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Abstract

Since radio signals carry both energy and information at thesame time, a unified study on simultaneous wireless

information and power transfer (SWIPT) has recently drawn asignificant attention for achieving wireless powered

communication networks. In this paper, we study a multiple-input single-output (MISO) multicast SWIPT network

with one multi-antenna transmitter sending common information to multiple single-antenna receivers simultaneously

along with opportunistic wireless energy harvesting at each receiver. From the practical consideration, we assume that

the channel state information (CSI) is only known at each respective receiver but is unavailable at the transmitter. We

propose a novel receiver mode switching scheme for SWIPT based on a new application of the conventional random

beamforming technique at the multi-antenna transmitter, which generates artificial channel fading to enable more

efficient energy harvesting at each receiver when the received power exceeds a certain threshold. For the proposed

scheme, we investigate the achievable information rate, harvested average power and power outage probability, as

well as their various trade-offs in quasi-static fading channels. Compared to a reference scheme of periodic receiver

mode switching without random transmit beamforming, the proposed scheme is shown to be able to achieve better

rate-energy trade-offs when the harvested power target is sufficiently large. Particularly, it is revealed that employing

one single random beam for the proposed scheme is asymptotically optimal as the transmit power increases to infinity,

and also performs the best with finite transmit power for the high harvested power regime of most practical interests,

thus leading to an appealing low-complexity implementation. Finally, we compare the rate-energy performances of

the proposed scheme with different random beam designs.

Index Terms

Simultaneous wireless information and power transfer (SWIPT), multicast, wireless power, energy harvesting,

time switching, multi-antenna system, random beamforming, rate-energy trade-off, power outage.

I. INTRODUCTION

Conventionally, fixed energy supplies (e.g. batteries) areemployed to power energy-constrained wireless networks,

such as sensor networks. The lifetime of the network is typically limited, and is thus one of the most important

considerations for designing such networks. To prolong thenetwork’s operation time, energy harvesting has recently

attracted a great deal of attention since it enables scavenging energy from the environment and potentially provides

unlimited power supplies for wireless networks.
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Among other commonly used energy sources (e.g. solar and wind), radio signals radiated by ambient transmitters

have drawn an upsurge of interest as a viable new source for wireless energy harvesting. Harvesting energy

from radio signals has already been successfully implemented in applications such as passive radio-frequency

identification (RFID) systems and body sensor networks (BSNs) for medical implants. More interestingly, wireless

energy harvesting opens an avenue for the joint investigation of simultaneous wireless information and power

transfer (SWIPT) since radio signals carry energy and information at the same time. SWIPT has recently been

investigated for various wireless channels, e.g., the point-to-point additive white Gaussian noise (AWGN) channel

[1], the fading AWGN channel [2]-[4], the multi-antenna channel [5]-[10], the relay channel [11], [12], and the

multi-carrier based broadcast channel [13]-[15].

To achieve maximal wireless energy transfer (WET) and wireless information transfer (WIT) simultaneously,

one key challenge is to develop efficient and pragmatic receiver architectures to enable information decoding (ID)

and energy harvesting (EH) from the same received signal at the same time [1], [4]. Practically, two suboptimal

receiver designs for SWIPT have been proposed in [5] based onthe principle of orthogonalizing ID and EH

processes, namelypower splitting and time switching. The power splitting scheme splits the received signal into

two streams of different power for ID and EH separately, while the time switching scheme switches the receiver

between an ID mode and an EH mode from time to time. The optimalswitching rules between ID versus EH

modes for a point-to-point single-antenna fading channel subject to the co-channel interference have been derived

in [2] to maximize/minimize the information transmission rate/outage probability given an average harvested energy

target. It was shown in [2] that the time-fluctuation or fading of wireless channels is indeed beneficial for receiver

mode-switching (time-switching) based SWIPT systems, where an “opportunistic” energy harvesting scheme is

proved to be optimal, i.e., the receiver should switch to theEH mode when the channel power is larger than a

certain threshold, and to the ID mode otherwise. Intuitively, this phenomenon can be explained as follows. Note

that the received energy (in Joule) and amount of information (in bits) both scale linearly with time, but linearly

and sub-linearly (logarithmically) with power, respectively; as a result, given the same signal energy for EH at

receiver, it is desirable to have more significant power fluctuations such that a given target energy can be harvested

during shorter peak-power periods, thus resulting in more time for receiving a higher amount of information (with

the same energy left for ID).

In this paper, we further investigate the time-switching based SWIPT system in a multicast scenario, where one

multi-antenna transmitter (Tx) broadcasts both energy andcommon information to multiple single-antenna receivers

(Rxs) simultaneously over quasi-static multiple-input single-output (MISO) flat-fading channels, as shown in Fig. 1.
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Fig. 1. A MISO multicast network for SWIPT.

We assume that Tx has an unlimited energy supply that provides constant transmit power while all Rxs have only

limited energy sources (e.g., rechargeable batteries) andthus need to replenish energy from the signals broadcast

by Tx. Each Rx harvests energy and decodes information from the received signal via time switching, i.e., it can

either decode informationor harvest energy from the received signal at any time, butnot both. It is worth noting

that the number of Rxs in the network can be arbitrarily large, and thus it may not be practically feasible for Tx to

gather the instantaneous channel state information (CSI) from all Rxs via dedicated feedback since this will increase

the system complexity and overhead drastically with the increasing number of Rxs. Therefore, in this paper we

consider a practical setup where the MISO channels from Tx todifferent Rxs are only known at each respective

Rx but unavailable at Tx.

In order to optimize the rate-energy (R-E) trade-offs achievable at each Rx, inspired by the result on the beneficial

time-variation of fading channels for time-switching based SWIPT systems [2], in this paper we propose a new

application of the celebrated “random beamforming” technique at the multi-antenna transmitter to generate artificial

channel variations at each receiver to opportunistically harvest energy when the channel power exceeds a given

threshold and decode information otherwise. This is realized by partitioning each transmission block with constant

user channels into sub-blocks with equal duration in which independent random beams (RBs) are applied to generate

artificial channel fading. Note that the use of random beamforming in this paper is motivated differently from that

in the conventional setup for broadcasting with WIT only, which aims at achieving asymptotically interference-

free independent information transmissions to multiple receivers in multi-antenna broadcast channels by exploiting

multi-user diversity based partial channel feedback and transmission scheduling as the number of receivers increases
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to infinity [16], [17]. In contrast, for multicast SWIPT systems under our investigation, random beamforming is

employed for generating artificial time-variation of channels to achieve better R-E trade-offs with time-switching

receivers.

The main results of this paper are summarized as follows:

• We propose a novel design with transmitter random beamforming and receiver time switching for MISO

multicast SWIPT systems. We first characterize the performance trade-offs between WET and WIT by investi-

gating the achievable rate and harvested power pair in a given transmission block with constant MISO AWGN

channels, assuming Gaussian distributed random beams. Furthermore, we compare the R-E performance of

our proposed scheme with that of a reference scheme with receiver periodic switching between ID and EH

modes, but without random beamforming applied at Tx.

• We then extend our analysis for the MISO AWGN channel to MISO Rayleigh fading channel. We investigate the

achievable average information rate and average harvestedpower at each Rx, and characterize their asymptotic

trade-offs when the transmit power goes to infinity. It is shown that employing one single random beam for

the proposed scheme achieves the best R-E trade-off asymptotically and also outperforms that of periodic

switching.

• When Rx consumes significant amount of power at each block and/or the capacity of its energy storage device

is limited, it may suffer from power shortage unless the amount of harvested power in each block is larger

than a certain requirement. We thus study the “power outage probability” of the proposed scheme in fading

MISO channels, which is also compared to that of the periodicswitching in both asymptotic and finite transmit

power regimes.

• In practice, transmit power is preferably to be constant forthe maximal operation efficiency of transmitter

amplifiers. However, the use of Gaussian distributed randombeams for the proposed scheme can cause large

transmit power fluctuations. We thus propose alternative random beam designs with constant transmit power,

for which the R-E performance is characterized and comparedwith the case of Gaussian random beam.

The rest of this paper is organized as follows. Section II introduces the proposed scheme as well as the reference

scheme of periodic switching, and compare their harvested power and achievable information rate for one single

block with the AWGN MISO channel. Section III investigates the R-E performances of the proposed and reference

schemes in Rayleigh fading MISO channels. Section IV compares the performances of the proposed scheme with

different random beam designs. Finally, Section V concludes the paper.

Notations: In this paper, matrices and vectors are denoted by bold-faceupper-case letters and lower-case letters,
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Fig. 2. A MISO wireless system for SWIPT via receiver mode switching.

respectively.IN denotes anN ×N identity matrix and0 represents a matrix with all zero entries. The distribution

of a circularly symmetric complex Gaussian (CSCG) random vector with mean vectorµ and covariance matrixΣ

is denoted byCN (µ,Σ), and∼ stands for “distributed as”.Ca×b andRa×b denote the spaces ofa × b matrices

with complex and real entries, respectively.‖z‖ denotes the Euclidean norm of a complex vectorz. E [·] represents

the statistical expectation.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a MISO multicast SWIPT system consisting of one Tx and multiple Rxs, e.g.,

sensors. Since Tx broadcasts a common signal to all Rxs, in this paper we focus on one particular Tx-Rx pair as

shown in Fig. 2 for the purpose of exposition, while the effect of multiuser channels on the performance of the

considered system will be evaluated by simulation in Section III. We assume that Tx is equipped withNt > 1

antennas and Rx is equipped with one single antenna. It is also assumed that the MISO channel from Tx to Rx

follows quasi-static flat-fading, where the channel remains constant during each block transmission time, denoted

by T , but varies from one block to another. It is further assumed that the channel in each block is perfectly known

at Rx, but unknown at Tx.

The transmitted signal at theith symbol interval in thet th transmission block is denoted byxt (i) ∈ CNt×1.

The covariance matrix of the transmitted signal is thus given by St,x = E[xt (i)x
H
t (i)] = P

Nt
INt

, whereP denotes

the constant transmit power, which is assumed to be equally allocated amongNt transmit antennas. In addition,

the MISO channel from Tx to Rx in thet th transmission block is denoted bỹht ∈ CNt×1, which is constant

during each block. Without loss of generality, the MISO channel h̃t can be modeled as̃ht =
√
θht, whereθ and

ht ∈ CNt×1 denote the signal power due to distance-dependent attenuation and large-scale channel fading (assumed

to be constant over allt’s for the time being) and the MISO channel due to small-scalechannel fading in thet th

block, respectively. The received signal at Rx is then expressed as

yt (i) = h̃T
t xt (i) + zt (i)

=
√
θhT

t xt (i) + zt (i) ,
(1)
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Fig. 3. Transmitter and receiver structures for periodic switching (PS).

whereyt (i) andzt (i) denote the received signal and noise at Rx, respectively; itis assumed thatzt (i) ∼ CN
(
0, σ2

)
,

which is independent over botht and i. In addition, since we can consider one block of interest without loss of

generality, the block indext will be omitted in the sequel for notational brevity.

In each block, Tx aims at achieving SWIPT to Rx. It is assumed that Rx is equipped with a rechargeable battery

to store the energy harvested from the received signal, which is used to provide power to its operating circuits.

Specifically, Rx harvests energy from the received signals when it is in the EH mode, while it decodes information

in the ID mode. We assume that Rx switches between ID mode and EH mode as in [2] and [5] since it is difficult

yet to use the received signal for both ID and EH at the same time due to practical circuit limitations [1]. As in

[2], ID mode and EH mode are represented by defining an indicator function as

ρ =

{

1,

0,

ID mode is active

EH mode is active.
(2)

We consider two time switching schemes, namely “periodic switching (PS)” and “threshold switching (TS)” as

elaborated next.

A. Reference Scheme: Periodic Switching

As shown in Fig. 3, with PS, Rx setsρ = 1 during the firstτT amount of time in each transmission block, with

0 ≤ τ ≤ 1, andρ = 0 for the remaining block duration(1 − τ)T .1 For givenh and τ , the amount of harvested

energy normalized byT , i.e., average harvested power, in a transmission block can be derived usingSx as

Q(P) (H, τ ) = (1− τ) ζE

[∥
∥
∥

√
θhTx (i)

∥
∥
∥

2
]

= (1− τ) ζθPH,

(3)

1Ideally, with a given time allocationτ , settingρ = 1 or 0 at the beginning of each block will not change the system performance;

however, settingρ = 1 initially is practically more favorable for Rx to implementblock-wise time synchronization.
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whereH = 1
Nt

‖h‖2 is the normalized average channel power, and0 < ζ ≤ 1 is a constant reflecting the loss in

the energy transducer when the harvested energy is converted to electrical energy to be stored. In (3), it has been

assumed that the power harvested due to the receiver noise isnegligible and thus is ignored. It is further assumed

that ζ = 1 in the sequel for notational brevity.

The structure of Tx for PS is also shown in Fig. 3. Note that with PS, Rx can adjustτ based on its energy

and rate requirements, as well as the channel condition. Since Tx keeps sending information symbols while Rx

determinesτ for switching between ID and EH modes based on its own channelquality, Rx observes an erasure

AWGN channel and thus the erasure code [18] should be employed at Tx for channel coding.2 The bit stream to

be transmitted during a transmission block is thus first encoded by an erasure code. Space-time (ST) code is then

applied to modulate the output bits from the erasure-code encoder, and the modulated symbols are transmitted by

Nt antennas. We consider a ST code of lengthL, denoted by matrixX(P) ∈ CL×Nt . It is assumed thatX(P) is

a capacity-achieving ST code.3 Tx transmits a sequence ofX(P)’s in each transmission block. ConsideringX(P)

with L consecutive transmitted symbols from each antenna, (1) is modified as

y =
√
θX(P)h+ z, (4)

where y ∈ CL×1 and z ∈ CL×1 denote the received signal vector and noise vector, respectively, and z ∼

CN
(
0, σ2IL

)
. SinceX(P) is assumed to be a capacity-achieving ST code, the achievable rate of the channel in (4)

can be shown equivalent to that of a MISO channelh̃ =
√
θh with input covariance matrixSx = P

Nt
INt

. Assume

that the number of ST coded blocks transmitted in each block is sufficiently large such thatτT is approximately

an integer number of the ST block durations for any value ofτ . For givenh and τ , the information rate for PS

can thus be expressed as

R(P) (H, τ) = τ log2

(

1 +
θPH

σ2

)

, (5)

Note thatR(P) (H, τ) is achievable whenNt ≤ 2, but is in general an upper bound on the achievable rate when

Nt > 2 for givenh andτ .

B. Proposed Scheme: Threshold Switching

As shown in Fig. 4, the TS scheme is designed to take advantageof the received signal power fluctuations induced

by transmit random beamforming within each transmission block for opportunistic EH/ID mode switching, even

2This is especially useful for the multicast network, where receivers can set different values ofτ for decoding common information sent

by the transmitter, based on their individual channel conditions and energy requirements.
3Alamouti code [19] is known as the capacity-achieving ST code whenNt = 2. For Nt > 2, capacity-achieving ST code has not yet

been found in general. In this paper, however, capacity-achieving ST code is assumed even whenNt > 2 to provide a performance upper

bound for the system under consideration.
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with a constant MISO channelh. For this purpose, each transmission block is further divided intoK sub-blocks

each consisting of one or more ST codewords, and artificial channel fading over different sub-blocks is generated

by multi-antenna random beamforming at Tx.

Furthermore, at thekth sub-block,k = 1, · · · ,K, Rx determines whether to switch to ID mode or EH mode

based onA (k), which denotes the channel power at thekth sub-block normalized byθ andP (to be specified

later). According to [2], in the presence of received channel power fluctuations, the optimal mode switching rule

that achieves the optimal trade-off between the maximum harvested energy and information rate in a transmission

block is given by

ρ (k) =

{

1,

0,

if A (k) ≤ Ā

otherwise,
(6)

whereĀ ≥ 0 is a pre-designed threshold on the normalized channel powerA(k). It is noted that choosing EH or ID

mode at thekth sub-block is determined by the normalized channel powerA (k) as compared to the threshold̄A, or

equivalently the received signal powerθPA (k) as compared to the thresholdθPĀ; thus, ID mode is selected, i.e.,

ρ (k) = 1, if the received signal power is no greater thanθPĀ and EH mode is selected, i.e.,ρ (k) = 0, otherwise.

Artificial channel fading over sub-blocks is generated at Txby usingN RBs simultaneously,1 ≤ N ≤ Nt. Denote

the nth RB at thekth sub-block asφn (k) ∈ CNt×1, whereE[φn (k)φ
H
n (k)] = 1

Nt
INt

andE[φn (k)φ
H
m(j)] = 0

if k 6= j and/orn 6= m. Then it follows thatA (k) = 1
N ‖a (k)‖2, wherea(k) = ΦT (k)h ∈ CN×1 is the equivalent

MISO channel at thekth sub-block generated byΦ (k) = [φ1(k) φ2(k) · · · φN (k)], which is assumed to be a

pre-designed pseudo random sequence and known to all Rxs.4

4Each Rx can estimatea (k)’s without knowledge ofΦ (k)’s by employing conventional channel estimation over all sub-blocks. However,

such an implementation incurs high training overhead. WhenΦ (k)’s are assumed to be known at all Rxs, however, each Rx only needs to

estimateh at the beginning of each block to obtaina(k)’s and thus the overhead for channel estimation can be significantly reduced.



9

Similarly to PS, the erasure code should be employed in the case of TS for channel coding since the set of sub-

blocks used for ID according to (6) are in general randomly distributed within a transmission block with̄A > 0, and

thus the resulting channel from Tx to Rx in ID mode can be modeled by an erasure AWGN channel. In addition,

the ST code is applied overN RBs with TS instead ofNt antennas with PS. This is because the use ofN RBs

transforms theNt × 1 constant MISO channelh into anN × 1 fading MISO channel specified bya (k)’s in each

transmission block. For allK sub-blocks in TS, we consider the use of a ST code of lengthL denoted by matrix

X(T) ∈ CL×N . For convenience, we expressX(T) = [x
(T)
1 x

(T)
2 · · · x

(T)
L ]T , wherex(T)

l ∈ CN×1, 1 ≤ l ≤ L,

denotes thelth transmitted signal vector in each ST coded block. The covariance matrix forx(T)
l is given by

S
(T)
x,l = E[x

(T)
l (x

(T)
l )

H
] = P

N IN , ∀l, to be consistent withSx = P
Nt

INt
. Similar toX(P) in the case of PS,X(T) is

assumed to be a capacity-achieving ST code for an equivalentMISO channel withN transmitting antennas.

The received signal at each sub-block is used for either energy harvesting or information decoding according to

(6). For thekth sub-block, the received signal can thus be expressed by modifying (1) as

y (k) = X(T)ΦT (k) h̃+ z (k)

=
√
θX(T)a(k) + z (k) ,

(7)

wherey (k) ∈ CL×1 and z (k) ∈ CL×1 denote the received signal and noise vectors, respectively, with z (k) ∼

CN
(
0, σ2IL

)
. Whenρ (k) = 0, the amount of harvested power (i.e., harvested energy normalized by sub-block

durationT/K) at thekth sub-block is derived usingS(T)
x,l as

Q(T) (k) =
1

L
E

[∥
∥
∥

√
θX(T)a(k)

∥
∥
∥

2
]

= θPA (k). (8)

Furthermore, by assuming a capacity-achieving ST code, theachievable rate with TS at thekth sub-block when

ρ (k) = 1 can be expressed as

R(T) (k) = log2

(

1 +
θPA (k)

σ2

)

. (9)

The amount of harvested energy in a transmission block is thesum of the energy harvested from all sub-blocks

in the EH mode. Assuming thatK → ∞, the average harvested power in a transmission block for givenN RBs,

thresholdĀ, and the realization of the normalized MISO channelh with H = h can be obtained from (8) as

Q(T)
(
h,N, Ā

)
=

1

T
lim

K→∞

K∑

k=1

(1− ρ (k))
T ×Q(T) (k)

K

= E [(1− ρ (k)) θPA (k)] . (10)

In this section, Gaussian RBs5 are assumed to generate artificial channel fading, i.e.,φn (k) ∼ CN (0, 1
Nt

INt
). It

can be easily verified thata (k) ∼ CN (0,HIN ) for a givenH, andA (k) is thus a chi-square random variable

5Alternative RB designs will be studied later in Section IV.
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Fig. 5. Q(T)
(

h,N, Ā
)

vs. h with P = 30dBm, N = 1, 2, θ = 10−4, andĀ = 0.1, 0.2, 0.5.

with 2N degrees-of-freedom. WithN RBs and conditioned on a given normalized MISO channel realization h

with H = h, the probability density function (PDF) ofA := A (k), ∀k, and the cumulative distribution function

(CDF) of A are given, respectively, by [20]

f
(N)
A|H (a |h) = 1

(h/N )NΓ (N)
aN−1e−(N/h)a, (11)

F
(N)
A|H (a |h) = 1− Γ

(
N, Na

h

)

Γ (N)
, (12)

whereΓ (x) =
∫∞
0 tx−1e−tdt andΓ (α, x) =

∫∞
x tα−1e−tdt represent the Gamma function and incomplete Gamma

function, respectively. From (10) and (11),Q(T)
(
h,N, Ā

)
with Gaussian RBs can thus be obtained as

Q(T)
(
h,N, Ā

)
=

∫ ∞

Ā
θPaf

(N)
A|H (a |h) da (13)

= θPh
Γ
(

N + 1, NĀ
h

)

Γ (N + 1)
, (14)

where (14) can be obtained by applying (11) and [21, 3.351-2]to (13). For an illustration, Fig. 5 showsQ(T)
(
h,N, Ā

)

versus different values ofh whenN = 1, 2 andĀ = 0.1, 0.2, 0.5, assuming 40dB signal power attenuation due to

large-scale fading, i.e.,θ = 10−4, with the carrier frequency and the distance between Tx and Rx given by900MHz

and5 meters. The transmit power at Tx is set to beP = 30dBm. It is observed thatQ(T)
(
h,N, Ā

)
decreases with

increasingĀ whenN andh are both fixed, which is in accordance with (14). Moreover, whenN and Ā are both

fixed,Q(T)
(
h,N, Ā

)
is observed to increase monotonically withh. This is becauseF (N)

A|H

(
Ā |h

)
in (12) decreases



11

with increasingh, and thus1 − F
(N)
A|H (Ā |h), which is the percentage of the received sub-blocks allocated to EH

mode in each block, increases. Thus, the amount of harvestedpower in each block increases withh thanks to the

increased number of sub-blocks assigned to EH mode, as well as the increased average channel powerh, as can

be inferred from (14).

Furthermore, whenh and Ā are both fixed,Q(T)
(
h,N, Ā

)
is observed to decrease with increasingN whenh

is small, but increase withN when h is sufficiently large. This is because, as inferred from (11)and (12), the

artificial channel fading is more substantial when smaller number of RBs,N , is used, although the same average

channel power is given ash. Given 1 ≤ N ≤ Nt, it can be shown thatF (N)
A|H (Ā |h ) in (12) increases withN

whenh is small, and thus larger power is harvested with smaller number of RBs. In contrast, it can also be shown

that F (N)
A|H (Ā |h ) decreases with increasingN whenh is larger than a certain threshold, and thus more power is

harvested with larger number of RBs. Similarly, we can verify that Q(T)
(
h,N, Ā

)
increases withN when Ā is

small, but decreases with increasingN when Ā is sufficiently large.

Next, the achievable rate in a block for givenN , Ā, andh can be derived from (9) and (11) as

R(T)
(
h,N, Ā

)
= E

[

ρ (k) log2

(

1 +
θPA (k)

σ2

)]

=

∫ Ā

0
log2

(

1 +
θP

σ2
a

)

f
(N)
A|H (a |h) da. (15)

With f
(N)
A|H (a |h) given in (11), it is in general difficult to obtain a unified closed-form expression of (15) for

arbitrary values ofN . However, it is possible to derive closed-form expressionsfor (15) for some special values of

N . For example,R(T)
(
h, 1, Ā

)
andR(T)

(
h, 2, Ā

)
for N = 1 and 2, respectively, can be derived in closed-form

in Appendix A. Fig. 6 showsR(T)
(
h,N, Ā

)
versus different values ofh whenN = 1, 2 and Ā = 0.1, 0.2, 0.5

with the same setup as for Fig. 5 withθ = 10−4 andP = 30dBm. It is further assumed that the bandwidth of the

transmitted signal is10MHz, and receiver noise is white Gaussian with power spectral density−110dBm/Hz or

−40dBm over the entire bandwidth of10MHz. It is observed thatR(T)
(
h,N, Ā

)
increases withĀ whenN andh

are both fixed, which is in accordance with (15). Moreover, bythe opposite argument of the explanation for Fig.

5, whenh andĀ are both fixed,R(T)
(
h,N, Ā

)
is observed to increase withN whenh is small orĀ is large, but

decrease with increasingN whenh or Ā is sufficiently large/small.

However, different fromQ(T)
(
h,N, Ā

)
in Fig. 5 which is a monotonically increasing function ofh, it is observed

in Fig. 6 thatR(T)
(
h,N, Ā

)
in general first increases withh, and then decreases with increasingh for given N

and Ā. The reason is as follows. Whenh → 0, from (15), we haveR(T)
(
h,N, Ā

)
→ log2

(
1 + θP

σ2 h
)
; thus,

R(T)
(
h,N, Ā

)
increases withh. However, whenh → ∞, f (N)

A|H

(
Ā |h

)
→ 0 for any finite 0 ≤ a ≤ Ā, and thus
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R(T)
(
h,N, Ā

)
→ 0; therefore,R(T)

(
h,N, Ā

)
should decrease with increasingh whenh is sufficiently large.

C. Rate-Energy Performance Comparison

As in [2] and [5], there exist rate-energy (R-E) trade-offs in both PS and TS schemes for information and energy

transfer. R-E trade-offs in PS and TS can be characterized bysetting different values ofτ and Ā, respectively.

Fig. 7 shows R-E trade-offs in PS and TS forNt = 2 and a constant MISO channelh = [1.0 0.56]T , with the

same channel setup as for Figs. 5 and 6. For PS,X(P) is generated by Alamouti code withL = 2 [19]. For TS, a

scalar code cascaded by one single RB is applied whenN = 1, while the Alamouti code with two RBs is applied

when N = 2. The harvested power is denoted byQ. It is observed that TS yields the best R-E trade-off with

N = 1 whenQ
(1)
th ≤ Q ≤ h, and withN = 2 whenQ

(2)
th ≤ Q < Q

(1)
th , while PS yields the best R-E trade-off

when0 ≤ Q < Q
(2)
th , whereQ(1)

th andQ(2)
th are shown in Fig. 7. Note that atQ = 0, i.e., no EH is required as in

the conventional MISO system with WIT only, PS achieves higher rate than TS since artificial channel fading by

random beamforming degrades the AWGN channel capacity. However, when the harvested power exceeds certain

thresholds, i.e.,Q(2)
th and Q

(1)
th , TS with N = 2 RBs andN = 1 RB achieves the best rate performance for a

given power harvesting target, respectively. This demonstrates the unique usefulness of random beamforming in a

multi-antenna SWIPT system even with constant AWGN channels.

It is worth noting that for TS larger information rate is achieved withN = 1 whenQ
(1)
th ≤ Q ≤ h, but with

N = 2 otherwise. This can be explained as follows. For a givenh, it can be shown from (14) that̄A → 0 when

Q → h. Thus, with sufficiently small̄A, we haveQ(T)
(
h, 1, Ā

)
≈ Q(T)

(
h, 2, Ā

)
(note thatQ(T)

(
h, 2, Ā

)
is sightly
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larger thanQ(T)
(
h, 1, Ā

)
for small Ā as discussed for Fig. 5; but the gap between them is negligible as shown in

Fig. 5 with Ā = 0.1). On the other hand, with small̄A, it can be shown from (11) thatf (1)
A|H (a |h ) > f

(2)
A|H (a |h ),

0 ≤ a ≤ Ā, and thusR(T)
(
h, 1, Ā

)
> R(T)

(
h, 2, Ā

)
from (15), as discussed for Fig. 6. Therefore, TS withN = 1

achieves larger information rate thanN = 2 whenQ is sufficiently large. In contrast, asQ → 0, we haveĀ → ∞

from (14). Then, it can be shown thatR(T) (h, 1,∞) < R(T) (h, 2,∞) since the ergodic capacity of a fading MISO

channel increases with the number of transmit antennas. Therefore, for TS larger information rate is achieved with

N = 2 thanN = 1 whenQ is smaller than a certain threshold.

III. PERFORMANCEANALYSIS IN FADING MISO CHANNEL

In this section, the R-E performances of TS and PS schemes arefurther analyzed in fading MISO channels. It

is assumed that the small-scale MISO channel from Tx to each Rx follows independent and identically distributed

(i.i.d.) Rayleigh fading withh ∼ CN (0, INt
), and thusH = 1

Nt
‖h‖2 is a chi-square random variable with2Nt

degrees-of-freedom, with the following PDF and CDF [20]:

fH (h) =
Nt

Nt

Γ (Nt)
hNt−1e−Nth, (16)

FH (h) = 1− Γ (Nt, Nth)

Γ (Nt)
. (17)

In practice, it is possible for Rxs to changēA for TS or τ for PS with the fading MISO channelh for different

transmission blocks; however, this incurs additional complexity at Rx. For simplicity, it is assumed in this paper

that Ā andτ are set to be fixed values for all Rxs over different realizations ofh for a givenθ.
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A. Achievable Average Information Rate

We consider that the performance of information transfer ismeasured by the achievable average rate over fading

channels. GivenN and Ā, the achievable average rate of TS is denoted byR̄(T)
(
N, Ā

)
= EH

[
R(T)

(
h,N, Ā

)]
,

whereR(T)
(
h,N, Ā

)
is given by (15) for a givenh. However, it is difficult to obtain the closed-form expressions

for R̄(T)
(
N, Ā

)
’s using (15) and (16) for any givenN , 1 ≤ N ≤ Nt.

Note that in practice, SWIPT systems usually operate with large transmit powerP due to the requirement of

energy transfer, resulting in largeθPσ2 , (e.g., θPσ2 = 30dB with the setup for Fig. 6). It is also worth noting that as

P → ∞, log2
(
1 + θP

σ2 a
)
= log2

(
θPa
σ2

)
+ o (log2P ) for givena > 0,6 resulting in lim

P→∞
log2(1+

θPa
σ2 ) = log2(

θPa
σ2 ).

Therefore, lim
P→∞

R(T )
(
h,N, Ā

)
= lim

P→∞

∫ Ā
0 log2

(
θPa
σ2

)
f
(N)
A|H (a |h ) da, and asP is sufficiently large,R(T)

(
h,N, Ā

)

in (15) with Ā > 0 can be approximated as

R(T)
(
h,N, Ā

)
≈ F

(N)
A|H

(
Ā |h

)
log2

(
θP

σ2

)

+ C0

(
h,N, Ā

)
, (18)

whereFA|H

(
Ā |h

)
=
∫ Ā
0 fA|H (a |h) da andC0

(
h,N, Ā

)
=
∫ Ā
0 log2 (a) fA|H (a |h) da, which is a constant not

related toP . Please refer to Appendix B for detailed derivation ofC0

(
h,N, Ā

)
. Note that the right-hand side of

(18) is a lower bound onR(T)
(
h,N, Ā

)
, but approximatesR(T)

(
h,N, Ā

)
tightly with sufficiently largeP . Fig. 8

showsR(T)
(
h,N, Ā

)
and its approximation by (18) versusP for different values ofh andĀ with the same setup

as for Fig. 6 andN = 1. It is observed that the approximation in (18) is more accurate ash and/orĀ increases. It is

6f (x) = o (g (x)) asx → x0 represents thatlim
x→x0

f(x)
g(x)

= 0, meaning intuitively thatf (x) ≪ g (x) asx → x0.
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also observed that the gap between the achievable rate and its approximation becomes negligible whenP ≥ 30dBm

even with moderate values ofh = 0.1 andĀ = 0.05.

With the approximation ofR(T)
(
h,N, Ā

)
by (18), we can characterize the asymptotic behavior ofR̄(T)

(
N, Ā

)

asP becomes large by investigating its pre-log scaling factor,which is given by the following proposition.

Proposition 3.1: Given 1 ≤ N ≤ Nt and Ā ≥ 0, the achievable average rate for TS over the i.i.d. Rayleigh

fading MISO channel is obtained as̄R(T)
(
N, Ā

)
= ∆(T)

(
N, Ā

)
log2 (P ) + o (log2 P ) with P → ∞, where

∆(T)
(
N, Ā

) ∆
= lim

P→∞

R̄(T)
(
N, Ā

)

log2 P
= F

(N)
A

(
Ā
)
, (19)

with F
(N)
A (a) = EH

[

F
(N)
A|H (a |h )

]

denoting the unconditional CDF ofA after averaging over the fading distribution,

which can be further expressed as

F
(N)
A (a) = 1− 2

Γ (Nt)

N−1∑

k=0

(β (a))Nt+k

k!
KNt−k (2β (a)) , (20)

whereβ (a)
∆
=

√
NtNa, andKδ (x) denotes the second-kind modified Bessel function

Kδ (x) =
π

2

I−δ (x)− Iδ (x)

sin (δx)
,

with Iδ (x) denoting the first-kind modified Bessel function

Iδ (x) =

∞∑

m=0

1

m!Γ (m+ δ + 1)

(x

2

)2m+δ
.

Proof: Please refer to Appendix C.

Remark 3.1: In the fading MISO channel,F (N)
A

(
Ā
)

denotes the percentage of sub-blocks allocated to ID mode

for TS. From Proposition 3.1, it is inferred thatF (N)
A

(
Ā
)

is also the pre-log rate scaling factor of the asymptotic

achievable average information rate over the MISO fading channel for TS with givenĀ andN .

Fig. 9 showsF (N)
A

(
Ā
)

versusĀ for TS with Nt = 4 whenh follows i.i.d. Rayleigh fading. From Fig. 9, it is

observed that the rate scaling factorF
(N)
A

(
Ā
)

for TS increases with decreasingN whenĀ is small, but decreases

with N whenĀ is sufficiently large. As a result,̄R(T)
(
N, Ā

)
scales faster with increasingP for smaller value of

N when Ā is small, but scales slower withP whenĀ becomes large.

On the other hand, the rate scaling factor for PS in the i.i.d.Rayleigh fading MISO channel can be determined

from (5) and (16) as

∆(P) (τ) = lim
P→∞

EH

[
R(P) (h, τ )

]

log2P
= τ. (21)
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B. Average Harvested Power

In this subsection, we study the average harvested power over the i.i.d. Rayleigh fading MISO channel by TS,

defined asQ̄(T)
(
N, Ā

)
= EH

[
Q(T)

(
h,N, Ā

)]
, whereQ(T)

(
h,N, Ā

)
is given by (14).

Proposition 3.2: In the i.i.d. Rayleigh fading MISO channel, for given̄A andN , the average harvested power

for TS is given by

Q̄(T)
(
N, Ā

)
= θP

2

Γ (Nt)

N∑

k=0

(
β
(
Ā
))Nt+k

k!

√

NĀ

Nt
KNt−k+1

(
2β
(
Ā
))

, (22)

whereβ (a) andKδ (x) are defined in Proposition 3.1.

Proof: Please refer to Appendix D.

For convenience, we termΠ(T)
(
N, Ā

)
= Q(T)

(
N, Ā

)
/(θP ) as thepower scaling factor for TS with increasing

P . Notice that0 ≤ Π(T)
(
N, Ā

)
≤ 1. Fig. 10 showsΠ(T)

(
N, Ā

)
versus different values of̄A with Nt = 4. It is

observed that the power scaling factorΠ(T)
(
N, Ā

)
for TS behaves in the opposite way of the rate scaling factor

F
(N)
A

(
Ā
)
, as compared to Fig. 9, i.e.,Π(T)

(
N, Ā

)
decreases withN whenĀ is small, but increases with decreasing

N when Ā is sufficiently large. As a result, for givenθ andP , Q̄(T)
(
N, Ā

)
behaves the same asΠ(T)

(
N, Ā

)
.

On the other hand, the power scaling factor for PS in the i.i.d. Rayleigh fading MISO channel can be easily

obtained from (3) and (16) as

Π(P) (τ) = EH

[

Q(P) (h, τ )
]

/ (θP ) = (1− τ) , 0 ≤ τ ≤ 1. (23)
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The rate and power scaling factors characterize the asymptotic rate-energy trade-off asP → ∞. Given1 ≤ N ≤

Nt, for TS it is easily shown from (20) and (22) that the rate scaling factor∆(T) (N, 0) = 0 and the power scaling

factor Π(T)(N, 0) = 1 at Ā = 0, while ∆(T) (N,∞) = 1 andΠ(T)(N,∞) = 0 at Ā → ∞. Note that for TS the

distribution of the received channel powerA (k) at each sub-block becomes different according toN , and as a

result different asymptotic rate-energy trade-off is achieved when0 < ∆(T)
(
N, Ā

)
< 1 and0 < Π(T)

(
N, Ā

)
< 1.

To characterize this trade-off, we have the following theorem.

Theorem 3.1: In the i.i.d. Rayleigh fading MISO channel, given1 ≤ N ≤ Nt and0 < Ā < ∞ for TS scheme and

0 < τ < 1 for PS scheme,∆(T)
(
N, Ā

)
> ∆(P) (τ) for a given power scaling factor0 < Π(T)

(
N, Ā

)
= Π(P) (τ) <

1; furthermore, given1 ≤ N < M ≤ Nt and0 < ĀN , ĀM < ∞ for TS schemes,∆(T)
(
N, ĀN

)
> ∆(T)

(
M, ĀM

)

for a given power scaling factor0 < Π(T)
(
N, ĀN

)
= Π(T)

(
M, ĀM

)
< 1.

Proof: Please refer to Appendix E.

Fig. 11 shows the rate scaling factor (∆(T)
(
N, Ā

)
for TS and∆(P) (τ) for PS) versus power scaling factor

(Π(T)
(
N, Ā

)
for TS andΠ(P) (τ) for PS) withNt = 4. For a given0 < Π(T)

(
N, Ā

)
= Π(P) (τ) < 1, the rate

scaling factor of TS withN = 1, i.e., one single random beam, is the largest among all values of N . In addition,

∆(T)
(
N, Ā

)
for TS decreases with increasingN , but is always larger than∆(P) (τ) for PS. The above observations

are in accordance with Theorem 3.1.
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C. Power Outage Probability

In this subsection, we study the power outage probability with a given harvested power targetQ̂ at Rx, which is

defined aspQ, out
∆
=Pr

(

Q < Q̂
)

with Q denoting the harvested power in one block. In particular, weare interested

in characterizing the asymptotic behavior ofpQ, out asP → ∞, namelypower diversity order, which is defined as

dQ
∆
= − lim

P→∞

log pQ, out

logP
. (24)

Proposition 3.3: In the i.i.d. Rayleigh fading MISO channel, for TS the power outage probabilityp(T)
Q,out with

P → ∞ is approximated by

p
(T)
Q,out =







(

Q̂/ (θP )
)Nt

(

NĀ(ln (θP ))−1
)Nt

, Ā = 0

, Ā > 0.
(25)

Proof: Please refer to Appendix H.

From (24) and (25), it can be verified that the power diversityorder of TS isd(T)
Q = Nt when Ā = 0, i.e., no

WIT is required, whiled(T)
Q = 0 with a fixedĀ > 0 when both WIT and WET are implemented, which means that

althoughp(T)
Q,out decreases with increasingP , the decrease ofp(T)

Q,out is much slower than increase ofP asP → ∞.

On the other hand, in the i.i.d. Rayleigh fading MISO channels, the power outage probability of PS withP → ∞

can be obtained asp(P)Q,out =
(

Q̂
(1−τ)θP

)Nt

, 0 ≤ τ < 1; thus, from (3) and the fact thatFH (h) ≈ hNt ash → 0,

we obtain the power diversity order asd(P)Q = Nt, 0 ≤ τ < 1.

Fig. 12 shows the power outage probabilities of TS and PS versus the transmit powerP in dBm whenNt = 2

and Q̂ = 1µW with the same setup as for Fig. 5, i.e.,θ = 10−4. It is observed that the smallest power outage
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Fig. 12. Power outage probability withNt = 2 and Q̂ = 1µW.

probabilities are achieved by TS with̄A = 0 or equivalently PS withτ = 0. WhenĀ > 0, p(T)
Q,out for TS is observed

to decrease slower with increasingP thanp(P)Q,out for PS, sinced(T)
Q = 0, Ā > 0 for TS whiled(P)Q = Nt, 0 ≤ τ < 1,

for PS. Furthermore, it is also observed thatp
(T)
Q,out decreases slower with increasingP as Ā and/orN increases,

which is consistent with (25).

D. Numerical Results

In this subsection, we compare the rate-energy performanceof TS and PS for a practical SWIPT system setup

andNt = 2 with the same channel setup as for Figs. 5 and 6. It is further assumed that energy conversion efficiency

is set to beζ = 0.5 to reflect practical power harvesting efficiency.

As inferred from Theorem 3.1, the asymptotic rate scaling factor of TS with N = 1 is the largest among all

values ofN and is also larger than that for PS for a given power scaling factor asP → ∞. However, it does not

imply that the largest achievable average rate is always attained for a given average harvested power whenP is

finite. Therefore, it is necessary to compare the achievableaverage rates for PS and TS with finite values ofP .

Fig. 13 shows the achievable average rates for PS and TS versus transmit power in dBm under the same power

scaling factorΠ = Π(T)
(
N, Ā

)
= Π(P) (τ), i.e., the same average power harvesting requirementQ̄ = ζ θP Π (e.g.,

Q̄ = 45µW with ζ = 0.5, θ = −40dB, Π = 0.9 andP = 30dBm). WhenΠ = 0.9, the benefit from a larger rate

scaling factor is clearly observed for TS withN = 1, since it achieves the largest average information rate. When

Π = 0.5, the achievable average rates for TS are similar withN = 1 and2, but still grow faster with the transmit

power than that for PS. WhenΠ = 0.1, the gaps between rate scaling factors of different schemesare small (cf.
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Fig. 11) and as a result their achievable average rates become similar.

It is worth noting that one typical application scenario of the SWIPT is wireless sensor network, for which the

power consumption at each sensor node is in general limited to 5-20µW. As observed in Fig. 13, with 30dBm (or

1W) transmit power, the amount of average harvested power ateach receiver is5-45µW with a practical energy

harvesting efficiency of50%, which satisfies the power requirement of practical sensors. Furthermore, the received

power can always be increased if transmit power is increasedand/or the transmission distance is decreased, to meet

higher power requirement of other wireless applications.

Next, Fig. 14 shows the trade-offs between the achievable average rate and power non-outage probabilities, i.e.,

1− pQ,out, of TS and PS schemes under the same per-block harvested power requirementsQ̂ = 25µW or 45µW

when the transmit power is set to be30dBm. It is observed that the minimum power outage probability of TS is

attained byN = 1 when the achievable average rate is small, but byN = 2 when the achievable average rate is

larger, while TS with bothN = 1 and2 outperforms PS.

Remark 3.2: Employing random beamforming at the transmitter requires additional complexity. However, from

the above results, it is inferred that the achievable average rate is maximized by using only one single RB, i.e.,

N = 1, when the transmit power is asymptotically large or at finitetransmit power when more harvested power

is required (which is of more practical interest). In addition, TS with one single RB also optimizes power outage

performance when transmit power is finite and large harvested power is required in each transmission block.

Therefore, TS with one single RB in general can achieve the optimal WET efficiency and/or reliability with a given
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harvested power requirement̂Q = 25 or 45 µW.

WIT rate requirement, thus yielding an appealing low-complexity implementation for practical systems.

Finally, we investigate the overall network throughput in the multicast SWIPT system with the proposed TS

scheme, which is defined as

C
∆
=

K∑

i=1

(1− pR,out (i)) R̄, (26)

with K, pR,out (i), andR̄ denoting the number of users in the network, the rate outage probability of theith Rx, and

the common information rate, respectively. It is worth noting that each Rx can adjust its thresholdĀi, i = 1, · · · ,K,

according to the individual channel condition and rate requirement assuming that Rxs move slowly with a sufficiently

large channel coherence time; therefore, rate outage of theith user occurs when its average achievable rate cannot

meet the rate target̄R even with Āi = ∞, i.e., when all the received sub-blocks are allocated to ID mode for a

given θ. Accordingly,pR,out (i) is given by

pR,out (i) = Pr
(

R̄
(T)
i (N,∞) < R̄

)

, (27)

whereR̄(T)
i

(
N, Ā

)
= EH [R

(T)
i

(
h,N, Ā

)
] with R

(T)
i

(
h,N, Ā

)
denoting the achievable rate of theith Rx for given

N and Āi in a block with the normalized channel powerh, which is given by (15). Note that for each Rx,θi,

i = 1, · · · , K, can be modeled asθi = θL,iθS,i where θL,i and θS,i denote signal power attenuation due to

distance-dependent pathloss and shadowing, respectively. Assuming fixed Rx locations, therefore,pR,out (i) should

be measured according to the variation ofθS,i in this case. Fig. 15 shows the trade-offs between the network

throughputC defined in (26) versus the average sum harvested power by all Rxs, denoted byQ̄, under the same
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Fig. 15. Trade-off between network throughput and average sum harvested power withNt = 2, N = 1, and30dBm transmit power.

channel setup as for Figs. 5 and 6, withK = 10, N = 1, andP = 30dBm. The distance between the Tx and

the ith Rx, denoted byDi, is assumed to be uniformly distributed within3m ≤ Di ≤ 10m, i = 1, · · · , K. It

is also assumed thatθL,i = C0D
−α
i with C0 = −20dB denoting the pathloss at the reference distance1m and

α = 3 denoting the pathloss exponent. Assuming indoor shadowing, θS,i is drawn from lognormal distribution with

standard deviation given by3.72 dB [22]. Furthermore, each Rx is assumed to setĀ such thatR̄(T)
i

(
N, Ā

)
= R̄ if

R̄
(T)
i (N,∞) ≥ R̄, but setĀ = 0, i.e. all the received power is used for power harvesting, otherwise. It is observed

that the maximum throughput in the network isC∗ = 46.8Mpbs with average harvested sum powerQ̄∗ = 424µW.

In addition, the trade-offs shown in Fig. 15 can be categorized into three regimes, as denoted by1), 2), and3)

in the figure. WhenR̄ is small, i.e., in the regime denoted by1), C increases withR̄ sincepR,out (i) is small. In

this regime, each Rx sets larger̄Ai with increasingR̄ to meet the rate target, and thus the harvested sum power

decreases accordingly. When̄R is larger than a certain threshold, i.e., in the regime denoted by2), C decreases with

increasingR̄ since the number of Rx with rate outage increases. In this regime, Q̄ also decreases with increasing

R̄ since Rxs with largeθi’s still set largerĀi with increasingR̄ and their harvested power decreases. Finally, when

R̄ further increases, i.e., in the regime denoted by3), C decreases with increasinḡR whereasQ̄ increases withR̄.

This is because most of Rxs in the network experience rate outage and thus only harvest power. WhenR̄ → ∞,

therefore,C → 0 and Q̄ becomes equivalent to that without WIT and with WET only, i.e., R̄ = 0 with Ā = 0.

Therefore, for a given throughputC < C∗, there are two possible values of average sum harvested power (e.g.,

Q̄1 = 490µW and Q̄2 = 368µW with C = 20Mbps), and thereby we can choose larger value of average sum
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harvested power for a given throughput (e.g.,Q̄1 for the aforementioned example).

IV. A LTERNATIVE RANDOM BEAM DESIGNS

It is worth noting that TS with Gaussian random beams (referred to as TS-G), as considered in the preceding

sections, may not be practically favorable due to the fact that Gaussian random beams (GRBs) will cause large

transmit power at certain sub-blocks. Instead, artificial channel fading within each transmission block of each Rx

can be generated by employing non-Gaussian random beams with constant transmit power for TS. In this section,

we investigate the performance of TS with two alternative RBs other than GRB, such that the average transmit

power remains constant within each transmission block, which are given next.

A. Unitary Random Beams (URBs)

In this case,N unitary random vectors obtained from the isotropic distribution [23] are independently employed

for theN random beams at thekth sub-block, i.e.,φn (k), 1 ≤ n ≤ N , ∀k.

With URBs, it is in general difficult to obtain the closed-form expressions for the PDF and CDF of the received

channel powerA (k) at each sub-block conditioned onH = h. However, if we consider the special case ofNt = 2

and N = 1, it is known that with URBsA (k) is uniformly distributed within[0, 2h]. Thus, given a threshold

Ā ≥ 0, the amount of harvested power in each block with URBs can be obtained using (13) as

Q(U)
(
h, Ā

)
=

{

θP (h− Ā2

4h )

0

, 0 ≤ Ā ≤ 2h

, Ā > 2h.
(28)

In the i.i.d. fading MISO channel, the average harvested power for TS with URBs (referred to as TS-U) given a

fixed thresholdĀ ≥ 0 is obtained as̄Q(U)
(
Ā
)
=
∫∞
0 Q(U)

(
h, Ā

)
fH (h) dh, wherefH (h) = 4he−2h is given by

(16) for Nt = 2. It is worth noting that in the special case ofNt = 2 andN = 1, the unconditional distribution of

A (k) with URBs after averaging over the fading channels can be shown to be the exponential distribution, where

the unconditional PDF is given byq(U)
A (a) = e−a. Therefore,Q̄(U)

(
Ā
)

can be alternatively obtained as

Q̄(U)
(
Ā
)
=

∫ ∞

Ā
θPaq

(U)
A (a) da

= θPΓ
(
2, Ā

)
, (29)

which is equivalent toQ(T)
(
1, 1, Ā

)
for TS-G given by (14) withN = 1 andh = 1. Similarly, givenĀ ≥ 0, the

achievable average transmission rate for TS-U is obtained as

R̄(U)
(
Ā
)
=

∫ Ā

0
log2

(

1 +
θPa

σ2

)

q
(U)
A (a) da

=
e−

1

η

ln 2

(

E1

(
σ2

θP

)

− E1

(

Ā+
σ2

θP

))

− e−Ālog2

(

1 +
θPĀ

σ2

)

, (30)
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with En (z) =
∫∞
1 e−ztt−ndt denoting the exponential integral function for integern ≥ 0, which is also equivalent

to R(T)
(
1, 1, Ā

)
for TS-G given by (15) withh = 1 andN = 1. In addition, given fixedĀ ≥ 0 and per-block

power harvesting requirement̂Q > 0, the power outage probability of TS-U in the i.i.d. Rayleighfading MISO

channel withNt = 2 andN = 1 can be obtained from (28) as

p
(U)
Q,out = FH




Q̂2 +

√

Q̂2 + θ2P 2Ā2

2θP



 , (31)

whereFH (h) is given by (17) forNt = 2. From (24) and (31), it is easily verified that TS-U in the caseof Nt = 2

andN = 1 has the power diversity order of0, the same as TS-G.

B. Binary Random Beams (BRBs)

In this case, a random subset ofN out of Nt transmit antennas at Tx,1 ≤ N ≤ Nt, are selected to transmit at

each sub-block, which is equivalent to selectingΦ (k) = [φ1(k) φ2(k) · · · φN (k)] ∈ RNt×N , ∀k, whereφn(k) =

[φn,1 (k) φn,2 (k) · · ·φn,Nt
(k)]T , 1 ≤ n ≤ N , with φn,i (k) ∈ {0, 1}, 1 ≤ i ≤ Nt, such that‖φn(k)‖2 = 1 and

φT
m(k)φn (k) = 0, n 6= m. We assume that all the subsets of the selected antennas are equally probable.

Consider the special case ofNt = 2 and N = 1. Denoteh = [h1 h2]
T , V = max( |h1|2, |h2|2), andW =

min( |h1|2, |h2|2). Note that in this case the received channel power at each sub-block is eitherA (k) = V or

A (k) = W , each of which occurs with a probability of1/2. Thus, givenV = v, W = w, and a fixed threshold

Ā ≥ 0, the amount of harvested power in each block with BRBs is obtained using (13) as

Q(B)
(
v,w, Ā

)
=







θP (v + w) /2

θPv/2

0

, Ā < w

, w ≤ Ā ≤ v

, Ā > v.

(32)

Similar to TS-U, in the i.i.d. fading MISO channel, it can be shown that withNt = 2 andN = 1 the unconditional

distribution ofA (k) with BRBs after averaging over the fading channels is the exponential distribution, where the

unconditional PDF is also given byq(B)
A (a) = e−a. Therefore, given a fixed threshold̄A ≥ 0, Q̄(B)

(
Ā
)
= Q̄(U)

(
Ā
)

and R̄(B)
(
Ā
)
= R̄(U)

(
Ā
)
, where Q̄(B)

(
Ā
)

and R̄(B)
(
Ā
)

denote the average harvested power and achievable

average information rate for TS with BRBs (referred to as TS-B), respectively, and̄Q(U)
(
Ā
)

and R̄(U)
(
Ā
)

for

TS-U are given by (29) and (30), respectively. In addition, given fixed Ā ≥ 0 and per-block power harvesting

requirementQ̂ > 0, the power outage probability of TS-B in the i.i.d. Rayleighfading MISO channel withNt = 2

andN = 1 can be obtained from (32) as (see Appendix I for the detailed derivation)

p
(B)
Q,out =

(

1− e−Ā
)2

+ 1
(
Ā < 2D

)
· 2e−2(Ā+D)

(

−1 + eĀ
)(

−eĀ + e2D
)

+1
(
Ā < D

)
(

e−2(Ā+D)
(

eĀ − eD
)2

+ e−Ā−2D
((

−1 + Ā−D
)
eĀ + eD

))

, (33)



25

E F GH IJ KL MN OP
Q

R

ST

UV

WX

YZ

[\

]^

_`abcdef ghijk lmnop

q
r
s
tu
v
w
x
yz
{
|
}
~�
�
�
�
�
��
��
�
�
�
�

����

����

����

��

Fig. 16. Comparison of the achievable average rate for different RB designs withNt = 2, N = 1, andΠ = 0.9.

whereD = Q̂/(θP ), and1 (x < y) denotes the indicator function given by

1 (x < y) =

{

1

0

, if x < y

, otherwise.

From (33), it is shown that both1
(
Ā < 2D

)
= 0 and 1

(
Ā < D

)
= 0 if P > 2Q̂/(θĀ), and thusp(B)

Q,out =

(1− e−Ā)2. Therefore, TS-B in the case ofNt = 2 andN = 1 also has the power diversity order of0, the same

as TS-G and TS-U.

Fig. 16 shows the achievable average rates of TS-G, TS-U, TS-B, and PS versus transmit power in dBm for the

same setup as for Fig. 13, under the same average power harvesting requirement withΠ = 0.9. It is observed that

the achievable average information rates of TS-U and TS-B are the same, which is as expected for the considered

case here ofNt = 2 andN = 1. It is also observed that the achievable average rates of TS-U and TS-B are larger

than that of PS, but smaller than that of TS-G. This result is originated from the fact that the artificial channel fading

generated by URBs or BRBs in this case is less substantial over time than that by GRBs, due to the limitation of

constant average transmit power over sub-blocks with URBs or BRBs.

Fig. 17 shows the power outage probabilities of TS-U and TS-Bversus transmit power in dBm for the same

setup as for Fig. 6, when̄R = 2 bps/Hz andQ̂ = 25 µW, as compared to that of PS and TS-G. Among TS

schemes, it is observed that the power outage probability ofTS-G is the smallest. The power outage probability

of TS-U is observed to be similar to that of TS-G when transmitpower is small, but becomes larger than that of

TS-G when transmit power is larger than30dBm. The power outage probability of TS-B is observed to be between
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Fig. 17. Comparison of power outage probability for different RB designs withNt = 2, N = 1, R̄ = 2 bps/Hz, andQ̂ = 25µW.

those of TS-U and of TS-G. It is also observed that the power outage probability of PS is larger than those of all

TS schemes when transmit power is small, but is the smallest when transmit power is larger than33dBm.

V. CONCLUSION

This paper has studied a novel receiver mode switching scheme for the MISO multicast SWIPT system when

the channel is only known at the receiver, but unknown at the transmitter. The proposed scheme exploits the

benefit of opportunistic energy harvesting over artificial channel fading induced by employing multi-antenna ran-

dom beamforming at the transmitter. By investigating the achievable average information rate, average harvested

power/power outage probability, and their various trade-offs, it is revealed that the proposed scheme yields better

power and information transfer performance than the reference scheme of periodic switching without transmit

random beamforming when the harvested power requirement issufficiently large. Particularly, employing one

single random beam for the proposed scheme is proved to achieve the asymptotically optimal trade-off between

the average information rate and average harvested power when transmit power goes to infinity. Moreover, it is

shown by simulations that the best trade-offs between average information rate and average harvested power/power

outage probability are also achieved by the proposed schemeemploying one single random beam for large power

harvesting targets of most practical interests, even with finite transmit power.
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APPENDIX A

DERIVATIONS OFR(T)
(
h, 1, Ā

)
AND R(T)

(
h, 2, Ā

)

From (11) withN = 1 and (15),R(T)
(
h, 1, Ā

)
can be expressed as

R(T)
(
h, 1, Ā

)
=

1

ln 2

∫ Ā

0
ln
(

1 + P̃ a
) 1

h
e−

a

hda (34)

=
1

ln 2

(

e−
Ā

h ln
(

1 + P̃ Ā
)

+

∫ Ā

0

P̃

1 + P̃ a
e−

a

hda

)

, (35)

where P̃ = θP
σ2 and (35) is obtained from integrating (34) by part. By changing a variable asx = 1 + P̃ a, the

integral term in (35) can be obtained as

∫ Ā

0

P̃

1 + P̃ a
e−

a

h da =

∫ 1+P̃ Ā

1

1

x
e−

x−1

P̃h dx

= e
1

P̃h

(∫ ∞

1

1

x
e−

x

P̃hdx−
∫ ∞

1+P̃ Ā

1

x
e−

x

P̃hdx

)

(36)

= e
1

P̃h

(

E1

(
1

P̃ h

)

− E1

(

1 + P̃ Ā

P̃ h

))

, (37)

where, for integern ≥ 0, En (z) =
∫∞
1 e−ztt−ndt denotes the exponential integral function; (37) is obtained by

a change of variable asy =
(

1 + P̃ Ā
)

x for the second integral term in (36). From (35), (37), andP̃ = θP
σ2 ,

R(T)
(
h, 1, Ā

)
is obtained as

R(T)
(
h, 1, Ā

)
=

e
σ2

θPh

ln 2

(

E1

(
σ2

θPh

)

− E1

(
Ā

h
+

σ2

θPh

))

− e−
Ā

h log2

(

1 +
θPĀ

σ2

)

. (38)

WhenN = 2, R(T)
(
h, 2, Ā

)
can be derived similarly by integrating (15) by part. In thisoperation, it is necessary

to apply differentiation of the incomplete Gamma function given by [24]

∂

∂N
Γ (N,x) = Γ (N,x) lnx+ xG3,0

2,3

(

0, 0

N − 1,−1,−1

∣
∣
∣
∣
∣
x

)

, (39)

whereGm,n
p,q

(

a1, · · · , ap

b1, · · · , bq

∣
∣
∣
∣
∣
z

)

denotes the Meijer-G function, defined as [21, 9.301]

Gm,n
p,q

(

a1, · · · , ap

b1, · · · , bq

∣
∣
∣
∣
∣
z

)

=
1

2πi

∫

L

m∏

j=1
Γ (bj − s)

n∏

k=1

Γ (1− ak + s)

q∏

j=m+1
Γ (1− bj + s)

p∏

k=n+1

Γ (ak − s)

zsds, (40)

with
∫

L denoting the Barres integral. By the definition of the Meijer-G function, the last term in (39) can be

represented by



28

xG3,0
2,3

(

0, 0

N − 1,−1,−1

∣
∣
∣
∣
∣
x

)

=
1

2πi

∫

L

Γ (N − 1− s) Γ (−1− s) Γ (−1− s)

Γ (−s) Γ (−s)
xs+1ds (41)

= G3,0
2,3

(

1, 1

0, 0, N

∣
∣
∣
∣
∣
x

)

, (42)

where (42) is achieved by a change of variable ast = s + 1 in (41). By applying (39)-(42) to the integration of

(15) by part,R(T)
(
h, 2, Ā

)
can be obtained as

R(T)
(
h, 2, Ā

)
=

(
2σ2

θPh
e−

2Ā

h − e
2σ2

θPhΓ

(

2, 2

(
Ā

h
+

σ2

θPh

)))

log2

(

1 +
θPĀ

σ2

)

+
2σ2

θPh ln 2
e

2σ2

θPh

(

E1

(

2

(
Ā

h
+

σ2

θPh

))

− E1

(
2σ2

θPh

))

+
1

ln 2
e

2σ2

θPh

(

G3,0
2,3

(

1, 1

0, 0, 2

∣
∣
∣
∣
∣

2σ2

θPh

)

−G3,0
2,3

(

1, 1

0, 0, 2

∣
∣
∣
∣
∣
2

(
Ā

h
+

σ2

θPh

)))

. (43)

APPENDIX B

DERIVATIONS OFC0

(
h,N, Ā

)
IN (18)

From (11) and (16),C0

(
h, Ā,N

)
in (18) can be expressed as

C0

(
h, Ā,N

)
=

∫ Ā

0
log2 (a) fA|H (a |h) da

=
(N/h)N

Γ (N) ln 2

∫ ∞

0
aN−1e−

N

h
a ln (a) da

︸ ︷︷ ︸

α

− (N/h)N

Γ (N) ln 2

∞
∫
Ā

aN−1e−
N

h
a ln (a) da

︸ ︷︷ ︸

β

. (44)

From [21, 4.352-1],α can be derived as

α =
Ψ(N)

ln 2
+ log2

h

N
. (45)

Next, by changing variable asa = Āx, β can be modified as

β = −
(
NĀ

h

)N log2
(
Ā
)

Γ (N)

∫ ∞

1
xN−1e−

NĀ

h
xdx

︸ ︷︷ ︸

β1

−
(
NĀ

h

)N
1

Γ (N) ln 2

∫ ∞

1
xN−1e−

NĀ

h
x lnxdx

︸ ︷︷ ︸

β2

, (46)

where, by the similar process to derive (14),β1 is derived as

β1 = −
Γ
(

N, NĀ
h

)

Γ (N)
log2

(
Ā
)
. (47)

In addition, by changing variable asNĀ
h = θ, β2 can be derived from [21, 4.358-1] as

β2 =
θN

Γ (N) ln 2

∫ ∞

1
xN−1e−θx lnxdx =

∂

∂N

(
θ−NΓ (N, θ)

)
. (48)
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Since ∂
∂N θ−N = −θ−N ln θ, β2 in (48) can be obtained from (39)-(42) as

β2 =
1

Γ (N) ln 2
θG3,0

2,3

(

0, 0

N − 1,−1,−1

∣
∣
∣
∣
∣
θ

)

=
1

Γ (N) ln 2
G3,0

2,3

(

1, 1

0, 0, N

∣
∣
∣
∣
∣
θ

)

, (49)

From (44)-(49) and by changing variable asθ = NĀ
h in (49), we arrive at (18). This completes the derivation of

C0

(
h, Ā,N

)
in (18).

APPENDIX C

PROOF OFPROPOSITION3.1

With P → ∞, the achievable average information rate for TS is expressed from (18) as

EH

[

R(T)
(
h,N, Ā

)]

= EH

[

F
(N)
A|H

(
Ā |h

)
log2

(
θP

σ2

)

+ C0

(
h,N, Ā

)
]

= EH

[

F
(N)
A|H

(
Ā |h

)]

log2P + EH

[

F
(N)
A|H

(
Ā |h

)
log2

(
θ

σ2

)

+ C0

(
h,N, Ā

)
]

,

whereEH

[

F
(N)
A|H

(
Ā |h

)
log2

(
θ
σ2

)
+ C0

(
h,N, Ā

)]

is a constant not related toP and thus regarded aso (log2 η)

sinceF (N)
A|H

(
Ā |h

)
log2

(
θ
σ2

)
+C0

(
h,N, Ā

)
is a constant not related toP .

For an integerN ≥ 1, note thatΓ (N,x) is equivalently expressed as [20]

Γ (N,x) = (N − 1)! e−x
N−1∑

m=0

xm

m!
. (50)

From (12), (16), and (50),F (N)
A (a) = EH

[

F
(N)
A|H

(a |h )
]

is obtained as

F
(N)
A (a) =

∫ ∞

0
F

(N)
A|H (a |h)fH (h) dh

=

∫ ∞

0

(

1− e−
Na

h

N−1∑

m=0

1

m!

(
Na

h

)m
)

NNt

t

Γ (Nt)
hNt−1e−Nthdh

= 1− NNt

t

Γ (Nt)

N−1∑

m=0

1

m!
(Na)m

∫ ∞

0
hNt−m−1e−Nth−

Na

h dh

︸ ︷︷ ︸
∆
= α

. (51)

By applying [21, 3.471-9] toα, we can obtain (20). This completes the proof of Proposition3.1.
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APPENDIX D

PROOF OFPROPOSITION3.2

From (14), (16), and (50),̄Q(T)
(
N, Ā

)
= EH

[
Q(T)

(
h,N, Ā

)]
is further obtained as

Q̄(T)
(
N, Ā

)
= θPEH

[

he−
NĀ

h

N∑

k=0

1

k!

(
NĀ

)k
h−k

]

= θPEH

[

e−
NĀ

h

N∑

k=0

1

k!

(
NĀ

)k
h1−k

]

= θP
NNt

t

Γ (Nt)

N∑

k=0

1

k!

(
NĀ

)k
∫ ∞

0
hNt−ke−Nth−

NĀ

h dh

︸ ︷︷ ︸
∆
= β

. (52)

By applying [21, 3.471-9] toβ in (52), we obtain (22). This completes the proof of Proposition 3.2.

APPENDIX E

PROOF OFTHEOREM 3.1

First, the former part of Theorem 3.1 can be proved using the following lemma by considering an arbitrary

distribution ofA with PDF and CDF denoted bygA (a) andGA (a), respectively, whereGA (a) > 0 for a > 0.

Lemma E.1: GivenGA

(
Ā
)
= τ with 0 < τ < 1 and0 < Ā < ∞,

∫ ∞

Ā
agA (a) da > (1− τ) b. (53)

Proof: Please refer to Appendix F.

For TS, we have the rate scaling factor∆(T)
(
N, Ā

)
= F

(N)
A

(
Ā
)

from Proposition 3.1, and it can be shown

from (20) thatF (N)
A (a) > 0 for a > 0. In addition, the energy scaling factor for TS can be alternatively expressed

asΠ(T)
(
N, Ā

)
=
∫∞
Ā af

(N)
A (a)da with f

(N)
A (a) = EH

[

f
(N)
A|H (a |h )

]

denoting the unconditional PDF ofA after

averaging over the fading distribution. Furthermore, it can be easily verified that
∫∞
0 af

(N)
A (a)da = 1. Given

F
(N)
A

(
Ā
)
= τ with 0 < Ā < ∞ and 0 < τ < 1, it can thus be verified from Lemma E.1 that∆(T)

(
N, Ā

)
+

Π(T)
(
N, Ā

)
> 1, by substitutingb, gA (a), andGA (a) in Lemma E.1 by1, f (N)

A (a), andF (N)
A (a), respectively.

Since we have∆(P) (τ) + Π(P) (τ) = 1 for PS from (21) and (23), it follows that∆(T)
(
N, Ā

)
+ Π(T)

(
N, Ā

)
>

∆(P) (τ) +Π(P) (τ). Therefore, we have∆(T)
(
N, Ā

)
> ∆(P) (τ) for given0 < Π(T)

(
N, Ā

)
= Π(P) (τ) < 1. This

proves the former part of Theorem 3.1.

It is worth remarking that Lemma E.1 implies that TS in general yields better trade-off between the rate and

energy scaling factors than PS provided that the average received channel power for TS is the same as that for PS,

based on which the former part of Theorem 3.1 for the i.i.d. Rayleigh fading MISO channel with a fixed threshold



31

Ā is proved. As another example, even for a transmission blockwith H = h, TS withN RBs,1 ≤ N ≤ Nt, yields

better trade-off between the rate and energy scaling factors than PS. This can be proved by substitutingb, gA (a),

andGA (a) in Lemma E.1 byh, f (N)
A|H (Ā |h) in (11), andF (N)

A|H (Ā |h) in (12), respectively. This is originated from

the fact that for both TS and PS schemes the rate scaling factor is determined by the percentage of sub-blocks

allocated to ID mode, whereas the energy scaling factor is determined by the percentage of sub-blocks assigned

to EH mode as well as their channel power values. Note that TS scheme assigns a subset of sub-blocks with the

largest channel power to EH mode, as inferred from (6). Therefore, given a percentage of sub-blocks allocated to

EH mode, i.e.,1−GA

(
Ā
)
= 1− τ for TS and PS schemes, respectively, the energy scaling factor of TS is larger

than that of PS while rate scaling factors are the same for both schemes, i.e.,GA

(
Ā
)
= τ .

Next, to prove the latter part of Theorem 3.1, we consider twoarbitrary distributions ofA with PDFs denoted

by gA (a) anduA (a), and the corresponding CDFs denoted byGA (a) andUA (a), respectively. It is assumed that
∫∞
0 agA (a) da =

∫∞
0 auA (a) da = b > 0. It is further assumed thatGA (a) > 0 andUA (a) > 0 for a > 0, and

GA (a) andUA (a) intersect ata = Â, satisfying






GA (a) > UA (a) , if 0 < a < Â

GA (a) = UA (a) , if a = Â

GA (a) < UA (a) , if a > Â.

(54)

Lemma E.2: Given 0 < GA

(
Āg

)
= UA

(
Āu

)
< 1 with 0 < Āg, Āu < ∞,

∫ ∞

Āg

agA (a) da >

∫ ∞

Āu

auA (a) da. (55)

Proof: Please refer to Appendix G.

The latter part of Theorem 3.1 can be proved using Lemma E.2 asfollows. Given 1 ≤ N < M ≤ Nt for

TS, it can be verified that
∫∞
0 af

(N)
A (a) da =

∫∞
0 af

(M)
A (a) da = 1. Furthermore, it can be shown from (20)

that F (N)
A (a) and F

(M)
A (a) correspond toGA (a) and UA (a) in (54), respectively (c.f. Fig. 9). By substituting

f
(N)
A (a), f (M)

A (a), F (N)
A (a), andF (M)

A (a) for gA (a), uA (a), GA (a), andUA (a) in Lemma E.1, respectively, it

can be verified thatΠ(T)
(
N, ĀN

)
> Π(T)

(
M, ĀM

)
when∆(T)

(
N, ĀN

)
= ∆(T)

(
M, ĀM

)
, 0 < ĀN , ĀM < ∞

since∆(T)
(
N, ĀN

)
= F

(N)
A (a) from Proposition 3.1 andΠ(T)

(
N, ĀN

)
=
∫∞
ĀN

af
(N)
A (a)da. This guarantees that

∆(T)
(
N, ĀN

)
> ∆(T)

(
M, ĀM

)
for given 0 < Π(T)

(
N, ĀN

)
= Π(T)

(
M, ĀM

)
< 1, since both∆(T)

(
N, ĀN

)

and∆(T)
(
M, ĀM

)
decrease monotonically with increasingΠ(T)

(
N, ĀN

)
andΠ(T)

(
M, ĀM

)
, respectively. This

proves the latter part of Theorem 3.1.

As a remark, Lemma E.2 compares the trade-offs between the rate and energy scaling factors in TS schemes

with two different distributions of channel power induced by different values ofN provided that both distributions
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have the same average channel power and satisfy the condition in (54). The latter part of Theorem 3.1 for the i.i.d

Rayleigh fading MISO channel with a fixed̄A is one application of Lemma E.2. As another example, even fora

transmission block withH = h, better trade-off between the rate and energy scaling factors is attained withN

thanM RBs, 1 ≤ N < M ≤ Nt, sinceF (N)
A|H (a |h) andF

(M)
A|H (a |h) correspond toGA (a) andUA (a) in (54),

respectively, as shown from (12). This is due to the fact thatthe artificial channel fading is more substantial when

smaller number of RBs is employed, and the argument similarly as for Lemma E.1.

Combining the proofs for both the above two parts, Theorem 3.1 is proved.

APPENDIX F

PROOF OFLEMMA E.1

Integrating by part,
∫ Ā
0 agA (a) da can be evaluated as

∫ Ā

0
agA (a) da = ĀGA

(
Ā
)
−
∫ Ā

0
GA (a) da. (56)

Assume thatĀ is given such thatGA

(
Ā
)
= τ , 0 < τ < 1. From (53) and (56), we have

Ẽ =

∫ ∞

Ā
agA (a) da− (1− τ) b

=

∫ ∞

0
agA (a) da−

∫ Ā

0
agA (a) da− b

(
1−GA

(
Ā
))

=
(
b− Ā

)
GA

(
Ā
)
+

∫ Ā

0
GA

(
Ā
)
da, (57)

and the resulting derivative

µ =
dẼ

dĀ
=
(
b− Ā

)
gA
(
Ā
)
, (58)

whereµ = 0 is achieved atĀ = b.

From (57) and (58), it is observed that̃E > 0 with 0 < Ā ≤ b, and Ẽ increases monotonically with̄A until

Ā = b. For Ā > b, it is observed thatµ < 0 and thusẼ decreases monotonically with increasinḡA. Because

lim
Ā→∞

∫∞
Ā agA (a) da = 0, it can be shown that̃E > 0 even withĀ > b. Therefore, it is verified that̃E > 0 in (57)

for any Ā > 0. This completes the proof of Lemma E.1.
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APPENDIX G

PROOF OFLEMMA E.2

Denote∆ = GA(Āg) = UA(Āu), 0 < Āg, Āu < ∞. From (55) and (56), we have

Ẽ =

∫ ∞

Āg

agA (a) da−
∫ ∞

Āu

auA (a) da

=

∫ Āu

0
auA (a) da−

∫ Āg

0
agA (a) da (59)

= ∆
(
Āu − Āg

)
+

∫ Āg

0
GA (a) da−

∫ Āu

0
UA (a) da. (60)

According to (54), there are three cases addressed as follows for given0 < ∆ < 1.

1) Āg = Āu = Â: According to (54),GA(Â) = UA(Â) = ∆̂. Since it is assumed in (54) thatGA(a) > UA(a)

with 0 < a < Â, Ẽ is evaluated from (60) as

Ẽ =

∫ Â

0
(GA (a)− UA (a)) da > 0. (61)

2) 0 < Āg, Āu < Â: It can be inferred from (54) that̄Ag < Āu < Â, which results in0 < ∆ < ∆̂. From (60),

we have

Ẽ = UA

(
Āu

) (
Āu − Āg

)
−
∫ Āu

Āg

UA (a) da

︸ ︷︷ ︸

∆
= β

+

∫ Āg

0
(GA (a)− UA (a)) da

︸ ︷︷ ︸
∆
= α

. (62)

SinceĀg < Āu andGA(a) > UA(a) with 0 < a < Â, it can be verified thatα > 0 andβ > 0, and thusẼ > 0.

3) Â < Āg, Āu < ∞: It can be inferred from (54) that̂A < Āu < Āg, which results in∆̂ < ∆ < 1. From (59),

we have

Ẽ =

∫ Â

0
a (uA (a)− gA (a)) da

︸ ︷︷ ︸
∆
= δ

−
(
∫ Āg

Â
agA (a) da−

∫ Āu

Â
auA (a) da

)

︸ ︷︷ ︸
∆
= ε

, (63)

with δ > 0 as shown in (59)-(61). In addition, it can be verified that

lim
∆→∆̂

ε = lim
Āg→Â

∫ Āg

Â
agA (a) da− lim

Āu→Â

∫ Āu

Â
auA (a) da = 0, (64)

lim
∆→1

ε = lim
Āg→∞,
Āu→∞

ε =

∫ Â

0
auA (a) da−

∫ Â

0
agA (a) da = δ. (65)

Since d∆
dĀg

= d
dĀg

GA

(
Āg

)
= gA

(
Āg

)
and d∆

dĀu
= d

dĀu
UA

(
Āu

)
= uA

(
Āu

)
, we have

d

d∆
ε =

1
d∆
dĀg

d

dĀg

∫ Āg

Â
agA (a) da− 1

d∆
dĀu

d

dĀu

∫ Āu

Â
auA (a) da

= Āg − Āu > 0. (66)
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From (63)-(66), it can be verified that̃E monotonically decreases fromδ to 0 with increasing∆ with ∆̂ < ∆ < 1,

i.e., Ẽ > 0 with Â < Āg, Āu < ∞.

Combining the above three cases, Lemma E.2 is thus proved.

APPENDIX H

PROOF OFPROPOSITION3.3

Given a transmission block withH = h, Q(T) (h,N, 0) = θPh from (14). In the i.i.d. Rayleigh fading MISO

channel, givenQ̂ > 0, p
(T)
Q,out for TS with Ā = 0 can be approximated asP → ∞ by lim

P→∞
Pr
(

h < Q̂
θP

)

=

lim
P→∞

FH

(
Q̂
θP

)

=
(

Q̂
θP

)Nt

, since lim
h→0

FH (h) = hNt in (17). This proves the first equality in (25) for̄A = 0.

WhenĀ > 0, the harvested power per block for a givenh, Q(T)
(
h,N, Ā

)
in (14), is a monotonically increasing

function of h, sinceΓ (α, x) is a monotonically decreasing function ofx. For a given power requirement̂Q > 0,

denoteh̄ as the minimum value ofh such thatQ(T)
(
h̄, N, Ā

)
≥ Q̂, i.e.,

ϑ
(
h̄
) ∆
= h̄

Γ
(
N + 1, NĀ/h̄

)

Γ (N + 1)
=

Q̂

θP
. (67)

Thus, the power outage probability for TS with givenN , Ā, andQ̂ is obtained asp(T)
Q, out(N, Ā, Q̂) = FH(h̄). Since

ϑ (h) increases withh, with P → ∞ it then follows from (67) that̄h → 0, under which we have

ϑ
(
h̄
)
= h̄e−(NĀ/h̄)

N∑

k=0

1

k!

(
NĀ

h̄

)k

(68)

≈ h̄e−(NĀ/h̄) 1

N !

(
NĀ

h̄

)N

, (69)

where, sinceN ≥ 1 is an integer, (68) is obtained from [20]

Γ (N,x) = (N − 1)! e−x
N−1∑

m=0

xm

m!
.

Sincelnϑ
(
h̄
)
= ln Q̂

θP , from (69), we have

(N − 1) lnx−NĀx = ln

(

Q̂N !

θP
(
NĀ

)N

)

, (70)

wherex = 1/h̄. With h̄ → 0, i.e., x → ∞, the left-hand side of (70) can be further approximated as−NĀx.

Therefore,̄h asP → ∞ can be approximated by

h̄ = NĀ

(

ln

(

θP
(
NĀ

)N

Q̂N !

))−1

≈ NĀ(ln (θP ))−1. (71)

From (71) and the fact thatFH (h) ≈ hNt ash → 0, we obtain the second equality in (25) for̄A > 0.

From the proofs for both the first and second equalities in (25), Proposition 3.3 is thus proved.
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APPENDIX I

DERIVATION OF (33)

From (32), the energy outage probability of TS-B is obtainedas

p
(B)
Q,out = Pr

(
v < Ā

)
+ Pr

(

w ≤ Ā ≤ v,
θPv

2
< Q̂

)

+ Pr

(

w > Ā,
θP (v + w)

2
< Q̂

)

. (72)

First, Pr
(
v < Ā

)
in (72) is given by

Pr
(
v < Ā

)
= FV

(
Ā
)
=
(

1− e−Ā
)2

, (73)

whereFV (v) denotes the CDF ofV = max( |h1|2, |h2|2), given byFV (v) = (1− e−v)
2, since both|h1|2 and

|h2|2 are independent exponential random variables.

The second term in (72) can be obtained as

Pr

(

w ≤ Ā ≤ v,
θPv

2
< Q̂

)

= Pr
(
w ≤ Ā, Ā ≤ v ≤ 2D, w ≤ v

)

= 1
(
Ā < 2D

)
∫ 2D

Ā

∫ Ā

0
fV,W (v,w) dwdv

= 1
(
Ā < 2D

)
2e−2(Ā+D)

(

−1 + eĀ
)(

−eĀ + e2B
)

, (74)

whereD = Q̂
θP andfV,W (v,w) denotes the joint PDF forV andW given byfV,W (v,w) = 2e−ve−w, v > w.

Finally, the last term in (72) can be obtained as

Pr

(

w > Ā,
θP (v + w)

2
< Ê

)

= Pr
(
w > Ā, v + w < 2D

)

= 1
(
Ā < D

)

(
∫ B

Ā

∫ v

Ā
fV,W (v,w) dwdv +

∫ 2B−Ā

B

∫ 2B−v

Ā
fV,W (v,w) dwdv

)

= 1
(
Ā < D

)
(

e−2(Ā+D)
(

eĀ − eD
)2

+ e−Ā−2D
((

−1 + Ā−D
)
eĀ + eD

))

. (75)

From (72)-(75), we can obtain (33).
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