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Abstract—Construction of high rate Space Time Block Codes
(STBCs) with low decoding complexity has been studied widely
using techniques such as sphere decoding and non Maximum-
Likelihood (ML) decoders such as the QR decomposition de-
coder with M paths (QRDM decoder). Recently Ren et al.,
presented a new class of STBCs known as the block orthogonal
STBCs (BOSTBCs), which could be exploited by the QRDM
decoders to achieve significant decoding complexity reduction
without performance loss. The block orthogonal property ofthe
codes constructed was however only shown via simulations. In
this paper, we give analytical proofs for the block orthogonal
structure of various existing codes in literature including the
codes constructed in the paper by Ren et al. We show that codes
formed as the sum of Clifford Unitary Weight Designs (CUWDs)
or Coordinate Interleaved Orthogonal Designs (CIODs) exhibit
block orthogonal structure. We also provide new construction
of block orthogonal codes from Cyclic Division Algebras (CDAs)
and Crossed-Product Algebras (CPAs). In addition, we show how
the block orthogonal property of the STBCs can be exploited
to reduce the decoding complexity of a sphere decoder using a
depth first search approach. Simulation results of the decoding
complexity show a 30% reduction in the number of floating point
operations (FLOPS) of BOSTBCs as compared to STBCs without
the block orthogonal structure.

I. I NTRODUCTION & PRELIMINARIES

Consider a minimal-delay space-time coded Rayleigh quasi-
static flat fading MIMO channel with full channel state infor-
mation at the receiver (CSIR). The input output relation for
such a system is given by

Y = HX + N, (1)

whereH ∈ Cnr×nt is the channel matrix andN ∈ Cnr×nt is
the additive noise. BothH and N have entries that are i.i.d.
complex-Gaussian with zero mean and variance 1 andN0

respectively. The transmitted codeword isX ∈ Cnt×nt and
Y ∈ Cnr×nt is the received matrix. The ML decoding metric
to minimize over all possible values of the codewordX, is

M (X) =‖ Y − HX ‖2 . (2)

Definition 1: [1]: A linear STBC C over a real (1-
dimensional) signal setS, is a finite set ofnt × nt matrices,
where any codeword matrix belonging to the codeC is
obtained from,

X (x1, x2, ..., xK) =

K
∑

i=1

xiAi, (3)

by letting the real variablesx1, x2, · · · , xK take values from a
real signal setS, whereAi are fixednt×nt complex matrices
defining the code, known as the weight matrices. The rate of
this code is K

2nt
complex symbols per channel use.

We are interested in linear STBCs, since they admit sphere
decoding (SD) [2] and other QR decomposition based decod-
ing techniques such as the QRDM decoder [3] which are fast
ways of decoding for the variables.

Designing STBCs with low decoding complexity has been
studied widely in the literature. Orthogonal designs with single
symbol decodability were proposed in [4], [5], [6]. For STBCs
with more than two transmit antennas, these came at a cost
of reduced transmission rates. To increase the rate at the
cost of higher decoding complexity, multi-group decodable
STBCs were introduced in [7], [8], [9]. Another set of low
decoding complexity codes known as the fast decodable codes
were studied in [10]. Fast decodable codes have reduced SD
complexity owing to the fact that a few of the variables can
be decoded as single symbols or in groups if we condition
them with respect to the other variables. Fast decodable codes
for asymmetric systems using division algebras have been
reported [11]. The properties of fast decodable codes and
multi-group decodable codes were combined and a new class
of codes called fast group decodable codes were studied in
[12].

A new code property called theblock-orthogonalproperty
was studied in [3] which can be exploited by the QR-
decomposition based decoders to achieve significant decoding
complexity reduction without performance loss. This property
was exploited in [13] to reduce to the average ML decoding
complexity of the Golden code [14] and also in [15] to reduce
the worst-case complexity of the Golden code with a small
performance loss. While the other low decoding complexity
STBCs use the zero entries in the upper left portion of the
upper triangular matrix after the QR decomposition, these
decoders utilize the zeroes in the lower right portion to reduce
the complexity further.

The contributions of this paper are as follows:
• We generalize the set of sufficient conditions for an STBC

to be block orthogonal provided in [3] for sub-block sizes
greater than 1.

• We provide analytical proofs that the codes obtained from
the sum of Clifford Unitary Weight Designs (CUWDs)
[16] exhibit the block orthogonal property when we
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choose the right ordering and the right number of ma-
trices.

• We provide new methods of construction of BOST-
BCs using Coordinate Interleaved Orthogonal Designs
(CIODs) [17], Cyclic Division Algebras (CDAs) [18] and
Crossed Product Algebras (CPAs) [19] along with the
analytical proofs of their block orthogonality.

• We show that the ordering of variables of the STBC used
for the QR decomposition dictates the block orthogonal
structure and its parameters.

• We show how the block orthogonal property of the
STBCs can be exploited to reduce the decoding complex-
ity of a sphere decoder which uses a depth first search
approach.

• We provide bounds on the maximum possible reduction
in the Euclidean metrics (EM) calculation during sphere
decoding of BOSTBCs.

• Simulation results show that we can reduce the decoding
complexity of existing STBCs by upto 30% by utilizing
the block orthogonal property.

The remaining part of the paper is organized as follows: In
Section II the system model and some known classes of low
decoding complexity codes are reviewed. In Section III, we
derive a set of sufficient conditions for an STBC to be block
orthogonal and also the effect of ordering of matrices on it.In
Section IV, we present proofs of block orthogonal structureof
various existing codes and also discuss some new methods of
constructions of the same. In Section V, we discuss a method
to reduce the number of EM calculations while decoding a
BOSTBC using a depth first search based sphere decoder and
also derive bounds for the same. Simulation results for the
decoding complexity of various BOSTBCs are presented in
Section VI. Concluding remarks constitute Section VII.

Notations: Throughout the paper, bold lower-case letters
are used to denote vectors and bold upper-case letters to
denote matrices. For a complex variablex, denote the real and
imaginary part ofx by xI andxQ respectively. The sets of all
integers, all real and complex numbers are denoted byZ,R
andC, respectively. The operation of stacking the columns of
X one below the other is denoted byvec (X). The Kronecker
product is denoted by⊗, IT andOT denote theT×T identity
matrix and the null matrix, respectively. For a complex variable
x, the (̌�) operator acting onx is defined as follows

x̌ ,

[

xI −xQ

xQ xI

]

.

The (̌�) operator can similarly be applied to any matrixX ∈
Cn×m by replacing each entryxij by x̌ij , i = 1, 2, · · · , n, j =
1, 2, · · · ,m, resulting in a matrix denoted by̌X ∈ R2n×2m.
Given a complex vectorx = [x1, x2, · · · , xn]

T , x̃ is defined
as x̃ , [x1I , x1Q, · · · , xnI , xnQ]

T .

II. SYSTEM MODEL

For any Linear STBC with variablesx1, x2..., xK given by

(3), the generator matrixG [10] is defined byṽec (X) = Gx̃,

where x̃ = [x1, x2..., xK ]
T . In terms of the weight matrices,

the generator matrix can be written as

G =
[

˜vec (A1) ˜vec (A2) · · · ˜vec (AK)
]

.

Hence, for any STBC, (1) can be written as

ṽec (Y) = Heq x̃ + ṽec (N),

where Heq ∈ R2nrnt×K is given by Heq =
(

Int
⊗ Ȟ

)

G,
and x̃ = [x1, x2..., xK ] , with each xi drawn from a 1-
dimensional (PAM) constellation. Using the above equivalent
system model, the ML decoding metric (2) can be written as

M (x̃) =‖ ṽec (Y)− Heq x̃ ‖2 .

Using QR decomposition ofHeq, we getHeq = QR where
Q ∈ R2nrnt×K is an orthonormal matrix andR ∈ RK×K

is an upper triangular matrix. Using this, the ML decoding
metric now changes to

M (x̃) =‖ QT ṽec (Y)− Rx̃ ‖2=‖ y
′ − Rx̃ ‖2 . (4)

If we haveHeq = [h1h2..., hK ] , wherehi, i ∈ 1, 2, ...,K are
column vectors, then theQ andR matrices have the following
form obtained by the Gram-Schmidt orthogonalization:

Q = [q1 q2 ... qK ] , (5)

whereqi, i ∈ 1, 2, ...,K are column vectors, and

R =















‖ r1 ‖ 〈q1, h2〉 〈q1, h3〉 · · · 〈q1, hK〉
0 ‖ r2 ‖ 〈q2, h3〉 · · · 〈q2, hK〉
0 0 ‖ r3 ‖ · · · 〈q3, hK〉
...

...
...

. . .
...

0 0 0 · · · ‖ rK ‖















, (6)

wherer1 = h1, q1 = r1
‖r1‖

and for i = 2, ...K,

r i = hi −
i−1
∑

j=1

〈

qj , hi

〉

qj , qi =
r i

‖ r i ‖
.

A. Low decoding complexity codes

A brief overview of the known low decoding complexity
codes is given in this section. The codes that will be described
are multi-group decodable codes, fast decodable codes and fast
group decodable codes.

In case of a multi-group decodable STBC, the variables can
be partitioned into groups such that the ML decoding metric
is decoupled into submetrics such that only the members of
the same group need to be decoded jointly. It can be formally
defined as [8], [17], [16]:

Definition 2: An STBC is said to beg-group decodable
if there exists a partition of{1, 2, ...,K} into g non-empty
subsetsΓ1,Γ2, ...,Γg such that the following condition is
satisfied:

AlA
H
m + AmAH

l = 0,

wheneverl ∈ Γi andm ∈ Γj and i 6= j.



If we group all the variables of the same group together in (4),
then theR matrix for the SD [2], [20] in case of multi-group
decodable codes will be of the following form:

R =











∆1 0 · · · 0
0 ∆2 · · · 0
...

...
. . .

...
0 0 · · · ∆g











, (7)

where∆i, i = 1, 2, ..., g is a square upper triangular matrix.
Now, consider the standard SD of an STBC. Suppose theR

matrix as defined in (6) turns out to be such that when we fix
values for a set of symbols, the rest of the symbols become
group decodable, then the code is said to be fast decodable.
Formally, it is defined as follows:

Definition 3: An STBC is said to be fast SD if there exists
a partition of {1, 2, ..., L} whereL ≤ K into g non-empty
subsetsΓ1,Γ2, ...,Γg such that the following condition is
satisfied for alli < j

〈qi, hj〉 = 0, (8)

wheneveri ∈ Γp and j ∈ Γq andp 6= q whereqi andhj are
obtained from theQR decomposition of the equivalent channel
matrix Heq = [h1h2..., hK ] = QR with hi, i ∈ 1, 2, ...,K as
column vectors andQ = [q1 q2 ... qK ] with qi, i ∈ 1, 2, ...,K
as column vectors as defined in (5).

Hence, by conditioningK−L variables, the code becomes
g-group decodable. As a special case, when no conditioning
is needed, i.e.,L = K, then the code isg-group decodable.
TheR matrix for fast decodable codes will have the following
form:

R =

[

∆ B1

0 B2

]

, (9)

where∆ is anL×L block diagonal, upper triangular matrix,
B2 is a square upper triangular matrix andB1 is a rectangular
matrix.

Fast group decodable codes were introduced in [12]. These
codes combine the properties of multi-group decodable codes
and the fast decodable codes. These codes allow each of the
groups in the multi-group decodable codes to be fast decoded.
The R matrix for a fast group decodable code will have the
following form:

R =











R1 0 · · · 0
0 R2 · · · 0
...

...
. . .

...
0 0 · · · Rg











, (10)

where eachRi, i = 1, 2, ..., g will have the following form:

Ri =

[

∆i Bi1

0 Bi2

]

, (11)

where∆i is anLi×Li block diagonal, upper triangular matrix,
Bi2 is a square upper triangular matrix andBi1 is a rectangular
matrix.

III. B LOCK ORTHOGONAL STBCS

Block orthogonal codes introduced in [3] are a sub-class
of fast decodable / fast group decodable codes. They impose
an additional structure on the variables conditioned in these
codes. An STBC is said to be block orthogonal if theR matrix
of the code has the following structure:

R =











R1 B12 · · · B1Γ

0 R2 · · · B2Γ

...
...

. . .
...

0 0 · · · RΓ











, (12)

where eachRi, i = 1, 2, ...,Γ is a block diagonal, upper
triangular matrix withk blocksUi1,Ui2, ...,Uik, each of size
γ × γ and Bij , i = 1, 2, ...,Γ, j = i + 1, ...,Γ are non-zero
matrices.

The low decoding complexity codes described in Section
II utilize the zero entries in the upper triangular matrixR,
in the breadth first or depth first search decoders such as the
sphere decoder or the QRDM decoder to achieve decoding
complexity reduction. The fast sphere decoding complexity
[21] of an STBC is governed by the zeros in the upper left
block of theR matrix and does not exploit the zeros in the
lower right blocks. The zeros in the lower right block can be
used to reduce the average decoding complexity of the code
where the average decoding complexity refers to the average
number of floating operations performed by the decoder. The
zeros in the lower right block are also utilized in some non
ML decoders such as the QRDM decoder [3] or the modified
sphere decoder [15] to reduce the decoding complexity of the
code.

A. Design criteria for Block Orthogonal STBCs

The structure of block orthogonal matrix was defined in
(12). In general, the size of block diagonal matrices,Ri’s, and
the upper triangular blocks in these matrices can be arbitrary.
Similar to [3], we consider only the case thatRis have the
same size,k× k, and the upper triangular blocks inRis each
have the same sizeγ×γ. Hence, a block orthogonal code can
be represented by the parameters(Γ, k, γ):

• Γ: The number of matricesRi in R;
• k: The number of blocks in the block diagonal matrixRi

- denoted byUij , 1 ≤ j ≤ k;
• γ: The number of diagonal entries in the matricesUij .
A set of sufficient conditions for an STBC to be a BOSTBC

with the parameters(Γ, k, 1) are described below:
1) 2-Block BOSTBC:First a condition for the STBC to be

block orthogonal with parameters(2, k, 1) is given. The case
for Γ > 2 will be given subsequently.

Lemma 1: [3] Consider an STBC of sizeT × Nt with
weight matricesA1, ...,Ak , B1, ...,Bk. Let

Ai =

[

AR
i −AI

i

AI
i AR

i

]

, Bi =

[

BR
i −BI

i

BI
i BR

i

]

andAi , [aiup]2T×2Nt
, Bi , [biup]2T×2Nt

, i = 1, ..., k, u =
1, ...2T and p = 1, ...2Nt. This STBC has block orthogonal
structure(2, k, 1) if the following conditions are satisfied:



• {A1, ...,Ak,B1,Bk} is of dimension2k.
• AT

i Ai = I andBT
i Bi = I for i = 1, ..., k.

• AT
i Aj = −AT

j Ai andBT
i Bj = −BT

j Bi for i, j = 1, ..., k
and i 6= j.

•
∑

(p,q,s,t)∈S
dpqst = 0 for i, j = 1, ..., k and i 6= j where

dpqst =

k
∑

l=1

(

2T
∑

u=1

biupalus.

2T
∑

v=1

bjvqalvt

)

and each element (tuple) ofS includes four uniquely
permuted scalars drawn from{1, ..., 2Nt}.

2) Γ-block BOSTBC,Γ > 2: The set of conditions for an
STBC to have a block orthogonal structure with parameters
(Γ, k, 1) is now given.

Lemma 2: [3] Let the R matrix of an STBC with weight
matrices{A1, ...,AL} , {B1, ...,Bk} be

R =

[

R1 E
0 R2

]

,

whereR1 is aL×L block-orthogonal matrix with parameters
(Γ− 1, k, 1), E is an L × k matrix and R2 is a k × k
upper triangular matrix. The STBC will be a block orthogonal
STBC with parameters(Γ, k, 1) if the following conditions are
satisfied:

• The matrices{B1, ...,Bk} are Hurwitz-Radon orthogonal.
• The matrixE is para-unitary, i.e.,EHE = I .

The authors in [3] only discuss the conditions for the block
orthogonal codes with parameters(Γ, k, 1). These conditions
can be easily derived for BOSTBCs with parameters(Γ, k, γ)
as well. We first derive the conditions forΓ = 2.

Lemma 3:Consider an STBC of sizent × T with weight
matrices{A1,A2, ...,Al}, {B1,B2, ...,Bl}. Let the R matrix
for this STBC be of the form

R =

[

R1 E
0 R2

]

,

whereR1 andR2 arel×l upper triangular matrices,E is anl×l
matrix. The STBC will have a block orthogonal structure with
parameters(2, k, γ) if the following conditions are satisfied:

• The matrices{A1, ...,Al} are k-group decodable with
γ variables in each group, i.e.,{A1, ...,Al} can be
partitioned intok sets{S1, ...,Sk}, each of cardinalityγ
such thatAiA

H
j +AjA

H
i = 0 for all Ai ∈ Sm, Aj ∈ Sn,

m 6= n.
• The matrices{B1, ...,Bl} arek-group decodable withγ

variables in each group, i.e.,{B1, ...,Bl} can be parti-
tioned intok sets{S1, ...,Sk}, each of cardinalityγ such
that BiBH

j + BjBH
i = 0 for all Bi ∈ Sm, Bj ∈ Sn,

m 6= n.
• The set of matrices{A1, ...,Al,B1, ...,Bl} are such that

the R matrix obtained has full rank.
• The matrixEHE is a block diagonal matrix withk blocks

of sizeγ × γ.

Proof: Proof is given in Appendix A.

Lemma 4:Let the R matrix of an STBC with weight
matrices{A1, ...,AL} , {B1, ...,Bl} be

R =

[

R1 E
0 R2

]

,

whereR1 is aL×L block-orthogonal matrix with parameters
(Γ− 1, k, γ), E is anL × l matrix andR2 is a l × l upper
triangular matrix. The STBC will be a block orthogonal
STBC with parameters(Γ, k, γ) if the following conditions
are satisfied:

• The matrices{B1, ...,Bl} arek-group decodable withγ
variables in each group, i.e.,{B1, ...,Bl} can be parti-
tioned intok sets{S1, ...,Sk}, each of cardinalityγ such
that BiBH

j + BjBH
i = 0 for all Bi ∈ Sm, Bj ∈ Sn,

m 6= n.
• The set of matrices{A1, ...,AL,B1, ...,Bl} are such that

the R matrix obtained has full rank.
• The matrixEHE is a block diagonal matrix withk blocks

of sizeγ × γ.
Proof: Proof is given in Appendix B.

B. Effect of ordering on block orthogonality

We now show that the block orthogonality property depends
on the ordering of the weight matrices or equivalently the
ordering of the variables. If we do not choose the right
ordering, we will be unable to get the desired structure.

Example 1:Let us consider the Golden code [14] given by:

X =
1√
5

[

α (s1 + s2θ) jα
(

s3 + s4θ
)

α (s3 + s4θ) α
(

s1 + s2θ
)

]

, (13)

whereθ =
(

1 +
√
5
)

/2, θ =
(

1−
√
5
)

/2, α = 1+ j (1− θ),
α = 1 + j

(

1− θ
)

andsi = siI + jsiQ for i = 1, ..., 4.
If we order the variables (and hence the weight matrices)

as[s1I , s1Q, s2I , s2Q, s3I , s3Q, s4I , s4Q], then theR matrix for
SD has the following structure

R =

























t 0 0 t t t t t
0 t t 0 t t t t
0 0 t 0 t t t t
0 0 0 t t t t t
0 0 0 0 t 0 0 t
0 0 0 0 0 t t 0
0 0 0 0 0 0 t 0
0 0 0 0 0 0 0 t

























,

where t denotes non zero entries. This ordering of vari-
ables has presented a(4, 2, 1) block orthogonal structure
to the R matrix. Now, if we change the ordering to
[s1I , s2I , s1Q, s2Q, s3I , s4I , s3Q, s4Q], then theR matrix for
SD has the following structure

R =

























t t 0 0 t t t t
0 t 0 0 t t t t
0 0 t t t t t t
0 0 0 t t t t t
0 0 0 0 t t 0 0
0 0 0 0 0 t 0 0
0 0 0 0 0 0 t t
0 0 0 0 0 0 0 t

























,



wheret denotes non zero entries. This ordering of variables
has presented a(2, 2, 2) block orthogonal structure to theR
matrix. We can also have an ordering which can leave the
R matrix bereft of any block orthogonal structure such as
[s1I , s1Q, s4I , s2Q, s3I , s3Q, s2I , s4Q]. The structure of theR
matrix in this case will be

R =

























t 0 t 0 t t t t
0 t t t t t 0 t
0 0 t t t t t 0
0 0 0 t t t t t
0 0 0 0 t t t t
0 0 0 0 0 t t t
0 0 0 0 0 0 t t
0 0 0 0 0 0 0 t

























,

Also note that we have many entriesrij 6= 0 even when the
i-th and thej-th weight matrices are HR orthogonal such as
for casesi = 6, j = 8 and i = 5, j = 8 etc.

IV. CONSTRUCTION OFBLOCK ORTHOGONAL STBCS

Code constructions for block orthogonal STBCs with vari-
ous parameters were presented in [3]. It was shown via simu-
lations that these constructions were indeed block orthogonal
with the aforementioned parameters. We provide analytical
proofs for the block orthogonal structure of some of these
constructions which include also other well known codes such
as the BHV code [10], the Silver code [22] and the Srinath-
Rajan code [23]. We first study some basics of CUWDs and
CIODs.

A. CUWDs and CIODs

1) CUWDs: [16] Linear STBCs can be broadly classified
as unitary weight designs (UWDs) and non unitary weight
designs (NUWDs). A UWD is one for which all the weight
matrices are unitary and NUWDs are defined as those which
are not UWDs. Clifford unitary weight designs (CUWDs) are
a proper subclass of UWDs whose weight matrices satisfy
certain sufficient conditions forg-group ML decodability. To
state those sufficient conditions, let us list down the weight
matrices of a CUWD in the form of an array as shown in
Table I.

TABLE I
STRUCTURE OFCUWDS

A1 Aλ+1 · · · A(g−1)λ+1

A2 Aλ+2 · · · A(g−1)λ+2

...
...

. . .
...

Aλ A2λ · · · AK

All the weight matrices in one column belong to one group.
The weight matrices of CUWDs satisfy the following sufficient
conditions forg-group ML decodability.

• A1 = I .
• All the matrices in the first row exceptA1 should

square toI and should pair-wise anti-commute among
themselves.

• The unitary matrix in thei-th row and thej-th column
is equal toAiA(j1)+1.

The CUWD matrix representation for these matrices for a
system with2a transmit antennas are given below [9]. Let

σ1 =

[

0 1
−1 0

]

, σ2 =

[

0 j
j 0

]

, σ3 =

[

1 0
0 −1

]

.

The representations of the Clifford generators are given by:

R (γ1) = ±jσ⊗a

3 ,

R (γ2k) = I⊗
a−k

2

⊗

σ1

⊗

σ⊗k−1

3 ,

R (γ2k+1) = I⊗
a−k

2

⊗

σ2

⊗

σ⊗k−1

3 ,

R (γ0) = I2a ,

wherek = 1, ..., a. The weight matrices of the CUWD for a
rate-1, four group decodable STBC can be derived as follows.
Let αi = jR (γ2i)R (γ2i+1) for i = 1, 2, ..., a − 1. Let λ =
2a−1. The weight matrices are now given by

Aλ+1 = R (1) ,

A2λ+1 = R (γ2a+1) ,

A3λ+1 = R (γ2a) ,

Ajλ+k = AkAjλ+1,

Ak =

a−1
∏

i=1

αki

i

(14)

for j = 1, 2, 3, k = 1, ..λ and where(k1, k2, ..., ka−1) is the
binary representation ofk − 1.

2) CIODs: Coordinate interleaved orthogonal designs
(CIODs) were introduced in [17].

Definition 4: A CIOD for a system with2a transmit anten-
nas in variablesxi, i = 1, ...,K − 1, K even, is a2a × 2a

matrix S (x0, ..., xK−1), such that

S =





Θ1

(

x̃0, ..., x̃K
2 −1

)

0

0 Θ2

(

x̃K
2
, ..., x̃K−1

)



 , (15)

whereΘ1

(

x̃0, ..., x̃K
2 −1

)

andΘ2

(

x̃K
2
, ..., x̃K−1

)

are com-

plex orthogonal designs of size2a−1 × 2a−1 and x̃i =
xiI + jx(i+K/2)modK .

B. BOSTBCs from CUWDs

We now show that STBCs obtained as a sum of rate-1,
four group decodable CUWDs exhibit the block orthogonal
structure with parameters(2, 4, λ).

Lemma 5: Construction I:Let X1 (s1, s2, ..., s4λ) be a
rate-1, four group decodable STBC obtained from CUWD
[16] with weight matrices{A1,A2, ...,A4λ}. Let M be
an nt × nt matrix such that the set of weight matrices
{A1,A2, ...,A4λ,MA 1,MA 2, ...,MA 4λ} yield a full rank R
matrix. Then the STBC given by

X (s1, s2, ..., s8λ) = X1 (s1, s2, ..., s4λ)

+ M .X1 (s4λ+1, s4λ+2, ..., s8λ) ,



will exhibit a block orthogonal structure with parameters
(2, 4, λ).

Proof: Proof is given in Appendix C.
Example 2:Let us consider the BHV code given by:

X = X1 (s1, s2) + TX1 (z1, z2) ,

where X1 and X1 take the Alamouti structure, and

X1 (s1, s2) =

[

s1 −s∗2
s2 s∗1

]

, T =

[

1 0
0 −1

]

and

[z1, z2]
T

= U [s3, s4]
T
, whereU is a unitary matrix chosen

to maximize the minimum determinant. In this case, as per
the above construction,M = TU. Hence, the BHV code is a
BOSTBC with parameters(2, 4, 1).

C. BOSTBCs from Cyclic Division / Crossed Product Algebras

In this section, we show the block orthogonality property
of two constructions from either cyclic division algebras or
crossed product algebras over the fieldQ (i).

Lemma 6: Construction II:Let X be an STBC with weight
matrices {A1, ...,AK} and {B1, ...,BK} for the variables
[x1I ... xKI ] and [x1Q ... xKQ] respectively such thatBi =
jAi for 1 ≤ i ≤ K. Let the weight matrices be chosen such
that theR matrix has full rank. Then the codeX exhibits the
block orthogonal property with parameters(K, 2, 1) if we take
the ordering of weight matrices as{A1,B1, ...,AK ,BK}.

Proof: Proof is given in Appendix D.
Example 3:Consider any STBC obtained from the Cyclic

Division Algebra (CDA) [18] over the base fieldQ (i). The
structure of such an STBC will be

X =











x0 γσ (xn−1) · · · γσn−1 (x1)
x1 σ (x0) · · · γσn−1 (xn−2)
...

...
. . .

...
xn−1 σ (xn−2) · · · σn−1 (x0)











,

wherexk = xkI + jxkQ. The weight matrices of this STBC
satisfy the properties of the construction above. Hence, this is
a BOSTBC with parameters(n, 2, 1).

The next construction is a special case of the previous
construction.

Lemma 7: Construction III: Let X1 be a two group
decodable STBC with weight matrices{A1, ...,AK} and
{B1, ...,BK} for the variables[x1 ... xK ] and[xK+1 ... x2K ]
respectively such thatBi = jAi for i = 1, ...K. Let
M be a matrix such that the set of weight matrices
{A1,A2, ...,AK ,MA 1,MA 2, ...,MA K} yield a full rank R
matrix. Then the STBC given by

X (x1, x2, ..., x4K) = X1 (x1, x2, ..., x2K)

+ M .X1 (x2K+1, x2K+2, ..., x4K) ,

will exhibit a block orthogonal structure with parameters
(2, 2,K).

Proof: Proof is given in Appendix E.
Example 4:Consider the golden code as given in example

1. If we consider,

X1 =
1√
5

[

α (s1 + s2θ) 0

0 α
(

s1 + s2θ
)

]

,

andM as

M =

[

0 j
1 0

]

,

we can see that the golden code is a BOSTBC with parameters
(2, 2, 2).

D. BOSTBCs from CIODs

In this section we show that the BOSTBCs that can be
obtained from CIODs [17].

Lemma 8: Construction IV:Let X1 (s1, s2, ..., sK) be a
rate-1 CIOD with weight matrices{A1,A2, ...,AK}. Let
M be a matrix such that the set of weight matrices
{A1,A2, ...,AK ,MA 1,MA 2, ...,MA K} yield a full rank R
matrix. Then the STBC given by

X (s1, s2, ..., s2K) = X1 (s1, s2, ..., sK)

+ MX 1 (sK+1, sK+2, ..., s2K) ,

will exhibit a block orthogonal structure with parameters
(2,K/2, 2).

Proof: Proof is given in Appendix F.
Example 5:Consider the2×2 code constructed by Srinath

et al. in [23] given by

X =

[

x1I + jx2Q ejπ/4 (x3I + jx4Q)

ejπ/4 (x4I + jx3Q) x2I + jx1Q

]

,

If we consider,

X1 =

[

x1I + jx2Q 0
0 x2I + jx1Q

]

,

andM as

M =

[

0 ejπ/4

ejπ/4 0

]

,

we see that the code is a BOSTBC with parameters(2, 2, 2).

V. REDUCTION OFDECODING COMPLEXITY FORBLOCK

ORTHOGONAL CODES

In this section we describe how we can achieve decoding
complexity reduction for BOSTBCs. Also we show how
the block orthogonal structure helps in the reduction of the
Euclidean Metric (EM) calculations and the sorting operations
for a sphere decoder using a depth first search algorithm. We
also briefly present the implications of the block orthogonal
structure for QRDM decoders as discussed in [3].

A. ML decoding complexity reduction

The sphere decoder under consideration in this section will
be the depth first search algorithm based decoder with Schnorr-
Euchner enumeration and pruning as discussed in [13]. We first
consider the case ofΓ = 2 Block Orthogonal Code.
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Fig. 1. First two levels of the sphere decoder tree for the code in example
(6)

1) Γ = 2: Consider a BOSTBC with parameters(2, k, γ).
The structure of theR matrix for this code is as mentioned
in (12) with two blocksR1 andR2. This code is fast sphere
decodable, i.e., for a given set of values of variables in sub-
blocks U2,j, j = 1, ..., k, we can decode the variables in
U1,j and U1,l, 1 ≤ j < l ≤ k, independently. The ML
decoding complexity of this code will beO

(

Mkγ+γ
)

. Due
to the structure of the block orthogonal code, we can see that
the variables in the blocksU2,j andU2,l, 1 ≤ j < l ≤ k, are
also independent in the sense that the EM calculations and the
Schnorr-Euchner enumeration based sorting operations forthe
variables inU2,j are independent of the values taken by the
variables inU2,l. We illustrate this point with an example.

Example 6:Consider a hypothetical BOSTBC having the
parameters(2, 2, 1) with variables{x1, x2, x3, x4}. The R
matrix for this BOSTBC will be of the form

R =









t 0 t t
0 t t t
0 0 t 0
0 0 0 t









The first two levels of the search tree for the sphere decoder
are shown in in Figure 1 with the variables assumed to be
taking values from a 2-PAM constellation - A. As it can be
seen from the figure, irrespective of the value taken byx4, the
edge weights (Euclidean metrics) for the variablex3 remain
the same.
From example 6 we can see that instead of calculating the
EM repeatedly, we can store these values in a look up table
when they are calculated for the first time and retrieve them
whenever needed. This technique of avoiding repeated calcu-
lations by storing the previously calculated values is known
as Memoization[24]. This approach reduces the number of
floating point operations (FLOPS) significantly.

2) Γ > 2: Consider a BOSTBC with parameters(Γ, k, γ).
The structure of theR matrix for this code is as mentioned

in (12). Consider the blockRi, 1 < i ≤ Γ of the R matrix.
For a given set of values for the variables in the blocksRm,
m > i, we can see that the variables in the blocksUi,j and
Ui,l, 1 ≤ j < l ≤ k, are independent as seen in the case
of Γ = 2. Hence, we can use memoization here as well in
order to reduce the number of EM calculations and sorting
operations.

B. Complexity reduction bound and Memory requirements for
depth first sphere decoder

We calculate the maximum possible reduction in the number
of EM values calculated and the memory requirements for the
look up tables in this section. First we consider the case of
Γ = 2.

1) Γ = 2: Considering a(2, k, γ) BOSTBC, we first
calculate the memory requirements for storing the EM values.
Let each of the variables of the STBC take values from a
constellation of sizeM . The number of EM values that need
to be stored for a single sub-blockU2,j , 1 ≤ j < k, is

Mem (U2,j) = M +M2 + ...+Mγ

=
Mγ+1 −M

M − 1
=

M (Mγ − 1)

M − 1
.

These values will need to be stored for(k − 1) such sub-
blocks. The total memory requirement for the blockR2 is,

Mem (R2) = (k − 1)
M (Mγ − 1)

M − 1
.

We now find the maximum number of reductions possible
for the EM calculations for this BOSTBC. This will occur
when all the nodes are visited in the depth first search. For the
block R2, the number of EM calculations for a code without
the block orthogonal structure would be

OSTBC = M +M2 + ...+Mkγ =
M
(

Mkγ − 1
)

M − 1
.

For a BOSTBC, if we use the look up table, we would be
performing the EM calculations only once per each of the
sub-block. Fork sub-blocks, the number of EM calculations
will be

OBOSTBC = k
(

M +M2 + ...+Mγ
)

= k
M (Mγ − 1)

M − 1
.

We therefore perform only a small percentage of EM calcula-
tions if the code exhibits a block orthogonal structure. We call
the ratio of the the number of EM calculated for a BOSTBC
to the number of EM calculated if the STBC did not possess
a block orthogonal structure as Euclidean Metric Reduction
Ratio (EMRR) given by

OBOSTBC

OSTBC
=

kM(Mγ−1)
M−1

M(Mkγ−1)
M−1

=
k (Mγ − 1)

(Mkγ − 1)

≈ k

M (k−1)γ
,

which is a decreasing function ofk, M andγ.



2) Γ > 2: Considering a(Γ, k, γ) BOSTBC, we first
calculate the memory requirements for storing the EM values.
The memory requirement per sub-blockUi,j , 1 ≤ j < k, of
any blockRi, 1 < j ≤ Γ, under consideration is the same as
that of the case of the sub-blockU2,j in theΓ = 2 case. This
is so because, for a given set of values for the variables in
the blocksRm, i < m ≤ Γ, the memory requirement for the
sub-blockUi,j can be calculated in the similar way as it was
calculated forU2,j for the Γ = 2 case. Hence, the memory
requirements for a blockRi for a given set of values for the
variables in the blocksRm is the same as that ofR2 in the
Γ = 2 case.

Mem (Ri)conditional = (k − 1)
M (Mγ − 1)

M − 1
.

We can reuse the same memory for another set of given values
of the variables ofRm, as the previous EM values will not
be retrieved again as the depth first search algorithm does not
revisit any of the previously visited nodes (i.e., any previously
given set of values for the variables in the tree). Hence, we
can write,

Mem (Ri) = (k − 1)
M (Mγ − 1)

M − 1
,

for 1 < i ≤ Γ. Since there areΓ − 1 such blocks, the total
memory requirement for storing the EM values will be

Mem (R) = (Γ− 1) (k − 1)
M (Mγ − 1)

M − 1
.

We now find the maximum number of reductions possible
for the EM calculations for this BOSTBC. This will occur
when all the nodes are visited in the depth first search. For
blocks other thanR1, the number of EM calculations for a
code without the block orthogonal structure would be

OSTBC = M +M2 + ...+M (Γ−1)kγ

=
M
(

M (Γ−1)kγ − 1
)

M − 1
.

For a BOSTBC, if we consider the blockRi and for a given
set of values for the variables inRm, i < m ≤ Γ, if we use the
look up table, we would be performing the EM calculations
only once per each of the sub-block. Fork sub-blocks, the
number of EM calculations will be

OBOSTBC (Ri)conditional = k
(

M +M2 + ...+Mγ
)

= k
M (Mγ − 1)

M − 1
.

These calculations need to be repeated for all theM (Γ−i)kγ

values of the variables inRm.

OBOSTBC (Ri) = kM (Γ−i)kγ
(

M +M2 + ...+Mγ
)

= kM (Γ−i)kγ M (Mγ − 1)

M − 1
.

The EM calculations for all the blocks is given by

OBOSTBC =

Γ
∑

i=2

kM (Γ−i)kγ M (Mγ − 1)

M − 1

=
kM (Mγ − 1)

M − 1

M (Γ−1)kγ − 1

Mkγ − 1
.

The EMRR in this case will be

OBOSTBC

OSTBC
=

kM(Mγ−1)
M−1

M(Γ−1)kγ−1
Mkγ−1

M(M(Γ−1)kγ−1)
M−1

=
k (Mγ − 1)

(Mkγ − 1)
≈ k

M (k−1)γ
.

We can see that the ratio of the reduction of operations is
independent ofΓ and dependent only onk andγ.

C. QRDM decoding complexity reduction [3]

In this section we review the simplified QRDM decoding
method which exploits the block orthogonal structure of a
code as presented in [3]. The traditional QRDM decoder is
a breadth first search decoder in whichMc surviving paths
with the smallest Euclidean metrics are picked at each stage
and the rest of the paths are discarded. IfMc = M (Γ−1)kγ

for a block orthogonal code with parameters(Γ, k, γ), then
the QRDM decoder gives ML performance. The simplified
QRDM decoder utilizes the block orthogonal structure of the
code to find virtual paths between nodes, which reduces the
number of surviving paths to effectivelyMceq , to reduce the
number of Euclidean metric calculations. For details of how
this is achieved, refer to [3]. The maximum reduction in
decoding complexity bound for a QRDM decoder is given
by

OBOSTBC

OSTBC
=

Mγ

k (Mγ − 1)
.

VI. SIMULATION RESULTS AND DISCUSSION

In all the simulation scenarios in this section, we consider
quasi-static Rayleigh flat fading channels and the channel state
information (CSI) is known at the receiver perfectly. Any
STBC which does not have a block orthogonal property is
assumed to be a fast decodable STBC which is conditionallyk
group decodable withγ symbols per group, but not possessing
the block diagonal structure for the blocksR2, ...,RΓ.

A. Sphere decoding using depth first search

We first plot the EMRR for BOSTBCs with different
parameters against the SNR. Figures 2 and 3 show the plot
of OBOSTBC/OSTBC vs SNR for a(2, 4, 1) BOSTBC (ex-
amples - Silver code, BHV code) with the symbols being
drawn from 4-QAM, 16-QAM and 64-QAM. We can clearly
see that the reduction in the EMRR with the increasing size
of signal constellation as explained in section V-B. It can
also be seen that a larger value ofk gives a lower EMRR
if we keep the productkγ constant. Figure 4 shows the
plot of OBOSTBC/OSTBC vs SNR for a(2, 4, 2) BOSTBC
(examples -4 × 2 code from Pavan et al [23]) with the
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Fig. 3. The number of Euclidean metrics calculated ratio
OBOSTBC/OSTBC for a BOSTBC with parameters(2, 2, 2)

symbols being drawn from 4-QAM and 16-QAM. Notice that
the(2, 4, 2) BOSTBC offers a lower EMRR as compared to the
(2, 4, 1) BOSTBC due to the higher value ofγ, as explained
in section V-B.

We now compare the total number of FLOPS performed
by the sphere decoder for a BOSTBC against that of an
STBC without a block orthogonal structure for various SNRs.
Figures 5, 6, 7 show the plot of number of FLOPS vs SNR
for a (2, 4, 1) BOSTBC, a(2, 2, 2) BOSTBC and a(2, 4, 2)
BOSTBC respectively with the symbols being drawn from 4-
QAM, 16-QAM and 64-QAM for the first two figures and
from 4-QAM and 16-QAM for the last one. We can see that
the BOSTBCs offer around 30% reduction in the number of
FLOPS for the(2, 4, 1) and (2, 4, 2) BOSTBCs and around
15% for the(2, 2, 2) BOSTBC at low SNRs.
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B. Comparison with the QRDM decoder approach

The primary difference between the depth first and the
breadth first (QRDM) approach is the variation of the EMRR
with respect to SNR. As seen in the figures from section VI-A,
the effect of the block orthogonal property reduces as the SNR
increases in the depth first sphere decoder. This is owing to
the Schnorr-Euchner enumeration and pruning of branches. As
the SNR increases, the decoder needs to visit fewer number of
nodes in order to find the ML solution and hence the EMRR
also tends to 1. However, in the case of a breadth first search
algorithm, all the nodes need to be visited in order to arrive
to a solution. Hence the EMRR is independent of the SNR in
the breadth first search case. To reduce the number of nodes
visited, onlyMc paths are selected in the QRDM algorithm
to reduce complexity. The value ofMc chosen needs to be
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varied with SNR in order to get near ML performance.

VII. C ONCLUSION

In this paper we have studied the block orthogonal property
of STBCs. We have shown that this property depends upon the
ordering of weight matrices. We have also provided proofs of
various existing codes exhibiting the block orthogonal prop-
erty. A method of exploiting the block orthogonal structureof
the STBCs to reduce the sphere decoding complexity was also
given with bounds on the maximum possible reduction.
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APPENDIX A
PROOF OFLEMMA 3

Following the system model in Section II, we have the
equivalent channel matrixHeq ∈ R2nrnt×2l as Heq =
[H1 H2] = [h1 ... hl hl+1 ... h2l]. We know from Theorem
2 of [23] that, if any two weight matricesAi and Aj are
Hurwitz-Radon orthogonal, then thei-th and thej-th columns
of the Heq matrix are orthogonal. Due to the conditions on
the weight matrices, we have thatHT

1 H1 and HT
2 H2 are

block diagonal withk blocks, each of sizeγ × γ. Under
QR decomposition,Heq = QR with Q = [Q1 Q2] with

Q1,Q2 ∈ R2nrnt×l and R =

[

R1 E
0 R2

]

as mentioned. It

can be seen from Lemma 2 of [21] that the matrixR1 is block
diagonal withk blocks, each of sizeγ×γ. We can now write,

H2 = Q1E + Q2R2,

(H2 − Q1E)T (H2 − Q1E) = RT
2 QT

2 Q2R2.

Simplifying,

HT
2 H2 − ET E = RT

2 R2.

Now, if ET E is block diagonal withk blocks of sizeγ × γ
each⇒ RT

2 R2 is block diagonal withk blocks of sizeγ × γ
each. SinceR2 is upper triangular and full rank, this means
that R2 is block diagonal withk blocks of sizeγ × γ each.

APPENDIX B
PROOF OFLEMMA 4

Following the system model in Section II, we have the
equivalent channel matrixHeq ∈ R2nrnt×L+l as Heq =
[H1 H2] = [h1 ... hL hL+1 ... hL+l]. We know from
Theorem 2 of [23] that, if any two weight matricesBi and
Bj are Hurwitz-Radon orthogonal, then thei-th and thej-
th columns of theHeq matrix are orthogonal. Due to the
conditions on the weight matrices, we have thatHT

2 H2 is
block diagonal withk blocks, each of sizeγ × γ. Under
QR decomposition,Heq = QR with Q = [Q1 Q2] with

Q1 ∈ R2nrnt×L and Q2 ∈ R2nrnt×l and R =

[

R1 E
0 R2

]

as mentioned. We can now write,

H2 = Q1E + Q2R2,

(H2 − Q1E)T (H2 − Q1E) = RT
2 QT

2 Q2R2.

Simplifying,

HT
2 H2 − ET E = RT

2 R2.

Now, if ET E is block diagonal withk blocks of sizeγ × γ
each⇒ RT

2 R2 is block diagonal withk blocks of sizeγ × γ
each. SinceR2 is upper triangular and full rank, this means
that R2 is block diagonal withk blocks of sizeγ × γ each.

APPENDIX C
STRUCTURE OF THER MATRIX OBTAINED FROM

CONSTRUCTION I

According to construction I, the structure of the STBC is

X = X1 (s1, s2, ..., s4λ) + MX 2 (s4λ+1, s4λ+2, ..., s8λ) ,

whereX1 is a rate-1 four group decodable STBCs obtained
from CUWDs as described in Section IV-A1.

Let theR matrix for this code have the following structure:

R =

[

R1 E
0 R2

]

,

whereR1, E andR2 are4λ× 4λ matrices.

A. Structure ofR1

From [21], it can be easily seen thatY1 has a block diagonal
structure with four blocks, and each block of the sizeλ× λ.

R1 =









R11 0 0 0
0 R12 0 0
0 0 R13 0
0 0 0 R14









,

whereR1i, i = 1, ...4 is a λ× λ given by (16).
Proposition 1: The non-zero blocks of the matrixR1 are

equal i.e.,R11 = R1i, for i = 2, 3, 4.
Proof: It is sufficient for us to prove that

‖ r j ‖=‖ r4(i−1)λ+j ‖ (17)

and
〈

qj , hk

〉

=
〈

q4(i−1)λ+j , h4(i−1)λ+k

〉

, (18)

for i = 2, 3, 4, j = 1, ..., λ− 1 andk = j + 1, ..., λ.
The proof is by induction. We first consider the case of

j = 1. We also recall [23] that

〈hk, hj〉 =
1

2
tr
(

ȞǍkǍ
T

j Ȟ
T
)

.

Now, for (17) we have,

‖ r1 ‖2 = 〈h1, h1〉

=
1

2
tr
(

ȞǍ1Ǎ
T

1 Ȟ
T
)

=
1

2
tr
(

ȞǍ4(i−1)λ+1Ǎ
T

4(i−1)λ+1Ȟ
T
)

=‖ r4(i−1)λ+1 ‖2,



R1i =















‖ r4(i−1)λ+1 ‖
〈

q4(i−1)λ+1, h4(i−1)λ+2

〉

· · ·
〈

q4(i−1)λ+1, h4(i−1)λ+λ

〉

0 ‖ r4(i−1)λ+2 ‖ · · ·
〈

q4(i−1)λ+2, h4(i−1)λ+λ

〉

...
...

. . .
...

0 0 · · · ‖ r4(i−1)λ+λ ‖















, (16)

since r4(i−1)λ+1 = h4(i−1)λ+1 and ǍkǍ
T

k = Ǐ for k =
1, ..., 4λ. For (18) we have,

〈q1, hk〉 =
1

‖ r1 ‖ 〈h1, hk〉

=
tr
(

ȞǍ1Ǎ
T

k Ȟ
T
)

2 ‖ r1 ‖

=
tr
(

ȞǍ4(i−1)λ+1Ǎ
T

4(i−1)λ+1Ǎ
T

k Ȟ
T
)

2 ‖ r4(i−1)λ+1 ‖

=
tr
(

ȞǍ4(i−1)λ+1Ǎ
T

4(i−1)λ+kȞ
T
)

2 ‖ r4(i−1)λ+1 ‖
=
〈

q4(i−1)λ+1, h4(i−1)λ+k

〉

,

sinceAkA4(i−1)λ+1 = A4(i−1)λ+k. Now we prove equations
(17) and (18) for arbitraryj. We prove this by induction. Let
the equations hold true for alll < j. We now have for equation
(17),

‖ r j ‖2 = 〈r j , r j〉

=

〈

hj −
j−1
∑

l=1

〈ql, hj〉 ql , hj −
j−1
∑

k=1

〈qk, hj〉qk

〉

= 〈hj , hj〉 − 2

j−1
∑

l=1

〈ql, hj〉2

+

j−1
∑

k=1

j−1
∑

l=1

〈ql, hj〉 〈qk, hj〉 〈ql, qk〉

=
1

2
tr
(

ȞǍjǍ
T

j Ȟ
T
)

− 2

j−1
∑

l=1

〈ql, hj〉2

+

j−1
∑

k=1

j−1
∑

l=1

〈ql, hj〉 〈qk, hj〉 〈ql, qk〉

=
1

2
tr
(

ȞǍ4(i−1)λ+jǍ
T

4(i−1)λ+jȞ
T
)

− 2

j−1
∑

l=1

〈

q4(i−1)λ+l, h4(i−1)λ+j

〉2

+

j−1
∑

k=1

j−1
∑

l=1

〈

q4(i−1)λ+l, h4(i−1)λ+j

〉

.

〈

q4(i−1)λ+k, h4(i−1)λ+j

〉〈

q4(i−1)λ+l, q4(i−1)λ+k

〉

= ‖ r4(i−1)λ+j ‖2,

which follows from the induction hypothesis and the fact that
ǍjǍ

T

j = Ǐ for j = 1, ..., 4λ . For equation (18),

〈

qj , hk

〉

=
1

‖ r j ‖

〈

hj −
j−1
∑

l=1

〈ql, hj〉ql , hk

〉

=
1

‖ r j ‖

[

〈hj , hk〉 −
j−1
∑

l=1

〈ql, hj〉 〈ql, hk〉
]

=
1

2 ‖ r j ‖

[

tr
(

ȞǍjǍ
T

k Ȟ
T
)

−
j−1
∑

l=1

〈ql, hj〉 〈ql, hk〉
]

=
tr
(

ȞǍjǍ4(i−1)λ+1Ǎ
T

4(i−1)λ+1Ǎ
T

k Ȟ
T
)

2 ‖ r4(i−1)λ+j ‖

− 1

2 ‖ r4(i−1)λ+j ‖

j−1
∑

l=1

〈

q4(i−1)λ+l, h4(i−1)λ+j

〉

.

〈

q4(i−1)λ+l, h4(i−1)λ+k

〉

=
tr
(

ȞǍ4(i−1)λ+jǍ
T

4(i−1)λ+kȞ
T
)

2 ‖ r4(i−1)λ+j ‖

− 1

2 ‖ r4(i−1)λ+j ‖

j−1
∑

l=1

〈

q4(i−1)λ+l, h4(i−1)λ+j

〉

.

〈

q4(i−1)λ+l, h4(i−1)λ+k

〉

=
〈

q4(i−1)λ+j , h4(i−1)λ+k

〉

.

B. Structure ofE

The matrix E is key for the block orthogonality property
of the STBC in question. It is required to be para-unitary
for achieving this property. The structure of the matrixE for
Construction I is described in the following proposition.

Proposition 2: The matrixE is of the form

E =









E1 −E2 −E3 −E4

E2 E1 −E4P E3P
E3 E4P E1 −E2P
E4 −E3P E2P E1









, (19)

whereEi, i = 1, ..., 4 are λ × λ matrices andP is a λ × λ



permutation matrix given by

P =















0 0 · · · 0 1
0 0 · · · 1 0
...

...
. . .

...
...

0 1 · · · 0 0
1 0 · · · 0 0















.

Proof: Let us represent the matrixE usingλ× λ blocks
as:

E =









E11 E12 E13 E14

E21 E22 E23 E24

E31 E32 E33 E34

E41 E42 E43 E44









,

We first prove thatE11 = Eii for i = 2, 3, 4. The proof
is by induction on the rows of the matrixE11. The first row
entries of the matrixE11 are given by

E11 (1, k) = 〈q1, h4λ+k〉

and for the matrixEii are given by

Eii (1, k) =
〈

q4(i−1)λ+1, h4λ+4(i−1)λ+k

〉

=

〈

h4(i−1)λ+1, h4λ+4(i−1)λ+k

〉

‖ r4(i−1)λ+1 ‖ .

Due to the construction of the STBC, we haveA4λ+l = MA l,
for l = 1, ..., 4λ. Using this, we get

Eii (1, k) =
tr
(

ȞǍ4(i−1)λ+1Ǎ
T

4(i−1)λ+kM̌
T

Ȟ
T
)

2 ‖ r4(i−1)λ+1 ‖

=
tr
(

ȞǍ4(i−1)λ+1Ǎ
T

4(i−1)λ+1Ǎ
T

k M̌
T

Ȟ
T
)

2 ‖ r4(i−1)λ+1 ‖

=
tr
(

ȞǍ1Ǎ
T

k M̌
T

Ȟ
T
)

2 ‖ r1 ‖
= 〈q1, h4λ+k〉
= E11 (1, k) .

Now, let us assume that rowm of Eii is equal to the rowm
of E11 for all m < j. The j-th row of E11 is given by

E11 (j, k) =
〈

qj , h4λ+k

〉

,

and thej-th row of Eii is given by

Eii (j, k) =
〈

q4(i−1)λ+j , h4λ+4(i−1)λ+k

〉

=
1

‖ r4(i−1)λ+j ‖
〈

h4(i−1)λ+j

−
j−1
∑

m=1

〈

q4(i−1)λ+m, h4(i−1)λ+j

〉

q4(i−1)λ+m,

h4λ+4(i−1)λ+k

〉

=
1

‖ r4(i−1)λ+j ‖
〈

h4(i−1)λ+j , h4λ+4(i−1)λ+k

〉

− 1

‖ r4(i−1)λ+j ‖

j−1
∑

m=1

〈

q4(i−1)λ+m, h4(i−1)λ+j

〉

.

〈

q4(i−1)λ+m, h4λ+4(i−1)λ+k

〉

=
tr
(

ȞǍ4(i−1)λ+jǍ
T

4(i−1)λ+kM̌
T

Ȟ
T
)

2 ‖ r4(i−1)λ+j ‖

− 1

2 ‖ r4(i−1)λ+j ‖

j−1
∑

m=1

〈qm, hj〉 〈qm, h4λ+k〉

=
tr
(

ȞǍjǍ4(i−1)λ+1Ǎ
T

4(i−1)λ+1Ǎ
T

k M̌
T

Ȟ
T
)

2 ‖ r j ‖

− 1

2 ‖ r j ‖

j−1
∑

m=1

〈qm, hj〉 〈qm, h4λ+k〉

=
1

2 ‖ r j ‖
〈hj , h4λ+k〉

− 1

2 ‖ r j ‖

j−1
∑

m=1

〈qm, hj〉 〈qm, h4λ+k〉

= E11 (j, k) .

We now prove thatE2 = E21 = −E12 = E43P = −E34P.
The proofs for the matricesE3 andE4 are very similar. First
step is to prove thatE21 = −E12. The proof is by induction
on the rows of the matrixE21. The first row entries of the
matrix E21 are given by

E21 (1, k) =
〈

qλ+1, h4λ+k

〉

=
1

2 ‖ r1 ‖ tr
(

ȞǍλ+1Ǎ
T

λ+kM̌
T

Ȟ
T
)

and for the matrixE12 are given by

E12 (1, k) = 〈q1, h5λ+k〉

=
1

‖ r1 ‖ 〈h1, h5λ+k〉 .



Due to the construction of the STBC, we haveA4λ+l = MA l,
for l = 1, ..., 4λ. Using this, we get

E12 (1, k) =
1

2 ‖ r1 ‖ tr
(

ȞǍ1Ǎ
T

λ+kM̌
T

Ȟ
T
)

=
1

2 ‖ r1 ‖ tr
(

ȞǍ1Ǎ
T

λ+1Ǎ
T

k M̌
T

Ȟ
T
)

= − 1

2 ‖ r1 ‖ tr
(

ȞǍλ+1Ǎ
T

k M̌
T

Ȟ
T
)

=
〈

qλ+1, h4λ+k

〉

= E21 (1, k) .

Now, let us assume that rowm of E21 is equal to the rowm
of E12 for all m < j. The j-th row of E21 is given by

E21 (j, k) =
〈

qλ+j , h4λ+k

〉

,

and thej-th row of E12 is given by

E12 (j, k) =
〈

qj , h5λ+k

〉

=
1

‖ r j ‖

〈

hj −
j−1
∑

m=1

〈qm, hj〉qm , h5λ+k

〉

=
〈hj , h5λk〉 −

∑j−1
m=1 〈qm, hj〉 〈qm, h5λ+k〉
‖ rλ+j ‖

=
1

2 ‖ rλ+j ‖
tr
(

ȞǍjǍ
T

λ+kM̌
T

Ȟ
T
)

− 1

2 ‖ rλ+j ‖

j−1
∑

m=1

〈qm, hj〉 〈qm, h5λ+k〉

=
1

2 ‖ rλ+j ‖
tr
(

ȞǍjǍ
T

λ+1Ǎ
T

k M̌
T

Ȟ
T
)

− 1

2 ‖ rλ+j ‖

j−1
∑

m=1

〈qm, hj〉 〈qm, h5λ+k〉

=
1

2 ‖ rλ+j ‖
tr
(

ȞǍλ+jǍ
T

k M̌
T

Ȟ
T
)

+
1

2 ‖ rλ+j ‖

j−1
∑

m=1

〈

qλ+m, hλ+j

〉 〈

qλ+m, h4λ+k

〉

= − 1

2 ‖ rλ+j ‖
〈hλ+j , h4λ+k〉

+
1

2 ‖ rλ+j ‖

j−1
∑

m=1

〈

qλ+m, hλ+j

〉 〈

qλ+m, h4λ+k

〉

= E21 (j, k) .

We now prove thatE12 = E43P. The proof is by induction
on the rows of the matrixE12. The first row entries of the
matrix E12 are given by

E12 (1, k) = 〈q1, h5λ+k〉

=
1

‖ r1 ‖ 〈h1, h5λ+k〉 .

Due to the construction of the STBC, we haveA4λ+l = MA l,
for l = 1, ..., 4λ. Using this, we get

E12 (1, k) =
1

2 ‖ r1 ‖ tr
(

ȞǍ1Ǎ
T

λ+kM̌
T

Ȟ
T
)

=
1

2 ‖ r1 ‖ tr
(

ȞǍ
T

λ+1Ǎ
T

k M̌
T

Ȟ
T
)

.

We need to show that this is equal to−E43 (1, λ− k + 1).

E43 (1, λ− k + 1) =
〈

q3λ+1, h11λ−k+1

〉

=
1

‖ r3λ+1 ‖ 〈h3λ+1, h11λ−k+1〉

=
tr
(

ȞǍ3λ+1Ǎ
T

3λ−k+1M̌
T

Ȟ
T
)

2 ‖ r1 ‖

=
tr
(

ȞǍ3λ+1Ǎ
T

2λ+1Ǎ
T

λ−k+1M̌
T

Ȟ
T
)

2 ‖ r1 ‖

= −
tr
(

ȞǍ3λ+1Ǎ
T

2λ+1Ǎ
T

λ−k+1M̌
T

Ȟ
T
)

2 ‖ r1 ‖ .

Substituting the values of the weight matrices from (14) for
Aλ+1, A2λ+1 and A3λ+1, and simplifying, we see that it is
sufficient to show that

(

I⊗a−1
2

⊗

jσ3

)

AT
λ−k+1 = jσ⊗a

3 Ak,

or equivalently,
(

I⊗a−1
2

⊗

jσ3

)

AT
λ−k+1AT

k = jσ⊗a
3 .

Sinceλ− k+1 andk are one’s complement of each other in
the binary representation, we have,

Aλ−k+1Ak =

a−1
∏

i=1

αi = Aλ = jσ⊗a−1
3

⊗

I 2.

Therefore we have,
(

I⊗a−1
2

⊗

jσ3

)

Aλ =
(

I⊗a−1
2

⊗

jσ3

)(

jσ⊗a−1
3

⊗

I2
)

= jσ⊗a
3 .

The equality forE3 andE4 can be shown similarly.

C. Structure ofR2

Proposition 3: The matrix R2 is block diagonal with4
blocks, each of sizeλ× λ.

Proof: For the matrixR2 to be block diagonal with4
blocks, each of sizeλ × λ, we need to satisfy the following
conditions

• The matrices{MA 1,MA 2, ...,MA 4λ} form a four group
decodable STBC withλ variables per group

• The matrixE is such thatETE is block diagonal with4
blocks, each of sizeλ× λ.

Since the matrices{A1,A2, ...,A4λ} form a four group
decodable STBC with λ variables per group, it is
easily seen that the matrices{MA 1,MA 2, ...,MA 4λ}



also form a four group decodable STBC withλ vari-
ables per group as(MA i) (MA j)

H + (MA j) (MA i)
H =

M
[

AiA
H
j + AjA

H
i

]

MH = 0 for i andj in different groups.

We now introduce some notation before we address the
structure of the matrixEHE. Let m be an integer such that
1 ≤ m ≤ λ. We denote byf (m), the binary representation
of m − 1 using a − 1 bits. Let ⊕ denote the bitwise XOR
operation between any two binary numbers.

Now, we turn to the structure of the matrixE. From Propo-
sition 2, we know the structure of the matrixE. Computing
ET E, we see that for it to be block diagonal with4 blocks,
each of sizeλ × λ, it is sufficient to show that the matrices
ET
i Ej are symmetric with identical entries on the diagonal for

i, j = 1, ..., 4, i 6= j. The entries ofET
i Ej are given by

ET
i Ej (k, l) =

λ
∑

m=1

〈qm, h4λ+k〉
〈

qλ+m, h4λ+l

〉

.

Expanding and simplifying, we get

ET
i Ej (k, l) =

λ
∑

m=1

λ
∑

n=1

amn 〈hm, h4λ+k〉 〈hλ+n, h4λ+l〉 ,

whereamn = at, t = f−1 (f (m)⊕ f (n)) andat is given by

at =
−∑t−1

p=1 ap
〈

qλ−t+1, hλ−p+1

〉

‖ rλ−t+1 ‖ ,

for t = 2, 3, .., λ anda1 = 1
‖rλ‖2 . We now see that for everym,

there exists a uniquem
′

such that〈hm, h4λ+k〉 = 〈hm′ , h4λ+l〉
as

〈hm, h4λ+k〉 = tr
(

ȞǍmǍ
T

λ+kM̌
T

Ȟ
T
)

= tr
(

Ȟ
[

ǍmǍ
T

λ+kǍλ+l

]

Ǎ
T

λ+lM̌
T

Ȟ
T
)

= 〈hm′ , h4λ+l〉 ,

wherem
′

= f−1 (f (m)⊕ f (k)⊕ f (l)). Similarly, for ev-
ery n, there exists a uniquen

′

such that〈hλ+n, h4λ+l〉 =
〈

hλ+n′ , h4λ+k

〉

wheren
′

= f−1 (f (n)⊕ f (k)⊕ f (l)). We
can now write,

ET
i Ej (k, l) =

∑

m′

∑

n′

am′n′ 〈hm′ , h4λ+l〉
〈

hλ+n′ , h4λ+k

〉

= ET
i Ej (l, k) ,

if am′n′ = amn. Let am′n′ = at′ . t
′

is given by,
t
′

= f−1 (f (m)⊕ f (k)⊕ f (l)⊕ f (n)⊕ f (k)⊕ f (l)) =
f−1 (f (m)⊕ f (n)) = t. Therefore, we can see thatET

i Ej

is symmetric. Using the above arguments, it is also easly seen
that the diagonal elements of the matrixET

i Ej are identical.
Hence, we have shown that the matrixR2 is block diagonal

with 4 blocks, each of sizeλ× λ.

APPENDIX D
STRUCTURE OFR MATRIX OBTAINED FROM

CONSTRUCTIONII

The STBCX can be written as

X =

K
∑

i=1

xiAi,

wherexi = xiI+jxiQ. Tweaking the system model in section
II, we can get a generator matrix for this STBC as

G
′

= [vec (A1) vec (A2) · · · vec (AK) ] .

Hence, (1) can be written as

vec (Y) = H
′

eq x̃ + vec (N) ,

whereH
′

eq ∈ Cnrnt×K is given byH
′

eq = (Int
⊗ H)G

′

, and
x̃ = [x1, x2..., xK ] , with eachxi drawn from a 2-dimensional
constellation. It can be easily seen thatHeq = Ȟ

′

eq .

Let the QR decomposition of the complex matrixH
′

eq yield

matricesQ
′

and R
′

. Using the relation: IfA = BC, then
Ǎ = B̌Č, we can see thatR = Ř

′

. The QR decomposition
of a complex matrix yields a unitaryQ matrix and an upper
triangular matrix R with real diagonal entries. Hence, the
diagonal entries of the matrixR

′

are real. SinceR = Ř
′

, we’ll
haveR (2i− 1, 2i) = 0 for i = 1, ...K. Hence, the STBCX
exhibits a block orthogonal property with parameters(K, 2, 1).

APPENDIX E
STRUCTURE OFR MATRIX OBTAINED FROM

CONSTRUCTIONIII

Let theR matrix for this code have the following structure:

R =

[

R1 E
0 R2

]

,

whereR1, E andR2 are2K × 2K matrices.
From [21], it can be easily seen thatR1 has a block diagonal

structure with two blocks, and each block of the sizeK ×K.

R1 =

[

R11 0
0 R12

]

,

whereR11 andR12 areK ×K upper triangular matrices.
Proposition 4: The non-zero blocks of the matrixR1 are

equal i.e.,R11 = R12.
Proof: Proof is similar to the proof of Proposition 1.

The structure of the matrixE is described in the following
proposition.

Proposition 5: The matrixE is of the form

E =

[

E1 −E2

E2 E1

]

,

whereEi, i = 1, ..., 4 areK ×K matrices.
Proof: Proof is similar to the proof of Proposition 2.

Proposition 6: The matrix R2 is block diagonal with2
blocks, each of sizeK ×K.

Proof: Proof is similar to the proof of Proposition 3.



APPENDIX F
STRUCTURE OFR MATRIX OBTAINED FROM

CONSTRUCTIONIV

As only rate-1 CIODs are considered in this construction,
this can only be done for either2× 2 CIODs or4× 4 CIODs.
The structure of theR matrix obtained from the2× 2 CIOD
is the same as the structure ofR matrix obtained from the
construction III. The proof of the structure is also the sameas
given in Appendix F. We now consider the structure of theR
matrix obtained from using a4 × 4 CIOD. Let theR matrix
for this code have the following structure:

R =

[

R1 E
0 R2

]

,

whereR1, E andR2 are8× 8 matrices.
From [21], it can be easily seen thatR1 has a block diagonal

structure with4 blocks, and each block of the size2× 2.

R1 =









R11 0 0 0
0 R12 0 0
0 0 R13 0
0 0 0 R14









,

whereR1i are2× 2 upper triangular matrices fori = 1, ..., 4.

Proposition 7: The non-zero blocks of the matrixR1 are
such thatR11 = R12 andR13 = R14.

Proof: Proof is similar to the proof of Proposition 1.
The structure of the matrixE is described in the following

proposition.
Proposition 8: The matrixE is of the form

E =









E1 −E2 E5 −E6

E2 E1 E6 E5

E3 −E4 E7 −E8

E4 E3 E8 E7









,

whereEi, i = 1, ..., 8 are2× 2 matrices.
Proof: Proof is similar to the proof of Proposition 2.

Proposition 9: The matrix R2 is block diagonal with2
blocks, each of size2× 2.

Proof: Proof is similar to the proof of Proposition 3.
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