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Abstract

Millimeter wave (mmWave) signals experience orders-of-magnitude more pathloss than the mi-

crowave signals currently used in most wireless applications. MmWave systems must therefore leverage

large antenna arrays, made possible by the decrease in wavelength, to combat pathloss with beam-

forming gain. Beamforming with multiple data streams, known as precoding, can be used to further

improve mmWave spectral efficiency. Both beamforming and precoding are done digitally at baseband

in traditional multi-antenna systems. The high cost and power consumption of mixed-signal devices in

mmWave systems, however, make analog processing in the RF domain more attractive. This hardware

limitation restricts the feasible set of precoders and combiners that can be applied by practical mmWave

transceivers. In this paper, we consider transmit precoding and receiver combining in mmWave systems

with large antenna arrays. We exploit the spatial structure of mmWave channels to formulate the

precoding/combining problem as a sparse reconstruction problem. Using the principle of basis pursuit,

we develop algorithms that accurately approximate optimal unconstrained precoders and combiners such

that they can be implemented in low-cost RF hardware. We present numerical results on the performance

of the proposed algorithms and show that they allow mmWave systems to approach their unconstrained

performance limits, even when transceiver hardware constraints are considered.

I. INTRODUCTION

The capacity of wireless networks has thus far scaled with the increasing data traffic, pri-

marily due to improved area spectral efficiency (bits/s/Hz/m2) [1]. A number of physical layer
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enhancements such as multiple antennas, channel coding, and interference coordination, as well

as the general trend toward network densification have all been instrumental in achieving this

efficiency [1], [2]. Since there seems to be little scope for further gains at the physical layer, and

since the widespread deployment of heterogeneous networks is not without challenges [3], these

techniques alone may not be sufficient to meet future traffic demands. As a result, increasing the

spectrum available for commercial wireless systems, potentially by exploring new less-congested

spectrum bands, is a promising solution to increase network capacity.

Millimeter wave (mmWave) communication, for example, has enabled gigabit-per-second data

rates in indoor wireless systems [4], [5] and fixed outdoor systems [6]. More recently, advances

in mmWave hardware [7] and the potential availability of spectrum has encouraged the wireless

industry to consider mmWave for outdoor cellular systems [8], [9]. A main differentiating factor

in mmWave communication is that the ten-fold increase in carrier frequency, compared to the

current majority of wireless systems, implies that mmWave signals experience an orders-of-

magnitude increase in free-space pathloss. An interesting redeeming feature in mmWave systems,

however, is that the decrease in wavelength enables packing large antenna arrays at both the

transmitter and receiver. Large arrays can provide the beamforming gain needed to overcome

pathloss and establish links with reasonable signal-to-noise ratio (SNR). Further, large arrays

may enable precoding multiple data streams which could improve spectral efficiency and allow

systems to approach capacity [10], [11].

While the fundamentals of precoding are the same regardless of carrier frequency, signal

processing in mmWave systems is subject to a set of non-trivial practical constraints. For example,

traditional multiple-input multiple-output (MIMO) processing is often performed digitally at

baseband, which enables controlling both the signal’s phase and amplitude. Digital processing,

however, requires dedicated baseband and RF hardware for each antenna element. Unfortunately,

the high cost and power consumption of mmWave mixed-signal hardware precludes such a

transceiver architecture at present, and forces mmWave systems to rely heavily on analog or

RF processing [7], [8]. Analog precoding is often implemented using phase shifters [7], [8],

[12] which places constant modulus constraints on the elements of the RF precoder. Several

approaches have been considered for precoding in such low-complexity transceivers [13]–[28].

The work in [13]–[15] considers antenna (or antenna subset) selection which has the advantage

of replacing phase shifters with even simpler analog switches. Selection, however, provides
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limited array gain and performs poorly in correlated channels such as those experienced in

mmWave [16]. To improve performance over correlated channels, the work [17]–[20] considers

beam steering solutions in which phase shifters or discrete lens arrays are used to optimally

orient an array’s response in space, potentially based on statistical channel knowledge. The

strategies in [17]–[20], however, are in general suboptimal since beam steering alone cannot

perfectly capture the channels dominant eigenmodes. The work in [21]–[26] develops iterative

precoding algorithms for systems that leverage analog processing, and [27] further proposes

simple analytical solutions. Further hardware limitations have also been considered in [28], for

example, which focuses on analog receiver processing with only quantized phase control and

finite-precision analog-to-digital converters. The work in [21]–[28], however, is not specialized

to mmWave MIMO systems with large antenna arrays. Namely, the work in [21]–[28] does not

leverage the structure present in mmWave MIMO channels and adopts models that do not fully

capture the effect of limited mmWave scattering and large tightly-packed arrays [29]–[31].

In this paper, we focus on the precoding insight and solutions that can be derived from jointly

considering the following three factors: (i) precoding with RF hardware constraints, (ii) the

use of large antenna arrays, and (iii) the limited scattering nature of mmWave channels. We

consider single-user precoding for a practical transceiver architecture in which a large antenna

array is driven by a limited number of transmit/receive chains [8], [10], [11], [32]. In such a

system, transmitters have the ability to apply high-dimensional (tall) RF precoders, implemented

via analog phase shifters, followed by low-dimensional (small) digital precoders that can be

implemented at baseband. We adopt a realistic clustered channel model that captures both the

limited scattering at high frequency and the antenna correlation present in large tightly-packed

arrays [29]–[31].

We exploit the sparse-scattering structure of mmWave channels to formulate the design of

hybrid RF/baseband precoders as a sparsity constrained matrix reconstruction problem [33]–[38].

Initial results on this precoding approach were presented in [39]. In this paper, we formalize the

mmWave precoding problem and show that, instead of directly maximizing mutual information,

near-optimal hybrid precoders can be found via an optimization that resembles the problem of

sparse signal recovery with multiple measurement vectors, also known as the simultaneously

sparse approximation problem [40]–[43]. We thus provide an algorithmic precoding solution

based on the concept of orthogonal matching pursuit [34], [36], [44]. The algorithm takes an
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optimal unconstrained precoder as input and approximates it as linear combination of beam

steering vectors that can be applied at RF (and combined digitally at baseband). Further, we

extend this sparse precoding approach to receiver-side processing and show that designing hybrid

minimum mean-square error (MMSE) combiners can again be cast as a simultaneously sparse

approximation problem and solved via basis pursuit [45], [46]. We argue that, in addition to

providing practical near-optimal precoders, the proposed framework is particularly amenable

for limited feedback operation and is thus not limited to genie-aided systems with perfect

transmitter channel knowledge [47]. The generated precoders can be efficiently compressed using

simple scalar quantizers (for the arguments of the beam steering vectors) and low-dimensional

Grassmannian subspace quantizers (used to quantize the baseband precoder) [47]–[49]. We briefly

describe the construction of the limited feedback codebooks required, but defer the analysis

of limited feedback performance to future work. Finally, we present simulation results on the

performance of the proposed strategy and show that it allows mmWave systems to approach their

unconstrained performance limits even when practical transceiver constraints are considered.

We use the following notation throughout this paper: A is a matrix; a is a vector; a is a scalar;

A(i) is the ith column of A; (·)T and (·)∗ denote transpose and conjugate transpose respectively;

‖A‖F is the Frobenius norm of A, tr(A) is its trace and |A| is its determinant; ‖a‖p is the

p-norm of a; [A | B] denotes horizontal concatenation; diag(A) is a vector formed by the

diagonal elements of A; IN is the N ×N identity matrix; 0M×N is the M ×N all-zeros matrix;

CN (a; A) is a complex Gaussian vector with mean a and covariance matrix A. Expectation is

denoted by E[·] and the real part of a variable is denoted by <{·}.

II. SYSTEM MODEL

In this section, we present the mmWave signal and channel model considered in this paper.

A. System Model

Consider the single-user mmWave system shown in Fig. 1 in which a transmitter with Nt

antennas communicates Ns data streams to a receiver with Nr antennas [32]. To enable multi-

stream communication, the transmitter is equipped with NRF
t transmit chains such that Ns ≤

NRF
t ≤ Nt. This hardware architecture enables the transmitter to apply an NRF

t ×Ns baseband

precoder FBB using its NRF
t transmit chains, followed by an Nt×NRF

t RF precoder FRF using
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analog circuitry. The discrete-time transmitted signal is therefore given by x = FRFFBBs where

s is the Ns×1 symbol vector such that E [ss∗] = 1
Ns

INs . Since FRF is implemented using analog

phase shifters, its elements are constrained to satisfy (F
(i)
RFF

(i)∗
RF )`,` = Nt

−1, where (·)`,` denotes

the `th diagonal element of a matrix, i.e., all elements of FRF have equal norm. The transmitter’s

total power constraint is enforced by normalizing FBB such that ‖FRFFBB‖2F = Ns; no other

hardware-related constraints are placed on the baseband precoder.

For simplicity, we consider a narrowband block-fading propagation channel as in [10], [19],

[26], [32], which yields a received signal

y =
√
ρHFRFFBBs + n, (1)

where y is the Nr × 1 received vector, H is the Nr ×Nt channel matrix such that E [‖H‖2F ] =

NtNr, ρ represents the average received power, and n is the vector of i.i.d CN (0, σ2
n) noise. In

writing (1), we implicitly assume perfect timing and frequency recovery. Moreover, to enable

precoding, we assume that the channel H is known perfectly and instantaneously to both the

transmitter and receiver. In practical systems, channel state information (CSI) at the receiver

can be obtained via training [17], [50] and subsequently shared with the transmitter via limited

feedback [47]; an efficient limited feedback strategy is presented in Section V. Techniques for

efficient mmWave channel estimation, and a rigorous treatment of frequency selective mmWave

channels, are still an ongoing topic of research.

The receiver uses its Ns ≤ NRF
r ≤ Nr RF chains and its analog phase shifters to obtain the

post-processing received signal

ỹ =
√
ρW∗

BBW∗
RFHFRFFBBs + W∗

BBW∗
RFn, (2)

where WRF is the Nr × NRF
r RF combining matrix and WBB is the NRF

r × Ns baseband

combining matrix. Similarly to the RF precoder, WRF is implemented using phase shifters and

therefore is such that (W
(i)
RFW

(i)∗
RF )`,` = Nr

−1. When Gaussian symbols are transmitted over the

mmWave channel, the spectral efficiency achieved is given by [51]

R = log2

(∣∣∣∣INs +
ρ

Ns

R−1n W∗
BBW∗

RFHFRFFBBF∗BBF∗RFH∗WRFWBB

∣∣∣∣) , (3)

where Rn = σ2
nW

∗
BBW∗

RFWRFWBB is the noise covariance matrix after combining.
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Fig. 1. Simplified hardware block diagram of mmWave single user system with digital baseband precoding followed by
constrained radio frequency precoding implemented using RF phase shifters.

B. Channel Model

The high free-space pathloss that is a characteristic of mmWave propagation leads to limited

spatial selectivity or scattering. Similarly, the large tightly-packed antenna arrays that are char-

acteristic of mmWave transceivers lead to high levels of antenna correlation. This combination

of tightly packed arrays in sparse scattering environments makes many of the statistical fading

distributions used in traditional MIMO analysis inaccurate for mmWave channel modeling. For

this reason, we adopt a narrowband clustered channel representation, based on the extended

Saleh-Valenzuela model, which allows us to accurately capture the mathematical structure present

in mmWave channels [29], [30], [52], [53].

Using the clustered channel model, the matrix channel H is assumed to be a sum of the

contributions of Ncl scattering clusters, each of which contribute Nray propagation paths to the

channel matrix H. Therefore, the discrete-time narrowband channel H can be written as

H =

√
NtNr

NclNray

Ncl∑
i=1

Nray∑
`=1

αi`Λr(φ
r
i`, θ

r
i`)Λt(φ

t
i`, θ

t
i`)ar(φ

r
i`, θ

r
i`)at(φ

t
i`, θ

t
i`)
∗, (4)

where αi` is the complex gain of the `th ray in the ith scattering cluster, whereas φr
i` (θri`) and

φt
i` (θti`) are its azimuth (elevation) angles of arrival and departure respectively. The functions

Λt(φ
t
i`, θ

t
i`) and Λr(φ

r
i`, θ

r
i`) represent the transmit and receive antenna element gain at the

corresponding angles of departure and arrival. Finally, the vectors ar(φ
r
`, θ

r
`) and at(φ

t
i`, θ

t
i`)
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represent the normalized receive and transmit array response vectors at an azimuth (elevation)

angle of φr
i` (θri`) and φt

i` (θti`) respectively.

In Section VI, we assume that αi` are i.i.d. CN (0, σ2
α,i) where σ2

α,i represents the average

power of the ith cluster. The average cluster powers are such that
∑Ncl

i=1 σ
2
α,i = γ where γ is a

normalization constant that satisfies E [‖H‖2F ] = NtNr [30]. The Nray azimuth and elevation

angles of departure, φt
i` and θti`, within the cluster i are assumed to be randomly distributed with

a uniformly-random mean cluster angle of φt
i and θti respectively, and a constant angular spread

(standard deviation) of σφt and σθt respectively. The azimuth and elevation angles of arrival, φr
i`

and θri`, are again randomly distributed with mean cluster angles of (φr
i, θ

r
i) and angular spreads

(σφt , σθr). While a variety of distributions have been proposed for the angles of arrival and

departure in clustered channel models, the Laplacian distribution has been found to be a good

fit for a variety of propagation scenarios [54], and will thus be adopted in the numerical results

of Section VI. Similarly, a number of parametrized mathematical models have been proposed

for the functions Λt(φ
t
i`, θ

t
i`) and Λr(φ

r
i`, θ

r
i`). For example, if the transmitter’s antenna elements

are modeled as being ideal sectored elements [55], Λt(φ
t
i`, θ

t
i`) would be given by

Λt(φ
t
i`, θ

t
i`) =

 1 ∀φt
i` ∈ [φt

min, φ
t
max], ∀θti` ∈ [θtmin, θ

t
max],

0 otherwise,
(5)

where we have assumed unit gain over the sector defined by φt
` ∈ [φt

min, φ
t
max] and θt` ∈

[θtmin, θ
t
max] without loss of generality. The receive antenna element gain Λr(φ

r
i`, θ

r
i`) is defined

similarly over the azimuth sector φr
i` ∈ [φr

min, φ
r
max] and elevation sector θri` ∈ [θrmin, θ

r
max].

The array response vectors at(φ
t
i`, θ

t
i`) and ar(φ

r
`, θ

r
`) are a function of the transmit and receiver

antenna array structure only, and are thus independent of the antenna element properties. While

the algorithms and results derived in the remainder of this paper can be applied to arbitrary

antenna arrays, we give the following two illustrative examples of commonly-used antenna arrays

for completeness. For an N -element uniform linear array (ULA) on the y-axis, the array response

vector can be written as [56]

aULAy(φ) =
1√
N

[
1, ejkd sin(φ), ej2kd sin(φ), . . . , ej(N−1)kd sin(φ)

]T
, (6)

where k = 2π
λ

and d is the inter-element spacing. Note that we do not include θ in the arguments

of aULAy as the array’s response is invariant in the elevation domain. In the case of a uniform
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planar array (UPA) in the yz-plane with W and H elements on the y and z axes respectively,

the array response vector is given by [56]

aUPA(φ, θ) =
1√
N

( [1, . . . , ejkd(m sin(φ) sin(θ)+n cos(θ)), . . . ,

. . . , ejkd((W−1) sin(φ)sin(θ)+(H−1) cos(θ)) ] )T ,

(7)

where 0 ≤ m < W and 0 ≤ n < H are the y and z indices of an antenna element respectively and

the antenna array size is N = WH . Considering uniform planar arrays is of interest in mmWave

beamforming since they (i) yield smaller antenna array dimensions, (ii) facilitate packing more

antenna elements in a reasonably-sized array, and (iii) enable beamforming in the elevation

domain (also known as 3D beamforming).

III. SPATIALLY SPARSE PRECODING FOR THE SINGLE USER MMWAVE CHANNEL

We seek to design hybrid mmWave precoders (FRF,FBB) that maximize the spectral efficiency

expression in (3). Directly maximizing (3), however, requires a joint optimization over the

four matrix variables (FRF,FBB,WRF,WBB). Unfortunately, finding global optima for similar

constrained joint optimization problems is often found to be intractable [57], [58]. In the case

of mmWave precoding, the non-convex constraints on FRF and WRF makes finding an exact

solution unlikely. To simplify transceiver design, we temporarily decouple the joint transmitter-

receiver optimization problem and focus on the design of the hybrid precoders FRFFBB. There-

fore, in lieu of maximizing spectral efficiency, we design FRFFBB to maximize the mutual

information achieved by Gaussian signaling over the mmWave channel

I(FRF,FBB) = log2

(∣∣∣∣INs +
ρ

Nsσ2
n

HFRFFBBF∗BBF∗RFH∗
∣∣∣∣) . (8)

We note here that abstracting receiver operation, and focusing on mutual information instead

of the spectral efficiency expression in (3), effectively amounts to assuming that the receiver

can perform optimal nearest-neighbor decoding based on the Nr-dimensional received signal y.

Unfortunately, such a decoder is impossible to realize with practical mmWave systems in which

decoders do not have access to the Nr-dimensional signal. In practical mmWave systems, received

signals must be combined in the analog domain, and possibly in the digital domain, before any

detection or decoding is performed. For this reason, we revisit the problem of designing practical

mmWave receivers in Section IV.
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Proceeding with the design of FRFFBB, the precoder optimization problem can be stated as

(Fopt
RF ,F

opt
BB) = arg max

FRF, FBB

log2

(∣∣∣∣INs +
ρ

Nsσ2
n

HFRFFBBF∗BBF∗RFH∗
∣∣∣∣) ,

s.t. FRF ∈ FRF,

‖FRFFBB‖2F = Ns,

(9)

where FRF is the set of feasible RF precoders, i.e., the set of Nt×NRF
t matrices with constant-

magnitude entries. To the extent of the authors’ knowledge, no general solutions to (9) are known

in the presence of the non-convex feasibility constraint FRF ∈ FRF. Therefore, we propose to

solve an approximation of (9) in order to find practical near-optimal precoders that can be

implemented in the system of Fig. 1.

We start by examining the mutual information achieved by the hybrid precoders FRFFBB and

rewriting (8) in terms of the “distance” between FRFFBB and the channel’s optimal unconstrained

precoder Fopt. To do so, define the channel’s ordered singular value decomposition (SVD) to be

H = UΣV∗ where U is an Nr× rank(H) unitary matrix, Σ is a rank(H)× rank(H) diagonal

matrix of singular values arranged in decreasing order, and V is a Nt× rank(H) unitary matrix.

Using the SVD of H and standard mathematical manipulation, (8) can be rewritten as

I(FRF,FBB) = log2

(∣∣∣∣Irank(H) +
ρ

Nsσ2
n

Σ2V∗FRFFBBF∗BBF∗RFV

∣∣∣∣) . (10)

Further, defining the following two partitions of the matrices Σ and V as

Σ =

 Σ1 0

0 Σ2

 , V = [V1 V2] , (11)

where Σ1 is of dimension Ns ×Ns and V1 is of dimension Nt ×Ns, we note that the optimal

unconstrained unitary precoder for H is simply given by Fopt = V1. Further note that the

precoder V1 cannot in general be expressed as FRFFBB with FRF ∈ FRF, and thus cannot be

realized in the mmWave architecture of interest. If the hybrid precoder FRFFBB can be made

sufficiently “close” to the optimal precoder V1, however, the mutual information resulting from

Fopt and FRFFBB can be made comparable. In fact, to simplify the forthcoming treatment of

I(FRF,FBB), we make the following system assumption.

Approximation 1: We assume that the mmWave system parameters (Nt, Nr, N
RF
t , NRF

r ), as
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well as the parameters of the mmWave propagation channel (Ncl, Nray, . . .), are such that the

hybrid precoders FRFFBB can be made sufficiently “close” to the optimal unitary precoder Fopt =

V1. Mathematically, this “closeness” is defined by the following two equivalent approximations:

1) The eigenvalues of the matrix INs − V∗1FRFFBBF∗BBF∗BBV1 are small. In the case of

mmWave precoding, this can be equivalently stated as V∗1FRFFBB ≈ INs .1

2) The singular values of the matrix V∗2FRFFBB are small; alternatively V∗2FRFFBB ≈ 0.

This approximation is similar to the high-resolution approximation used to simplify the analysis

of limited feedback MIMO systems by assuming that codebooks are large enough such that they

contain codewords that are sufficiently close to the optimal unquantized precoder [49]. In the

case of mmWave precoding, this approximation is expected to be tight in systems of interest

which include: (i) a reasonably large number of antennas Nt, (ii) a number of transmit chains

Ns < NRF
t ≤ Nt, and (iii) correlated channel matrices H.

Functionally, Approximation 1 allows us further simplify I(FRF,FBB). To do so, we use the

partitions defined in (11) and further define the following partition of V∗FRFFBBF∗BBF∗RFV as

V∗FRFFBBF∗BBF∗RFV=

 V∗1FRFFBBF∗BBF∗RFV1 V∗1FRFFBBF∗BBF∗RFV2

V∗2FRFFBBF∗BBF∗RFV1 V∗2FRFFBBF∗BBF∗RFV2

=
 Q11 Q12

Q21 Q22

 ,
which allows us to approximate the mutual information achieved by FRFFBB as

I(FRF,FBB) = log2

(∣∣∣∣Irank(H) +
ρ

Nsσ2
n

Σ2V∗FRFFBBF∗BBF∗RFV

∣∣∣∣)

= log2

∣∣∣∣∣∣Irank(H) +
ρ

Nsσ2
n

 Σ2
1, 0

0 Σ2
2

 Q11 Q12

Q21 Q22

∣∣∣∣∣∣


(a)
= log2

(∣∣∣∣INs +
ρ

Nsσ2
n

Σ2
1Q11

∣∣∣∣)
+ log2

(∣∣∣∣∣I +
ρ

Nsσ2
n

Σ2
2Q22 −

ρ2

Ns
2σ4

n

Σ2
2Q21

(
INs +

ρ

Nsσ2
n

Σ2
1Q11

)−1
Σ2

1Q12

∣∣∣∣∣
)

(b)
≈ log2

(∣∣∣∣INs +
ρ

Nsσ2
n

Σ2
1V
∗
1FRFFBBF∗BBF∗RFV1

∣∣∣∣) , (12)

1For the eigenvalues of INs −V∗
1FRFFBBF∗

BBF∗
BBV1 to be small, we need V∗

1FRFFBB ≈ Ψ where Ψ is any Ns ×Ns

unitary matrix (not necessarily INs ). However, if FRFFBB is a valid precoder with V∗
1FRFFBB ≈ Ψ, then so is the rotated

precoder FRFF̃BB = FRFFBBΨ∗ for which we have V∗
1FRFF̃BB ≈ INs . Since FBB can be arbitrarily rotated, the conditions

V∗
1FRFFBBF∗

BBF∗
BBV1 ≈ INs and V∗

1FRFFBB ≈ INs can be considered equivalent in this case without loss of generality.
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where (a) is a result of using the Schur complement identity for matrix determinants and (b)

follows from invoking Approximation 1 which implies that Q12, Q21 and Q22 are approximately

zero. Using (12), mutual information can be further simplified by writing

I(FRF,FBB)
(a)
≈ log2

(∣∣∣∣INs +
ρ

Nsσ2
n

Σ2
1

∣∣∣∣)
+ log2

(∣∣∣∣∣INs −
(

INs +
ρ

Nsσ2
n

Σ2
1

)−1
ρ

Nsσ2
n

Σ2
1 (INs−V∗1FRFFBBF∗BBF∗RFV1)

∣∣∣∣∣
)

(b)
≈ log2

(∣∣∣∣INs +
ρ

Nsσ2
n

Σ2
1

∣∣∣∣)
− tr

((
INs +

ρ

Nsσ2
n

Σ2
1

)−1
ρ

Nsσ2
n

Σ2
1 (INs −V∗1FRFFBBF∗BBF∗RFV1)

)
(c)
≈ log2

(∣∣∣∣INs +
ρ

Nsσ2
n

Σ2
1

∣∣∣∣)− tr (INs −V∗1FRFFBBF∗BBF∗RFV1) (13)

= log2

(∣∣∣∣INs +
ρ

Nsσ2
n

Σ2
1

∣∣∣∣)− (Ns − ‖V∗1FRFFBB‖2F
)
, (14)

where we note that (a) is exact given (12), and (b) follows from Approximation 1 which implies

that the eigenvalues of the matrix X = (INs + ρ
Nsσ2

n
Σ2

1)
−1 ρ

Nsσ2
n
Σ2

1 (INs −V∗1FRFFBBF∗BBF∗RFV1)

are small and thus allows us to use the following approximation log2 |INs − X| ≈ log2(1 −

tr(X)) ≈ −tr(X). Finally (c) follows from adopting a high effective-SNR approximation which

implies that (I + ρ
Nsσ2

n
Σ2

1)
−1 ρ

Nsσ2
n
Σ2

1 ≈ INs and yields the final result in (14).2 We notice that the

first term in (14) is the mutual information achieved by the optimal precoder Fopt = V1 and that

the dependence of I(FRF,FBB) on the hybrid precoder FRFFBB is now captured in the second

and final term of (13) and (14).

Assuming FRFFBB is made exactly unitary, we note that the second term in (13) and (14)

is nothing but the squared chordal distance between the two points Fopt = V1 and FRFFBB

on the Grassmann manifold. Since Approximation 1 states the these two points are “close”,

we can exploit the manifold’s locally Euclidean property to replace the chordal distance by

the Euclidean distance ‖Fopt − FRFFBB‖F [59]. Therefore, near-optimal hybrid precoders that

approximately maximize I(FRF,FBB) can be found by instead minimizing ‖Fopt−FRFFBB‖F .

2Note here that it is not the nominal SNR ρ
Nsσ2

n
that is assumed to be high. This would be a problematic assumption in mmWave

systems. It is, however, only the effective-SNRs in the channel’s dominant Ns subspaces that are assumed to be sufficiently high.
This is a reasonable assumption since these effective SNRs include the large array gain from mmWave beamforming.
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In fact, even without treating FRFFBB as a point on the Grassmann manifold, Approximation

1 implies that ‖V∗1FRFFBB‖2F , and consequently (14), can be approximately maximized by

instead maximizing tr (V∗1FRFFBB).3 Since maximizing tr (V∗1FRFFBB) is again equivalent to

minimizing ‖Fopt − FRFFBB‖F , the precoder design problem can be rewritten as

(Fopt
RF ,F

opt
BB) = arg min

FBB,FRF

‖Fopt − FRFFBB‖F ,

s.t. FRF ∈ FRF,

‖FRFFBB‖2F = Ns,

(15)

which can now be summarized as finding the projection of Fopt onto the set of hybrid precoders

of the form FRFFBB with FRF ∈ FRF. Further, this projection is defined with respect to the

standard Frobenius norm ‖ · ‖2F . Unfortunately, the complex non-convex nature of the feasible

set FRF makes finding such a projection both analytically (in closed form) and algorithmically

intractable [62]–[65].

To provide near-optimal solutions to the problem in (15), we propose to exploit the structure

of the mmWave MIMO channels generated by the clustered channel model in Section II-B.

Namely, we leverage the following observations on mmWave precoding:

1) Structure of optimal precoder: Recall that the optimal unitary precoder is Fopt = V1, and

that the columns of the unitary matrix V form an orthonormal basis for the channel’s row

space.

2) Structure of clustered mmWave channels: Examining the channel model in (4), we note

that the array response vectors at(φ
t
i`, θ

t
i`),∀i, `, θti`) also form a finite spanning set for

the channel’s row space. In fact, when NclNray ≤ Nt, we note that the array response

vectors at(φ
t
i`, θ

t
i`) will be linearly independent with probability one and will thus form

another minimal basis for the channel’s row space when NclNray ≤ min(Nt, Nr).

Note: To establish the linear independence of the vectors at(φ
t
i`, θ

t
i`), consider the case

of uniform linear arrays. When ULAs are considered, the Nt × NclNray matrix formed

by the collection of vectors at(φ
t
i`) ∀i, ` will be a Vandermonde matrix which has full

rank whenever the angles φt
i` are distinct. This event occurs with probability one when φt

i`

3This is since the magnitude of V∗
1FRFFBB’s off-diagonal entries is negligible and all V∗

1FRFFBB’s diagonals must be
made close to one. Thus ‖V∗

1FRFFBB‖2F , i.e., the `2 norm of V∗
1FRFFBB’s diagonals, can be maximized by optimizing

tr (V∗
1FRFFBB), i.e., the `1 norm of the diagonals [38], [60], [61].
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are generated from a continuous distribution. Linear independence can be established in

the case of UPAs by writing their response vectors as a Kronecker product of two ULA

response vectors [66].

3) Connection between Fopt and at(φ
t
i` θ

t
i`): Regardless of whether NclNray ≤ Nt or not,

observation 1 implies that the columns of the optimal precoder Fopt = V1 are related to

the vectors at(φ
t
i`, θ

t
i`) through a linear transformation. As a result, the columns of Fopt

can be written as linear combinations of at(φ
t
i`, θ

t
i`), ∀i, `.

4) Vectors at(φ
t
i` θ

t
i`) as columns of FRF: Recall that the vectors at(φ

t
i`, θ

t
i`) are constant-

magnitude phase-only vectors which can be applied at RF using analog phase shifters.

Therefore, the mmWave transmitter can apply NRF
t of the vectors at(φ

t
i`, θ

t
i`) at RF (via the

RF precoder FRF), and form arbitrary linear combinations of them using its digital precoder

FBB. Namely, it can construct the linear combination that minimizes ‖Fopt−FRFFBB‖F .

Therefore, by exploiting the structure of H, we notice that near-optimal hybrid precoders can

be found by further restricting FRF to be the set of vectors of the form at(φ
t
i`, θ

t
i`) and solving

(Fopt
RF ,F

opt
BB) = arg min ‖Fopt − FRFFBB‖F ,

s.t. F
(i)
RF ∈

{
at(φ

t
i`, θ

t
i`)| 1 ≤ i ≤ Ncl, 1 ≤ ` ≤ Nray

}
,

‖FRFFBB‖2F = Ns,

(16)

which amounts to finding the best low dimensional representation of Fopt using the basis vectors

at(φ
t
i`, θ

t
i,`). We note here that the set of basis vectors can be extended to include array response

vectors at(·, ·) in directions other than {(φt
i`, θ

t
i`)| 1 ≤ i ≤ Ncl, 1 ≤ ` ≤ Nray}, though the effect

of this basis extension is typically negligible. In any case, the precoding problem consists of

selecting the “best” NRF
t array response vectors and finding their optimal baseband combination.

Finally, we note that the constraint of F
(i)
RF can be embedded directly into the optimization

objective to obtain the following equivalent problem

F̃opt
BB = arg min

F̃BB

‖Fopt −AtF̃BB‖F ,

s.t. ‖diag(F̃BBF̃∗BB)‖0 = NRF
t ,

‖AtF̃BB‖2F = Ns,

(17)
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where At =
[
at(φ

t
1,1, θ

t
1,1), . . . , at(φ

t
Ncl,Nray

, θtNcl,Nray
)
]

is an Nt × NclNray matrix of array

response vectors and F̃BB is an NclNray×Ns matrix. The matrices At and F̃BB act as auxiliary

variables from which we obtain Fopt
RF and Fopt

BB respectively. Namely, the sparsity constraint

‖diag(F̃BBF̃∗BB)‖0 = NRF
t states that F̃BB cannot have more than NRF

t non-zero rows. When

only NRF
t rows of F̃BB are non zero, only NRF

t columns of the matrix At are effectively

“selected”. As a result, the baseband precoder Fopt
BB will be given by the NRF

t non-zero rows of

F̃opt
BB and the RF precoder Fopt

RF will be given by the corresponding NRF
t columns of At.

Essentially, we have reformulated the problem of jointly designing FRF and FBB into a sparsity

constrained matrix reconstruction problem with one variable. Although the underlying motivation

differs, and so does the interpretation of the different variables involved in (17), the resulting

problem formulation is identical to the optimization problem encountered in the literature on

sparse signal recovery. Thus, the extensive literature on sparse reconstruction can now be used

for hybrid precoder design [34], [36]. To see this more clearly, note that in the simplest case of

single stream beamforming, (17) simplifies to

f̃optBB = arg min
f̃BB

‖fopt −Atf̃BB‖F ,

s.t. ‖f̃BB‖0 = NRF
t , ‖Atf̃BB‖2F = Ns,

(18)

in which the sparsity constraint is now on the vector f̃BB. This beamforming problem can be

solved, for example, by relaxing the sparsity constraint and using convex optimization to solve

its `2− `1 relaxation. Alternatively, (18) can be solved using tools from [34]–[37], [44].

In the more general case of Ns > 1, the problem in (17) is equivalent to the problem of sparse

signal recovery with multiple measurement vectors, also known as the simultaneously sparse

approximation problem [40]–[43]. So, for the general case of Ns ≥ 1, we present an algorithmic

solution based on the well-known concept of orthogonal matching pursuit [34], [36], [44]. The

pseudo-code for the precoder solution is given in Algorithm 1. In summary, the precoding

algorithm starts by finding the vector at(φ
t
i`, θ

t
i`) along which the optimal precoder has the

maximum projection. It then appends the selected column vector at(φ
t
i`, θ

t
i`) to the RF precoder

FRF. After the dominant vector is found, and the least squares solution to FBB is calculated in

step 7, the contribution of the selected vector is removed in step 8 and the algorithm proceeds to

find the column along which the “residual precoding matrix” Fres has the largest projection. The
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Algorithm 1 Spatially Sparse Precoding via Orthogonal Matching Pursuit
Require: Fopt

1: FRF = Empty Matrix
2: Fres = Fopt

3: for i ≤ NRF
t do

4: Ψ = A∗tFres

5: k = arg max`=1, ..., NclNray
(ΨΨ∗)`,`

6: FRF =
[
FRF|A(k)

t

]
7: FBB = (F∗RFFRF)−1 F∗RFFopt

8: Fres = Fopt−FRFFBB

‖Fopt−FRFFBB‖F
9: end for

10: FBB =
√
Ns

FBB

‖FRFFBB‖F
11: return FRF, FBB

process continues until all NRF
t beamforming vectors have been selected. At the end of the NRF

t

iterations, the algorithm would have (i) constructed an Nt×NRF
t RF precoding matrix FRF, and

(ii) found the optimal NRF
t ×Ns baseband precoder FBB which minimizes ‖Fopt−FRFFBB‖2F .

Step 10 ensures that the transmit power constraint is exactly satisfied.

To gain more intuition about the proposed precoding framework, Fig. 2 plots the beam patterns

generated by a transmitter with a 256-element planar array for an example channel realization

using (i) the channel’s optimal unconstrained precoder, (ii) the proposed precoding strategy with

NRF
t = 4, and (ii) the beam steering vector in the channel’s dominant physical direction. We

observe that in practical mmWave channels, optimal precoders do in fact generate spatially

sparse beam patterns and thus may be accurately approximated by a finite combination of

array response vectors. Further, Fig. 2 indicates that Algorithm 1 succeeds in generating beam

patterns which closely resemble those generated by Fopt. Therefore, Algorithm 1 succeeds in

selecting the best NRF
t steering directions and forming appropriate linear combinations of the

selected response vectors. This beam pattern similarity will ultimately result in favorable spectral

efficiency performance as shown in Section VI.

Having presented the proposed precoding framework, we conclude this section with the

following design remarks.

Remark 2: We note that the mmWave terminals need not know the exact angles (φt
i`, θ

t
i`) that

make up the channel matrix H, and need not use the matrix At as defined earlier. We have
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(a) Beam Pattern of Optimal Beamforming Vector (b) Beam Pattern with Proposed Solution

(c) Beam Pattern of Optimal Steering Vector

Fig. 2. Beam pattern generated a 256-element square array in an example channel realization with 6 scattering clusters using
(a) optimal unconstrained beamforming, (b) the proposed sparse precoding solution with 4 RF chains, and (c) the beam steering
vector in the channel’s dominant physical direction. The proposed algorithm is shown to result in beam patterns that closely
resemble the patterns generated by optimal beamforming; this beam pattern similarity will ultimately result in similar spectral
efficiency. For illustration purposes, the channel’s angle spread is set to 0◦ in this figure.

only used this finite basis for simplicity of exposition. In general, the mmWave terminals can

instead select basis vectors of the form at(φ, θ) using any finite set of representative azimuth and

elevation directions (such as a set of equally spaced angles for example). This approach avoids

having to decompose H into its geometric representation and is naturally suited for limited

feedback operation. This approach will be discussed further in Section V.

Remark 3: It may be advantageous in some cases to impose the additional constraint that FBB

be unitary. Unitary precoders can be more efficiently quantized and are thus more attractive in

limited feedback systems. With this additional constraint, (17) can be solved again via Algorithm
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1 by replacing the least squares solution for FBB in step 7, by the solution to the corresponding

orthogonal Procrustes problem [67]. This is given by FBB = ÛV̂∗ where Û and V̂ are unitary

matrices defined by the singular value decomposition of F∗RFFopt, i.e., F∗RFFopt = ÛΣ̂V̂∗ [67].

Remark 4: In the limit of large antenna arrays (Nt, Nr → ∞) in very poor scattering en-

vironments for which NclNray = o(min(Nt, Nr)), the results of [18], [66] indicate that simple

RF-only beam steering becomes optimal, i.e., it becomes optimal to simply transmit each stream

along one of the Ns most dominant vectors at(φ
t
i`, θ

t
i`). For arrays of practical sizes, however,

Section VI shows that there can be significant gains from more involved precoding strategies

such as the one presented in this section.

IV. PRACTICAL MILLIMETER WAVE RECEIVER DESIGN

In Section III, we abstracted receiver-side processing and focused on designing practical

mmWave precoders that maximize mutual information. Effectively, we assumed that the mmWave

receiver can optimally decode data using it Nr-dimensional received signal. Such a decoder can

be of prohibitively high complexity in multi-antenna systems, making lower-complexity receivers

such as the commonly used linear MMSE receiver more appealing for practical implementation.

In fact, in mmWave architectures such as the one shown in Fig. 1, such optimal decoders are

impossible to realize since received signals must be linearly combined in the analog domain

before any detection or decoding is performed.

In this section, we address the problem of designing linear combiners for the mmWave receiver

in Fig. 1, which uses both analog and digital processing before detection. Assuming the hybrid

precoders FRFFBB are fixed, we seek to design hybrid combiners WRFWBB that minimize the

mean-squared-error (MSE) between the transmitted and processed received signals. The combiner

design problem can therefore be stated as

(Wopt
RF ,W

opt
BB) = arg min

WRF, WBB

E
[
||s−W∗

BBW∗
RFy||22

]
,

s.t. WRF ∈ WRF,

(19)

where WRF is the set of feasible RF combiners, i.e., WRF is the set of Nr×NRF
r matrices with

constant-gain phase-only entries. In the absence of any hardware limitations that restrict the set
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of feasible linear receivers, the exact solution to (19) is well known [68] to be

W∗
MMSE = E [sy∗]E [yy∗]−1 =

√
ρ

Ns

F∗BBF∗RFH∗
(
ρ

Ns

HFRFFBBF∗BBF∗RFH∗ + σ2
nINr

)−1
(a)
=

1
√
ρ

(
F∗BBF∗RFH∗HFRFFBB +

σ2
nNs

ρ
INs

)−1
F∗BBF∗RFH∗,

(20)

where (a) follows from applying the matrix inversion lemma. Just as in the precoding case,

however, this optimal unconstrained MMSE combiner W∗
MMSE need not be decomposable into a

product of RF and baseband combiners W∗
BBW∗

RF with WRF ∈ WRF. Therefore W∗
MMSE cannot

be realized in the system of Fig. 1. Further, just as in the precoding case, the complex non-

convex constraint WRF ∈ WRF makes solving (19) analytically impossible and algorithmically

non-trivial. To overcome this difficulty, we leverage the methodology used in [45], [46] to find

linear MMSE estimators with complex structural constraints.

We start by reformulating the problem in (19) by expanding MSE as follows

E
[
‖s−W∗

BBW∗
RFy‖22

]
= E [(s−W∗

BBW∗
RFy)∗(s−W∗

BBW∗
RFy)]

= E [tr ((s−W∗
BBW∗

RFy) (s−W∗
BBW∗

RFy)∗)]

= tr (E [ss∗])− 2<{tr (E [sy∗]∗W∗
BBW∗

RF)}

+ tr (W∗
BBW∗

RFE [ss∗] W∗
BBW∗

RF) .

(21)

We now note that since the optimization problem in (19) is over the variables WRF and

WBB, we can add any term that is independent of WRF and WBB to its objective function

without changing the outcome of the optimization. Thus, we choose to add the constant term

tr (WMMSEE [yy∗] W∗
MMSE)− tr (E [ss∗]) and minimize the equivalent objective function

J (WRF,WBB) = tr (WMMSEE [yy∗] W∗
MMSE)− 2<{tr (E [sy∗] WRFWBB)}

+ tr (W∗
BBW∗

RFE [ss∗] W∗
BBW∗

RF)

(a)
= tr (WMMSEE [yy∗] W∗

MMSE)− 2<{tr (W∗
MMSEE [yy∗] WRFWBB)}

+ tr (W∗
BBW∗

RFE [ss∗] W∗
BBW∗

RF)

= tr ((W∗
MMSE −W∗

BBW∗
RF)E [yy∗] (W∗

MMSE −W∗
BBW∗

RF)∗)

= ‖E [yy∗]1/2 (WMMSE −WRFWBB) ‖2F , (22)
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where (a) follows from noticing that W∗
MMSE = E [sy∗]E [yy∗]−1 which implies that the second

term can be rewritten as tr (E [sy∗] WRFWBB) = tr
(
E [sy∗]E [yy∗]−1 E [yy∗] WRFWBB

)
=

tr (W∗
MMSEE [yy∗] WRFWBB). As a result of (22), the MMSE estimation problem is equivalent

to finding hybrid combiners that solve

(Wopt
RF ,W

opt
BB) = arg min

WRF, WBB

‖E [yy∗]1/2 (WMMSE −WRFWBB) ‖F

s.t. WRF ∈ WRF,

(23)

which amounts to finding the projection of the unconstrained MMSE combiner WMMSE onto

the set of hybrid combiners of the form WRFWBB with WRF ∈ WRF. Thus, the design of

MMSE receivers for the mmWave system of interest closely resembles the design of its hybrid

precoders. Unlike in the precoding case however, the projection now is not with respect to the

standard norm ‖ · ‖2F and is instead an E [yy∗]-weighted Frobenius norm. Unfortunately, as in

the case of the precoding problem in (15), the non-convex constraint on WRF precludes us

from practically solving the projection problem in (23). The same observations that allowed us

to leverage the structure of mmWave channels to solve the precoding problem in Section III,

however, can be translated to the receiver side to solve the combiner problem as well. Namely,

because of the structure of clustered mmWave channels, near-optimal receivers can be found by

further constraining WRF to have columns of the form ar(φ, θ) and instead solving

W̃opt
BB = arg min

W̃BB

‖E [yy∗]1/2 WMMSE − E [yy∗]1/2 ArW̃BB‖F ,

s.t. ‖diag(W̃BBW̃∗
BB)‖0 = NRF

r

(24)

where Ar =
[
ar(φ

r
1,1, θ

r
1,1), . . . , at(φ

r
Ncl,Nray

, θrNcl,Nray
)
]

is an Nr × NclNray matrix of array

response vectors and W̃BB is an NclNray × Ns matrix; the quantities Ar and W̃BB act as

auxiliary variables from which we obtain WRF and WBB in a manner similar to Section III.4

As a result, the MMSE estimation problem is again equivalent to the problem of sparse signal

recovery with multiple measurement vectors and can thus be solved via the orthogonal matching

pursuit concept used in Section III. For completeness the pseudo code is given in Algorithm 2.

Remark 5: This section relaxes the perfect-receiver assumption of Section III and proposes

4As noted in Section III the receiver need not know the exact angles (φr
i`, θ

r
i`) and can instead use any set of representative

azimuth and elevation angles of arrival to construct the matrix of basis vectors Ar.
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Algorithm 2 Spatially Sparse MMSE Combining via Orthogonal Matching Pursuit
Require: WMMSE

1: WRF = Empty Matrix
2: Wres = WMMSE

3: for i ≤ NRF
r do

4: Ψ = A∗rE [yy∗] Wres

5: k = arg max`=1, ..., NclNray (ΨΨ∗)`,`

6: WRF =
[
WRF|A(k)

r

]
7: WBB = (W∗

RFE [yy∗] WRF)−1 W∗
RFE [yy∗] WMMSE

8: Wres = WMMSE−WRFWBB

‖WMMSE−WRFWBB‖F
9: end for

10: return WRF, WBB

practical methods to find low-complexity linear receivers. The design of precoders and combiners,

however, remains decoupled as we have assumed that the precoders FRFFBB are fixed while

designing WRFWBB (and that receivers are optimal while designing FRFFBB). This decoupled

approach simplifies mmWave transceiver design, and will be shown to perform well in Section

VI, however, some simple “joint decisions” may be both practical and beneficial. For example,

consider the case where a receiver only has a single RF chain and thus is restricted to applying

a single response vector ar(φ, θ). In such a situation, designing FRFFBB to radiate power in

NRF
t different directions may lead to a loss in actual received power (since the receiver can only

form a beam in one direction). As a result, it is beneficial to account for the limitations of the

more-constrained terminal when designing either precoders or combiners. To do so, we propose

to run Algorithms 1 and 2 in succession according to the following rules

NRF
t < NRF

r

 1. Solve for FRFFBB using Algorithm 1.

2. Given FRFFBB, solve for WRFWBB using Algorithm 2.

NRF
t > NRF

r

 1. Solve for WRFWBB using Algorithm 2 assuming FRFFBB = Fopt.

2. Solve for FRFFBB for the effective channel W∗
BBW∗

RFH.

(25)

In summary, starting with the more constrained side, the hybrid precoder or combiner is found

using Algorithm 1 or 2. Then, given the output, the remaining processing matrix is found by

appropriately updating the effective mmWave channel.

Finally, we note that while the numerical results of Section VI indicate that this decoupled
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approach to mmWave transceiver design yields near-optimal spectral efficiency, a more direct

joint optimization of (FRF,FBB,WRF,WBB) is an interesting topic for future investigation.

Similarly, while we have solved the sparse formulation of the precoding and combining problems

via orthogonal matching pursuit, the problems in (17) and (24) can be solved by leveraging other

algorithms for simultaneously sparse approximation [42].

V. LIMITED FEEDBACK SPATIALLY SPARSE PRECODING

Section III implicitly assumed that the transmitter has perfect knowledge of the channel matrix

H and is thus able to calculate Fopt and approximate it as a hybrid RF/baseband precoder

FRFFBB. Since such transmitter channel knowledge may not be available in practical systems,

we propose to fulfill this channel knowledge requirement via limited feedback [21], [47]–[49].

Namely, we assume that the receiver (i) acquires perfect knowledge of H, (ii) calculates Fopt and

a corresponding hybrid approximation FRFFBB, then (iii) feeds back information about FRFFBB

to the transmitter. Since hybrid precoders are naturally decomposed into an RF and baseband

component, we propose to quantize FRF and FBB separately while exploiting the mathematical

structure present in each of them.

A. Quantizing the RF Precoder

Recall that the precoder FRF calculated Section III has NRF
t columns of the form at(φ, θ).

Therefore, FRF admits a natural parametrization in terms of the NRF
t azimuth and elevation

angles that it uses. Thus, FRF can be efficiently encoded by quantizing its 2NRF
t free variables.

For simplicity, we propose to uniformly quantize the NRF
t azimuth and elevation angles using

Nφ and Nθ bits respectively. Therefore, the quantized azimuth and elevation angles are such that

φ̂k ∈ Cφ =

{
φt
min +

φt
max − φt

min

2Nφ+1
, φt

min +
3(φt

max − φt
min)

2Nφ+1
, . . . , φt

max −
φt
max − φt

min

2Nφ+1

}
θ̂k ∈ Cθ =

{
θtmin +

θtmax − θtmin

2Nθ+1
, θtmin +

3(θtmax − θtmin)

2Nθ+1
, . . . , θtmax −

θtmax − θtmin

2Nθ+1

} (26)

where we recall that [φt
min, φ

t
max] and [θtmin, θ

t
max] are the sectors over which Λt(φ, θ) 6= 0. The

receiver can then quantize FRF by simply selecting the entries of Cφ and Cθ that are closest in

Euclidean distance to FRF’s angles. Alternatively, as stated in Remark 2, Algorithm 1 can be
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run directly using the Nt × 2Nφ+Nθ matrix of “quantized response vectors”

Aquant.
t =

[
at(φ

t
1, θ

t
1), . . . , at(φ

t
i, θ

t
`), . . . , at(φ

t

2
Nφ
, θt

2Nθ
)
]
, (27)

and the index of the selected angles can be fed back to the transmitter. While this latter approach

has higher search complexity, it has the advantage of (i) “jointly quantizing” all 2NRF
t angles,

and (ii) automatically matching the baseband precoder FBB to the quantized angles.

B. Quantizing the Baseband Precoder

To efficiently quantize FBB, we begin by highlighting its mathematical structure in mmWave

systems of interest. Namely, we note that for systems with large antenna arrays, we typically

have that F∗RFFRF ≈ INRF
t

. When coupled with Approximation 1, we have that F∗BBFBB ≈ INs ,

i.e., FBB is approximately unitary. In fact, FBB can be made exactly unitary as discussed in

Remark 3. Further, we recall that the spectral efficiency expression in (3) is invariant to Ns×Ns

unitary transformations of the baseband precoder. Therefore, FBB is a subspace quantity that

can be quantized on the Grassmann manifold [47], [48]. Suitable codebooks for FBB can be

designed using Lloyd’s algorithm on a training set of baseband precoders and using the chordal

distance as a distance measure [69]. Since such codebook construction is well-studied in the

literature on limited feedback MIMO, we omit its details for brevity and refer the reader to [70,

Section IV] for an in-depth description of the process.

VI. SIMULATION RESULTS

In this section, we present simulation results to demonstrate the performance of the spatially

sparse precoding algorithm presented in Section III when combined with the sparse MMSE

combining solution presented in Section IV. We model the propagation environment as a Ncl = 8

cluster environment with Nray = 10 rays per cluster with Laplacian distributed azimuth and

elevation angles of arrival and departure [30], [54]. For simplicity of exposition, we assume all

clusters are of equal power, i.e., σ2
α,i = σ2

α ∀i, and that the angle spread at both the transmitter

and receiver are equal in the azimuth and elevation domain, i.e., σt
φ = σr

φ = σt
θ = σr

θ. Since

outdoor deployments are likely to use sectorized transmitters to decrease interference and increase

beamforming gain, we consider arrays of directional antenna elements with a response given in

(5) [8], [9]. The transmitter’s sector angle is assumed to be 60◦-wide in the azimuth domain and
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Fig. 3. Spectral Efficiency achieved by various precoding solutions for a 64 × 16 mmWave system with planar arrays at the
transmitter and receiver. The propagation medium is a Ncl = 8 cluster environment with Nray = 10 and an angular spread of
7.5◦. Four RF chains are assumed to be available for sparse precoding and MMSE combining.

20◦-wide in elevation [8]. In contrast, we assume that the receivers have relatively smaller antenna

arrays of omni-directional elements; this is since receivers must be able to steer beams in any

direction since their location and orientation in real systems is random. The inter-element spacing

d is assumed to be half-wavelength. We compare the performance of the proposed strategy

to optimal unconstrained precoding in which streams are sent along the channel’s dominant

eigenmodes. We also compare with a simple beam steering solution in which data streams are

steered onto the channel’s best propagation paths.5 For fairness, the same total power constraint

is enforced on all precoding solutions and signal-to-noise ratio is defined as SNR = ρ
σ2
n
.

Fig. 3 shows the spectral efficiency achieved in a 64× 16 system with square planar arrays at

both transmitter and receiver. For the proposed precoding strategy, both transmitter and receiver

are assumed to have four transceiver chains with which they transmit Ns = 1 or 2 streams. Fig.

5Note that, when Ns > 1, the best propagation paths in terms of spectral efficiency may not be the ones with the highest gains.
This is since, with no receiver baseband processing, different paths must be sufficiently separated so as they do not interfere.
In this case, the best paths are chosen via a costly exhaustive search. Further, when power allocation is considered in Fig. 5,
the same waterfilling power allocation is applied to the beam steering solution.
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Fig. 4. Spectral Efficiency achieved in a 256× 64 mmWave system with planar arrays at the transmitter and receiver. Channel
parameters are set as in Fig. 3. Six RF chains are available for sparse precoding and combining.

3 shows that the proposed framework achieves spectral efficiencies that are essentially equal to

those achieved by the optimal unconstrained solution in the case Ns = 1 and are within a small

gap from optimality in the case of Ns = 2. This implies that the proposed strategy can very

accurately approximate the channel’s dominant singular vectors as a combination of four steering

vectors. When compared to traditional beam steering, Fig. 3 shows that there is a non-negligible

improvement to be had from more sophisticated precoding strategies in mmWave systems with

practical array sizes. To explore performance in mmWave systems with larger antenna arrays,

Fig. 4 plots the performance achieved in a 256×64 system with NRF
t = NRF

r = 6 RF chains. Fig.

4 shows that the proposed precoding/combining solution achieves almost-perfect performance

in both Ns = 1 and Ns = 2 cases. Further, we note that although beam steering is expected

to be optimal in the limit of large arrays, as discussed in Remark 4, the proposed solution still

outperforms beam steering by approximately 5 dB in this larger mmWave system.

While Section III focused on the design of fixed-rank precoders with equal power allocation

across streams, the same framework can be applied to systems in which Ns is determined

dynamically and streams are sent with unequal power. This configuration allows us to compare
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Fig. 5. This figure compares the spectral efficiency achieved when rank adaptation and unequal power allocation is allowed in
256× 64 system with NRF

t = NRF
r = 4. It is shown that sparse precoding and combining can approach the performance of an

unconstrained capacity-achieving (waterfilling) precoder. The figure also demonstrates large gains over a beam steering strategy
in which streams are sent along different physical directions with a similar unequal power allocation.

the rates achieved by the proposed precoding/combining framework to the mmWave channel’s

waterfilling capacity. To do so, Algorithm 1 is simply set to approximate Fopt = VΓ where Γ

is a diagonal matrix resulting from the waterfilling power allocation. Fig. 5 demonstrates the

performance achieved when Algorithms 1 and 2 are used to approximate the channel’s capacity-

achieving precoders and combiners in a 256× 64 mmWave system with NRF
t = NRF

r = 4. Fig.

5 shows that the proposed framework allows systems to approach channel capacity and provides

large gains over simple beam steering. Since the multiplexing gain of the mmWave system is

limited by Ns ≤ min{NRF
t , NRF

r }, capacity cannot be approached at very high SNR when the

optimal Ns exceeds min{NRF
t , NRF

r }. Fig. 5 indicates, however, that even at an SNR of 0 dB

where we observe that Ns = 3 streams are sent over most channel realizations, the proposed

strategy is still within a small gap from capacity. Finally, we note that although the derivation

leading up to (14) does not account for unequal power allocation across streams, Fig. 5 indicates

that Algorithm 1 is nevertheless a sensible approach to designing such precoders.

The proposed precoding/combining framework leverages the mathematical structure of large
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Fig. 6. Spectral Efficiency vs. Angle Spread in a number of different mmWave system configuration at an SNR of 0 dB. For
simplicity of exposition, we assume that the angle spread is such that σt

φ = σr
φ = σt

θ = σr
θ . It is shown that as angle spread

increased, and scattering becomes richer, the performance of the proposed algorithm degrades. However, the rate gap remains
below 10% at a significant angle spread of 15◦. For more reasonable angle spreads of around 5◦, the rate gap is negligible.

mmWave channels with relatively limited scattering. To examine performance in propagation

environments with varying levels of scattering, Fig. 6 plots spectral efficiency as a function of

the channel’s angle spread for a number of mmWave system configurations. Fig. 6 indicates

that when the angle spread is low, i.e., the scattering is rather limited, the performance of the

proposed algorithm is within a small gap from the performance of unconstrained precoding. As

angle spread increases, the rates achieved by the proposed solutions slowly degrade. However, Fig

6 indicates that in the two Ns = 1 cases shown, the rate gap remains below 10% at a significant

angle spread of 15◦ and is negligible for more reasonable angle spreads of around 5◦. In the case

of Ns > 1 with smaller arrays, spectral efficiency degrades more rapidly with angle spread. This

can be seen by examining the 64 × 16 system with NRF
t = NRF

r = 4 and Ns = 2. If possible,

the effect of increased scattering can be mitigated by increasing the number of RF chains at the

mmWave terminals which enables them to generate more flexible precoders/combiners. This can

be seen by examining the same 64× 16 system with NRF
t = NRF

r = 6.

Finally, we examine the performance of the proposed precoding strategy in systems without
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Fig. 7. Spectral Efficiency vs. Quantization Bits per Angle different mmWave system configurations, all with NRF
t = NRF

r = 4,
at an SNR of 0 dB. For simplicity of exposition, we assume that Nφ = Nθ and an baseband precoder codebook of 4 bits in
the Ns = 1 case and 6 bits in the Ns = 2 case. The figure indicates that for the considered array sizes, 3 bits per angle is often
enough to achieve almost-perfect performance.

channel state information at the transmitter. For this performance characterization, we assume

that the receiver calculates FRF and FBB with full knowledge of the channel and feeds back

their parameters as described in Section V. We assume that the receiver uses four and six bits

to quantize FBB in the case of Ns = 1 and Ns = 2 respectively, and constructs codebooks as

described in Section V-B. The receiver uses a variable number of bits to quantize the azimuth

and elevation angles used in FRF. For simplicity of exposition, we assume that Nφ = Nθ. Fig.

7 indicates that similar performance can be expected in limited feedback systems and that the

performance degradation due to quantization is limited. Namely, Fig. 7 indicates that no more

than 3 bits are needed to quantize each steering angle in practical systems, and even 2 bits yields

almost-perfect performance for a 64 × 16 systems with Ns = 1. In general the number of bits

needed to properly quantize the steering angles grows slowly with array size since larger arrays

generate narrower beams and require finer steering. Since beam width is inversely proportional

to the antenna array dimensions, a reasonable rule-of-thumb is to add 1 bit per azimuth (or

elevation) steering angle whenever the array’s width (or height) doubles. Fig. 7 is promising as
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it indicates that it takes no more than 20 bits to quantize a 64×1 precoder and about 22 bits for

a 64× 2 precoder. When considering the fact that practical mmWave systems will use twenty to

fifty times more antennas compared to traditional MIMO systems, which use about 4 to 6 bits of

feedback [47], we see that exploiting spatial sparsity in precoding helps dramatically compress

feedback and keep its overhead manageable.

VII. CONCLUSION

In this paper we considered single user precoding and combing in mmWave systems where

traditional MIMO solutions are made infeasible by the heavy reliance on RF precoding. By

leveraging the structure of realistic mmWave channels, we developed a low hardware-complexity

precoding solution. We formulated the problem of mmWave precoder design as a sparsity-

constrained signal recovery problem and presented an algorithmic solution using orthogonal

matching pursuit. We showed that the same framework can be applied to the problem of designing

practical MMSE combiners for mmWave systems. We showed that the proposed precoders

can be efficiently quantized and that the precoding strategy is well-suited for limited feedback

systems. Finally, we presented numerical results on the performance of spatially sparse mmWave

processing and showed that it allows systems to approach their theoretical limits on spectral

efficiency. Future work related to such mmWave precoding includes relaxing the assumptions

made throughout this paper such as (i) perfect channel state information at the receiver, (ii)

knowledge of the antenna array structure, and (iii) the specialization to narrowband channels.
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