMA
derived under the unbounded path loss function to that undetn the derivation, we relaxV to be continuous and subse-
the bounded path loss functidir) = x(r® + ¢)~!, where quently take the actual optimal number to be a nearby integer
e > 0. The unbounded path loss function is the limiting casghe following theorem gives the bounds of the optimal number
of the bounded path loss function as- 0. of sub-bands.

Without loss of generality, we take FHMA as an example. Theorem 5: The bounds of the optimal number of sub-
By replacingi(r) = kr—® with I(r) = k(r® + ¢)~! in bands that minimizes the mean local delay are given by
the derivations of Theoref 1 and Theoren 2, we obtain the dns o
mean and variance of the local delay under the assumption ofept € [Lto], TtoT +2],  to = Acargf°C(8) + Org W No.
bounded path loss function as follows. (32)
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Proof: Based on the result of](5), we get the derivativthe optimal number of sub-bands,,, that minimizes the

of the mean local delay’(N) whenN > 1 as follows
D'(N) = f(N)exp (Acar§0*C(8)(N — 1)" N~
+ 9T8WN0N71)7 (33)

where

f(N)=1- %(AchSH‘SC(é)(

N -1
+ 9rgWNO> . (34)

We observe thaf (V) is strictly monotonically increasing in
N this means that there is only one optimal valNig,; that
satisfiesD’(Nopt) = 0, which is given byf(Nope) = 0. From
f(Nopt) =0, we get
N, 270 Nope — 6
N, = Aer20°C(5) [ —opt Ztopt — Y
no= dandiow) () e
+0r§W No. (35)
Since Nopt/(Nops — 1) > 1 and0 < 6 < 1, we have

N, 270 N — 1
N, Aear20°0(5) | ——°pt Ztopt — ©
n > dardion) () e
+9T8WNO
> Acarif°C(8) + 0r§ W Ny, (36)
This gives a lower bound for the optimal valdg.. Next we
derive an upper bound fa¥,.. From [3%), we have

Nopt

2
—_— OrgW N,
Nopt - 1> - o 0

Nopt < Acardf’C(s) <

2
< ()\cdrge‘;(](é) + 0r§ W Ny) (%) .

Then, we have

_1\2
Wopt =17 _ Acar§6°C (8) + 0rg W No.
Nopt
Nopt — 2+ < Aear@0°C(8) + 0ryW Ny,
opt

Nopt < Acar@0°C(8) + 0rg W Ny + 2. (37)
Combining [36) and{37) and noting that is an integer, we

get the bounds ofNgp. [ |

The bounds given here are rather simple and tight.
frequency splitting is not applied (the case &f = 1), the

mean local delay will be two.
Proof: Since we have proved that mean local defay\V)

is a function that first decreases and then increases Mith
the condition forN,,, = 2 is D(2) < D(3). By substituting
the expression of mean local deldy (5) infy(2) < D(3),
we get the condition in the corollary. Notice that the right
side of the inequality in[(38) may be negative, in which case
the condition forA cannot be satisfied and then the optimal
number of sub-bands will never be two. ]

In Fig.[8, we plot the optimal number of sub-bands
and its bounds given il (B2) as a function of the path loss
exponent for differenf. The optimal numbeN,,. is obtained
by numerical calculation of the solution of the equatibn)(35
We observe from Fig]5 that the bounds are quite tight and
give excellent approximation of the valu€,,.. This figure
also shows that the optimal valu¥,,, decreases with in-
creasing path loss exponent, which verifies our aforemeatio
discussion regarding Figl 2. The curves show that when the
path loss exponent is fixed, the optimal numbBeéy,, is an
increasing function of the SINR thresholy which can be
also perceived from the expressidnl(32). This is reasonable
since with larger SINR threshold, the condition for suctudlss
transmission becomes harsher, and more sub-bands arelneede
to meet the stronger requirements. In Hig. 6, we plot the
minimum value of the normalized mean local delay when
the optimum number of sub-bandg,,; is used. We observe
from Fig.[8 that there are intersection points between iffe
curves, implying that the choice of SINR threshéltas direct
impact on the mean local delay. In Sectloh V, we will try to
obtain the optimal SINR threshold.

150

opt

=

o

o
T

a1
o
T

Optimal number of frequency sub-bands N

mean local delay will surely be infinite. To guarantee a finit "~ Ppath loss exponenta

mean local delay, the value d@f should be at least two. It

is valuable to investigate for which range of parameters tr&% 5

optimal valueN,,; will be two. The following corollary gives
such a condition.

Corollary 1: If the intensity of transmitters\ satisfies the
following inequality,

In3 — 20r§ W Ny

card@C(6)(2-9 — 20-13-9)’

(38)

Optimal number of sub-band$,,¢ and its boundgto, to + 2) as
a function of the path loss exponent for varying

B. ALOHA

Since the expressions of the mean local delays for ALOHA
and for FHMA are the same whem = 1/N and thermal
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DIN) _ for FHMA is given by

40 log, (1+0)
N
35 Oopt = exp (W (ré’WN()))_l’ (40)
30r where W(z) is the LambertW function which solves
W(z)eW#) = 2. In the interference-limited regime, the

251 bounds off,,; are given by

9opt c (bal/(éJrl) _ 1,561/6) 7

bo = AeqrddC(8)(N —1)°"IN 9. (41)

20+
15¢

107 Proof: The derivative of the normalized mean local delay

with respective td@ is

(9]
T

D(N)
O (watitsr) _ ho) N
00 ~ logy(1+6)
+Acard0°C(8)(N —1)°IN°), (42)

o

Minimum of the normalized mean local delay D(Nopt)llogz(1+9)

exp (91"8‘ WNoN~!

N
N
ol
w
w
(&2}
S

Path loss exponent a

Fig. 6. Minimum of the normalized mean local delﬁ% as a function

whereh(0) is as follows
of the path loss exponeni.

h(6) = AeqrdsC(6)(N —1)°"IN—?

a 11— 1
noise ignored, we give the optimal transmit probability fie t +riWNoN 6! o 571 .
. . : 0°=1(1+60)In(1+0)
following theorem directly and omit the proof. _ _ _ _ _
Theorem 6: The bounds of the optimal transmit probabilityNext, we prove that() is a strictly increasing function of

(43)

which minimizes the mean local delay is 0, then we show that the equatidr(f) = 0 has a unique
solution. Letl(f) = #°~*(1 + #)In(1 + 0) and the derivative
Popt € 1 1 _ (39) of i(0) is as follows
P Aeard@3C(8) + 27 Aeqrdf®C(6)
'@ = ((6-1)0"2+60°"1)In(1+0)+6°*
V. OPTIMAL SINR THRESHOLDY > ((6—1)0°2+560°"1)0 +0°1
In the discussion above, we have already derived tight > 0.

bounds for the optimal number of sub-bandis,; and the Thus, ()
optimal transmit probability,,: to minimize the mean local that h(0)
delay when the SINR threshold is fixed. The following limg_+ h
analysis will focus on deriving the optimal threshdlg,; or h(6)
its bounds when the number of sub-bamdsor the transmit |2
probability p is fixed. However, as mentioned in Sectioh I,
the duration of each time slot is proportional fel—

is a strictly increasing function of. This implies

is also a strictly increasing function af. Since

(0) = —oco andlimy_, « h(f) = +o0, the equation
= 0 has a unique solutiofl,,; that minimizes the mean
delay.

In the noise-limited regime, the equatidf) = 0 has the

i fog,(1+0) " form
In order to characterize the actual delay, we shg%tﬁy r‘ryod|fr ]
the optimization objective as the normalized mean locatylel rgWNON—191—5 - =0. (44)

69-1(1+46)In(1+0)
' log,(146) . " log,(146) ) ) . . i .
foII0W|gr129 analysis, we consider two asymptotic regimes thSolving this equation we obtaif_(40).
interference-limited regime and the noise-limited regiffiee In the interference-limited regime, the noise is ignored] a
interference-limited regime is typically encountered@lidar /() = 0 has the form
radio systems like CDMA networks, where the interference d Sl nrs
dominates over the thermal noise. The noise-limited regime AcargdC(O)(V —1)°7 N

ie., 2N for FHMA and —2®)_ for ALOHA. In the

is appropriate if the distance between concurrent transrait - 1 =0. (45)

is much larger than the distance of the typical link, in which 0°=1(1+0)In(1 +0)

case the interference in the network is negligible. A closed-form solution for the above equation does not exist

By applying the inequalit_igq% < In(1+6) < 6 to (48), we

A EHMA get the following inequalities
The following theorem gives the optimal threshélg, and 1 571 < 75 1

its bounds for FHMA in the interference-limited regime and (1+6) 6°(1+90)

noise-limited regime re_spe<_:ti\_/ely. _ . < Aear@SC(5)(N — 191N < i(; (46)
Theorem 7: In the noise-limited regime, the optimal thresh- 0

old 6, that minimizes the normalized mean local delaffrom the above inequalities, we get the bound$in (41)m
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B. ALOHA

Based on the similarity between the expressions of th
normalized mean local delays for ALOHA and for FHMA, 181
we obtain the optimal threshold for ALOHA directly.

Theorem 8: In noise-limited regime, the optimal threshold
Oopt that minimizes the normalized mean local delay for
ALOHA is as follows

1
Oopt = W (exp (TO‘WNO)) —1. 47
0

In interference-limited regime, the bounds &f,; are given
by

201

=
[<2]
T

N
~
T

[uy
N
T

Normalized variances of the local delay
[
o

Bopt € (bo—l/(6+l) _ Lbal/é) ’

bo = AcarddC(8)p(1 — p)°~ L. (48) 2l
VI. DESIGNINSIGHTS % 5 10 15 20 25
A. Mean DeIay—Jitter Tradeoff Normalized mean local delay
The jitter of delay, typically characterized by the packet (a) FHMA

delay variation, is defined in_[25] and _[26]. In the systemr
design, the delay variation is an important measure thi 250+
characterizes the fluctuation of delay|[27]. For interactiwal-
time applications, e.g., VoIP, large delay variance can be
serious issue. To the best of our knowledge, the variance
local delay has not been explored in the existing work. Th
optimal value of N that minimizes the mean local delay is
often not the one that minimizes the variance; thus there
a tradeoff between the mean and the variance of the loc
delay. Fig[ 7(d) and Fi§. 7{b) visualize the relationshipsen
the mean and the variance of the normalized local dels
for FHMA and for ALOHA respectively. From Fig. 7(a) we
observe that in FHMA the favorable operating point has
reasonably wide tuning range because the variance stbiliz
fast asN increases. In contrast, we observe from [fig. [7(b
that in ALOHA the curves turn sharply.

i

o

200

[y

a1

o
T

Normalized variances of the local delay
=
o
o

a
o
T

B. Tail Probability of the Local Delay 0 ° 10 15 20 %

Normalized mean local delay
The tail probability is an important measure of the systen,
performance since one may require (as a QoS constraint) that (b) ALOHA
the probability that the local delay exceeds a certain tioles Fig. 7.
is less than a predefined value. Based on the mean and variance
we have derived and by applying the one-tailed Chebyshev’s

inequality, we obtain an upper bound for the tail probapilit  The bounds based on Chebyshev’s inequality will typically
For example, in FHMA with\V > 1, letting X =3 ;" A;  not provide the tightest bounds. However, it generally cann
be the local delay, the tail probability is upper bounded @ improved if only the mean and variance are available. On
follows the other hand, if further statistical information is praed,
V(N) a number of methods may be developed to improve the
PLX>To} < V(N)+ (To — D(N))?’ for  Tp > D(N)- sharpness of the bounds, for example, through the use of
(49) semivariances if some samples are available, or through the
For example, if we let the design requirement be that th@e of Bhattacharyya’s inequality or large-deviationseldas
probability that the local delay exceeds is less thanb%. inequalities if higher moments or even the moment genegatin
Then, when the threshold of the local delay is fixed ggnctions are available.
To = 10, the upper bound of the tail probability given by
(49) with varying NV is shown in Fig[(B. We observe that in
order to achieve the probabiliff%, the number of sub-bands
N for the case wheid = 1,10, 100 should be chosen larger In this work, we studied the problem of reducing the effect
than15, 50, 95 respectively. of interference correlation by introducing MAC dynamicse W

Mean delay-jitter tradeoff.

VII. CONCLUSIONS
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Fig. 8. Upper bounds of the tail probability of local delayegi by [49) as
a function of the number of sub-ban@é when fixing7Tp = 10 in FHMA. [13]
[14]

derived the mean and variance of the local delay and evauate
how the interference correlation can be reduced by FHMA arpg]
ALOHA. We also evaluated the optimal number of sub-bands
in FHMA and the optimal transmit probability in ALOHA that
minimize the mean local delay.

The results reveal that there exist two operation regimes fo
the network, the correlation-limited regime and bandwidth!7]
limited regime, which are separated by the optimal number
of sub-bands in FHMA and the optimal transmit probability18]
in ALOHA. If no MAC dynamics is employed, the local
delay has a heavy tail distribution which results in infinite
mean local delay; meanwhile, employing FHMA and ALOHA19]
will greatly decrease the mean local delay. By comparing the
results of FHMA and ALOHA, we observed that while thg,,
mean local delays of the two protocols are the same for certai
parameters, the variances are rather different. Accortting
the results established herein, FHMA outperforms ALOH#
if implementation costs like overhead are not taken into
consideration; however, when considering the implemamntat 2]
costs, the overhead for FHMA may be much higher than
ALOHA because in FHMA each transmitter should inform
the corresponding receiver which sub-band to listen on.

[16]

(23]
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