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Game Theoretic Framework for Future Generation Networks

Modelling and Optimization

Anas F. Al Rawi, Sonia Aı̈ssa, Charalampos C. Tsimenidis, Bayan S. Sharif

Abstract

A new cost efficient automated planning and optimization method is proposed for OFDMA future generation

cellular networks targeting throughput maximization. The mathematical formulation is a non-linear multi-objective

optimization problem subject to minimum interference, cost and similar resource constraints at each cell within a

defined heterogeneous traffic environment. The fundamental objective is to maximize the individual cell throughput

without deteriorating it over other cells, which results in a throughput equilibrium maximization over multiple

cells. This implicitly implies traffic and co-channel interference congestion avoidance across the network whilst

maintaining both cost efficiency and quality of service (QoS) policies. Optimal solution existence is subject to

the network size, traffic and computational complexity constraints which converges to a throughput equilibrium or

alternatively to the well known Nash Equilibrium (NE).
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I. INTRODUCTION

Wireless network design involves modelling numerous factors that define the performance of the

network. It is therefore necessary to comprehend and assess the impact of each parameter on the network

performance in order to determine the most precise optimization model that guarantees maximum network

efficiency. However, the complexity of the model grows rapidly with the network size and the traffic

complexity. As a consequence, a minor adjustment of a single parameter may cause a significant impact

on the entire network performance.

Future generation wireless networks (FGWNs) offer users heterogeneous traffic which demands different

levels of data rate, quality of service (QoS) and bandwidth. This diversity in traffic demands implies high

complexity management to maintain network cost efficiency.1 In order to provide an economical solution

that balances network cost and efficiency, network designers have to develop new deployment methods

that can balance QoS and network cost whilst counting a list of constraints and influential factors that

govern the network performance.

As a solution to this challenge, orthogonal frequency-division multiple access (OFDMA) is adopted in

FGWNs as a promising candidate not only due to its high immunity against multipath but also because

it enables simultaneous multi-user transmission along with exploiting both multi-user and multi-path

diversities [1]. As a result of power and bandwidth constraints, capacity at BS is bounded by the available

resources and the channel coefficients between a BS and the surrounding traffic density distribution. The

most dominant factors governing the channel coefficients are the propagation loss and the interference

between the co-channels assigned to the cells/sectors across the network. Additionally, traffic distribution

and density shape the probability density function of the channel coefficients between a BS and the

surrounding traffic. Hence, optimizing BSs number and distribution results in optimizing the network

parameters and maximizing capacity whilst maintaining both QoS and network cost.

Traditional and advanced planning methods treat these conditions either separately or insufficiently,

which often leads to inaccurate network design. Therefore, all the aforementioned factors must be treated

simultaneously to achieve maximum network performance. To handle resource efficiency, interference and

traffic congestion, a unique solution must unify and satisfy all the aforementioned objectives, which if

1Cost efficiency is indicated by the number of base stations (BSs); a smaller number outcomes a more cost efficient network.
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it is achieved over one objective, it implicitly achieves the others. Maximum throughput equilibrium is

the only solution that can unify all targeted objectives and it can be achieved by loading all cells with a

similar amount of traffic, minimizing the interference symmetrically2 and distributing resources optimally.

Automated network design has been evolving over the last decade, e.g. in third generation (3G) network

designs [2]-[4]. The significance of combining power control and BS placement simultaneously emerged as

a promising approach to satisfy both traffic demands and power constraints via mixed integer programming

(MIP). In [3], equal cell loading was considered as the fundamental objective, whilst a parallel meta-

heuristic was proposed in [4] to meet the coverage and QoS service constraints.

In [5]-[8], similar methods were applied for indoor network planning over homogeneous traffic envi-

ronments based on IEEE 802.11. In [6], a hybrid heuristic Pareto approach was proposed, while in [7]

the problem was solved by a pure heuristic approach under varying interference assumptions and a Pareto

based automated approach was proposed in [8].

On the other hand, for outdoor scenarios such as IEEE802.16e, [9] modelled the planning problem as

a multi-objective optimization to address both BS placement and resource allocation problems simultane-

ously. The positioning decision is made based on the efficiency of the uplink and downlink capacity over a

given set of cell site candidates, nominated by a similar criterion as in [2] and other MIP methods. Besides,

an extensive study for the MIP-based solutions was carried out in [11], where the authors concluded that

the quality of MIP-solutions may not be great, nevertheless, they should still be considered particularly

since the solution complexity is considerably low compared to traditional exhaustive approaches, e.g. in

[10] maximal location coverage was targeted by greedy-heuristic programming combining facility location

and resource allocation for CDMA based networks.

As the aforementioned research on automated network design adopted CDMA, it is vital to develop new

methods for FGWNs based on OFDMA. In particular, this paper exploits the findings of the aforementioned

research, [4]-[11]-[18], into a new integrated planning model for OFDMA-based systems. Since solution

quality is not guaranteed by MIP approaches, we propose a new game theoretic model, which is convex in

nature, to converge to Nash equilibrium. The proposed approach breaks the NP-hard problem into multi-

2Interference reciprocity among all sectors is necessary to maintain throughput equilibrium in the network as in some cases a sector could

be highly congested consuming all the available power and bandwidth. Existence of such scenarios generate constantly high interference to

lower loaded sectors and consequently deteriorate their resource efficiency.
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convex problem, [12], [13], controlled by a decentralized heuristic to exploit the encountered iterations

during the optimization process to approach optimal positions for the BSs. The heuristic algorithm is

necessary to handle the solution conditions of each individual convex problem to minimize the amount

of signal propagation and steer iteratively towards throughput equilibrium.

In contrast to [9] in which resources are predefined3 prior to network deployment, here a hybrid4 resource

allocation is adopted jointly with fair traffic clustering to avoid inappropriate resource consumption.

Simulation results, in Section VI-A, provide an optimal solution for a homogeneous Normal traffic

distribution. As the service outage probability remains unconstrained, Dynamic Multi-objective Steering

towards Nash Equilibrium (DMSNE) iterates to converge to optimality. For a worst case scenario where

a uniform random distribution of a heterogeneous traffic is considered, results suggest that our proposal

avoids significant sacrifice in the optimality, which makes it close-optimal whilst solution uniqueness may

not exist in NP-hard problems [14].

II. SYSTEM MODEL

In this section, we describe the nature of the problem, target, objectives, environmental conditions,

traffic characteristics and resource constraints along with problem formulation.

A. Target and Objectives

The target of this paper is to construct an optimal network design framework either to meet a certain

outage probability (OP) target or to converge to an optimal solution in case if the outage probability is

unconstrained.

A solution is considered optimal if an OP target is achieved by the minimum number of BSs’ in which

each operates to its maximum throughput level as well as each has the minimal interference impact on

other BSs. The distributed pattern of throughput maximization results in a non-fragile or with no-regret

system as the throughput gain is not dominated by specific cells over others. This solution is considered

cost-efficient since it avoids deploying low-loaded BSs. This is carried out by optimizing BSs’ locations

simultaneously to balance the amount of interference, signal propagation and traffic assignment among

3Bandwidth is divided into a set of fixed packet length.
4Packet length and power allocation are both dynamically optimized.
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BSs. Implicitly, the boundary of the individual cell’s maximum capacity is conditioned or limited by the

performance bound of the other surrounding cells/BSs, e.g. the avoidance of both excessive interference

and unfair traffic assignment allows a collaborative approach among cells to converge to a throughput

equilibrium.

However, Equilibrium conditions are hard to exist in realistic scenarios, therefore our proposal attempts

to converge to the nearest equilibrium solution.

Common inaccurate planning methodologies start with assigning BSs or building the network at and

from the centre of the traffic population. The consequences of such solutions are highly co-channel

interference (CCI) congested around the network centre caused by direction of transmissions from outer

interfering cells. In contrast, cells around traffic boundaries are highly congested with traffic as they

experience less CCI and therefore they stretch towards the centre of the traffic. This increases the amount

of signal propagation loss, results in unbalanced cell throughput and inefficient resource utilisation.

Recent advanced planning methods based MIP approaches set a determined set of cite candidates to

search for a solution. This indeed simplifies the planning problem and reduces its complexity. However,

optimal equilibriums most probably do not exist in the predetermined cite-domain.

B. Problem Notations and Descriptions

In this section we parametrize the planning scenario to enable a mathematical formulation for the

problem. We proceed with a traffic distribution over bounded by a continuous domain of x and y

dimensions, denoted by C
u×v. In order to examine DMSNE’s robustness under extreme conditions, the

nature of the distribution is uniform random with heterogeneous traffic which consists of K active users

requesting different types of services. Services are classified as time delay sensitive (TDS) and time delay

insensitive (TDI), and for these services, users can request any in the network. Each type of service

requires a different set of conditions to be successfully delivered within the transmission period. A user

k requesting a TDS service requires a specific data rate (Rk) within a limited period of time and a

guaranteed level of QoS (ǫk
5) while TDI services are not restricted to a fixed bit rate, but a minimum

allocation unit (ρk) and require a lower level of QoS. Traffic QoS policies are considered to be one of

5Bit error rate is the QoS indicator for a specific service
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the fundamental objectives that DMSNE has to achieve and are mathematically formulated as:

Rk =
N
∑

n=1

ωk,nCk,n, ∀k ∈ {1, 2, . . . , K},

N
∑

n=1

ωk,n = ρk, ∀k ∈ {1, 2, . . . , K},

index N refers to the total bandwidth segmented into subcarriers in which each subcarrier has a bandwidth

of ∆f and is addressed by an integer assignment variable ωn ∈ [0, 1] , ∀n. While Ck,n is the capacity of

subcarrier n assigned to user k, i.e. ωk,n = 1, and is calculated by Shannon formula:

Ck,n = ∆f log2 (1 + pk,nγk,n) ,

where pk,n ∈ [0, P T ], ∀n is the allocated power at ωk,n and γk,n is the channel coefficient between the

transmitter and user k experienced by subcarrier n.

Under these conditions, it required to minimize the outage probability of service coverage to meet a

certain target (ε) by positioning a minimum number of BSs (Q) which is the fundamental objective of

this research.

C. Problem Formulation

As the traffic grows in space, a single cell is no longer sufficient for ε and hence the scenario is

transformed from a single cell to a multi-cellular network of Q BSs. A BS has a z coordinate within

the traffic area dimensions, i.e. {z : (x, y) −→ Cu×v}. Number of sectors at each BS is I , e.g. BSq at zq

has I sectors, with a sector’s maximum transmit power Pq,i where P = {P ∈ R
iq
+,

∑Q
q=1

∑I

i=1 Pq,i ≤

Q× I × Pq,i}. Every user is served by a unique sector and denoted by ki, while the remaining network

sectors interfere with user ki by an amount of power
∑i×Q

j 6=i Pq,j over similar shared bandwidth.

As a consequence of bandwidth constraint, it is then reused at each BS. Thus, BW is spread over NT

orthogonal subcarriers which consist of N data, NP pilot and NG guard subcarriers. In this approach,

the subcarrier bandwidth, ∆f , is considered to be smaller than the coherence channel bandwidth which

results in inter-carrier interference (ICI) cancellation. Furthermore, subcarriers are assumed to be narrow

enough to experience flat fading. Therefore, data loss over deep faded subcarriers will not affect data

recovery over other subcarriers. The total number of subcarriers N are partitioned equally by I and each

partition (set of subcarriers Nsec) is allocated to a sector within the cell. However, CCI occurs among
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the reused frequency bandwidths across the network and is considered to be the major limiting factor in

OFDMA cellular networks. The exact amount of interference at user k, served by sector i and allocated

a packet length of Ωki is:

Iki =

Ωki
∑

n=1

i×Q
∑

j 6=i

N
∑

n′=1

pn′⊛ndj,kiG(φj,ki) | Hn′⊛n |2, (1)

where the operator⊛ is the power cross correlation between the allocated reused-subcarrier n′ ∈ {1, 2, . . . , N}

with the adjacent sector’s allocated-subcarriers (n ∈ {1, 2, . . . ,Ωki}) to the user of interest ki to obtain

the interferer subcarrier as well as the interferes channel coefficients H . Index j refers to the interferer

sector where J = (I × Q) − 1. Path loss (PL) and the antenna gain between the interferer sector j and

user ki are denoted by dj,ki and G(φj,ki), respectively.

Further traffic expansion implies further BW reuse over the additional assigned BSs, and as a con-

sequence, the performance of the individual cells is severely degraded due to the increase in collisions

between the reused frequency bands (BW ) in the adjacent BSs. Therefore, cells will experience different

amount of CCI, which reflects throughput gaps across all cells. Some cells achieve higher throughput than

others as they stretch their resources widely, taking an advantage over other CCI-highly congested cells

allowing them to exploit a higher diversity gain. As a result, cells’ performance are categorized by over-

loaded and inefficient cells. To avoid this dilemma, dynamic throughput penalty factor (Φq) are applied at

over-loaded cells via a multi-localization method to achieve a distance balance between each user, serving

sector and the adjacent interfering sectors, which implicitly yields the optimal solution and convergence

to a throughput equilibrium. To this end, the network design problem tends to be a Game-theoretic

problem of a multi-objective optimization nature, where each BS in the network performs equally to other

neighbouring cells while achieving maximum cell capacity and traffic-interference congestion avoidance.

Therefore, the automated planning problem is formulated as a non-linear multi-objective optimization

problem as follows:6

min
Q∈Z+

max
f∀q ∈Q

F =
Q
∑

q=1

[

(fq (p,w, z)− χqΦq

]

, (2)

subject to:

χq ∈ {0, 1}, ∀q ∈ {1, 2, . . . ,Q}, (3a)

6Table I summarizes the dominant parameters of the problem formulation
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Φq ∈ [0, fq] , ∀q ∈ {1, 2, . . . ,Q}, (3b)

p =

{

p ∈ R
ikn
+ :

I
∑

i=1

K
∑

k=1

N
∑

n=1

pki,n ≤ P T
q

}

, ∀i ∈ I ×Q, (3c)

w =

{

ω ∈ Z
ikn
+ :

∑

k∈Ψq

ωki,n ≤ 1

}

, ∀i ∈ I ×Q, (3d)

Rki =
N
∑

n=1

ωki,nCki,n, ∀k ∈ {1, 2, . . . , K}, (3e)

N
∑

n=1

ωki,n = ρki , ∀k ∈ {1, 2, . . . , K}, (3f)

z =
{

(x,y) ∈ C : xl ≤ x ≤ xu, yl ≤ y ≤ yu
}

, (3g)

min Ik (z) , ∀k ∈ {1, 2, . . . , K}, (3h)

min ‖ zq − zki ‖, ∀k ∈ {1, 2, . . . , K}, (3i)

where F is the vector of the network cells’ throughput
{

F : (P,W, z) −→ R
Q
+

}

, with W representing

a multi-dimensional matrix which defines subcarrier assignments at each sector associated with the cell

index. Individual cell throughput is given by fq, which is the sum of the individual users’ throughputs

in cell q. The integer variable χ ∈ {0, 1} represents a penalty decision factor and its value along with

the penalty factor Φq will be discussed in Section IV. In the above formulation, constraints (3c) and

(3d) represent the total power constraint (sector/cell) and the subcarrier binary sharing factor ωki,n for

subcarrier n for the qth cell, respectively. Constraint (3e) defines the QoS demands in terms of data rate

for TDS on user ki, while constraint (3f) defines the maximum allocation allowance ρki for TDI users.

As for Cki,n, it represents the delivered data rate over a single subcarrier and given by:

Cki,n = ∆f log2 [1 + pki,nγki,n(z)] . (4)

Hence, fq =
∑

i,k,n ωki,nCki,n. Traffic geometries are given by (3g) and each BS’s location (zq) should be

within the traffic boundaries while (u, v) are the matrix dimension of z. Constraint (3h) refers to the CCI

effects at each user in the network, while (3i) represents the Euclidean distance between BSq and user

ki, which is subject to minimization in order to reduce the propagation loss on the transmitted signals

between BSq and ki. γ is the effective channel coefficient which is position-dependent and it is given by:

γ
(z)
ki,n

=
| Hki,n |2 di,ki

G(φi,ki
)

Γki

[

No +
∑J

j 6=i

∑N

n′=1 pn′⊛ndj,ki
G(φj,ki

) | Hn′⊛n |2
] (5)
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and the channel frequency response matrix for the K users is given by H ∈ CK×NT . di,ki is the PL

between sector i of cell q and user k, following SUI model [15] according to

PLi,ki
= 20 log10

(

4πDo

λo

)

+ 10α log10

(

‖ zq − zki
‖

Do

)

, (6)

where Do is the reference distance, α is the propagation factor, ‖ zq − zki ‖ is the Euclidean distance

between user ki and the serving sector i, and λo is the wavelength. Γ is the gap value which determines

the required QoS in terms of bit error rate (ǫ, BER) for each service/user.

Γki
(ǫki

,m) =
− ln 5ǫki

1.5
(2m − 1), (7)

with ǫki denoting the service BER target for user ki, and m the modulation index. G(φi,ki) is antenna

gain of user ki with sector i modelled as in [16] by the following formula:

G(φi,ki
) = Gmax −min

{

20−

(

φo − φki

θ3dB

)2
}

, (8)

where Gmax is the maximum achievable antenna gain at the sector boresight (φo) and θ3dB is the half

power beamwidth. Finally, thermal noise is denoted by No.

III. PROBLEM DECOMPOSITION

The network planning formulated in (2) is a decision problem, which involves mixed integer non-

linear programming. Therefore, problem (2) is NP-hard [2]. Exhibiting non-deterministic polynomial time

complexity and being also boundary value problem (BVP) by the traffic dimension constraint (z), analytical

and exact solutions for the problem may not be possible. Therefore, the problem
{

F : (P,W, z) −→ R
Q
+

}

is decomposed according to the Additive Schwarz method into sub-problems to reduce the solution

complexity [17]. In order to achieve this, the problem is decomposed into two problems; 1) Facility

Location:
{

G : (ẑ) −→ R
kq
+

}

and 2) Resource Allocation: {C : (p, ω) −→ R+} [10]. The former opti-

mization problem is constrained by the traffic dimensions, where ẑ represents the set of site candidates

which are obtained by Metaheuristic, while the latter is modelled as a mixed integer non-linear problem

(MINLP), constrained by power, bandwidth and service requirements [18]. Both problems are then solved

and composed sequentially as follows:

G ◦ CT = F̂
(

CT ,G
−1

(

R
kq
+

))

, (9)

where CT is the obtained cell throughput over the set ẑ,

ẑ = G−1
(

R
kq
+

)

=
{

ẑ ∈ C
kq : G (ẑ) ∈ R

kq
+

}

, (10)
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and to obtain the desired solution we apply the following:

F = arg max
1≤k≤K

{

F̂
}

, ∀q ∈ {1, 2, . . . ,Q}. (11)

Hence, the final set positions are obtained by z = ẑ (F) . The adopted decomposition implies no optimality

sacrifice since the mutual effects between the sub-problems are fully considered.

A. Facility Location

In the facility location problem, Cki,n is maximized by considering the maximization of γki,n, which

is carried out by minimizing the Euclidean propagation distance of each subcarrier n between BSq and

assigned user ki. Implicitly, severity of multipath fading is significantly reduced. We therefore eliminate

the multipath effect and try to minimize the effect of the propagation loss as well as minimizing CCI

amount at each user. At this stage, both pki,n and ωki,n are constants or uniformly distributed and will be

optimized in the resource allocation problem. The facility location problem is then formulated as:

max
γki,n

∈R+

G (z) =

Q
∑

q=1

I
∑

i=1

K
∑

k=1

N
∑

n=1

Cki,n, (12)

subject to:

z =
{

(x,y) ∈ C : xl ≤ x ≤ xu, yl ≤ y ≤ yu
}

, (13a)

min Iki (z) , ∀k ∈ {1, 2, . . . , K}, (13b)

min ‖ zq − zki ‖, ∀k ∈ {1, 2, . . . , K}. (13c)

1) Metaheuristic Based Greedy Approach: The facility location problem is another multi-objective

problem, since it handles the positioning process for a Q number of BSs in the network. Pareto is a well-

known method for tackling such problems, however it has a drawback which limits the achievements of this

method. The randomized version may require a long time to obtain the Pareto optimal and, therefore, we

propose a hybrid method which consists of speeded-Pareto and Metaheuristic to overcome this drawback.

The former approaches a suboptimal solution rapidly by avoiding solution candidates repetition, while the

latter efficiently steers the outcomes of Pareto towards a better sub-optimal solution. Metaheuristic can

be summarized by deriving the steepest descent direction of the objective function (f ) as follows:

ẑ =















x+
q |1≤k≤K = xo

q ± ηt
∇Gx

‖∇Gx+∇Gy‖
, ∀q ∈ {1, 2, . . . ,Q},

y+q |1≤k≤K = yoq ± ηt
∇Gy

‖∇Gx+∇Gy‖
, ∀q ∈ {1, 2, . . . ,Q},

(14)

where ηt is the step size. By using (14), constraints (3g ≡ 13a & 3i ≡ 13c) are satisfied. That is, if

there are no users, then there is no direction of maximization, while in case of highly dense area, the
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normalized gradient vector
(

∇G
‖∇Gx+∇Gy‖

)

directs the BS towards the traffic peak. xoq and y
o
q are the initial

coordinates for BSq. Finally, ∇Gx and ∇Gy are the gradients of f with respect to x and y dimensions

respectively.

B. Traffic Fair Allocation and Clustering

Traffic growth across the network under resource constraints results in the outage probability exceeding

the limit, ε. Therefore, a network upgrade is required to accommodate the additional traffic under similar

QoS policies and resource constraints. This upgrade is carried out by planning an additional BS. To avoid

the new cell being inefficient, the traffic shared among all BSs need to be clustered and assigned to achieve

equal cell loading.

A balanced throughput over all cells is achieved when the traffic is clustered according to a criterion that

prevents a BS from assigning resources to a user that would otherwise have a better channel coefficient

(γ) with a different BS. This guarantees higher resource efficiency for each BS by avoiding inappropriate

allocation which mostly suffers significant amount of CCI. We therefore formulate the clustering problem

according to the following criterion:

Ψq = arg max
1≤i≤(Q×I)

(

γ
q
ki

)

, ∀k ∈ {1, 2, . . . , K}, (15)

where {Ψq ⊆ K} represents the set of users assigned to cell q.

The traffic in this paper is a snapshot of the worst case scenario of the expected or observed traffic

within a specific period of time.

C. Resource Allocation

In the preceding sections, Cki,n has been maximized by optimizing the channel coefficient under

uniform resource allocation. Further improvement indeed requires an efficient power/bandwidth allocation

to maintain the optimality of the planning. The objective function f is modified to concave as in [20]

and the resource allocation problem is formulated as in [18]. It should be noted that ski,n is equivalent to

pki,nωki,n, and the MINLP resource allocation for a set of positions (ẑ) is formulated as follows:

max

ski,n ∈ [0,∞)

ωki,n ∈ {0, 1}

(G ◦ CT )k,q =
∑

i,∀k∈Ψq,n

ωki,nCki,n

(

ski,n

ωki,n

, γ
(z′)
ki,n

)

, (16)
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subject to:
{

p ∈ R
ikn
+ :

I
∑

i=1

K
∑

k=1

N
∑

n=1

pki,n ≤ P T
q

}

, (17a)

{

w ∈ Z
ikn
+ :

K
∑

k=1

ωki,n ≤ 1

}

, (17b)

Rki =
N
∑

n=1

ωki,nCki,n, ∀k ∈ Ψq, (17c)

N
∑

n=1

ωki,n = ρki , ∀ k ∈ Ψq. (17d)

The problem is relaxed as ωki,n ∈ {0, 1}, which implies that each subcarrier can only be occupied by one

user. If subcarrier n is allocated to user ki, then ωki,n =1 or otherwise 0. This condition is necessary to hold,

since the theoretical optimal solution allows more than one user to share one subcarrier. This approach

cannot be implemented in realistic scenarios as it breaks the orthogonality between the subcarriers, hence

an additional induced intra-interference occurs following such allocation scheme. Additionally, it changes

the resource allocation into a combinatorial problem which increases the complexity of the optimization

process. Different resource allocation formulations can be found in [21], where each formulation exhibits

different priority objectives which in turn, changes the final planning solution to satisfy the objectives of

each formulation.

1) Subcarrier and Power Allocation: In the previous section, the resource allocation problem was

modelled to concave and, hence, the MINLP problem was solvable in the convex optimization framework

by taking the Lagrangian L [21]-[18], namely

L(Ω, µ, β, ϕ) =

I
∑

i=1

K
∑

k=1

N
∑

n=1

ωki,n log2

(

1 +
ski,nγki,n

ωki,n

)

−

I
∑

i=1

Ωi

(

K
∑

k=1

N
∑

n=1

ski,n − PT
q

)

−

I
∑

i=1

N
∑

n=1

µn

(

K
∑

k=1

ωki,n − 1

)

−

I
∑

i=1

K
∑

k=1

βki

[

N
∑

n=1

ωki,n log2

(

1 +
ski,nγki,n

ωki,n

)

]

−

I
∑

i=1

K
∑

k=1

ϕki

(

N
∑

n=1

ωki,n − ρki

)

.

(18)

In order to guarantee the optimality of the resource allocation, the duality gap between the Lagrangian

and the objective function should be vanished and therefore the optimal solution is obtained when the

following condition is true (L− (G ◦ CT )k,q = 0). Optimum power and subcarrier allocations are obtained

by taking the partial derivative for L with respect to ski,n and ωki,n, respectively. We then rearrange

the outcomes to derive optimum power allocation for a single subcarrier as well as optimum subcarrier

allocation. The latter should satisfy the Karush Kuhn Tucker (KKT) conditions for this problem, which
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are summarized as follows [19]: 1) Feasibility of both the constraints and the Lagrangian multipliers. 2)

The gradient of the Lagrangian with respect to ski,n and ωki,n become zero. 3) Optimized parameters

should be within the feasible domain whilst all objectives are satisfied. By setting ∂L
∂ski,n

= 0, optimum

power allocation for single subcarrier is obtained as follows:

ski,n (λi, βki) = ωki,n

[

λi (1− βki)−
1

γki,n

]

. (19)

By setting ∂L
∂ωki,n

= 0 and substituting (19), we obtain µn:

µn (λi, βki
, ϕki

) = (1− βki
)

{

log2 [λi (1− βki
) γki,n]−

[

1

ln 2
−

1

λiγki,n ln 2(1− βki
)

]

}

− ϕki
, (20)

where 0 6 βki 6 1, µn > 0 and ϕki > 0 are the Lagrangian multipliers and λi is referred to as the

water level in units of W/bps. Subcarrier assignment is carried out according to the following condition:

k′i = arg max
∀k∈Ψq

µn (λi, βki, ϕki, γki,n) , ∀i ∈ {1, 2, . . . ,Q× I}, (21)

ωk′
i
,n = 1 means that subcarrier n is allocated to user k′i and this is followed by the power allocation.

Finally, constraint (2a) consists of an inequality in its formulation which is sk′i,n > 0 and, thus, solution

feasibility depends on the satisfaction of this inequality. Therefore the following condition must be met:

γki,n >
1

λi
(1− βki) . (22)

This condition represents the resource allocation threshold channel domain in which power allocation

should be restricted only for subcarriers experiencing channel coefficient greater than the ratio 1
λi
(1− βki)

[19]. We have assumed that the whole bandwidth exists in one sub-band which contains N data subcarriers.

In case of considering B sub-bands, where each sub-band contains Nb =
N
B
data subcarriers, then user’s

k bandwidth and sub-band sharing factors (̺ki , ̺ki,b) become:

̺ki,b =

∑Nb

n=1 ωki,n

Nb

, ∀b ∈ {B}, ∀k ∈ {K}, (23)

where
∑K

k=1 ̺ki,b ≤ 1, ∀ b ∈ {B}, and hence, ̺ki,b is continuous in [0, 1]. For the total bandwidth

sharing:

̺ki =
1

N

B
∑

b=1

(

Nb
∑

n=1

ωki,n

)

, (24)

where
∑K

k=1 ̺ki ≤ 1, and hence, ̺ki is again continuous in [0, 1]. We have only relaxed the subcarrier

sharing factor (ωki,n ∈ {0, 1}) as subcarrier is the minimum allocation unit and thus sharing a single

subcarrier by more than one user is not allowed due orthogonality-loss. As such, the derived solution is

referred to as the practical optimal solution. In the optimal theoretical solution, where subcarrier sharing is
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allowed, a non-relaxed model is adopted and turns the problem into a combinatorial optimization problem.

The following formulated criterion allows multi-users to fairly share a single subcarrier:

ωki,n =
µn,ki

|
γki,n

> 1
λi
(1−βki)

∑K
k=1 µn,ki

|
γki,n

> 1
λi
(1−βki)

, ∀n ∈ {1, 2, . . . , N1, . . . , Nb, . . . , N}. (25)

Subcarrier assignment is no longer restricted to the user who only maximizes µn as in (21), but this

sharing is conditioned by γki,n >
1
λi
(1− βki) in order to guarantee solution feasibility in constraint (2a).

The domain for ωki,n becomes then continuous in [0, 1]. In this context, intra interference occurs over

each shared subcarrier and is calculated at a given cell by:

I intki,n
=

Ψ
∑

k′ 6=k

ωk′,npk′,nG(φi,k′i
) | Hk′,n |2 . (26)

In conclusion, optimal theoretical allocation breaks system orthogonality, which results in users extra

collisions over same shared-subcarriers inside each sector and across the whole network.

2) Dual-Variable Calculations: Simultaneous computations of λi and βki are not possible. Therefore, to

avoide inaccurate initializations and speed up the convergence of each allocation process, an approximate

expression for λi is obtained after deriving the optimum power allocation ski,n and subcarrier assignment

ωki,n. Hence, we first derive an approximate solution for λi and, subsequently, obtain an exact solution

for βki to meet each service requirement. We proceed by substituting (19) into (2a) to obtain λi as shown

below:
Ψq
∑

k=1

N
∑

n=1

ski,n = Pq,i, ∀i ∈ I, ∀q ∈ Q, (27)

λi =
Pq,i +

1
∑Ψq

k=1

∑N
n=1

γki,n
∑Ψq

k=1(1− βki)
∑N

n=1 ωki,n

. (28)

Once λi is approximated, the BS starts allocating power and subcarriers according to the allocation method

requirements until the target bit rate of user ki is either achieved exactly or exceeds the threshold. We

can then adjust last-subcarrier power allocation by βki to achieve exact QoS:

∆R′
ki

= ∆f log2

[

1 +
ski,nγki,n

ωki,n

]

= Rki
−

n′+Ωki
−1

∑

n′∈N

∆fωki,n log2

(

1 +
ski,n |βki

=0 γki,n

ωki,n

)

, (29)

where ∆R′
m,ki

is the exact required bit rate over the last subcarrier for user ki. By substituting ski,n in

(29) and manipulating, we obtain the optimum value for βki:

βki
= 1−

1

λiγki,n

2

[Rki
−

∑n′+Ωki
−1

n′∈N
∆fωki,n

log2(1+

ski,n
|βki

=0 γki,n

ωki,n
)]

∆f . (30)

In the case of fixed resource allocation, the penalty factor ϕki is required to be adjusted so that the

condition
∑N

n=1 ωki,n = ρki is fulfilled. The value of ϕki is initialized to zero; subsequently, an incremental
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update is necessary to approach the desired allocation [23]. In order to reduce complexity, µn in (20) can

be simply set to zero. The obtained value for ϕki works as the optimal value.

IV. DYNAMIC MULTI-OBJECTIVE STEERING TOWARDS NASH EQUILIBRIUM

Since (2) is a multi-objective problem, then a parallel optimization method is necessary to obtain the

maximum equilibrium throughput so as to avoid traffic congestion across the network. Once we obtain

the initial positions zo, either by random initialization or by early Pareto solution, (14) is applied followed

by (15) and (16). Since throughput achievement is position dependent, then the mathematical relation

between the position of the optimized cell and its throughput can be derived as:

zq = f−1

(

arg max
1≤k≤K

{G ◦ CT }q,k

)

, ∀q ∈ {1, 2, . . . ,Q}, (31)

considering that continuous throughput maximization of a cell will deteriorate the others. For instance, in

a 2-cell scenario, maximizing throughput of cell A continuously in an independent knowledge of cell B

results in continuous minimization of cell B throughput. Hence, a control method is required to maintain

a balance and achieve an optimized throughput equilibrium.

In [24], a hybrid Pareto-Heuristic technique was adopted to derive an initial non-dominated solution by

Pareto and maximize all cells together despite the existence of throughput gaps. Therefore, final solution

of such hybrid approach tends to be highly sensitive and dependent on the NE quality derived by Pareto,

which demands high computations to obtain a well balanced NE. In contrast with [24], DMSNE detects

and implies throughput maximization only over the worst cell performance, while it penalizes the other

greedy cells with a dynamic penalty factors in order to maintain throughput balance over all cells. This

allows to displace cells from traffic peaks/troughs towards average traffic regions, hence achieving fairness

in network traffic allocation. As a result, the cell associated with the minimum throughput will be always

maximized while the others will be continuously minimized to a certain threshold. An integer variable

χ ∈ {0, 1} representing a penalty decision factor is given on the basis of the following criterion:

χq =















1, if fq > min{F},

0, if fq = min{F}.

(32)

Once a greedy cell is determined, χq is set to 1, (χq = 1), to identify that BSq must be penalized by:

Φq (z|ψq) = arg min
1≤k≤K

{

fq,k −min {F}

}

, (33)
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where Φq is the displacement penalty factor and its feasible domain is given by Φq ≥ 0 . CCI minimization

is guaranteed by maximizing the Euclidean distance between the co-channels in the contiguous sectors

which is given by:

ψq = max

∥

∥

∥

∥

zq − z

(

min {F}

)
∥

∥

∥

∥

. (34)

BSs are enabled to reposition and to reorganize themselves by considering the set of equations (31)-(34),

hence the solution iterates continuously to maximize NE. For further illustration on DMSNE, given Fig. 1

summarizes the way it operates.

V. OUTAGE PROBABILITY

In addition to the previous objectives, namely, throughput equilibrium (NE) maximization, traffic

congestion avoidance, CCI and network cost minimization, the outage probability is an extra objective

that can also be handled in the optimization process since throughput maximization can be considered

as an indicator for outage probability minimization. Outage probability can be formulated as a service

probability maximization subject to a certain outage target. Service probability (Θ) can be calculated as:

Θ =
1

K





∑

q,i,k

Pr

(

N
∑

n=1

Cki,n = Rki

)

+
∑

q,i,k

Pr

(

N
∑

n=1

ωki,n = ρki

)



 . (35)

Hence, the outage probability problem is formulated as follows:

maxΘ, (36)

subject to:

(1−Θ) ≤ ε, (37a)

max fq =
I

∑

i=1

∑

k∈Ψq

N
∑

n=1

ωki,nCki,n, ∀q ∈ {1, 2, . . . ,Q}, (37b)

where ε is the outage probability target.

VI. NUMERICAL RESULTS AND DISCUSSIONS

The proposed DMSNE method is applied to meet an outage probability less than or equal to ε = 30 %.

Two types of services are randomly distributed for K users over a terrain dimension of ‖ xu−xl ‖ × ‖ yu−

yl ‖ m2. All other simulation parameters are listed in Table I. The fundamental objectives are; throughput

equilibrium maximization across the network (i.e. no traffic congestions), outage probability satisfaction

(ε ≥ 1−Θ) and minimization of the network cost (minQ). The formulation in (36) is very likely to cause



17

unbalanced trade-off between service probability (Θ) and throughput equilibrium (F ) due to low data rate

users (TDI). In other words, serving TDI users maximizes (36), however (2) is not satisfied as TDS users

request guaranteed high data rate. Therefore, to balance this trade-off, resource allocation dominates and

prioritizes TDS over TDI services as these services demand higher data rate and are considered to be

more profitable for the service provider.

The interfering power for packet/user P ′
k =

∑n′+Ωki
−1

n′∈N

∑N

n=1 pn′⊛n, Ωki
⊆ N is assumed to be unity (30

dBm) as E{P ′
k} < 1 for a cell loading higher than 50 users where this finding is obtained on the simulation

layer.

In order to simplify equation (28), approximations and assumptions can be made to accelerate the

convergence. The denominator is bounded between:

0 ≤

Ψq
∑

k=1

(1− βki)
N
∑

n=1

ωki,n ≤ Nsec,

where Nsec is achieved using the full consumed sector bandwidth. The right side of the numerator in (28)

is:

1
(

∑Ψq

k=1

∑N
n=1 γki,n

)

>> 1
<< 1.

After these considerations, the water level can be approximated as λi ' Pi

Nsec
. For further details on

resource allocation algorithms please refer to [18]-[21].

A. Optimality Test

In order to justify the solution quality, we consider symmetrical homogeneous traffic with Gaussian

distribution. All users are requesting similar service associated with data rate of 150 kbps and BER of

10−5. According to the k-means clustering method, the BS position should be in the mean of the clustered

distribution which represents the traffic peak.

In high density distributions, clustering complexity is quasi-linear with the number of users, K, the

Euclidean distance, d, and the number of clusters, s. Hence, complexity can be exactly calculated by

O
(

Ksd+1 logK
)

. To avoid this, we generate one cluster and then replicate it to have one exact symmet-

rical traffic distribution. Thus, k-means clustering can be applied directly to obtain the BSs’ positions.
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In order to examine the performance of the DMSNE, BSs’ positions in this scenario should be located

in the mean of each cluster or around its vicinity, i.e. zq = E{Ψq}∀q ∈ Q. Therefore, formulating the

problems in (11), (14) and (15), and solving them simultaneously should exhibit optimal throughput

equilibrium.

Performance obtained based on both positioning approaches is demonstrated in Fig. 4, where BS1

and BS2 are positioned by DMSNE which were both initialized in at the positions 1.2204e+003 and

−2.0196e+001 respectively, while in Fig. 3 both are localized according to k-means clustering. It can

be noted in Fig. 4.a that DMSNE achieves optimal NE and the throughput gaps are negligible between

iteration 50 and 100 until it converges to less than 0.7 Mbps. When considering only k-means, throughput

gap is more than 2.6 Mbps, which consequently reflects on increasing the probability of service outage

and of traffic congestion (see Fig. 4.b). Conventional network planning methods based on manual or

limited search, e.g. k-means clustering and MIP, have inadequate accuracy in determining the network

design. This is due to the fact that cells being sectorized, the CCI is not symmetrical or reciprocal, which

degrades the network efficiency in terms of cost, resource efficiency and QoS. For instance, sector 2 (180o)

of BS1 in Fig. 3 lies in the exact transmission direction of sector 2 in BS2, which severely reduces the

performance of sector 2 in BS1. While this is not the case in Fig. 2 where the affected sectors (1 and

3) in BS2 have shifted interferes-sectors, thus resulting in a better performance. If both cells have omni

BSs, then CCI becomes symmetrical and k-means returns with a more balanced NE.

In contrast with k-means, DMSNE yields optimal NE and proves its capacity to achieve optimality.

B. Influence of Extra CCI on the Network Cost and Performance

A more challenging scenario of heterogeneous traffic with an area of 3000 m× 3000 m is considered,

where K = 900 users are distributed in a random-uniform pattern over the area. Each user requests a

certain type of service, and the service requirements are summarized in Table I.

A non-dominated solution (NE) is obtained from Pareto front. The computational complexity of Pareto

front is high and grows rapidly with the size and density of the traffic. It is common that Pareto generates

solution candidates randomly for a certain number of iterations and then Pareto front is constructed from

the non-dominated solution [22]. Pareto optimal is then obtained from Pareto front using the derived

algorithm in [22]. In order to exactly calculate the computational search complexity which Pareto exhibits
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for a given traffic map, the possible solution combinations (BSs’ positions) are given by
(

A+Q−1
Q

)

= AQ

Q!
,

where A is the traffic dimensions in meter square (m2).

Fig. 5 illustrates that a network of 3 BSs is sufficient to meet QoS and outage probability targets. The

initial non-dominated solution obtained by Pareto is shown in Fig. 5-a). Significant throughput gaps are

observed between cell 3 and the others and as a result DMSNE penalizes the greedy cell which is BS3

in this scenario while it maximizes the others (BS1, BS2) to minimize throughput gaps, see Fig. 5-b).

As a consequence, this yields a service probability gain (Θ) by DMSNE over Pareto up to 9 units as in

Fig. 5-c).

We surround a traffic environment with 8 BSs in order to examine DMSNE performance under high

CCI conditions. In this scenario, DMSNE is initialized by an early Pareto solution as Pareto optimal

exhibits high computational complexity implied of
(9×106)4

4!
. We therefore consider 500 iterations, where

100 solution candidates are generated for each iteration. As this process progress further, Pareto efficiency

becomes less observable. Therefore, DMSNE, which is faster and more accurate in narrowing solutions

feasibility domain.

In Fig. 6 Pareto early-solution is represented by iteration one with considerable throughput gaps

particularly a 5 Mbps between BS3 and BS4. However, initializing DMSNE by an early Pareto solution can

significantly reduce overall complexity. As a result, each BS is displaced according to the penalty factor in

(33) to maximize NE until the solution starts to converge after 40 iterations. In terms of outage probability,

Fig. 6 c) shows a significant improvement in service probability after only few iterations to converge to

the solution around the outage probability threshold after 32 iterations. Due to space limitations, the final

visual network plan is not included in this paper.

To this end, involving the extra CCI sources, 8 BSs, has a cost of assigning an extra BS to meet the

OP target.

In the proposed integrated approach, CCI management is minimized twice, first during the facility

location problem, where propagation distances between users, serving sectors and the interferers are

balanced. Second, it is performed during the resource allocation, i.e., for subcarriers which experience

high CCI, the decision variable in (20) will be penalized and as a result these subcarriers will not be

allocated unless the sector is over loaded. Finally, failure to achieve either balanced CCI or balanced
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traffic distribution breaks NE.

VII. CONCLUSION

In this paper, the problem of network planning for FGWNs OFDMA systems has been tackled as a

multi-objective optimization problem subject to several constraints and limitation factors, e.g., lack of

resources, propagation loss, non-uniform antenna pattern, CCI, heterogeneous traffic, network cost, high

data rate demands and different levels of QoS, to emulate more realistic scenarios. Since the planning

problem is NP-hard and is also a boundary value problem (BVP), the proposed method decomposed

the problem according to Additive Schwarz method into two fundamental sub-problems, facility location

and resource allocation, while traffic allocation is performed as a mid-layer problem. The solution of the

multi-objective problem was steered by DMSNE to locate the minimum number of BSs in positions that

achieve maximum throughput equilibrium, which implicitly avoids both traffic and CCI congestion whilst

achieving the target outage probability. The proposed integrated method has utilized various optimization

techniques, e.g. convex optimization, parallel heuristic, Pareto and mix integer programming, to deliver

the best QoS under minimum resource consumptions. Applications of DMSNE are for both complete

and partial network deployments as illustrated in Section VI. It can optimize an upgrade in a network as

well as optimizing a complete deployment. Complexity can be adjusted by the following, maximise the

heuristic step size, subgroup DMSNE in which the size of a each is inversely proportional to the frequency

as the long reach effect of interference at high frequencies becomes insignificant, prior clustering which

impacts load-balancing in cells/sectors and finally sub-optimal/predefined resource allocation.
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TABLE I: Problem Formulation and Simulation Parameters

Notation Description Parameter Value

F network throughput over Q BSs Bandwidth 10 MHz

fq cell q throughput Total transmit power/sector 43 dBm

p subcarrier-user power allocation Reuse factor 1.3.3

ω subcarrier-user allocation factor Sector boresight 60
◦, 180◦, 300◦

R time-delay required data rate Transmitter antenna 3 sectored 15 dBi

ρ time-delay insensitive maximum allocation unit Receiver antenna Omni 10 dBi

Ψ clustered traffic assigned to a specific cell Data, Pilot, Guard subcarriers 768, 224, 32

χ cell penalty decision factor PL exponent, Thermal noise -4, -140 dBm

Γ, ǫ gap value and bit error rate RTDS , ρTDI {150, 128, 64 Kbps}, {1}

Θ, ε service coverage and outage probability7 BERTDS , BERTDI 10
−5, 10−3
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Fig. 1: DMSNE outline.



25

−2000 −1000 0 1000 2000 3000 4000
−1500

−1000

−500

0

500

1000

1500

x dimension

y
 d

im
e
n
s
io

n

60
o60

o

300
o

300
o

180
o 180

o

BS
1

BS
2

Fig. 2: BSs’ positions by DMSNE in a Gaussian traffic distribution.
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Fig. 3: BSs’ positions by k-means clustering in a Gaussian traffic distribution.
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