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Abstract—In this paper, we study the optimal design for
simultaneous wireless information and power transfer (SWIPT)
in downlink multiuser orthogonal frequency division multi plexing
(OFDM) systems, where the users harvest energy and decode
information using the same signals received from a fixed access
point (AP). For information transmission, we consider two
types of multiple access schemes, namely, time division multiple
access (TDMA) and orthogonal frequency division multiple access
(OFDMA). At the receiver side, due to the practical limitation
that circuits for harvesting energy from radio signals are not yet
able to decode the carried information directly, each user applies
either time switching (TS) or power splitting (PS) to coordinate
the energy harvesting (EH) and information decoding (ID)
processes. For the TDMA-based information transmission, we
employ TS at the receivers; for the OFDMA-based information
transmission, we employ PS at the receivers. Under the abovetwo
scenarios, we address the problem of maximizing the weighted
sum-rate over all users by varying the time/frequency power
allocation and either TS or PS ratio, subject to a minimum
harvested energy constraint on each user as well as a peak and/or
total transmission power constraint. For the TS scheme, by an
appropriate variable transformation the problem is reform ulated
as a convex problem, for which the optimal power allocation and
TS ratio are obtained by the Lagrange duality method. For the
PS scheme, we propose an iterative algorithm to optimize the
power allocation, subcarrier (SC) allocation and the PS ratio for
each user. The performances of the two schemes are compared
numerically as well as analytically for the special case of single-
user setup. It is revealed that the peak power constraint imposed
on each OFDM SC as well as the number of users in the system
play key roles in the rate-energy performance comparison bythe
two proposed schemes.

Index Terms—Simultaneous wireless information and power
transfer (SWIPT), energy harvesting, wireless power, orthogonal
frequency division multiplexing (OFDM), orthogonal frequency
division multiple access (OFDMA), time division multiple access
(TDMA), time switching, power splitting.

I. I NTRODUCTION

Recently, simultaneous wireless information and power
transfer (SWIPT) becomes appealing by essentially providing
a perpetual energy source for the wireless networks [1].
Moreover, the SWIPT system offers great convenience to
mobile users, since it realizes both useful utilizations ofradio
signals to transfer energy as well as information. Therefore,
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SWIPT has drawn an upsurge of research interests [1]–[16].
Varshney first proposed the idea of transmitting information
and energy simultaneously in [2] assuming that the receiveris
able to decode information and harvest energy simultaneously
from the same received signal. However, this assumption may
not hold in practice, as circuits for harvesting energy from
radio signals are not yet able to decode the carried information
directly. Two practical schemes for SWIPT, namely, time
switching (TS) and power splitting (PS), are proposed in [1],
[3]. With TS applied at the receiver, the received signal is
either processed by an energy receiver for energy harvesting
(EH) or processed by an information receiver for information
decoding (ID). With PS applied at the receiver, the received
signal is split into two signal streams with a fixed power ratio
by a power splitter, with one stream to the energy receiver and
the other one to the information receiver. SWIPT for multi-
antenna systems has been considered in [1], [4]–[6]. In particu-
lar, [1] studied the performance limits of a three-node multiple-
input multiple-output (MIMO) broadcasting system, where
one receiver harvests energy and another receiver decodes
information from the signals sent by a common transmitter.
[4] extended the work in [1] by considering imperfect channel
state information (CSI) at the transmitter for a multiple-input
single-output (MISO) system. A MISO SWIPT system without
CSI at the transmitter was considered in [5], where a new
scheme that employs random beamforming for opportunistic
EH was proposed. [6] studied a MISO broadcasting system
that exploits near-far channel conditions, where “near” users
are scheduled for EH, while “far” users are scheduled for
ID. SWIPT that exploits flat-fading channel variations was
studied in [7], [8], where the receiver performs dynamic time
switching (DTS) [7] or dynamic power splitting (DPS) [8]
to coordinate between EH and ID. SWIPT in multi-antenna
interference channels was considered in [9], [10] using PS
and TS, respectively. SWIPT with energy/information relay-
ing has been studied in [11], where an energy-constrained
relay harvests energy from the received signal and uses that
harvested energy to forward the source information to the
destination. Two relaying protocols, i.e., the TS-based relaying
(TSR) protocol and the PS-based relaying (PSR) protocol, are
proposed in [11]. In the TSR protocol, the relay spends a
portion of time for EH and the remaining time for information
processing. In the PSR protocol, the relay spends a portion
of the received power for EH and the remaining power for
information processing. Networks that involve wireless power
transfer were studied in [12], [13]. In [12], the authors studied
a hybrid network which overlays an uplink cellular network
with randomly deployed power beacons that charge mobiles
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wirelessly. Under an outage constraint on the data links,
the tradeoffs among the network parameters were derived.
In [13], the authors investigated a cognitive radio network
powered by opportunistic wireless energy harvesting, where
mobiles from the secondary network either harvest energy
from nearby transmitters in a primary network, or transmit
information if the primary transmitters are far away. Underan
outage constraint for coexisting networks, the throughputof
the secondary network was maximized.

Orthogonal frequency division multiplexing (OFDM) is a
well established technology for high-rate wireless communi-
cations, and has been adopted in various standards, e.g., IEEE
802.11n and 3GPP-Long Term Evolution (LTE). However, the
performance may be limited by the availability of energy in the
devices for some practical application scenarios. It thus mo-
tivates our investigation of SWIPT in OFDM-based systems.
SWIPT over a single-user OFDM channel has been studied in
[14] assuming that the receiver is able to decode information
and harvest energy simultaneously from the same received
signal. It is shown in [14] that a tradeoff exists between the
achievable rate and the transferred power by power allocation
in the frequency bands: for sufficiently small transferred
power, the optimal power allocation is given by the so-called
“waterfilling (WF)” allocation to maximize the information
transmission rate, whereas as the transferred power increases,
more power needs to be allocated to the channels with larger
channel gain and finally approaches the strategy with all power
allocated to the channel with largest channel gain. However,
due to the practical limitation that circuits for harvesting
energy from radio signals are not yet able to decode the carried
information directly, the result in [14] actually providesonly
an upper bound for the rate-energy tradeoff in a single-user
OFDM system. Power control for SWIPT in a multiuser multi-
antenna OFDM system was considered in [15], where the
information decoder and energy harvester are attached to two
separate antennas. In [15], each user only harvests the energy
carried by the subcarriers that are allocated to that user for
ID, which is inefficient in energy utilization, since the energy
carried by the subcarriers allocated to other users for ID can be
potentially harvested. Moreover, [15] focuses on power control
by assuming a predefined subcarrier allocation. In this paper,
we jointly optimize the power allocation strategy as well as
the subcarrier allocation strategy. [16] considered SWIPTin a
multiuser single-antenna OFDM system, where PS is applied
at each receiver to coordinate between EH and ID. In [16], it
is assumed that the splitting ratio can be different for different
subcarriers. However, in practical circuits, (analog) power
splitting is performed before (digital) OFDM demodulation.
Thus, for an OFDM-based SWIPT system,all subcarriers
would have to be power split with the same power ratio at
each receiver even though only a subset of the subcarriers
contain information for the receiver. In contrast, for the case of
a single-carrier system, a receiver simply harvests energyfrom
all signals that do not contain information for this receiver.

As an extension of our previous work in [3] for a single-user
narrowband SWIPT system, in this paper, we study a multiuser
OFDM-based SWIPT system (see Fig. 1), where a fixed access
point (AP) with constant power supply broadcasts signals to

a set of distributed users. Unlike the conventional wireless
network where all the users contain only information receiver
and draw energy from their own power supplies, in our model,
it is assumed that each user contains an additional energy
receiver to harvest energy from the received signals from
the AP. For the information transmission, two conventional
multiple access schemes are considered, namely, time division
multiple access (TDMA) and orthogonal frequency division
multiple access (OFDMA). For the TDMA-based information
transmission, since the users are scheduled in nonoverlapping
time slots to decode information, each user should apply TS
such that the information receiver is used during the time slot
when information is scheduled for that user, while the energy
receiver is used in all other time slots. For the OFDMA-based
information transmission, we assume that PS is applied at
each receiver. As mentioned in the previous paragraph, we
assume that all subcarriers share the same power splitting
ratio at each receiver. Under the TDMA scenario, we address
the problem of maximizing the weighted sum-rate over all
users by varying the power allocation in time and frequency
and the TS ratios, subject to a minimum harvested energy
constraint on each user and a peak and/or total transmission
power constraint. By an appropriate variable transformation
the problem is reformulated as a convex problem, for which
the optimal power allocation and TS ratios are obtained by
the Lagrange duality method. For the OFDMA scenario, we
address the same problem by varying the power allocation in
frequency, the subcarrier allocation to users and the PS ratios.
In this case, we propose an efficient algorithm to iteratively
optimize the power and subcarrier allocation, and the PS ratios
at receivers until the convergence is reached. Furthermore, we
compare the rate-energy performances by the two proposed
schemes, both numerically by simulations and analyticallyfor
the special case of single-user system setup. It is revealedthat
the peak power constraint imposed on each OFDM subcarrier
as well as the number of users in the system play key roles in
the rate-energy performance comparison by the two proposed
schemes.

The rest of this paper is organized as follows. Section II
presents the system model and problem formulations. Section
III studies the special case of a single-user OFDM-based
SWIPT system. Section IV derives the resource allocation
solutions for the two proposed schemes in the multiuser
OFDM-based SWIPT system. Finally, Section V concludes
the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, we consider a downlink OFDM-based
system with one transmitter andK users. The transmitter
and all users are each equipped with one antenna. The total
bandwidth of the system is equally divided intoN subcarriers
(SCs). The SC set is denoted byN = {1, . . . , N}. The
power allocated to SCn is denoted bypn, n = 1, . . . , N .
Assume that the total transmission power is at mostP . The
maximum power allocated to each SC is denoted byPpeak,
i.e., 0 ≤ pn ≤ Ppeak, ∀n ∈ N , wherePpeak ≥ P/N . The
channel power gain of SCn as seen by the userk is denoted
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AP

Information transfer

Energy transfer

Fig. 1. A multiuser downlink SWIPT system.

by hk,n, k = 1, . . . ,K, n = 1, . . . , N . We consider a slow-
fading environment, where all the channels are assumed to
be constant within the transmission scheduling period of our
interest. For simplicity, we assume the total transmissiontime
to be one. Moreover, it is assumed that the channel gains on
all the SCs for all the users are known at the transmitter. At
the receiver side, each user performs EH in addition to ID. It
is assumed that the minimum harvested energy during the unit
transmission time isEk > 0 for userk, k = 1, . . . ,K.

A. TDMA with Time Switching

We first consider the case of TDMA-based information
transmission with TS applied at each receiver. It is worth
noting that for a single-user SWIPT system with TS applied
at the receiver, the transmission time needs to be divided
into two time slots to coordinate the EH and ID processes
at the receiver. Thus, in the SWIPT system withK users, we
considerK + 1 time slots without loss of generality, where
the additional time slot, which we called thepower slot, may
be allocated for all users to perform EH only. In contrast,
in conventional TDMA systems without EH, the power slot
is not required. We assume that slotk, k = 1, . . . ,K is
assigned to userk for transmitting information, while slot
K + 1 is the power slot. With total time duration ofK + 1
slots to be at most one, the (normalized) time duration for
slot k, k = 1, . . . ,K + 1 is variable and denoted by the TS

ratio αk, with 0 ≤ αk ≤ 1 and
K+1
∑

k=1

αk ≤ 1. In addition,

the powerpn allocated to SCn at slotk is specified aspk,n,
where0 ≤ pk,n ≤ Ppeak, k = 1, . . . ,K + 1, n = 1, . . . , N .
The average transmit power constraint is thus given by

K+1
∑

k=1

αk

N
∑

n=1

pk,n ≤ P. (1)

Consider userk, k = 1, . . . ,K. At the receiver side, userk
decodes its intended information at slotk when its information
is sent and harvests energy during all the other slotsi 6= k.
The receiver noise at each user is assumed to be independent
over SCs and is modelled as a circularly symmetric complex
Gaussian (CSCG) random variable with zero mean and vari-
anceσ2 at all SCs. Moreover, the gap for the achievable rate
from the channel capacity due to a practical modulation and
coding scheme (MCS) is denoted byΓ ≥ 1. The achievable
rate in bps/Hz for the information receiver of userk is thus

energy

... ...

energy

... ...
... ...

energy

energy

... ...

energy

... ...
... ...

energy

EH

ID

1 N SCn 1 N SCn 1 N SCn

1 N SCn 1 N SCn 1 N SCn

slot 1 slot 2 slot 3

slot 1 slot 2 slot 3

(a) Energy utilization for user 1 at different slots

(b) Energy utilization for user 2 at different slots

Fig. 2. Energy utilization at receivers for a two-user OFDM-based SWIPT
system: TDMA-based information transmission with TS applied at each
receiver. In sub-figure (a) for user 1, the received energy onall SCs during
slot 1 is utilized for ID; while the received energy on all SCsduring slot 2
and slot 3 is utilized for EH. In sub-figure (b) for user 2, the received energy
on all SCs during slot 2 is utilized for ID; while the receivedenergy on all
SCs during slot 1 and slot 3 is utilized for EH.

given by

Rk =
αk

N

N
∑

n=1

log2

(

1 +
hk,npk,n
Γσ2

)

. (2)

Assuming that the conversion efficiency of the energy har-
vesting process at each receiver is denoted by0 < ζ < 1, the
harvested energy in joule at the energy receiver of userk is
thus given by

Ek = ζ
K+1
∑

i6=k

αi

N
∑

n=1

hk,npi,n. (3)

An example of the energy utilization at receivers for the TS
case in a two-user OFDM-based SWIPT system is illustrated
in Fig. 2. As shown in Fig. 2(a) for user 1, the received energy
on all SCs during slot 1 is utilized for ID; while the received
energy on all SCs during slot 2 and slot 3 is utilized for EH.
In Fig. 2(b) for user 2, the received energy on all SCs during
slot 2 is utilized for ID; while the received energy on all SCs
during slot 1 and slot 3 is utilized for EH.

Our objective is to maximize the weighted sum-rate of
all users by varying the transmission power in the time and
frequency domains jointly with TS ratios, subject to EH
constraints and the transmission power constraints. Thus,the
following optimization problem is formulated.
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(P− TS) :

max.
{pk,n},{αk}

1

N

K
∑

k=1

N
∑

n=1

wkαk log2

(

1 +
hk,npk,n

Γσ2

)

s.t. ζ

K+1
∑

i6=k

αi

N
∑

n=1

hk,npi,n ≥ Ek, k = 1, . . . , K,

K+1
∑

k=1

αk

N
∑

n=1

pk,n ≤ P,

0 ≤ pk,n ≤ Ppeak, k = 1, . . . ,K + 1, ∀n,
K+1
∑

k=1

αk ≤ 1, 0 ≤ αk ≤ 1, k = 1, . . . ,K + 1,

wherewk ≥ 0 denotes the non-negative rate weight assigned
to userk.

Problem (P-TS) is feasible when all the constraints in Prob-
lem (P-TS) can be satisfied by some{{pk,n}, {αk}}. From (3),
the harvested energy at all users is maximized whenαK+1 =
1, while αk = 0, pk,n = 0 for k = 1, . . . ,K, n = 1, . . . , N ,
i.e., all users harvest energy during the entire transmission
time. Therefore, Problem (P-TS) is feasible if and only if the
following linear programming (LP) is feasible.

max.
{pK+1,n}

0

s.t. ζ

N
∑

n=1

hk,npK+1,n ≥ Ek, k = 1, . . . ,K,

N
∑

n=1

pK+1,n ≤ P,

0 ≤ pK+1,n ≤ Ppeak, n = 1, . . . , N. (4)

It is easy to check the feasibility for the above LP. We thus
assume Problem (P-TS) is feasible subsequently.

Problem (P-TS) is non-convex in its current form. We will
solve this problem in Section IV-A.

B. OFDMA with Power Splitting

Next, we consider the case of OFDMA-based information
transmission with PS applied at each receiver. As is standard
in OFDMA transmissions, each SC is allocated to at most one
user in each slot, i.e., no SC sharing is allowed. We define a
SC allocation functionΠ(n) ∈ {1, . . . ,K}, i.e., the SCn is
allocated to userΠ(n). The total transmission power constraint
is given by

N
∑

n=1

pn ≤ P. (5)

At the receiver, the received signal at userk is processed by a
power splitter, where a ratioρk of power is split to its energy
receiver and the remaining ratio1−ρk is split to its information
receiver, with0 ≤ ρk ≤ 1, ∀k. The achievable rate in bps/Hz
at SCn assigned to userΠ(n) is thus

Rn = log2

(

1 +
(1 − ρΠ(n))hΠ(n),npn

Γσ2

)

, n = 1, . . . , N.

(6)

energy

1 N

... ...

EH

ID

energy

... ...

SC2 n N-1 1 N SC2 n N-1

user 1 user 2

Fig. 3. Energy utilization at receivers for a two-user OFDM-based SWIPT
system: OFDMA-based information transmission with PS applied at each
receiver. The received signals at all SCs share the same splitting ratio ρk
at each userk, k = 1, 2.

With energy conversion efficiencyζ, the harvested energy in
joule at the energy receiver of userk is thus given by

Ek = ρkζ

N
∑

n=1

hk,npn, k = 1, . . . ,K. (7)

An example of the energy utilization at receivers for the PS
case in a two-user OFDM-based SWIPT system is illustrated
in Fig. 3. As shown in Fig. 3, the received signals at all SCs
share the same splitting ratioρk at each userk, k = 1, 2. It
is worth noting that onlyρ1 of the power at each of the SCs
allocated to user 2 for ID is harvested by user 1, the remaining
1 − ρ1 of power at those SCs is neither utilized for EH nor
ID at user 1, similarly as for user 2 with PS ratioρ2.

With the objective of maximizing the weighted sum-rate of
all users by varying the transmission power in the frequency
domain, the SC allocation, jointly with the PS ratios at
receivers, subject to a given set of EH constraints and the
transmission power constraints, the following optimization
problem is formulated.

(P− PS) :

max.
{pn},{Π(n)},{ρk}

1

N

N
∑

n=1

wΠ(n) log2

(

1 +
(1− ρΠ(n))hΠ(n),npn

Γσ2

)

s.t. ρkζ

N
∑

n=1

hk,npn ≥ Ek, ∀k

N
∑

n=1

pn ≤ P, 0 ≤ pn ≤ Ppeak,∀n

0 ≤ ρk ≤ 1, ∀k.

From (7), the harvested energy at all users is maximized
when ρk = 1, k = 1, . . . ,K, i.e., all power is split to the
energy receiver at each user. Therefore, Problem (P-PS) is fea-
sible if and only if Problem (P-PS) withρk = 1, k = 1, . . . ,K
is feasible. It is worth noting that Problem (P-PS) and Problem
(P-TS) are subject to the same feasibility conditions as given
by Problem (4).

It can be verified that Problem (P-PS) is non-convex in its
current form. We will solve this problem in Section IV-B.
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C. Performance Upper Bound

An upper bound for the optimization problems (P-TS) and
(P-PS) can be obtained by assuming that each receiver is
able to decode the information in its received signal and
at the same time harvest the received energy without any
implementation loss [14]. We thus consider the following
optimization problem.

(P− UB) : max.
{pn},{Π(n)}

1

N

N
∑

n=1

wΠ(n) log2

(

1 +
hΠ(n),npn

Γσ2

)

s.t. ζ

N
∑

n=1

hk,npn ≥ Ek, ∀k

N
∑

n=1

pn ≤ P, 0 ≤ pn ≤ Ppeak,∀n.

Note that Problem (P-UB), as well as Problem (P-TS) and
Problem (P-PS) are subject to the same feasibility conditions
as given by Problem (4). Also note that any infeasible Problem
(P-UB) can be modified to become a feasible one by increasing
the transmission powerP or by decreasing the minimum
required harvested energyEk at some usersk. In the sequel,
we assume that all the three problems are feasible, thus optimal
solutions exist.

The solution for Problem (P-UB) is obtained in Section IV-B
(see Remark 4.2).

III. R ESOURCEALLOCATION IN A SINGLE-USERSYSTEM

To obtain tractable analytical results, in this section, we
consider the special case thatK = 1, i.e., a single-user
OFDM-based SWIPT system. For brevity,h1,n, E1, and ρ1
are replaced withhn, E, andρ, respectively. Without loss of
generality, we assume thath1 ≥ h2 ≥ . . . ≥ hN andw1 = 1.
With K = 1, Problem (P-TS) and Problem (P-PS) are then
simplified respectively as follows

max.
{p1,n},{p2,n},α1,α2

α1

N

N
∑

n=1

log2

(

1 +
hnp1,n
Γσ2

)

s.t. ζα2

N
∑

n=1

hnp2,n ≥ E,

α1

N
∑

n=1

p1,n + α2

N
∑

n=1

p2,n ≤ P,

0 ≤ pi,n ≤ Ppeak, ∀n, i = 1, 2,

α1 + α2 ≤ 1, 0 ≤ αi ≤ 1, i = 1, 2. (8)

max.
{pn},ρ

1

N

N
∑

n=1

log2

(

1 +
(1− ρ)hnpn

Γσ2

)

s.t. ρζ

N
∑

n=1

hnpn ≥ E,

N
∑

n=1

pn ≤ P,

0 ≤ pn ≤ Ppeak, ∀n,

0 ≤ ρ ≤ 1. (9)

To obtain useful insight, we first look at the two extreme
cases, i.e.,Ppeak → ∞ and Ppeak = P/N . We shall see
that the peak power constraint plays an important role in the
performance comparison between the TS and PS schemes.
Note thatPpeak → ∞ implies the case of no peak power
constraint on each SC; andPpeak = P/N implies the case of
only peak power constraint on each SC, since the total power
constraint is always satisfied and thus becomes redundant.
Given P andPpeak, the maximum rates achieved by the TS
scheme and the PS scheme are denoted byRTS(P, Ppeak) and
RPS(P, Ppeak), respectively. For the case ofPpeak → ∞, we
have the following proposition for the TS scheme. We recall
thatα2 = 1− α1 is the TS ratio for the power slot.

Proposition 3.1: AssumingE > 0, in the case of a single-
user OFDM-based SWIPT system withPpeak → ∞, the
maximum rate by the TS scheme, i.e.,RTS(P,∞), is achieved
by α1 → 1 andα2 → 0.

Proof: Clearly, we haveα2 > 0; otherwise, no energy
is harvested, which violates the EH constraintE > 0.
Thus, α1 < 1. To maximize the objective function sub-
ject to the EH constraint, it can be easily shown that the
optimal α2 and p2,n should satisfyζα2h1p2,1 = E and
p2,n = 0, n = 2, . . . , N . It follows that the minimum
transmission energy consumed to achieve the harvested en-

ergy E is given byE/(ζh1), i.e., α2

N
∑

n=1
p2,n ≥ E/(ζh1).

Thus, in Problem (8), the achievable rateRTS(P,∞) is

given by maximizing α1

N

N
∑

n=1
log2

(

1 +
hnp1,n

Γσ2

)

subject to

α1

N
∑

n=1
p1,n ≤ P − E/(ζh1) and 0 ≤ α1 < 1. Let

q1,n = α1p1,n, ∀n, the above problem is then equivalent to

maximizing α1

N

N
∑

n=1
log2

(

1 +
hnq1,n
Γσ2α1

)

subject to
N
∑

n=1
q1,n ≤

P −E/(ζh1) and0 ≤ α1 < 1. For given{q1,n}, the objective
function is an increasing function ofα1; thus,RTS(P,∞) is
maximized whenα1 → 1. It follows that α2 → 0, which
completes the proof.

Remark 3.1: By Proposition 3.1, to achieveRTS(P,∞)
with E > 0, the portion of transmission timeα2 allocated
to EH in each transmission block should asymptotically go to
zero. For example, letm denote the number of transmitted
symbols in each block, by allocatingO(logm) symbols for
EH in each block and the remaining symbols for ID results
in α = logm/m → 0 as m → ∞, which satisfies the
optimality condition provided in Proposition 3.1. It is worth
noting thatRTS(P,∞) is achieved under the assumption that
the transmitter and receiver are able to operate in the regime of
infinite power in the EH time slot due toα2 → 0. For a finite
Ppeak, a nonzero time ratio should be scheduled to the power
slot to collect sufficient energy to satisfy the EH constraint.

Moreover, we have the following proposition showing that
the PS scheme performs no better than the TS scheme for the
case ofPpeak → ∞.

Proposition 3.2: In the case of a single-user OFDM-based
SWIPT system withPpeak → ∞, the maximum rate achieved
by the PS scheme is no larger than that achieved by the TS
scheme, i.e.,RPS(P,∞) ≤ RTS(P,∞).
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Proof: For the PS scheme, from the EH constraint

ρζ
N
∑

n=1

hnpn ≥ E, it follows that ρ ≥ E/(ζh1P ) must

hold. Thus,RPS(P,∞) is upper bounded by maximizing
1
N

N
∑

n=1
log2

(

1 + (1−ρ)hnpn

Γσ2

)

subject toρ ≥ E/(ζh1P ) and

N
∑

n=1
pn ≤ P . Letp′n = (1−ρ)pn, ∀n, the above problem is then

equivalent to maximizing1
N

N
∑

n=1
log2

(

1 +
hnp

′

n

Γσ2

)

subject to

ρ ≥ E/(ζh1P ) and
N
∑

n=1
p′n ≤ (1−ρ)P . Sinceρ ≥ E/(ζh1P ),

it follows that (1− ρ)P ≤ P −E/(ζh1). Note that according
to Proposition 3.1,RTS(P,∞) is obtained (withα1 → 1) by

maximizing 1
N

N
∑

n=1
log2

(

1 +
hnp1,n

Γσ2

)

subject to
N
∑

n=1
p1,n ≤

P −E/(ζh1). Therefore, we haveRPS(P,∞) ≤ RTS(P,∞).

For the other extreme case whenPpeak = P/N , we have
the following proposition.

Proposition 3.3: In the case of a single-user OFDM-based
SWIPT system withPpeak = P/N , the maximum rate
achieved by the TS scheme is no larger than that achieved
by the PS scheme, i.e.,RTS(P, P/N) ≤ RPS(P, P/N).

Proof: With Ppeak = P/N , the total power constraint
is redundant for both TS and PS. Thus, the optimal power
allocation for TS is given byp∗1,n = p∗2,n = Ppeak, ∀n. It

follows that α2 ≥ E

ζPpeak

N∑

n=1

hn

. Then we have the optimal

α∗
1 = 1 − E

ζPpeak

N∑

n=1

hn

. RTS(P, P/N) is thus given by

α∗

1

N

N
∑

n=1
log2

(

1 +
hnPpeak

Γσ2

)

. On the other hand, the optimal

power allocation for PS is given byp∗n = Ppeak, ∀n. It follows
that ρ∗ = E

ζPpeak

N∑

n=1

hn

= 1−α∗
1. RPS(P, P/N) is thus given

by 1
N

N
∑

n=1
log2

(

1 +
α∗

1hnPpeak

Γσ2

)

. Due to the concavity of the

logarithm function, we haveRTS(P, P/N) ≤ RPS(P, P/N),
which completes the proof.

In fact, from the proof of Proposition 3.3, we have
RTS(P, P/N) ≤ RPS(P, P/N) provided that equal power
allocation (not necessarily equals toPpeak) over all SCs are
employed for both TS and PS schemes. Note that for a single-
user OFDM-based SWIPT system withP/N < Ppeak < ∞,
the performance comparison between the TS scheme and the
PS scheme remains unknown analytically. From Proposition
3.2 and Proposition 3.3, neither the TS scheme nor the PS
scheme is always better. It suggests that for a single-user
OFDM-based SWIPT system with sufficiently small peak
power, the PS scheme may be better; with sufficiently large
peak power, the TS scheme may be better.

For the special case thatN = 1, i.e., a single-carrier point-
to-point SWIPT system, the following proposition shows that:
for Ppeak → ∞, the TS and PS schemes achieve the same rate;
for a finite peak powerP/N ≤ Ppeak < ∞, the TS scheme
performs no better than the PS scheme.
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Fig. 4. Achievable rate versus minimum required harvested energy in a
single-user OFDM-based SWIPT system, whereN = 64.

Proposition 3.4: In the case of a single-carrier point-to-
point SWIPT system withN = 1, we haveRTS(P, Ppeak) ≤
RPS(P, Ppeak), with equality if Ppeak → ∞.

Proof: Since N = 1, we remove the SC indexn in
the subscripts ofhn, p1,n, p2,n and pn. For the PS scheme,
to satisfy the EH constraint, we haveρ ≥ E/(ζhP ); thus,
with ρ = E/(ζhP ), the maximum rate by the PS scheme

is given by RPS(P, Ppeak) = log2

(

1 + hP−E/ζ
Γσ2

)

. For the

TS scheme, we haveα2p2 ≥ E/(ζh) to satisfy the EH
constraint. It follows thatα1p1 ≤ P − E/(ζh). Therefore,

RTS(P, Ppeak) ≤ α1 log2

(

1 + hP−E/ζ
α1Γσ2

)

≤ RPS(P, Ppeak),
and the equality holds ifα1 → 1. By Proposition 3.1,
RTS(P,∞) is achieved byα1 → 1; thus, the above equality
holds if Ppeak → ∞, which completes the proof.

Figs. 4 and 5 show the achievable rates by different schemes
versus different minimum required harvested energyE. For
Fig. 4, the total bandwidth is assumed to be10MHz, which
is equally divided asN = 64 subcarriers. The six-tap ex-
ponentially distributed power profile is used to generate the
frequency-selective fading channel. For Fig. 5 withN = 1,
i.e., a single-carrier point-to-point SWPT system, the band-
width is assumed to be1MHz. For both figures, the transmit
power is assumed to be1watt(W) or 30dBm. The distance
from the transmitter to the receiver is 1 meter(m), which
results in−30dB path-loss for all the channels at a carrier
frequency900MHz with path-loss exponent equal to 3. For
the energy receivers, it is assumed thatζ = 0.2. For the
information receivers, the noise spectral density is assumed to
be−112dBm/Hz. The MCS gap is assumed to beΓ = 9dB.

In both Fig. 4 and Fig. 5, it is observed that for both TS
and PS schemes, the achievable rate decreases as the minimum
required harvested energyE increases, since the available
energy for information decoding decreases asE increases. In
Fig. 4 with N = 64, it is observed that there is a significant
gap between the achievable rate by TS withPpeak = 4P/N
and that by TS withPpeak → ∞; moreover, the gap increases
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as E increases. This is because that withPpeak → ∞, all
transmission time can be utilized for information decodingby
letting α1 → 1 (c.f. Proposition 3.1); whereas for a finite
Ppeak = 4P/N , a nonzero transmission time needs to be
scheduled for energy harvesting. For the PS scheme, this
performance gap due to finite peak power constraint is only
observed whenE is sufficiently large. Comparing the TS and
PS schemes in Fig. 4, it is observed that TS outperforms PS
whenPpeak → ∞; however, for sufficiently smallPpeak, e.g.,
Ppeak = 4P/N , PS outperforms TS. In Fig. 5 withN = 1,
it is observed that whenPpeak → ∞, the achievable rate by
the TS scheme is the same as that by the PS scheme; when
Ppeak = 4P , the achievable rate by the TS scheme is no
larger than that by the PS scheme, which is in accordance
with Proposition 3.4.

IV. RESOURCEALLOCATION IN A MULTIUSER SYSTEM

In this section, we consider the general case of an OFDM-
based SWIPT system with multiple users. We derive the
optimal transmission strategies for the two schemes proposed
in Section II, and compare their performances.

A. Time Switching

We first reformulate Problem (P-TS) by introducing a
set of new non-negative variables:qk,n = αkpk,n, k =
1, . . . ,K + 1, n = 1, . . . , N . Moreover, we define
αk log2

(

1 +
hk,nqk,n

Γσ2αk

)

= 0 at αk = 0 to keep continuity at

αk = 0. (P-TS) is thus equivalent to the following problem:1

1Similar to the single-user system (c.f. Remark 3.1), for thecase of
Ppeak → ∞, we allowαk → 0 while qk,n > 0 by letting pk,n → ∞.

max.
{qk,n},{αk}

1

N

K
∑

k=1

N
∑

n=1

wkαk log2

(

1 +
hk,nqk,n

Γσ2αk

)

s.t. ζ

K+1
∑

i6=k

N
∑

n=1

hk,nqi,n ≥ Ek, k = 1, . . . ,K,

K+1
∑

k=1

N
∑

n=1

qk,n ≤ P,

0 ≤ qk,n ≤ αkPpeak, k = 1, . . . ,K + 1,∀n,
K+1
∑

k=1

αk ≤ 1, 0 ≤ αk ≤ 1, k = 1, . . . ,K + 1. (10)

After finding the optimal{q∗k,n} and{α∗
k} for Problem (10),

the optimal power allocation{p∗k,n} for Problem (P-TS) is
given by p∗k,n = q∗k,n/α

∗
k, k = 1, . . . ,K + 1, n = 1, . . . , N

provided thatα∗
k > 0. From the constraint0 ≤ qk,n ≤

αkPpeak, k = 1, . . . ,K + 1, n = 1, . . . , N , we haveqk,n = 0
if αk = 0 andPpeak < ∞. Thus, ifα∗

k = 0, k = 1, . . . ,K+1
andPpeak < ∞, the allocated power will bep∗k,n = 0, n =
1 . . . , N , since no information/power transmission is sched-
uled at slot k. For the extreme case ofPpeak → ∞, if
q∗k,n = 0, α∗

k = 0, k = 1, . . . ,K + 1, n = 1, . . . , N , then
the allocated power will bep∗k,n = 0; if q∗k,n > 0 andα∗

k = 0,
then we havep∗k,n → ∞.

Lemma 4.1: Function f(qk,n, αk) is jointly concave in
αk ≥ 0 andqk,n ≥ 0, where

f(qk,n, αk) =

{

αk log2

(

1 +
hk,nqk,n

Γσ2αk

)

, αk > 0,

0, αk = 0.
(11)

Proof: Please refer to Appendix A.
From Lemma 4.1, as a non-negative weighted sum of

f(qk,n, αk), the new objective function of Problem (10) is
jointly concave in{αk} and {qk,n}. Since the constraints
are now all affine, Problem (10) is convex, and thus can be
optimally solved by applying the Lagrange duality method, as
will be shown next.

The Lagrangian of Problem (10) is given by

L ({qk,n}, {αk}, {λi}, µ, ν)

=
1

N

K
∑

k=1

N
∑

n=1

wkαk log2

(

1 +
hk,nqk,n

Γσ2αk

)

+
K
∑

i=1

λi



ζ

K+1
∑

k 6=i

N
∑

n=1

hi,nqk,n − Ei





+ µ

(

P −

K+1
∑

k=1

N
∑

n=1

qk,n

)

+ ν

(

1−

K+1
∑

k=1

αk

)

(12)

whereλi, i = 1, . . . ,K, µ, and ν are the non-negative dual
variables associated with the corresponding constraints in (10).
The dual functiong ({λi}, µ, ν) is then defined as the optimal
value of the following problem.

max.
{qk,n},{αk}

L ({qk,n}, {αk}, {λi}, µ, ν)

s.t. 0 ≤ qk,n ≤ αkPpeak, k = 1, . . . ,K + 1, ∀n,

0 ≤ αk ≤ 1, k = 1, . . . ,K + 1. (13)
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Lk :=















wkαk

N

N
∑

n=1

log2

(

1 +
hk,nqk,n

Γσ2αk

)

+ ζ
K
∑

i6=k

λi

N
∑

n=1

hi,nqk,n − µ
N
∑

n=1

qk,n − ναk, k = 1, . . . ,K

ζ
K
∑

i=1

λi

N
∑

n=1

hi,nqk,n − µ
N
∑

n=1

qk,n − ναk, k = K + 1.

(14)

The dual problem is thus defined asmin{λi},µ,ν g ({λi}, µ, ν).
First, we consider the maximization problem in (13) for

obtainingg ({λi}, µ, ν) with a given set of{λi}, µ, and ν.
We defineLk, k = 1, . . . ,K + 1, as shown in (14) at the top
of this page. Then for the Lagrangian in (12), we have

L =

K+1
∑

k=1

Lk −
K
∑

i=1

λiEi + µP + ν. (15)

Thus, for each givenk, the maximization problem in (13) can
be decomposed as

max.
{qk,n},αk

Lk

s.t. 0 ≤ qk,n ≤ αkPpeak, n = 1, . . . , N

0 ≤ αk ≤ 1. (16)

We first study the solution for Problem (16) with givenk =
1, . . . ,K. From (14), we have

∂Lk

∂qk,n
=

wkαkhk,n

N(Γσ2αk + hk,nqk,n) ln 2
+ ζ

K
∑

i6=k

λihi,n − µ, ∀n.

(17)
Given αk, k = 1, . . . ,K, the qk,n, n = 1, . . . , N that maxi-
mizesLk can be obtained by setting∂Lk

∂qk,n
= 0 to give

qk,n = αk min

























wk

N

(

µ− ζ
K
∑

i6=k

λihi,n

)

ln 2

−
Γσ2

hk,n













+

, Ppeak













(18)
where (x)+ , max(0, x). For given{qk,n}, it appears that
there is no closed-form expression for the optimalαk that
maximizesLk. However, sinceLk is a concave function of
αk with given {qk,n}, αk can be found numerically by a
simple bisection search over0 ≤ αk ≤ 1. To summarize, for
givenk = 1, . . . ,K, Problem (16) can be solved by iteratively
optimizing between{qk,n} andαk with one of them fixed at
one time, which is known as block-coordinate descent method
[17].

Next, we study the solution for Problem (16) fork =
K + 1, i.e., for the power slot, which is a LP. Define the

set N1 =

{

n ∈ N : ζ
K
∑

i=1

λihi,n − µ > 0

}

. From (14), to

maximizeLK+1 we have

qK+1,n =

{

αK+1Ppeak, n ∈ N1,

0, n ∈ N\N1

(19)

and

αK+1 =











1, if
∑

n∈N1

(

ζ
K
∑

i=1

λihi,n − µ

)

Ppeak − ν > 0,

0, otherwise.

(20)

After obtaining g ({λi}, µ, ν) with given {λi}, µ, and ν,
the minimization ofg ({λi}, µ, ν) over{λi}, µ, andν can be
efficiently solved by the ellipsoid method [18]. A subgradient
of this problem required for the ellipsoid method is provided
by the following proposition.

Proposition 4.1: For Problem (10) with a dual function
g ({λi}, µ, ν), the following choice ofd is a subgradient for
g ({λi}, µ, ν):

di =



































ζ
K+1
∑

k 6=i

N
∑

n=1
hi,nq̇k,n − Ei, i = 1, . . . ,K,

P −
K+1
∑

k=1

N
∑

n=1
q̇k,n, i = K + 1,

1−
K+1
∑

k=1

α̇k, i = K + 2.

(21)

where{q̇k,n} and {α̇k} is the solution of the maximization
problem (13) with given{λi}, µ andν.

Proof: Please refer to Appendix B.
Note that the optimalq∗k,n, k = 1 . . . ,K, n = 1, . . . , N and

α∗
k, k = 1, . . . ,K are obtained at optimal{λ∗

i }, µ∗, andν∗.
Given {qk,n}, the objective function in Problem (10) is an
increasing function ofαk, k = 1, . . . ,K. Thus, the optimal

α∗
k ’s, k = 1, . . . ,K + 1 satisfy

K+1
∑

k=1

α∗
k = 1; otherwise,

the objective can be improved by increasing some of the
αk ’s, k = 1, . . . ,K. Then, the optimalαK+1 is given by

α∗
K+1 = 1 −

K
∑

k=1

α∗
k. With αk = α∗

k, k = 1, . . . ,K + 1,

qk,n = q∗k,n, k = 1, . . . ,K, n = 1, . . . , N , Problem (10)
becomes a LP with variables{qK+1,n}. The optimal values
of {qK+1,n} are obtained by solving this LP.

To summarize, one algorithm to solve (P-TS) is given in
Table I. For the algorithm given in Table I, the computation
time is dominated by the ellipsoid method in steps I)-III) and
the LP in step V). In particular, the time complexity of steps
1)-3) is of orderK2N , step 4) is of orderN , step 5) is of order
K2N , and step 6) is of orderK2. Thus, the time complexity
of steps 1)-6) is of orderK2N , i.e.,O(K2N). Note that step
II) iteratesO(K2) to converge [18], thus the time complexity
of steps I)-III) isO(K4N). The time complexity of the LP in
step V) isO(KN2+N3) [21]. Therefore, the time complexity
of the algorithm in Table I isO(K4N +KN2 +N3).

Similar with the single-user case, we have the following
proposition.
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TABLE I
ALGORITHM FOR SOLVING PROBLEM (P-TS)

I) Initialize {λi > 0}, µ > 0 andν > 0.
II) repeat

1) Initialize αk = 1/K, k = 1, . . . , K.
2) repeat

a) Fork = 1, . . . ,K, compute{qk,n} by (18).
b) For k = 1, . . . , K, obtainαk that maximizesLk with given

{qk,n} by bisection search.
3) until improvement ofLk, k = 1, . . . ,K converges to a prescribed

accuracy.
4) Compute{qK+1,n} andαK+1 by (19) and (20).
5) Compute the subgradient ofg({λi}, µ, ν) by (21).
6) Update{λi}, µ andν according to the ellipsoid method.

III) until {λi}, µ andν converge to a prescribed accuracy.
IV) Set q∗

k,n
= qk,n, k = 1, . . . , K,n = 1, . . . , N , α∗

k
= αk, k =

1, . . . , K andα∗
K+1 = 1−

K
∑

k=1

α∗
k

.

V) Obtain q∗K+1,n, n = 1, . . . , N by solving Problem (10) withαk =
α∗
k
, k = 1, . . . ,K + 1, qk,n = q∗

k,n
, k = 1, . . . , K,n = 1, . . . , N .

VI) For k = 1, . . . ,K + 1 and n = 1, . . . , N , if α∗
k

> 0, set p∗
k,n

=
q∗
k,n

/α∗
k

; if α∗
k

= 0 and q∗
k,n

= 0, set p∗
k,n

= 0; if α∗
k

= 0 and
q∗
k,n

> 0, setp∗
k,n

→ ∞.

Proposition 4.2: In the case of a multiuser OFDM-based
SWIPT system withK ≥ 2 andPpeak → ∞, the maximum
rate by the TS scheme, i.e.,RTS(P,∞), is achieved by
αK+1 = 0 or αK+1 → 0.

Proof: In the equivalent Problem (10) withPpeak → ∞,
the EH constraints and the total power constraint are indepen-
dent ofαk, k = 1, . . . ,K+1. The objective in Problem (10) is
an increasing function ofαk, k = 1, . . . ,K for given {qk,n}.
Thus, the maximum achievable rate is obtained by minimizing
the time allocated to the power slot, i.e.,αK+1 = 0 (when
q∗K+1,n = 0, ∀n) or αK+1 → 0 (when q∗K+1,n > 0 for some
n).

It is worth noting that for the multiuser system withK ≥ 2
and Ppeak → ∞, it is possible that the maximum rate by
the TS scheme is achieved byαK+1 = 0, in which case
no additional power slot is scheduled and all users simply
harvest energy at the slots scheduled for other users to transmit
information. In contrast, for the single-userK = 1 case, the
power slot is always needed ifE > 0.

Remark 4.1: In Problem (10), whenK ≥ 2 and Ek =
0, k = 1, . . . ,K, the system becomes a conventional TDMA
system without EH constraints. Assume that the harvesting
energy at each user by the optimal transmission strategy for
this system is given byEth

k , k = 1, . . . ,K. Then for a system
with 0 ≤ Ek ≤ Eth

k , k = 1, . . . ,K, the same rate as that by
the conventional TDMA system can be achieved.

B. Power Splitting

Since Problem (P-PS) is non-convex, the optimal solution
may be computationally difficult to obtain. Instead, we propose
a suboptimal algorithm to this problem by iteratively optimiz-
ing {pn} and {Π(n)} with fixed {ρk}, and optimizing{ρk}
with fixed {pn} and{Π(n)}.

Note that (P-PS) with given{pn} and{Π(n)} is a convex
problem, of which the objective function is a nonincreasing

function of ρk, ∀k. Thus, the optimal power splitting ratio
solution for (P-PS) with a given set of feasible{pn} and
{Π(n)} is obtained as

ρk =
Ek

ζ
N
∑

n=1
hk,npn

, k = 1, . . . ,K. (22)

Next, consider (P-PS) with a given set of feasibleρk ’s, i.e.,

max.
{pn},{Π(n)}

1

N

N
∑

n=1

wΠ(n) log2

(

1 +
hID
Π(n),npn

Γσ2

)

s.t. ζ

N
∑

n=1

hEH
k,npn ≥ Ek, k = 1, . . . ,K,

N
∑

n=1

pn ≤ P, 0 ≤ pn ≤ Ppeak, n = 1, . . . , N

(23)

wherehID
k,n , (1 − ρk)hk,n, ∀k, n andhEH

k,n , ρkhk,n, ∀k, n
can be viewed as the equivalent channel power gains for the
information and energy receivers, respectively. The problem
in (23) is non-convex, due to the integer SC allocationΠ(n).
However, it has been shown that the duality gap of a simi-
lar problem to (23) without the harvested energy constrains
converges to zero as the number of SCs,N , increases to
infinity [19], [20]. Thus, we solve Problem (23) by applying
the Lagrange duality method assuming that it has a zero duality
gap.2

The Lagrangian of Problem (23) is given by

L ({pn}, {Π(n)}, {λk}, µ) =

1

N

N
∑

n=1

wΠ(n) log2

(

1 +
hID
Π(n),npn

Γσ2

)

+
K
∑

k=1

λk

(

ζ

N
∑

n=1

h
EH
k,npn −Ek

)

+ µ

(

P −
N
∑

n=1

pn

)

(24)

whereλk ’s and µ are the non-negative dual variables asso-
ciated with the corresponding constraints in (23). The dual
function is then defined as

g ({λk}, µ) = max
{pn},{Π(n)}

L ({pn}, {Π(n)}, {λk}, µ) . (25)

The dual problem is thus given bymin{λk},µ g ({λk}, µ).
Consider the maximization problem in (25) for obtaining

g ({λk}, µ) with a given set of{λk} andµ. For each given
SC n, the maximization problem in (25) can be decomposed
as

max.
pn,Π(n)

Ln :=
wΠ(n)

N
log2

(

1 +
hID
Π(n),npn

Γσ2

)

+ ζ

K
∑

k=1

λkh
EH
k,npn − µpn

s.t. 0 ≤ pn ≤ Ppeak. (26)

2In our simulation setup considered in Section IV-C withN = 64, the
duality gap of Problem (23) is observed to be negligibly small and thus can
be ignored.
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Note that for the Lagrangian in (24), we have

L =

N
∑

n=1

Ln −
K
∑

k=1

λkEk + µP. (27)

From (26), we have

∂Ln

∂pn
=

wΠ(n)h
ID
Π(n),n

N(Γσ2 + hID
Π(n),npn) ln 2

+ ζ

K
∑

k=1

λkh
EH
k,n − µ. (28)

Thus, for any given SC allocationΠ(n), the optimal power
allocation for Problem (26) is obtained as

p∗n(Π) = min

























wΠ(n)

N

(

µ − ζ
K
∑

k=1
λkh

EH
k,n

)

ln 2

−
Γσ2

hID
Π(n),n













+

, Ppeak













.

(29)

Thus, for each givenn, the optimal SC allocationΠ∗(n) to
maximizeLn can be obtained, which is shown in (30) at the
top of next page. Note that (30) can be solved by exhaustive
search over the user set{1, . . . ,K}.

After obtaining g ({λk}, µ) with given {λk} and µ, the
minimization ofg ({λk}, µ) over{λk} andµ can be efficiently
solved by the ellipsoid method [18]. A subgradient of this
problem required for the ellipsoid method is provided by the
following proposition.

Proposition 4.3: For Problem (23) with a dual function
g ({λk}, µ), the following choice ofd is a subgradient for
g ({λk}, µ):

dk =















ζ
N
∑

n=1

hEH
k,nṗn − Ek, k = 1, . . . ,K,

P −
N
∑

n=1
ṗn, k = K + 1.

(31)

where{ṗn} is the solution of the maximization problem (25)
with given {λk} andµ.

Proof: The proof is similar as the proof of Proposition
4.1, and thus is omitted.

Remark 4.2: The optimal solution for (P-UB) can be ob-
tained by settinghEH

k,n = hID
k,n = hk,n, ∀k, n in Problem (23).

Hence, the above developed solution is also applicable for
Problem (P-UB).

For (P-PS) with given{ρk}, the optimal{pn} and{Π(n)}
are obtained by (29) and (30), respectively. Define the cor-
responding optimal value of Problem (23) asR(ρ), where
ρ = [ρ1, . . . , ρK ]T . ThenR(ρ) can be increased by optimizing
ρk ’s by (22). The above procedure can be iterated until
R(ρ) cannot be further improved. Note that Problem (23)
is guaranteed to be feasible at each iteration, provided that
the initial ρk ’s are feasible, since at each iteration we simply
decreaseρk ’s to make all the harvested energy constraints
tight. Thus, with given initial{ρk}, the iterative algorithm
is guaranteed to converge to a local optimum of (P-PS) when
all the harvested energy constraints in (23) are tight.

Note that the above local optimal solution depends on the
choice of initial {ρk}. To obtain a robust performance, we
randomly generateM feasible{ρk} as the initialization steps,

whereM is a sufficiently large number.3 For each initialization
step, the iterative algorithm is applied to obtain a local optimal
solution for (P-PS). The final solution is selected as the one
that achieves the maximum weighted sum-rate from all the
solutions.

To summarize, the above iterative algorithm to solve (P-
PS) is given in Table II. For the algorithm given in Table II,
the computation time is dominated by the ellipsoid method in
steps A)-C). In particular, in step B), the time complexity of
step a) is of orderKN , step b) is of orderKN , and step c)
is of orderK2. Thus, the time complexity of steps a)-c) is
of order K2 + KN , i.e., O(K2 + KN). Note that step B)
iteratesO(K2) to converge [18], thus the time complexity of
the ellipsoid method isO(K4 + K3N). Considering further
the number of initialization stepsM , the time complexity of
the algorithm in Table II isO(K4M +K3NM).

TABLE II
ITERATIVE ALGORITHM FOR SOLVING PROBLEM (P-PS)

I) Randomly generateM feasible{ρk} as different initialization steps.
II) For each initialization step:

1) Initialize {ρk}.
2) repeat

A) Compute{hEH
k,n

} and{hID
k,n

}. Initialize {λk > 0} andµ > 0.
B) repeat

a) Compute{pn} and {Π(n)} by (29) and (30) with given
{λk} andµ.

b) Compute the subgradient ofg({λk}, µ) by (31).
c) Update{λk} andµ according to the ellipsoid method.

C) until {λk} andµ converge to a prescribed accuracy.
D) Update{ρk} by (22) with fixed{pn} and{Π(n)}.

3) until

∣

∣

∣

∣

∣

ζ
N
∑

n=1
hEH
k,n

pn − Ek

∣

∣

∣

∣

∣

< δ,∀k, whereδ > 0 controls the

algorithm accuracy.
III) Select the one that achieves the maximum weighted sum-rate from the

M solutions.

C. Performance Comparison

We provide simulation results under a practical system
setup. For each user, we use the same parameters as the
single-user case withN = 64 in Section III. The channels
for different users are generated independently. In addition,
it is assumed thatwk = 1, ∀k, i.e., sum-rate maximization
is considered. The minimum harvested energy is assumed to
be the same for all users, i.e.,Ek = E, ∀k. The number of
initialization stepsM is set to be 100.

Figs. 6 and 7 show the achievable rates versus the minimum
required harvested energy by different schemes withK = 4.
We assumePpeak → ∞ in Fig. 6, andPpeak = 4P/N in Fig.
7. Fig. 8 shows the time ratio of the EH slot versus minimum
required harvested energy for the TS scheme in Fig. 7. In Fig.
6 with Ppeak → ∞, it is observed that whenE > 0, the
achievable rates by both TS and PS are less than the upper
bound. For the TS scheme, the maximum rate is achieved when

3In general, as the number of users increases, the number of initialization
steps needs to be increased to guarantee the robustness and optimality of
the algorithm. However, large number of initialization steps increases the
computation complexity, which may not be suitable for real-time applications.
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Fig. 6. Achievable rates versus minimum required harvestedenergy in
a multi-user OFDM-based SWIPT system, whereK = 4, N = 64, and
Ppeak → ∞.
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Fig. 7. Achievable rates versus minimum required harvestedenergy in
a multi-user OFDM-based SWIPT system, whereK = 4, N = 64, and
Ppeak = 4P/N .

E is less than 150µW (c.f. Remark 4.1); whenE is larger than
150µW, the achievable rate decreases asE increases. For the
PS scheme, the achievable rate decreases asE increases, since
for larger E more power needs to be split for EH at each
receiver. Comparing the TS and PS schemes, it is observed
that for sufficiently smallE (0 ≤ E ≤ 80µW), the achievable
rate by PS is larger than that by TS. This is because that
when the required harvested energy is sufficiently small, only a
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Fig. 8. Time ratio of the EH slot versus minimum required harvested energy
for the TS scheme in Fig. 7.

small portion of power needs to be split for energy harvesting,
and the PS scheme may take the advantage of the frequency
diversity by subcarrier allocation. For sufficiently largeE
(80 < E ≤ 255µW), it is observed that the achievable rate by
TS is larger than that by PS. In Fig. 7 withPpeak = 4P/N , it
is observed that whenE is sufficiently large, the TS scheme
becomes worse than the PS scheme. This is because that for
a finite peak power constraint on each SC, asE becomes
sufficiently large, the TS scheme needs to schedule a nonzero
EH slot to ensure all users harvest sufficient energy (see Fig.
8), the total information transmission time1 − αK+1 then
decreases and results in a degradation of achievable rate.
However, for80 < E ≤ 208µW, in which case the system
achieves large achievable rate (larger than70% of UB) while
each user harvests a reasonable value of energy (about32%
to 84% of the maximum possible value), the TS scheme still
outperforms the PS scheme.

Fig. 9 shows the achievable rates versus the number of users
by different schemes under fixed minimum required harvested
energyEk = E = 150µW andPpeak = 4P/N . In Fig. 9, it is
observed that for both TS and PS schemes, the achievable rate
increases as the number of users increases, and the rate tends to
be saturated due to the bandwidth and the transmission power
of the system is fixed. In particular, for the TS scheme, the
achievable rate withK = 2 is much larger (about32.8%) than
that with K = 1. This is because that for the caseK = 2,
one of the user decodes information when the other user is
harvesting energy; however, for the single-user caseK = 1,
the transmission time when the user is harvesting energy is not
utilized for information transmission. It is also observedin Fig.
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Fig. 9. Achievable rates versus number of users, wherePpeak = 4P/N
andEk = E = 150µW.

9 that for a general multiuser system with largeK ≥ 2, the
TS scheme outperforms the PS scheme. This is intuitively due
to the fact that as the number of users increases, the portion
of energy discarded at the information receiver at each user
after power splitting also becomes larger (c.f. Fig. 3), hence
using PS becomes inefficient for largeK.

V. CONCLUSION

This paper has studied the resource allocation optimization
for a multiuser OFDM-based downlink SWIPT system. Two
transmission schemes are investigated, namely, the TDMA-
based information transmission with TS applied at each re-
ceiver, and the OFDMA-based information transmission with
PS applied at each receiver. In both cases, the weighted sum-
rate is maximized subject to a given set of harvested energy
constraints as well as the peak and/or total transmission power
constraint. Our study suggests that, for the TS scheme, the
system can achieve the same rate as the conventional TDMA
system, and at the same time each user is still able to harvest
a reasonable value of energy. When the harvested energy
required at users is sufficiently large, however, a nonzero EH
slot may be needed. This in turn degrades the rate of the TS
scheme significantly. Hence, the PS scheme may outperform
the TS scheme when the harvested energy is sufficiently large.
From the view of implementation, the TS scheme is easier to
implement at the receiver side by simply switching between
the two operations of EH and ID. Moreover, in practical
circuits the power splitter or switcher may introduce insertion
loss and degrade the performance of the two schemes. This
issue is unaddressed in this paper, and is left for future work.

APPENDIX A
PROOF OFLEMMA 4.1

To prove the concavity of functionf(qk,n, αk), it suffices
to prove that for allqk,n ≥ 0, αk ≥ 0, and the convex
combination(q̂k,n, α̂k) = θ(q̇k,n, α̇k)+ (1− θ)(q̈k,n, α̈k) with

θ ∈ (0, 1), we havef(q̂k,n, α̂k) ≥ θf(q̇k,n, α̇k) + (1 −
θ)f(q̈k,n, α̈k). With qk,n ≥ 0, we consider the following four
cases forαk.

1) α̇k > 0 and α̈k > 0: In this case, we havêαk > 0.
Since log2

(

1 +
hk,nqk,n

Γσ2

)

is a concave function ofqk,n, it

follows that its perspectiveαk log2

(

1 +
hk,nqk,n

Γσ2αk

)

is jointly
concave inqk,n andαk for αk > 0 [21]. Therefore, we have
(q̂k,n, α̂k) ≥ θ(q̇k,n, α̇k) + (1 − θ)(q̈k,n, α̈k).

2) α̇k > 0 andα̈k = 0: In this case, we havef(q̈k,n, α̈k) =
0, α̂k = θα̇k, and

f(q̂k,n, α̂k) = θα̇k log2

(

1 +
hk,n(θq̇k,n + (1− θ)q̈k,n)

Γσ2θα̇k

)

= θα̇k log2

(

1 +
hk,nq̇k,n
Γσ2α̇k,n

+
(1− θ)hk,nq̈k,n

Γσ2θα̇k

)

Thus, we have f(q̂k,n, α̂k) ≥ θf(q̇k,n, α̇k) + (1 −
θ)f(q̈k,n, α̈k).

3) α̇k = 0 and α̈k > 0: Similar as case 2), we have
f(q̂k,n, α̂k) ≥ θf(q̇k,n, α̇k) + (1− θ)f(q̈k,n, α̈k).

4) α̇k = 0 andα̈k = 0: In this case, we havef(q̂k,n, α̂k) =
f(q̇k,n, α̇k) = f(q̈k,n, α̈k) = 0. Therefore,f(q̂k,n, α̂k) =
θf(q̇k,n, α̇k) + (1− θ)f(q̈k,n, α̈k).

From the above four cases, we havef(q̂k,n, α̂k) ≥
θf(q̇k,n, α̇k)+(1−θ)f(q̈k,n, α̈k) for all qk,n ≥ 0 andαk ≥ 0,
and thusf(qk,n, αk) is concave, which completes the proof.

APPENDIX B
PROOF OFPROPOSITION4.1

For anyλ̂i ≥ 0, i = 1, . . . ,K, µ̂ ≥ 0, ν̂ ≥ 0, we have

g
(

λ̂i, µ̂, ν̂
)

≥ L
(

{q̇k,n}, {α̇k}, {λ̂i}, µ̂, ν̂
)

= g ({λi}, µ, ν)

+

K
∑

i=1

(λ̂i − λi)



ζ

K+1
∑

k 6=i

N
∑

n=1

hi,nq̇k,n − Ei





+ (µ̂− µ)

(

P −
K+1
∑

k=1

N
∑

n=1

q̇k,n

)

+ (ν̂ − ν)

(

1−

K+1
∑

k=1

α̇k

)

By the definition of subgradient, the choice ofd as given in
(21) is indeed a subgradient forg ({λi}, µ, ν).
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