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Abstract

Efficient handover algorithms are essential for highly performing mobile wireless communications.

These algorithms depend on numerous parameters, whose settings must be appropriately optimized to

offer a seamless connectivity. Nevertheless, such an optimization is difficult in a time varying context,

unless adaptive strategies are used. In this paper, a new approach for the handover optimization is

proposed. First, a new modeling of the handover process by a hybrid system that takes as input

the handover parameters is established. Then, this hybrid system is used to pose some dynamical

optimization approaches where the probability of outage and the probability of handover are considered.

Since it is shown that these probabilities are difficult to compute, simple approximations of adequate

accuracy are developed. Based on these approximations, a new approach to the solution of the handover

optimizations is proposed by the use of a trellis diagram. A distributed optimization algorithm is then

developed to maximize handover performance. From an extensive set of results obtained by numerical

computations and simulations, it is shown that the proposed algorithm allows to improve performance

of the handover considerably when compared to more traditional approaches.
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I. INTRODUCTION

The handover process is the mechanism of transferring the connection between a mobile

station and a base station to another base station, so that the communication can be maintained

with adequate quality. The growth of cellular wireless systems with mobile communications,

vehicular communications, and multi-protocols mobile terminals, has motivated the investigation

of efficient handover algorithms that are able to offer a seamless connectivity, i.e., good quality

of the communication precisely during the switching mechanism.

There is a long history of studies on handover since the beginning of the cellular era [2] – [24].

Handover algorithms can be classified in two types [8]: soft and hard. In the hard handover,

the connection to the serving base station is released while the new base station takes on the

connection [10], [23]. In the soft handover, the mobile station can be simultaneously connected

to two or more different base stations [21], [24]. This can be achieved by exploiting the temporal

diversity offered by multi-path propagation (see, e.g., [19]). Such a strategy gives the smoothest

connection and offers potentially higher performance compared to the hard handover. Whereas the

soft handover can be used generally between same wireless systems, hard handover can be used

both between same system and between heterogeneous systems. However, soft handover is highly

expensive for the network operator. As a matter of fact, recent standardization of LTE suggests

the use of hard handover only [25]. Moreover, hard handover seems the only option in inter-

system handovers and, in general, in the emerging arena of connection management throughout

heterogeneous wireless interfaces. Consequently, in this paper we restrict our attention to such

a class.

The papers [2] – [13] present handover approaches in the same system. They focus on the

choice of the handover decision parameter, e.g., the received signal strength from the serving

and the neighboring base stations, the distance from base stations, and the bit error rate, within

one wireless system. In [4], the authors define three performance indicators: the probability

of lost calls, the probability of unnecessary handover and the probability of handover, and

they design a handover algorithm that trades-off among these indicators, since they cannot be

minimized simultaneously. The way to adapt handover to the wireless environment, e.g., macro-

cellular, micro-cellular, overlay systems, has been surveyed in [3]. In [5], the performance of

a handover procedure using both bit error rate and relative signal strength measurements is

analyzed. A call-quality criterion to balance against the number of handovers in designing an
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optimal handover strategy is presented in [6]. Handover algorithms that are based on the least

square (LS) estimate of path-loss parameters of the various radio links have been introduced in

[2]. In [18], two schemes have been proposed for managing downlink CDMA radio resources

that maintain ongoing call quality by minimizing call-dropping during handovers, without over-

penalizing new arrivals. In both schemes, the guard capacity of a cell is dynamically adjusted

so to maintain the handover dropping rate at or below a target level.

The natural evolution of the papers surveyed above focuses on handovers between hetero-

geneous networks. In [14], the authors propose a vertical handover algorithm which is able

to avoid the ping-pong effect which may occur when mobile terminals are moving between

different networks. The proposed algorithm determines the appropriate time at which a terminal

should initiate a handover. In addition, in [13] the authors propose new optimization techniques

for handover decision with main target to maximize the benefit of the handover for both the

user and the network. The optimizations incorporate a network elimination feature to reduce the

delay and processing required in the evaluation of the cost function. A multi-network optimization

is also introduced to improve throughput for mobile terminals with multiple active sessions. A

group-handover approach is presented in [22], where an optimized network selection and adjusted

delay in the initiation of handover to reduce the probability of handover blocking is considered.

As the understanding of handover techniques and related performance has become more

mature, more advanced mathematical tools have been proposed. The switching of the handover

mechanism, both within the same wireless system or between different wireless systems, can

be naturally modeled by a hybrid system framework, where a mixture of continuous state and

discrete event dynamics is taken into account. Hybrid systems provide a unified framework for

describing processes evolving according to continuous dynamics, discrete dynamics and logic

rules, e.g., [26]. Some of the most studied hybrid systems in the recent years involve the

interactions between continuous and discrete dynamics, since this class of systems has found

applications in wireless networks, embedded systems, and control [27]. In [7] – [12], the idea to

optimally control the switchings among base stations by hybrid systems is proposed. In [11], such

an approach is extended by considering soft handover in a fading environment with interference.

In this paper we propose a hybrid modeling and optimization of a general handover algorithm.

We consider the most important elements concurring in the handover mechanism, such as

wireless channel estimation, performance selection, and handover optimization. We build upon

the approach called Generalized Extended Least Squares handover (GELS) that was proposed
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in [9], where handover algorithms are designed based on the estimation of the path loss. In

particular, we first propose a new mathematical model of GELS by a hybrid system where

the different time-varying dynamics of the wireless channel and handover decision are taken

into account. Second, based on such a modeling, we propose a dynamic optimization approach

to decide when performing the base station switching. Our approach is related to relevant

contributions in [1], [3] – [12]; however, our study differs significantly since we include in

the hybrid model the wireless channel estimation, various optimization problems, and solution

algorithms, which was neglected before. We extend the previous work in [1], [9] by tackling

the challenging problem of the optimal decision rule for handover. This requires an entirely

new characterization of the handover performance indicators, such as probability of outage

and probability of handover. In fact, we propose a new complete framework where the use

of mathematical tools that include models of the wireless propagation scenario and the system

characteristics are essential for offering highly performant handover algorithms.

The rest of the paper is organized as follows. In Section II the basic system model for the

handover is presented, whereas the hybrid model of GELS handover scheme is described in

Section III and expression of related performance metrics is investigated in Section IV. The

handover optimization problems are presented in V. Finally, simulation results are presented in

Section VI and Section VII concludes the paper.

II. SYSTEM MODEL

We consider a general scenario for the handover given by a mobile terminal (MT) moving

among a number of Base Stations (BSs). The MT measures the signal strengths coming from all

the BSs. Suppose that there are S base stations. Let the received signal strength in a log-scale

from each BS be

ps(n) = αs − βslog[ds(n)] + us[ds(n)], s = 0, 1, . . . , S − 1 n = 1, . . . N

where ds(n) is the distance at time instant n between the MS and BS s, αs − βslog[ds(n)] is

the path loss, whereas us[ds(n)] models the shadow fading. The terms ui[di(n)] and uj[dj(n)]

for i 6= j are assumed to be zero mean Gaussian processes independent of each other. Such a

model of the received signal strength is common in the handover literature, e.g., [12]. It results

from an average over a number of samples, that are typically spaced enough in the time domain

so that the fast fading is filtered out.
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Figure 1. The hysteresis of the handover decision. In this paper, the hysteresis margin h(n) is selected for each time instant
n to optimize the handover.

For the handover algorithm, the estimate of the signal strength received from BSs, from the

sequence {ps(n)}, i = 1, 2, . . . , n, is calculated as follows [2], [9]:

ls(n) =
n∑

i=nb

ps(i)Gs(n, i) ,

with nb = max{1, n−nw+1}, where nw is the length of the window used for the estimation, and

Gs(n, i) are filtering coefficients. Both the window length and the filtering coefficients depend

on the handover algorithm.

The active BS is defined as the BS to which a mobile terminal is connected. The best BS is

defined as the BS with the best signal strength among those neighboring BSs that are candidates

for the handover connection. Let the subscripts 0 and 1 denote two involved BSs, say the active

BS and the best BS at a certain time instant, respectively, and let ls(n) be the linear estimate of

the signal strength measured from BSi, with s = 0 or 1. Consider the following random variable:

y(n) = l0(n)− l1(n) . (1)

The handover decision is based on the comparison of y(n) with a hysteresis margin h(n). In

particular, if MT is connected to a base station, say BS0, it disconnects from it if y(n) ≤ −h(n),

whereas if MT is connected to base station BS1, it disconnects from it if y(n) ≥ h(n). This

mechanism is illustrated in Figure 1.

Based on this mechanism, during a certain time interval it is possible that multiple handovers

happen, when the MT connects to a new BS at a time instant n and then disconnects from a

serving BS at the following time instant n+1. To ensure a high quality in the communication, it

is desirable that the MT stays connected to the BS offering high quality in the communication,
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i.e., low outage probability. However, due to the mobility of the MT and the resulting variation of

the wireless channel, especially in the outer cell region, it is uncertain which BS offers the best

performance and therefore, disconnection and reconnection can happen. These disconnections and

reconnections are quite expensive from an operator point of view, which has to transfer the MT

state information from one BS to the other. It is therefore important to avoid as much as possible

frequent reconnections. Such a trade off between MT and BS can be regulated by appropriately

selecting the handover hysteresis. Ultimately, the handover performance is measured in terms

of outage probability and handover probability, which depend on 1) the estimation process that

gives the l0(n), l1(n) and y(n); 2) the appropriate selection of the handover hysteresis margin

h(n). In the following, we characterize these two essential aspects, and provide a method for

the optimal handover decision.

III. HYBRID MODEL OF THE HANDOVER ALGORITHM

In this section, we present a new modeling of the estimation process that provides us with ls(n)

and y(n). The estimation is based on GELS estimation. The new modeling uses the hybrid system

theory formalism, which will be included in the optimization process to select the handover

hysteresis margin. To introduce such a model, we need some details on intermediate estimators

that are part of the hybrid system: the AVG (Averaging), LS (Least Squares), and ELS (Extended

Least Squares) estimators. We describe first the intermediate estimators in the sequel, according

to [2], [9].

The simplest way of computing the estimator coefficients Gs(n, i) is given by a simple average,

which is the AVG algorithm. The algorithms selects the coefficients as Gs(n, i) = g(n − i),

where g(n) is a given filter impulse response. A simple choice is a rectangular shape for g(n).

Accordingly, AVG is a simple filtering of the measured power ps(·). We turn our attention in

the following to a more advanced estimator.

LS makes the estimate ls(n) by assuming a model of the channel attenuation and minimizing

the squares of the difference between the power of the received signal and the power of the

assumed model, namely it is assumed that the received power follows the model ls(n) = α̂s(n)−
β̂s(n) log ds(i), where α̂s(n) and β̂s(n) have to be estimated by a least square minimization over

nw samples. Thus, the function that we would like to minimize is

n∑
i=nb

(ps(i)− α̂s(n) + β̂s(n) log ds(i))
2 .
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The minimization yields

α̂s(n) =
1

Ds(n)− C2
s (n)

· [Ps(n)Ds(n)−Qs(n)Cs(n)]

β̂s(n) =
1

Ds(n)− C2
s (n)

· [Ps(n)Cs(n)−Qs(n)] ,

and

Ps(n) ,
1

n− nb + 1

n∑
i=nb

ps(i) , Qs(n) ,
1

n− nb + 1

n∑
i=nb

ps(i) log ds(i)

Cs(n) ,
1

n− nb + 1

n∑
i=nb

log ds(i) , Ds(n) ,
1

n− nb + 1

n∑
i=nb

(log ds(i))
2 .

From the minimization, it follows that

ls(n) =
n∑

i=nb

ps(i)As(n, i)− ps(i)Bs(n, i) log ds(n) , (2)

where

As(n, i) ,
1

n− nb + 1

Ds(n)− Cs(n) log ds(i)

Ds(n)− C2
s (n)

Bs(n, i) ,
1

n− nb + 1

Cs(n)− log ds(i)

Ds(n)− C2
s (n)

,

whereby we see that the filter coefficients are

Gs(n, i) = As(n, i)−Bs(n, i) log ds(n) . (3)

In the following the AVG and LS estimated are combined to provide the ELS estimator.

The ELS algorithm schedules the use of both AVG and LS estimates, depending on the

reliability of the estimates of path loss parameters provided by AVG and LS. ELS adapts to

channel changing conditions by comparing the errors on path loss estimates of AVG and LS,

which are indicated by es,1 and es,2, respectively, and then choosing the estimate with the lower

error [2], [9].

GELS is a generalized version of ELS. It relies on successive steps, starting from the ’easiest

to handle’ linear handover algorithm, which is based on the averaging (AVG) of the signal

strength, up to operation in the most complex scenario with an adaptation mechanism for the

hysteresis. GELS uses the following variables:

∆s(n) = ps(n)− ls(n) , es,min(n) = min{es,1(n), es,2(n)} , es,r(n) =
∆s(n)√
es,min(n)

.
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The last variable provides a measure of the validity of the estimator model with respect to the

current path loss model actually experimented on the channel. The GELS algorithm works as

follows [9]: the variables es,min(n), ls(n), ∆s(n), and es,r(n) are computed for each BSs-MT

link, at time instant n. If ∆s(n) >> es,r(n) the estimator model is not valid anymore and the

estimates on each link are re-initialized. The hysteresis margin h(n) is intended to be adapted

and an estimation in re-initialization of a link can be forced if h(n) > hM , where hM is the

maximum value allowed for the hysteresis margin.

We are now ready to give the core contribution of this section. Consider the current base

station, BS0, to which MT is connected, and the BS with the strongest signal, BS1. By the

description above, we can model the GELS algorithm by a discrete time hybrid system:

S(n+ 1) = A(n)S(n)− f(d(n+ 1), d(n)) +W (n) , (4)

where:

S(n) = [p0(n), p1(n), l0(n), l1(n)]T , (5)

A(n) =


1 0 0 0

0 1 0 0

G0(n+ 1) 0 1 0

0 G1(n+ 1) 0 1

 , (6)

f(d(n+ 1), d(n)) =


β0 log

(
d0(n+1)
d0(n)

)
β1 log

(
d1(n+1)
d1(n)

)
G0(n+ 1)β0 log

[
d0(n+1)
d0(n)

]
G1(n+ 1)β1 log

[
d1(n+1)
d1(n)

]

 , (7)

W (n) =


u0(n+ 1)− u0(n)

u1(n+ 1)− u1(n)

G0(n+ 1)[u0(n+ 1)− u0(n)]

G1(n+ 1)[u1(n+ 1)− u1(n)]

 , (8)
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and

d(n) = [d0(n) d1(n)]T . (9)

Thus, the switching between the BSs after taking a handover decision can be described by

the update equation for the discrete variable b(n) = E (n), where E (n) is the event occurring

when the MT is connected to BS1 at time n, namely E (n) = {b(n) = 1}. Analogously, we let

Ē (n) = {b(n) = 0}. In practice, E (n) is 1 when the MT is connected to the BS1, and 0 when

it is connected to the BS0. The event E (n) can be expressed as follows:

E (n) = {y(n) < −h(n)}+ {y(n) < h(n),E (n− 1)} (10)

and its complementary event is

Ē (n) = {y(n) ≥ h(n)}+ {y(n) ≥ −h(n), Ē (n− 1)} . (11)

Eqs. (4) – (9) define a hybrid system with h(n) as an input variable, which determines the

values of E (n). The next natural question is how to select such a variable so that the dynamic of

the hybrid system, namely the handover process, is optimized with respect to some performance

indicators. To answer this question, we need to characterize these indicators, as we will see in

the following section.

IV. EXPRESSION OF PERFORMANCE METRICS

We choose the probability of outage and the probability of handover as the performance

metrics for the handover process. Specifically, we argument and derive the expressions of these

probabilities within a quite general framework, that encompasses e.g. a hysteresis margin different

from zero. These expressions will then be used in the next section to carry out optimization of

the handover algorithm subject to the estimation of the channel. With this goal in mind, first we

derive the probability of MT being connected to each of the base stations, namely the probability

of the event E (n).

A. Probability of Connection to a Base Station

The following events concur in the definition of Eq. (10) and Eq. (11):

L (h(n)) = {y(n) ≤ −h(n)} , (12)
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M (h(n)) = {−h(n) < y(n) ≤ h(n)} , (13)

N (h(n)) = {y(n) > h(n)} . (14)

Then, we get the following results:

Proposition 4.1: Consider the events corresponding to the MT being connected to the base

station 1 and 0, namely E (n) = {b(n) = 1} and Ē (n) = {b(n) = 0}. Let 0 ≤ m ≤ n, where n

is the discrete time index. Then

E (n) =
n∑

j=m+1

L (h(j))
n∏

k=j+1

M (h(k)) +
n∏

k=m+1

M (h(k))E (m) , (15)

Ē (n) =
n∑

j=m+1

N (h(j))
n∏

k=j+1

M (h(k)) +
n∏

k=m+1

M (h(k))Ē (m) . (16)

Proof: Consider the definition of the event E (n) given in Eq. (10). Since ¯N (h(n)) ⊆
L (h(n)), it follows that

E (n) =L (h(n)) + ¯N (h(n))E (n− 1) = L (h(n)) + M (h(n))E (n− 1)

=L (h(n)) + M (h(n))L (n− 1) + M (h(n))M (h(n− 1))E (n− 2) ,

where the last inequality is obtained by using the definition of E (n − 1) given by Eq. (10) at

time n− 1. By repeating the procedure until 0 ≤ m ≤ n we obtain sought expression (15). The

same argument can be applied to obtain Eq. (16), which concludes the proof.

Corollary 4.2: Consider the events of MT being connected to the base station 1 and 0, namely

E (n) = {b(n) = 1} and Ē (n) = {b(n) = 0}. Let 0 ≤ m ≤ n. Then

Pr[E (n)] =
n∑
j=1

Pr

{
L (h(j))

n∏
k=j+1

M (h(k))

}
+ Pr

{
n∏
k=1

M (h(k))

}
E (0) , (17)

Pr[Ē (n)] =
n∑
j=1

Pr

{
N (h(j))

n∏
k=j+1

M (h(k))

}
+ Pr

{
n∏
k=1

M (h(k))

}
Ē (0) . (18)

Proof: The proof results from Proposition 4.1 by setting m = 0 and observing that E (n)

and Ē (n) are given by the sum of mutually exclusive events, which concludes the proof.

We use the characterization of connection to the base stations given by Proposition 4.1 and

Corollary 4.2 in subsections IV-E and IV-F to characterize the probability of handover and the

probability of outage. However, in order to get those expressions, it is instrumental to perform
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the explicit computation of the probabilities given by Proposition 4.1 and Corollary 4.2.

The computation of the probabilities (17) and (18) relies on a multivariate Gaussian distribu-

tion, since the events L (k), M (h(k)), and N (k) are defined over Gaussian cross correlated

random variables. In particular, by using the expressions of filter coefficients derived in Section

III, we see that the random variable y(n) defined in Eq. (1) has a Gaussian distribution with

average

µy(n) =E {y(n)} =
n∑

i=nb

[α0 − β0 log d0(i)]G0(k, i)−
n∑

i=nb

[α1 − β1 log d1(i)]G1(k, i) , (19)

and covariance matrix Σ = [Σnh], with Σnh = ρy(n, n− h)σy(n)2σy(n− h), where

σ2
y(n) =E

{
[y(n)− µy(n)]2

}
=

n∑
i=nb

n∑
j=nb

ru0(i− j)G0(n, i)G0(n, j) +
n∑

i=nb

n∑
j=nb

ru1(i− j)G1(n, i)G1(n, j) , (20)

and

rus(l) , r̃us(lvT ) = σ2
use
−|l|vT/d̄ (21)

is the autocorrelation function of us(n) (which accounts for the memory of the shadowed wireless

channel, and the more compact notation us(n) is used instead of us[ds(n)]), nb = max{1, n −
nw + 1}, and

ρy(n, n− h) ,
E {[y(n)− µy(n)][y(n− h)− µy(n− h)]}

σy(n)σy(n− h)
.

Furthermore,

E {[y(n)− µy(n)][y(n− h)− µy(n− h)]}

=
n∑

i=nb

n−m∑
j=n′b

[ru0(i− j)G0(n, i)G0(n−m, j) + ru1(i− j)G1(n, i)G1(n−m, j)]

where n′b = max{1, n−m− nw + 1}.
However, the use of a multivariate Gaussian distribution may be computationally prohibitive,

especially when the sizes of the vector grows. Thus, we propose to an approximation of the prob-

abilities (17) and (18) using expressions of the adequate accuracy and the reduced computational

complexity.
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In the following subsections, we propose some useful upper bounds and lower bounds for the

probability of the events expressed over Gaussian random vectors.

B. Approximation 1

Consider the Gaussian random vector y ∈ Rk y = [y(1), y(2), . . . , y(k)]T . Let µy = [µk] ∈ Rk

be the average of y, and let Σ = [Σhk] ∈ Rk×k the covariance matrix. The computation of the

probability of events defined over a correlated Gaussian vector may be prohibitive when the size

of the vector is large, because of the large number of integrations. Since we are interested on

the use of these probabilities for optimization purposes, it is natural to resort to approximations

that give upper and lower bounds.

We propose the use of the following simple approximation, where random variables are

grouped into subsets. For each subset, the precise probability is computed. The approximation is

based on the definition of the size of the subsets and on taking the product of the probabilities

(thus leading to independent events when different subsets are concerned) :

Pr {Y1Y2 . . .Yk} ≈ Pr {YkYk−1Yk−3Yk−4} × · · · × Pr {Y4Y3Y2Y1} . (22)

The validity of this approximation is discussed in SectionVI.

C. Approximation 2

Here we propose general bounds. They are computationally simple but, given their generality,

may be not accurate in all circumstances. The following lemma gives a useful intermediate result.

Lemma 4.3: Consider the Gaussian vector y ∈ Rk having average µ and covariance matrix

Σ. Let λmax and λmin be the maximum and minimum eigenvalue of Σ, respectively. Consider

the sets Yl =
{
yl ∈ [y

l
, ȳl]
}

for l = 1 . . . k. Then

Pr {Y1Y2 . . .Yk} ≤
λ
k
2
max√

det Σ

k∏
l=1

Pr

{
yl ∈

[
σlyl√
λmax

,
σlȳl√
λmax

]}
, (23)

Pr {Y1Y2 . . .Yk} ≥
λ
k
2
min√

det Σ

k∏
l=1

Pr

{
yl ∈

[
σlyl√
λmin

,
σlȳl√
λmin

]}
. (24)
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Proof: For every x ∈ Rk it holds that ‖x‖2/λmax ≤ xTΣ−1x ≤ ‖x‖2
λmin

. Therefore

Pr {Y1Y2 . . .Yk}

=

∫ ȳ1

y
1

∫ ȳ2

y
2

. . .

∫ ȳk

y
k

e−
1
2

(y−µ)TΣ−1(y−µ)√
det Σ(2π)2

dy1 . . . dyk ≤
∫ ȳ1

y
1

∫ ȳ2

y
2

. . .

∫ ȳk

y
k

e−
1
2
‖y−µ‖2
λmax√

det Σ(2π)2
dy1 . . . dyk ,

whereby (23) follows after simple algebra. The derivation of (24) is given by a similar argument.

From the previous lemma we observe that, if the matrix Σ is well conditioned, then the upper

bound (23) and lower bound (24) are consistent, since the ratio λmax/λmin will be small. Actually,

the covariance matrix is expected to be well conditioned because of the limited memory of the

wireless channel. More precisely, let m be such a memory in terms of number of discrete time

instants. Then the elements of the covariance matrix that are more than m locations before and

after the diagonal have negligible values. By applying the Gersgoring theorem [28], we see that

min
i

(
Σii −

ui∑
j=li,j 6=i

Σij

)
≤ λmin ≤ λmax ≤ max

i

(
Σii +

ui∑
j=li,j 6=i

Σij

)
,

where li = max(0, i−m) and ui = min(k, i + m). Given the correlation pattern (21), the sum

of the off diagonal elements of Σ is expected to be small with respect to Σii, which implies

small conditioning numbers.

D. Approximation 3

Here we develop a bound that is more computationally demanding, but exhibits better accuracy.

We use the following intermediate result:

Lemma 4.4: Let A and B be two correlated events. Then

Pr {A B} ≤
√

Pr {A } ·
√

Pr {B} . (25)

Proof: Since Pr {A B} ≤ Pr {A } and Pr {A B} ≤ Pr {B}, it follows that Pr2 {A B} ≤
Pr {A }Pr {B}.
We use previous simple result in the following proposition.

Proposition 4.5: Let y ∈ Rk be a Gaussian vector having average µ and covariance matrix

Σ. Suppose m ≤ k and let Σk−m be the matrix obtained by taking the first k − m rows and

k−m columns of Σ. Let λk−m,max be the maximum eigenvalue of Σk−m. Consider the subsets
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Yl =
{
yl ∈ [y

l
, ȳl]
}

for l = 1 . . . k. Then

Pr {Y1Y2 . . .Yk} (26)

≤
√

Pr {YkYk−1 . . .Yk−m+1}
λ
k−m

4
k−m,max

det1/4 Σk−m
×

k−m∏
l=1

1/2

Pr

{
yl ∈

[
σlyl√
λk−m,max

,
σlȳl√
λk−m,max

]}
.

Proof: From Lemma 4.4

Pr {Y1Y2 . . .Yk} ≤
√

Pr {YkYk−1 . . .Yk−m+1}
√

Pr {Y1Y2 . . .Yk−m} . (27)

By applying Lemma 4.3 to the second probability of the right end-side of previous inequality,

the proposition easily follows.

We are now in the position to derive expression for the probabilities of handover and outage,

respectively.

E. Probability of Handover

In this subsection, we provide an expression of the probability of handover. The following

result holds:

Proposition 4.6: Consider the serving BS and the strongest candidate BS. The probability of

handover at time n is

PH(n) =PH01(n) + PH10(n) , (28)

where

PH01(n) = Pr[N (n)E (n− 1)] , (29)

PH10(n) = Pr[L (h(n))Ē (n− 1)] . (30)

Proof: The occurrence of handover events can be described by the following iterative

expression H (n) = H01(n) + H10(n) = E (n)Ē (n − 1) + Ē (n)E (n − 1) . Consider the event

H01, then

H01(n) =E (n)Ē (n− 1) = N (n)L (n− 1) + N (n) ¯N (n− 1)E (n− 1)

=N (n)L (n− 1) + N (n)M (h(n− 1))E (n− 1) = N (n)L (n− 1) + N (n)E (n− 1)

=N (n)E (n− 1) ,
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where the third equality turns out by observing that ¯N (n−1) ⊆ L (n−1), and the last equality

results from N (n)L (n− 1) ⊆ N (n)E (n− 1).

By following the same arguments, H10(n) = Ē (n)E (n− 1) = L (h(n))Ē (n− 1) .

Notice that H10(n) and H01(n) are mutually exclusive. Therefore the proposition follows.

As observed for calculation of the probabilities (17) and (18), it may be challenging to compute

the probability (27) by the exact Gaussian multivariate distribution. Hence, we can use the

approximations proposed in the previous subsections.

F. Outage Probability

In this subsection we derive the expression of the probability of outage. The events of outage

when MT is connected to the serving and to the strongest candidate BS are defined as

P0(n) = {p0(n) ≤ β} , (31)

P1(n) = {p1(n) ≤ β} . (32)

Then we have the following result:

Proposition 4.7: The outage probability at time n is

PO(n) =PO0(n) + PO1(n) , (33)

where

PO0(n) = Pr[P0(n)|Ē (n)] =
Pr[P0(n)Ē (n)]

Pr[Ē (n)]
, (34)

PO1(n) = Pr[P1(n)|E (n)] =
Pr[P1(n)E (n)]

Pr[E (n)]
. (35)

Proof: The occurrence of the outage events is described by

O(n) = O0(n) + O1(n) = P0(n)|Ē (n) + P0(n)|E (n) ,

from which the proposition follows immediately by considering that O0(n) and O1(n) are

mutually exclusive.

As for the calculation of the probabilities of handover, it may be quite expensive to compute the

probability of outage by the Gaussian multivariate distribution. Hence, we use the approximations

proposed in the previous subsections. The accuracy of these approximations/bounds is discussed
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in Section VI.

Now that we have characterized the expressions of the base station probability, outage proba-

bilities, and handover probabilities we can turn our attention to the optimization of the handover.

V. HANDOVER OPTIMIZATION

As for the hybrid system model represented by Eqs. (4) – (9), the GELS algorithm uses a

hysteresis margin for the handover decision. In a dynamic environment, the performance of the

handover can be enhanced by selecting the hysteresis margin according to adaptive optimality

criteria. In the following, we propose three optimization criteria that are based on dynamic

programming [29].

The first strategy proposes the minimization of the probability of handover, while keeping

under control the outage probability. This approach relies on the alreary mentioned rationale

that completing a handover process is expensive due to the costs of transferring the connection

from one base station to another one. Thus, it is beneficial to minimize the probability of

handover as long as the probability of outage stays below a threshold. A second optimization

approach proposes the reverse: the outage probability is minimized while the handover probability

is kept under control. This is especially important for communications that need to have the

highest successful packet reception probability, since fewer outage events allow to improve

the successful bit decoding rates. Finally, the third approach proposes the minimization of the

weighted combination of the two probabilities by a Pareto optimization method. The tradeoff

between outage probability and handover probability is consistent, as it is typically observed

that the outage probability increases and the handover probability decreases with the hysteresis

margin. The dynamic programming nature of the optimization problems is accounted for the

definition of the cost function, which considers future evolutions of the hysteresis thresholds. In

the following, we present the three methods.

A. Probability of Handover Optimization

In this subsection we propose the optimization of the handover probability under outage

constraints. More specifically, here we investigate the following dynamic optimization problem:
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min
h(n)

n+m∑
l=n

PHb(l)(l) (36a)

s.t. POb(l)(l) ≤ Pout , l = n, . . . , n+m

b(l + 1) = E (n+ 1) , l = n, . . . , n+m (36b)

S(l + 1) = A(l)S(l)− f(d(l + 1), d(l)) +W (l) l = n, . . . , n+m (36c)

In such a problem, the decision variables are the hysteresis thresholds h(l) for l = n, . . . , n+m,

which we collect in the vector h(n) = [h(n) . . . h(n+m)]T . Note that S(l) is given in Eq. (5),

the probability of outage is given by Proposition 4.6, and the probability of Handover is given

by Proposition 4.7.

At each time instant n, the mobile station tries to minimize the probability of handover over

a time window that spans from the current time instant up to a future instant that is m sampling

times ahead of n. The handover probability is minimized while taking into account outage

events, which motivates the outage probability constraint for ensuring an adequate quality of the

communication. In other words, we impose that at each time instant l, l = n, . . . , n + m, the

outage probability must be below a maximum value Pout. The last constraint of the optimization

problem returns the BS b(l+ 1) at which the MS is connected to at time l+ 1 when a hysteresis

threshold h(l) is decided at time l. Such a mobile station will then determine computation of

the handover probability PHb(l+1)(l + 1) at time l + 1.

Such an optimization involves a prediction of future evolutions of the wireless channel. The

memory of the channel is finite owing to the coherence time [30]. That is why a prediction can

be efficiently done over a finite time interval m. The dynamic optimization that we are proposing

is motivated by observing that choosing a hysteresis threshold h(n) at time n determines the

handover decisions and outage events of the future times. Therefore, an optimization of the

handover looking just at a present time may have negative consequences in the future, and needs

to be done dynamically.

In case that m = 1, it is easy to show that it is a Fast-Lipschitz optimization problem [31]

and thus very easy to solve. When m 6= 1, the problem becomes more complex. The difficulty

arises by the fact that it is not convex due to the non-convexity of the cost function and by the

fact that the selection of the optimal h(l) affects the selection of h(l + 1), h(l + 2), and so on,



18

due to the switching mechanism between BSs. We propose later in Subsection V-D an algorithm

to solve that problem.

B. Probability of Outage Optimization

Here we pose the optimization problem

min
h(n)

n+m∑
l=n

PO(l) (37a)

s.t. PH(l) ≤ Phan l = n, . . . ,m (37b)

b(l + 1) = E (n+ 1) l = n, . . . ,m (37c)

S(l + 1) = A(l)S(l)− f(d(l + 1), d(l)) +W (l) l = n, . . . , n+m (37d)

where the objective is the minimization of the outage probability subject to that the handover

probability is limited by a maximum threshold Phan. The decision variables are the hysteresis

thresholds h(l) for l = n, . . . , n+m, which are collected in the vector h(n) = [h(n) . . . h(n+m)]T

as for the previous optimization problem. The optimization takes into account the future evolution

of the outage probability, because a handover decision taken at the current time n will affects

future events of the outages due to the switching of the BS.

The solution of this optimization problem faces the same challenges as the problem (36)

does. Therefore, we follow the approach presented in Subsection V-D to solve the optimization

problem. Next, we propose a problem formulation that combines the previous two optimization

problems.

C. Handover and Outage Pareto Optimization

A more complex approach consists in solving an optimization problem where the objective

function is defined in terms of both outage and handover probabilities:

J(b(n), h(n)) =
n+m∑
l=n

z · PH(l) + (1− z)PO(l) , (38)

where PH(l) is the handover probability at time l, PO(l) is the outage probability at time l, z

is a weighting coefficient to tradeoff the performance in terms of outages or handovers, and m

is the time horizon. The objective function is therefore a weighted sum of handover and outage

probability. In the notation adopted for the cost function, we have evidenced the dependance on
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Figure 2. Optimization scheme. For every time instant, an estimation of the channel coefficients is followed by an optimization
of the hysteresis margin. The application of the optimal margin will determine the next connection to a Base Sation

the hysteresis h(n) and the base station b(n) at which the mobile station is connected to. Thus,

we can formulate the following optimization problem

min
h(n)

J(b(n), h(n)) (39a)

b(l + 1) = E (n+ 1) l = n, . . . ,m (39b)

S(l + 1) = A(l)S(l)− f(d(l + 1), d(l)) +W (l) l = n, . . . , n+m (39c)

When this optimization problem is compared to the previous two problems, it is obvious that it

is even more difficult to solve due to the complexity of the cost function. In the next subsection,

we propose a solution algorithm for the problems (36), (37) and (39).

D. Solution Method

In this subsection, we propose an algorithm to solve in practice optimization problems (36),

(37) and (39).

Given the dynamic programming nature of the optimization with a binary variable (the base

station) and a real variable (the hysteresis margin), we propose the use of an algorithm based

on a trellis diagram (as depicted in Fig 2). Specifically, every stage of the trellis is associated to

a time span from n till m. At time n, the trellis has one state corresponding to the current base

station b(n). For the time instants n+ 1, n+ 2, . . . n+m, there are a number of possible states

corresponding to one of the base stations the MT can be connected to. The transition from the

base station at time n to one of the next base stations at time n+ 1 has associated a probability

of handover or a probability of outage. In Figs. 3 and 4, we report two examples of trellis for

the case of two base stations and m = 4. The optimization algorithm works by the use of the
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Figure 3. Trellis diagram for the handover probabilities in the case of m = 4 and two base stations.

Figure 4. Trellis diagram for the outage probabilities in the case of m = 4 and two base stations.

trellis as follows:

1) for every path starting from b(n−1) and ending to one of the possible values of b(n+m), the

objective function is computed as a function of the hysteresis. Depending on problem (36),

(37) and (39), the objective function will be given by (36a), (37a), and (39a), respectively.

2) for every path, the hysteresis value that minimizes the cost function corresponding to that

path is computed;

3) once the hysteresis values are known, it is possible to compute numerically the objective

function associated to every path, and thus the actual cost path;

4) the path with the minimum numerical objective function gives the value of b(n + 1) and

thus next base station;

5) the trellis diagram goes to the next state, when a new value of the fading parameters is

produced. The trellis is updated by removing the last stage, and adding a new one.

In the following section, we illustrate the application of this algorithm and provide numerical

results.
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VI. NUMERICAL RESULTS

In this section we present the evaluation study of the adaptive handover approach in both a

two-cells and in a multi-cell wireless environment and we compare our results to an existing

method in literature.

First, we solve the optimization problems of Section V based on the trellis algorithm of

Subsection V-D. We make appropriate use of the approximations proposed above to reduce

computational cost towards the calculation of the optimal h(n) values. We then present an

extensive study of the accuracy of these approximations. Lastly, we perform a simulation study

in a multi-cell environment.

We start by describing the system settings used in the simulation runs. We assume that the

MT is moving along a straight line towards the cell boundary. Since we mainly refer to vehicular

communications over roads, the cells are assumed to have a nominal radius of 1 Km. Recall that

there is need of handover in a region which is close to the cell boundaries. Thus, we take into

account a path of total distance of 500 m starting at 750 m far from BS0. The coherence interval

of the wireless (shadowed) channel is assumed to be d̄ = 20 m, which implies that predicted

values of the wireless channel coefficients are actually effective only up to 20 meters far from

the starting point. This means that, if the current BS and the hysteresis value are known at time

n−1, the future values of these parameters can be predicted up to the time instant n+3. In fact,

assuming a standard sampling distance dc = v · Tc = 6.24m, where v = 13m/s and Tc = 0.48s

are the speed of the MT and the sampling interval, respectively, we see that the number of the

prediction stages (and thus the number of the stages of the trellis diagram) is d̄/dc = 4.

In the following, we present some numerical results.

A. Optimal Hysteresis and Probabilities of Handover/Outage

In this section we consider the simplest case where a MT is moving between two cells (from

BS0, Base Station 0, towards BS1, Base Station 1). Our main target is to solve the optimization

problems (36), (37) and (39) through dynamic programming by the trellis structure as described

in Subsection V-D. In this way we get the optimal hysteresis threshold h(n) at time n, which

minimizes the objective functions, defined in the optimization problems.

Fig. 5 plots the optimal h(n) values that we get from optimization problem (36). The compu-

tation of the probabilities of handover and outage may be computationally expensive (since the

multivariate Gaussian distribution may be computationally prohibitive). Therefore, we compare
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Figure 5. Optimal h(n) values for optimization problem (36).
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Figure 6. Optimal values of the probability of handover resulted from the solution of optimization problem (36).

the optimal h(n) values that we get by analytically computing the handover probability with

those values that we obtain by applying the approximations presented in Section IV. We observe

that h(n) is kept at low levels when the MT is close to a BS. The optimal hysteresis margin

grows as the MT moves towards the cell boundaries, in order to avoid unnecessary handovers in

the system. The optimal h(n) values that result when the approximations are applied is very close

to the optimal h(n) values resulted when the exact analytical computation of the probabilities

is adopted.

We now study the behavior of the probability of handover when the window length nw is

varied in the system. Fig. 6 depicts the probability of handover while the MT moves towards

BS1. It is evident that the probability of handover decreases as the window length increases. This

happens due to the reduced shadowing fluctuations that is guaranteed when large window length



23

0 250 500 750 1000 1250 1500 1750 2000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

MT distance from BS
0

P
ro

b
a
b
ili

ty
 o

f 
h
a
n
d
o
v
e
r

 

 

h
opt

h=6dB

h=4dB

h=2dB

h=0dB

Figure 7. Optimal values of the probability of handover resulted from the solution of optimization problem (36) (constant h(n)
values vs optimal).
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Figure 8. Optimal h(n) values for optimization problem (37).

is used in the estimation process from the received signal strength. Moreover, we compare the

probability of handover that is computed when constant hysteresis margins are used with the

probability that is computed when the optimal h(n) values are applied. Fig. 7 shows that higher

hysteresis margins result in lower handover probabilities. The handover probability is minimized

when the optimal h(n) values are applied.

Fig. 8 plots the optimal h(n) values that we get for (37). We observe that the hysteresis margin

decreases while the MT moves towards the cell boundaries, both when analytical computation

of the outage probability is applied and when the approximations are used. h(n) increases when

the MT is close to the base stations. A general outcome here is that the behavior of h(n) in

(36) is in contrast to the behavior of the optimal hysteresis margin resulted from (37): as long
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Figure 9. Optimal values of the probability of outage resulted from the solution of optimization problem (37).
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Figure 10. Optimal values of the probability of outage resulted from the solution of optimization problem (37) (constant h(n)
values vs optimal).

as we are interested on minimizing outages, handovers are not prevented when the MT is much

closer to a BS.

It is interesting to measure now the probability of outage while we vary the estimation window

length nw and the hysteresis margin h(n) in our system. From Figs. 9 and 10 we observe that

the behavior of the outage probability is in contrast to the behavior of the handover probability

(similar effect to the variation of the hysteresis margin). We get higher outage probabilities

values when high nw values are used. Moreover, as the hysteresis margin increases, the outage

probability gets larger and the maximum shift to the right (handover delay when fixed hysteresis

is used). Therefore, it is obvious that a trade-off exists in the minimization of the handover

probability and the probability of outage, that must be controlled by the correct adaptation of
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Figure 11. Optimal h(n) values for the third optimization problem.
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Figure 12. Handover and outage probability evaluation based on the optimal h(n) values that resulted from optimization
problem (39).

the system parameters to achieve balanced network operation.

Eq. (39) tries to manage the existing trade-off by adapting z according to the system character-

istics and the application requirements. Fig. 11 plots the optimal h(n) values resulted from (39)

while varying the values of z. In addition, in Fig. 12 we observe the computation of the optimal

handover and the outage probabilities, parametrized with respect to the weight coefficient z. We

can see that large values of average handover probability result when z is close to 0 (in that case

the probability of outage is low). On the contrary, we get large average outage probability values

when z is close to 1 (in that case the probability of handover is low). A ”knee” is present in

the region where z = 0.6. In order to efficiently manage the existing trade-off, there is a desire

to operate close to that ”knee” (by adapting z, h(n) and nw).
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Table I
AVERAGE NUMBER OF HANDOVERS AND OUTAGES. hopt1 REFERS TO THE OPTIMAL SOLUTION OF OPTIMIZATION

PROBLEM (36), hopt2 TO (37), AND hopt3 TO (39)

.
v = 5 m/s v = 20 m/s v = 40 m/s

H̄(h = 0 dB) 8.8 12.4 14.2
Ō(h = 0 dB) 11.4 13.1 14.6

H̄(h = 2 dB) 2.6 3.5 4.8
Ō(h = 2 dB) 11.5 13.6 16.8

H̄(h = 4 dB) 2.2 2.9 3.8
Ō(h = 4 dB) 15.2 16.4 18.5

H̄(hopt1) 1.1 1.5 2.1
Ō(hopt1) 9.1 10.2 11.7

H̄(hopt2) 2.1 2.8 3.5
Ō(hopt2) 5.3 5.9 6.5

H̄(hopt3) 1.6 2.4 2.9
Ō(hopt3) 5.8 6.6 7.1

In the next subsection, we focus on the case of a multi-cell system.

B. Performance in a Multi-cell System

In this section we evaluate the proposed adaptive handover algorithm in a multi-cell environ-

ment consisting of 8 hexagonal cells. We compare the results to those obtained by the method

in [9], which considers the same system set-up as in our study. Other related work, such as [11],

[12], cannot be used for comparison because the do not consider the wireless channel dynamics,

or because they are applied for soft handover, whereas we are more focused on hard handover.

The MT begins its trip close to BS0 and moves towards the remaining cells in a straight line.

The parameters of the simulation environment are the same as the ones assumed in the previous

two-cells scenario (distance between the base stations, MT speed, etc.)

In order to get an intuition of the multi-cell system operations, we compute the average

number of handovers and outages under different MT velocities (v) and hysteresis margins (h).

The average number of outages and handovers is defined as follows:

Ō =
N−1∑
n=1

PO(n) , H̄ =
N−1∑
n=1

PH(n) .

The simulations results are summarized in Tab. I, when v = 5, 20, 40 m/s and h = 0, 2, 4 dB.



27

We apply the optimal hysteresis margins resulting from optimization problems (36), (37) and

(39) and compare the results of the optimizations to the constant hysteresis margin proposed

in [9]. Recall that (36) guarantees minimum average handovers, while (37) guarantees minimum

average outages in the network. Eq. (39) manages the trade-off and guarantees balanced network

operation in terms of both mean number of handovers and outages. From the table, we can

conclude that our method substantially outperforms the one proposed in [9].

Finally, in the next subsection, we conclude the numerical investigations by applying and

studying the accuracy of the proposed approximations.

C. Approximations Accuracy

In this subsection we study the accuracy of the approximations presented in Subsections

IV-B, IV-C , and IV-D. Recall that the proposed bounds approximate the handover and outage

probabilities. Our evaluation includes the execution of several simulations that give a general

view of the behavior of the proposed approximations.

Based on inspection of simulation experiments, we plot the results for few representative

cases, namely: 1) with a medium value for k in combination with a low value for m, 2) with a

medium value for both k and m, 3) with a large value for both k and m, and 4) with a small

value for both k and m.

In Fig. 13 we plot the handover probability based on the analytical value and the proposed

approximations, with k = 6 and m = 3. The first method provides the best approximation of

the handover probability. On the other hand, the computation complexity of the first method

is high. Therefore, test results suggests that it is less expensive to adopt one of the remaining

approximations that introduce less computational cost in the system.

Then we set m = 4 and we progressively increase k (k = 6 and k = 8). In both cases (Figs.

14 and 15) the best approximation is given by the first methodology. An important observation is

that the accuracy of the second and the third approximation is getting worse while k is increasing.

The first approximation is not affected.

The last scenario includes the adoption of small values for both k and m (k = 4 and m = 3).

In that case (Fig. 16), the first bound acts as a lower bound (not as an upper bound, like in

the previous cases). Besides, the second approximation acts as an upper bound when the MT is

located close to the cell boundaries and as a lower bound when the MT is located close to the

base stations.
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Figure 13. Approximation accuracy (k = 6, m = 3). B1 refers to the bound given by Approximation 1 of SubsectionIV-B,
LB2 and UB2 refers to the lower and upper bounds of Approximation 2 of Subsection IV-C, and UB3 refers to Approximation
3 of Subsection IV-D
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Figure 14. Approximation accuracy (k = 6, m = 4). B1 refers to the bound given by Approximation 1 of SubsectionIV-B,
LB2 and UB2 refers to the lower and upper bounds of Approximation 2 of Subsection IV-C, and UB3 refers to Approximation
3 of Subsection IV-D

VII. CONCLUSION

A hybrid system model of handover algorithm was presented. The performance indicators of

the handover in terms of outage probability and handover probability were characterized together

with approximations and upper and lower bounds of the probabilities. Then, based on such a

characterization, some optimization strategies were proposed to optimally take the handover

decision. Moreover, a solution algorithm of reduced computational complexity was developed to

solve these problems. Monte Carlo simulations illustrated the proposed analysis for the case of

two cells systems and multi-cell systems. In particular, it was shown that the analysis is accurate

and that the proposed handover optimization outperforms existing methods in the literature.
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Figure 15. Approximation accuracy (k = 8, m = 4). B1 refers to the bound given by Approximation 1 of SubsectionIV-B,
LB2 and UB2 refers to the lower and upper bounds of Approximation 2 of Subsection IV-C, and UB3 refers to Approximation
3 of Subsection IV-D
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Figure 16. Approximation accuracy (k = 4, m = 3). B1 refers to the bound given by Approximation 1 of SubsectionIV-B,
LB2 and UB2 refers to the lower and upper bounds of Approximation 2 of Subsection IV-C, and UB3 refers to Approximation
3 of Subsection IV-D
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