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Abstract—Construction of high rate Space Time Block Codes by letting the real variables,, xo, - - - , 2k take values from a
(STBCs) with low decoding complexity has been studied widgl real signal sefS, whereA; are fixedn, x n, complex matrices

using techniques such as sphere decoding and non Maximum- 4. ; :
Likeiihood (ML) decoders such as the OR decomposition de- defining the code, known as the weight matrices. The rate of

: o K
coder with M paths (QRDM decoder). Recently Ren et al., this code '_S% comp_lex.symbols per channel use. )
presented a new class of STBCs known as the block orthogonal Ve are interested in linear STBCs, since they admit sphere

STBCs (BOSTBCs), which could be exploited by the QRDM decoding (SD)[[R] and other QR decomposition based decod-
decoders to achieve significant decoding complexity reduoh ing techniques such as the QRDM decodér [3] which are fast
without performance loss. The block orthogonal property ofthe ways of decoding for the variables.

codes constructed was however only shown via simulationsn | S . . .
this paper, we give analytical proofs for the block orthogoral Designing STBCs with low decoding complexity has been

structure of various existing codes in literature including the Studied widely in the literature. Orthogonal designs witigte
codes constructed in the paper by Ren et al. We show that codessymbol decodability were proposed in [4]] [5]] [6]. For STBC
formed as the sum of Clifford Unitary Weight Designs (CUWDs) with more than two transmit antennas, these came at a cost
or Coordinate Interleaved Orthogonal Designs (CIODs) exthit  of requced transmission rates. To increase the rate at the

block orthogonal structure. We also provide new constructn cost of higher decodina complexity. multi-aroun decodable
of block orthogonal codes from Cyclic Division Algebras (CIAs) 9 g P Y, group

and Crossed-Product Algebras (CPAs). In addition, we showsw STBCs were introduced in [7]C[8][[9]. Another set of low
the block orthogonal property of the STBCs can be exploited decoding complexity codes known as the fast decodable codes
to reduce the decoding complexity of a sphere decoder using awere studied in[[10]. Fast decodable codes have reduced SD
depth first search approach. Simulation results of the decodg complexity owing to the fact that a few of the variables can

complexity show a 30% reduction in the number of floating poirt . . . o
operations (FLOPS) of BOSTBCs as compared to STBCs without be decoded as single symbols or in groups if we condition

the block orthogonal structure. them with respect to the other variables. Fast decodablescod
for asymmetric systems using division algebras have been
I. INTRODUCTION & PRELIMINARIES reported [[11]. The properties of fast decodable codes and

Consider a minimal-delay space-time coded Rayleigh quag?_ulti-group decodable codes were combined and a new clags
static flat fading MIMO channel with full channel state infor O codes called fast group decodable codes were studied in

mation at the receiver (CSIR). The input output relation f '
such a system is given by A new code property called thiglock-orthogonalproperty

was studied in [[3] which can be exploited by the QR-
Y = HX + N, (1) decomposition based decoders to achieve significant degodi

. ) _ complexity reduction without performance loss. This priype
whereH € C" s the channel matrix an € C" "™ IS\ a5 exploited in[[13] to reduce to the average ML decoding
the additive noise. Bc_)tIH and N have entrles_that are '-'-d-complexity of the Golden cod&1L4] and also [n][15] to reduce
complex-Gaussian with zero mean and variance 1 abd he worst-case complexity of the Golden code with a small
respectively. The transmitted codewordXsc C"*™* and herformance loss. While the other low decoding complexity
Y € €™ is the received matrix. The ML decoding metricsTgcs use the zero entries in the upper left portion of the
to minimize over all possible values of the codewatdis  pner triangular matrix after the QR decomposition, these

M (X) =|| Y — HX ||2 . @ decoders uti!ize the zeroes in the lower right portion tauced

the complexity further.
Definition 1: [I]: A linear STBC C over a real (1- The contributions of this paper are as follows:

dimensional) signal sef, is a finite set ofn, x n, matrices, « We generalize the set of sufficient conditions for an STBC

where any codeword matrix belonging to the codeis to be block orthogonal provided inl[3] for sub-block sizes
obtained from, greater than 1.
1% « We provide analytical proofs that the codes obtained from
X (21,22, TK) = inAi7 A3) the sum of Clifford Unitary Weight Designs (CUWDSs)

Py [16] exhibit the block orthogonal property when we
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choose the right ordering and the right number of mavherex = [.CCl,ZCQ...,ZCK]T. In terms of the weight matrices,

trices. the generator matrix can be written as
o« We provide new methods of construction of BOST- —~——
BCs using Coordinate Interleaved Orthogonal Designs G= [WC (A1) vec(Az) -+ vec(Ak) }

(CIODs) [17], Cyclic Division Algebras (CDAs) [18] and
Crossed Product Algebras (CPAS$) [19] along with th
analytical proofs of their block orthogonality. v .

« We show that the ordering of variables of the STBC used vee (Y) = HegX + vec(N),
for the QR decomposition dictates the block orthogonathere H., € R?*""*K is given byH., = (Int ® Fi) G,
structure and its parameters. and X = [x1,23...,2K], wWith eachz; drawn from a 1-

« We show how the block orthogonal property of thelimensional (PAM) constellation. Using the above equivale
STBCs can be exploited to reduce the decoding complesystem model, the ML decoding metr[d (2) can be written as
ity of a sphere decoder which uses a depth first search —
approach. M (%) =|| vee (Y) = HegX |12 .

o We provide bounds on the maximum possible reducti(w

in the Euclidean metrics (EM) calculation during spher&sggR(gﬁ ,gSiogpgiltgr?hgﬁgf&];\{emg;[:i':e;n:& QERRWKhXe Ir(e
decoding of BOSTBCs.

« Simulation results show that we can reduce the decodiﬁ%atm upper L”anQMT matrix. Using this, the ML decoding
complexity of existing STBCs by upto 30% by utilizing fic now changes to
the block orthogonal property. M (X) =| Qvec (Y) - Rx || 2=|| y’ —RX 2. (4)
The remaining part of the paper is organized as follows: In
Section]) the system model and some known classes of I6ve haveH., = [hihy....hg], whereh;,i € 1,2, ..., K are
decoding complexity codes are reviewed. In Secligh 11I, wePlumn vectors, then th@ andR matrices have the following
derive a set of sufficient conditions for an STBC to be bloclerm obtained by the Gram-Schmidt orthogonalization:
orthogonal and also the effect of ordering of matrices omit. Q=1[q, q ax] (5)
Sectior 1V, we present proofs of block orthogonal structfre L K
various existing codes and also discuss some new methodsvbereq,,: € 1,2, ..., K are column vectors, and
constructions of the same. In Sect[oh V, we discuss a method

Iélence, for any STBC[{1) can be written as

to reduce the number of EM calculations while decoding a Irall gy, h2) (ar,hs) - (dy, i)
BOSTBC using a depth first search based sphere decoder and 0 Frafl {@g,hs) - {dy, hc)

also derive bounds for the same. Simulation results for thdR = 0 0 Frsll - (a3, hx) , (6)
decoding complexity of various BOSTBCs are presented in : : : :
Section V). Concluding remarks constitute Secfion] VII. 0 0 0 e ek |

Notations: Throughout the paper, bold lower-case letters ; _
are used to denote vectors and bold upper-case lettersMefrert =hy, ;= gy and fori =2, .. K,
denote matrices. For a complex variabledenote the real and i—1

imaginary part ofz by «; andx¢ respectively. The sets of all ri=h; — Z <q N hi> q.,
integers, all real and complex numbers are denoted. ¥ ’ !
andC, respectively. The operation of stacking the columns of ) )
X one below the other is denoted byc (X). The Kronecker A- LOW decoding complexity codes

product is denoted by, | andOr denote thel’ x T" identity A brief overview of the known low decoding complexity
matrix and the null matrix, respectively. For a complex&hle codes is given in this section. The codes that will be desdrib

ST

J=1

z, the (:) operator acting on: is defined as follows are multi-group decodable codes, fast decodable codesand f
group decodable codes.
= [ r —Zq ] ) In case of a multi-group decodable STBC, the variables can
TQ rr be partitioned into groups such that the ML decoding metric

The (:) operator can similarly be applied to any matixe is decoupled into submetrics such that only the members of
Cm*m by replacing each entry;; by ;.7 = 1,2,--- ,n, j = the same group need to be decoded jointly. It can be formally
1] 1y b — Ly 4y 9 Ity -

1,2,---,m, resulting in a matrix denoted lthy e rznx2m_ defined as[[B][[I7]016]:
Given a complex VeCtox = [z1, 22, , 2,7, X is defined Definition 2: An STBC is said to bey-group decodable
asx 2 [x1r, 210, - 7%[7%@]? if there exists a partition of1,2,..., K} int_o g non-_e_mpty
subsetsI';, I'y, ...,I'y such that the following condition is
Il. SYSTEM MODEL satisfied:

For any Linear STBC with variablesl,:cg...,/:c_;é/given by
(3), the generator matri6 [10] is defined byvec (X) = GX, whenever € T'; andm € I'; andi # j.

AAT LA AT =0,



If we group all the variables of the same group togethellin (4) I1l. BLOCK ORTHOGONAL STBCs
then theR matrix for the SD([2], [[20] in case of multi-group  Bjock orthogonal codes introduced inl [3] are a sub-class

decodable codes will be of the following form: of fast decodable / fast group decodable codes. They impose
A, 0 --- 0 an additional structure on the variables conditioned irs¢he
0 Ay - 0 codes. An STBC is said to be block orthogonal if tRenatrix
R = _ , (7) of the code has the following structure:
: ; . ; Rl BlQ U BlF
0 0 - A, o R ... Bo
R= . . . ; (12)

whereA;,i = 1,2, ..., g is a square upper triangular matrix. : : . :
Now, consider the standard SD of an STBC. Supposd&the 0 0 --- Rp
matrix as defined if{6) turns out to be such that when we fi . . _
values for a set of symbols, the rest of the symbols becoﬁﬁ'xgere eaChRi’.Z - 1,2,..,I' is a block diagonal, upper
group decodable, then the code is said to be fast decodaBfanguiar matrix withs bIOCkS",J“’ Uiz, .. Uik, each of size
Formally, it is defined as follows: yXvandBy,i=12,..,[ j=i+l,..I are non-zero
Definition 3: An STBC is said to be fast SD if there existsmamces' . . . . .
- ; The low decoding complexity codes described in Section
a partition of{1,2,..., L} where L < K into g non-empty I uti o .
: o utilize the zero entries in the upper triangular matRx
subsetsI'y, I'y, ...,I'y such that the following condition is" . .
satisfied for alli < ; in the breadth first or depth first search decode_rs such as _the
sphere decoder or the QRDM decoder to achieve decoding
(q,,h;) =0, (8) complexity reduction. The fast sphere decoding complexity
[21] of an STBC is governed by the zeros in the upper left
whenever; € T', andj € I'; andp # ¢ whereq, andh; are block of theR matrix and does not exploit the zeros in the
obtained from th&®R decomposition of the equivalent channelower right blocks. The zeros in the lower right block can be
matrix Heg = [h1ha...,hx] = QR with h;,i € 1,2,..., K as used to reduce the average decoding complexity of the code
column vectors an® = [g, 0, ... qx] Withq,,7 € 1,2,..., K where the average decoding complexity refers to the average
as column vectors as defined [ (5). number of floating operations performed by the decoder. The
Hence, by conditionind< — L variables, the code becomeseros in the lower right block are also utilized in some non
g-group decodable. As a special case, when no conditionikt decoders such as the QRDM decodér [3] or the modified
is needed, i.e.. = K, then the code ig-group decodable. sphere decoder [15] to reduce the decoding complexity of the
TheR matrix for fast decodable codes will have the followingode.

form:
A By . . .
R= (9)  The structure of block orthogonal matrix was defined in

(12). In general, the size of block diagonal matridess, and

whereA is an L x L block diagonal, upper triangular matrix,the upper triangular blocks in these matrices can be arpitra

B, is a square upper triangular matrix aBd is a rectangular Similar to [3], we consider only the case th@is have the

matrix. same sizek x k, and the upper triangular blocks R;s each
Fast group decodable codes were introducedin [12]. Theds#ve the same sizex v. Hence, a block orthogonal code can

codes combine the properties of multi-group decodablesod® represented by the paramet@rsk, v):

and the fast decodable codes. These codes allow each of the I': The number of matriceR; in R;

groups in the multi-group decodable codes to be fast decodeds k: The number of blocks in the block diagonal matRx

The R matrix for a fast group decodable code will have the - denoted byU;;, 1 < j < k;

following form: o 7: The number of diagonal entries in the matri¢és.

A set of sufficient conditions for an STBC to be a BOSTBC

A. Design criteria for Block Orthogonal STBCs
0 B. } ’

%1 Ig 8 with the parameter§l’, k, 1) are described below:

R=| . _2 o, (10) 1) 2-Block BOSTBCFirst a condition for the STBC to be
: S block orthogonal with paramete(g, k, 1) is given. The case
0 0 -+ Ry for I' > 2 will be given subsequently.

. . Lemma 1:[3] Consider an STBC of sizd" x N; with
where eactR;,i = 1,2, ..., g will have the following form: weight matricesA, ...,A; , By, ...,By. Let

_ | A By Al —A] B B
Ri = [ 0 B, ] () Ai = { Al AR |0 Bi=| gt A
whereA, is anL; x L; block diagonal, upper triangular matrix,and 4; = [aiup]QTXQNt, B; £ [bmp]QTXQNt, 1=1,..,k, u=

B,, is a square upper triangular matrix aBg is a rectangular 1,...27" andp = 1,...2N,. This STBC has block orthogonal
matrix. structure(2, k, 1) if the following conditions are satisfied:



o {Ay,..., Ax,B1, B} is of dimension2k. Lemma 4:Let the R matrix of an STBC with weight

o« ATA; =1 andBIB;=1fori=1,..,k. matrices{A,,...,Ar} , {By,...,B;} be
o ATA; = -ATA; andB]'B; = —B]B; fori,j =1,...k R, E
andi # j. R_{O R2:|7

d =0fori,j=1,....k andi # j where ) L
* Lpasnes dpast J 7 whereR; is a L x L block-orthogonal matrix with parameters

k /2T 2T (T —1,k,v), Eis anL x [ matrix andR, is al x [ upper
dpgst :Z (Z biupalus-zijqalvt> triangular matrix. The STBC will be a block orthogonal
1=1 v=1 STBC with parametersl’, k,~) if the following conditions
are satisfied:
o The matrices{By,...,B;} are k-group decodable withy

permuted scalars drawn frof, ..., 2N, }. . ; . .
_ - variables in each group, i.e{B1,...,B;} can be parti-
2) I'-block BOSTBCI" > 2: The set of conditions for an tioned intok sets{S,, ..., S}, each of cardinalityy such

STBC to have a block orthogonal structure with parameters .+ BBY +B;BY = Oforall B, € S,, B; € S,,
(T, k,1) is now given. m # n. J !

Lemma 2:[3] Let the R matrix of an STBC with weight
matrices{A1,...,Ar} , {B1,...,Bi} be

u=1

and each element (tuple) & includes four uniquely

o The set of matrice$Aq,...,Ar,Bq,...,B;} are such that
the R matrix obtained has full rank.

R, E « The matrixE” E is a block diagonal matrix wittt blocks
R—{ 0 R2:|7 of size~y x 7.
Proof: Proof is given in AppendikB. [ |

whereR; is a L x L block-orthogonal matrix with parameter
(' —1,k,1), Eis an L x k matrix andRy is a k x k )
upper triangular matrix. The STBC will be a block orthogonal W& now show that the block orthogonality property depends

STBC with parameteré’, k, 1) if the following conditions are on the ordering of the weight matrices or equivalently the
satisfied: ordering of the variables. If we do not choose the right

. ) ordering, we will be unable to get the desired structure.

« The matricegBy, ..., By} are I-|_urW|}tLIz-Radon orthogonal. £y ample 1:Let us consider the Golden code[14] given by:

o The matrixE is para-unitary, i.e.E"E = 1. . _

The authors in[]3] only discuss the conditions for the block X = L 822) e (83 N 842) ;
orthogonal codes with paramete(s, &, 1). These conditions VB L a(ss +sa0) @ (s1+s20)
can be easily derived for BOSTBCs with paramet@tsk,v) wheref = (1+/5) /2,0 = (1 —V5) /2, a =1+ (1 - 6),

SB. Effect of ordering on block orthogonality

(13)

as well. We first derive the conditions for= 2. a=1+;(1-0) ands; = s;; +jsig fori=1,..,4.
Lemma 3:Consider an STBC of size; x T with weight If we order the variables (and hence the weight matrices)
matrices{AhAg, ...7Al}, {Bl, Bo, ..., Bl}. Let the R matrix aS[Su, $1Q, S21,52Q; S3I, S3Q, 841, S4Q], then theR matrix for
for this STBC be of the form SD has the following structure
R [ R, E } [t 0 0 t t t t t]
10 Ry | 0Ot t 0 ¢t t t t
0 0t 0 ¢t ¢t t ¢t
whereR; andR, arel x[ upper triangular matriceg, is ani x 0 0 0 t t t t t
matrix. The STBC will have a block orthogonal structure with R= 00001t oO0O 0 t |
parameterg2, k, ) if the following conditions are satisfied: 00 00O Tt ¢t 0
o The matrices{Ay,...,A;} are k-group decodable with 000 00 O0TTO
~ variables in each group, i.e{Aq,...,A;} can be 000 0O0O0O0t

partitioned intok sets{S,, ..., Sy}, each of cardinalityy where ¢ denotes non zero entries. This ordering of vari-

such thatA, Al + A;Al =0forallA; €S, A; €S,, ables has presented @,2,1) block orthogonal structure

m 7 n. to the R matrix. Now, if we change the ordering to
o The matrices{By,...,B;} are k-group decodable with/ (11,821, 510, $20, 831, 41, 30, 540), then theR matrix for

variables in each group, i.e{Bi,...,B;} can be parti- Sp has the following structure

tioned intok sets{S,, ..., Sy}, each of cardinalityy such - .

H o oG _ _ t t 00 ¢t t t ¢
that B,B;’ + B;B;" = 0 for all B; € S,,, B; € S, 0t 00 ¢ t t ¢t
m# n. 00t t ¢ ¢t t t

o The set of matricegA4,...,A;,Bq,...,B;} are such that

. . 0O 0 0 t ¢t ¢t t t
the R matrix obtained has full rank. R = ;
The matrixE” E is a block diagonal matrix witt blocks 0000t t 00

‘Ofsize 9 00000TtOO

yxae _ 000000t t
Proof: Proof is given in AppendikA. ] 000000 0 t




wheret denotes non zero entries. This ordering of variables. The unitary matrix in the-th row and thej-th column

has presented €, 2,2) block orthogonal structure to the is equal toA;A j1)41-

matrix. We can also have an ordering which can leave theThe CUWD matrix representation for these matrices for a

R matrix bereft of any block orthogonal structure such assstem with2¢ transmit antennas are given beldw [9]. Let

[81], 51Q, S41,52Q, S31, 53Q, S21I, S4Q]. The structure of thdR .

matrix in this case will be 0'1_|:O 1} 02_{0 j} 0—3_[1 0}
-1 0| j o 0 -1 |-

t 0 t 0 t t t t
0O + t + t t 0 ¢t The representations of the Clifford generators are given by
00 ¢t t t t t 0 R(p) = 4o,

R_|0 00t t ¢ttt . .

“looo o0ttt t]| R(var) =15 Qo1 Qo
00000t t ¢t - .
000000t ¢t R(yari1) =15 Qo2 @Qof
|00 0 0 0 0 0 ¢t | R(v0) = los,

Also note that we have many entrieg # 0 even when the
i-th and thej-th weight matrices are HR orthogonal such
for cases = 6,5 =8 andi = 5,j = 8 etc.

wherek = 1,...,a. The weight matrices of the CUWD for a
Fate-1, four group decodable STBC can be derived as follows.
Let a; = _]R (’}/21) R(72i+1) for ¢ = 1,2, veya— 1. Let A =
IV. CONSTRUCTION OFBLOCK ORTHOGONAL STBCs ~ 2°~'. The weight matrices are now given by

Code constructions for block orthogonal STBCs with vari- Axii=R(1),
ous parameters were prese_ntedjh [3]: It was shown via simu- Aoxi1 = R (Y2441) 5
lations that these constructions were indeed block orthabo Asrit = R (720)

- a)

with the aforementioned parameters. We provide analytical (14)

proofs for the block orthogonal structure of some of these Ajr+k = AkAjrt1,

constructions which include also other well known codessuc a-l L

as the BHV code[[10], the Silver code [22] and the Srinath- Ak = H o

Rajan code[[23]. We first study some basics of CUWDs and =1

CIODs. forj =1,2,3, k = 1,..\ and where(ky, ko, ..., k,—1) is the
binary representation df — 1.

A. CUWDs and CIODs 2) ClODs: Coordinate interleaved orthogonal designs

1) CUWDs: [16] Linear STBCs can be broadly classifiedCIODs) were introduced irfi [17].
as unitary weight designs (UWDs) and non unitary weight Definition 4: A CIOD for a system witl2 transmit anten-
designs (NUWDs). A UWD is one for which all the weightnas in variables;, i = 1,..., K — 1, K even, is a2 x 2¢
matrices are unitary and NUWDs are defined as those whietatrix S (zo, ..., zx—1), such that
are not UWDs. Clifford unitary weight designs (CUWDs) are _ _
a proper subclass of UWDs whose weight matrices satisfyS _ ©1 (5”0’ ---vff%—l) 0
certain sufficient conditions fog-group ML decodability. To 0 O, (jL . jK_l)
state those sufficient conditions, let us list down the weigh 2
matri<|::|es of a CUWD in the form of an array as shown igjhere 9, 507_._75%71) and 6, jK,._.,ijl) are com-
Table[].

, (15)

o

plex orthogonal designs of siz2*~! x 2¢~! and &; =

TABLE | il + JT (1K /2)modK -
STRUCTURE OFCUWDs
B. BOSTBCs from CUWDs
2; ﬁii o 2@*1)“1 We now show that STBCs obtained as a sum of rate-1,
' - ' (97.1)”2 four group decodable CUWDs exhibit the block orthogonal
: : g : structure with parameter®, 4, \).
Ax Aoy - Ak

Lemma 5: Construction l:Let Xj (s1, s2,...,54x) be a
rate-1, four group decodable STBC obtained from CUWD
All the weight matrices in one column belong to one groufilg] with weight matrices {A;,A,,...,A;x}. Let M be
The weight matrices of CUWDs satisfy the following suffidienan n;, x n, matrix such that the set of weight matrices

conditions forg-group ML decodability. {A1, Ay, ..., A;n,MA |, MA,, ..., MA 4, } yield a full rankR
e Aj=1. matrix. Then the STBC given by
o All the matrices in the first row excepf; should
square tol and should pair-wise anti-commute among
themselves. + M. X1 (842415 540425 -5 88X) 5

X (81,82, ceey Sgk) = Xl (81,82, ceey S4A)



will exhibit a block orthogonal structure with parameterandM as
(2,4, ). M_[o j]
Proof: Proof is given in AppendikC. [ | 11 0|
Example 2:Let us consider the BHV code given by:

X = Xl (81752) + TXl (Zl,ZQ) 5

where X; and X; take the Alamouti structure, and

Xy (s1,) = |0 T2 o1 = |10 } and D. BOSTBCs from CIODs

we can see that the golden code is a BOSTBC with parameters
(2,2,2).

59 sT |7 0 -1
[21,22]" = U[ss, s4]” , whereU is a unitary matrix chosen In this section we show that the BOSTBCs that can be
to maximize the minimum determinant. In this case, as pgptained from CIODs [17].
the above constructiod = TU. Hence, the BHV code is a Lemma 8: Construction IVLet X; (s1,s2,...,5x) be a
BOSTBC with parameter&, 4, 1). rate-1 CIOD with weight matriceA;,Ao,...,Ax}. Let

C. BOSTBCs from Cyclic Division / Crossed Product Algebra{l\gp\lbi2 a Izztrll\);lAslU(li/lhA :hat I\EITK]?e:/ieCI); ;V?Lgljlhtram(agmes

In this section, we show the block orthogonality propertyhatrix. Then the STBC given by
of two constructions from either cyclic division algebras o
crossed product algebras over the fi€ldq). X (51,52, ..., 52k ) = X1 (51,52, ..., SK)
Lemma 6: Construction llLet X be an STBC with weight
matrices {A1,...,Ax} and {By,...,Bx} for the variables
(217 ... k1] @and [710 ... TKQ] _respecuv?'y such thaB; = il exhibit a block orthogonal structure with parameters
jA; for 1 < i < K. Let the weight matrices be chosen suc LK /2,2).
that theR matrix has full rank. Then the codé exhibits the
block orthogonal property with parametérs, 2, 1) if we take
the ordering of weight matrices d#\1,B1, ..., Ax,Bx}.

+ MX; (SK+1, SK42y ey SQK),

Proof: Proof is given in Appendik]F. [ ]
Example 5:Consider the x 2 code constructed by Srinath
et al. in [23] given by

Proof: Proof is given in AppendikD. [
Example 3:Consider any STBC obtained from the Cyclic : jm/4 :
R . + +
Division Algebra (CDA) [18] over the base fiel@ (i). The X = in /4 A (@1 j%Q) )
. eI/ (x4 + Jjx30) Tor + JjT1Q
structure of such an STBC will be
o Yo (Tn_1) -0 o™ (x1) If we consider,
) o(zo) - Yo" (wno2) _
X = } } ) ) , X, — | Tu + Jjroq 0
: ; g ; ! 0 xor +jx1q |’
Tpo1 O (Tp_2) - o1 (x0)
wherex;, = xi1 + jrrg. The weight matrices of this STBC andM as /4
satisfy the properties of the construction above. Hends,ish M — { _ g el } ’
a BOSTBC with parameters:, 2, 1). e/ 0
The next construction is a special case of the previous ) _
construction. we see that the code is a BOSTBC with parameterg, 2).

Lemma 7: Construction Ill:Let X; be a two group
decodable STBC with weight matricefA;,..,Ax} and V. REDUCTION OF DECODING COMPLEXITY FORBLOCK
{B41,...,Bx} for the variablegz; ... zx| and[zx 11 ... x2k] ORTHOGONAL CODES

respectively such thaB; = jA; for ¢ = 1,..K. Let ) ) ) ) )
M be a matrix such that the set of weight matrices In this section we describe how we can achieve decoding

(A1, Az, ... Ax,MA|,MA,,...MA £} yield a full rank R complexity reduction for BOSTBCs. Also we show how

matrix. Then the STBC given by the plock orthqgonal structure_ helps in the reduction of_ the
Euclidean Metric (EM) calculations and the sorting openasgi
X (21,22, .0, Tar) = X1 (21,22, .., T2k ) for a sphere decoder using a depth first search algorithm. We
+ M. X1 (T2k 41, T2k 425 -y TaK ) also briefly present the implications of the block orthodona

. - . structure for QRDM decoders as discussed_in [3].
will exhibit a block orthogonal structure with parameters Q din [3]

(2,2, K). . . .
Proof: Proof is given in AppendiKE. m A. ML decoding complexity reduction
Example 4:Consider the golden code as given in example The sphere decoder under consideration in this section will
[. If we consider, be the depth first search algorithm based decoder with Sehnor
1 [ a(sy+ s20) 0 Euchner enumeration and pruning as discussed in [13]. We firs

Xi= NG 0 a@(s1+s20) |’ consider the case df = 2 Block Orthogonal Code.



in (I2). Consider the blocR;, 1 < i < I' of the R matrix.
For a given set of values for the variables in the bloBgs,

N\ A;-r AD / A2
AATE) N A M1 A0 m > i, we can see that the variables in the blotks; and

AyS_r3,3A(2)| U;, 1 < j <1 <k, are independent as seen in the case
of I' = 2. Hence, we can use memoization here as well in
Iy4-r4y4A(17T\\'//Iy4-r4y4A(2)| order to reduce the number of EM calculations and sorting

operations.
B. Complexity reduction bound and Memory requirements for

'\ /' .\ /. depth first sphere decoder
2\ /# 2\ /4 We calculate the maximum possible reduction in the number
of EM values calculated and the memory requirements for the
look up tables in this section. First we consider the case of
i\ 2

I'=2.
1) I' = 2: Considering a(2,k,v) BOSTBC, we first
calculate the memory requirements for storing the EM values
Let each of the variables of the STBC take values from a
Fig. 1. First two levels of the sphere decoder tree for theedadexample constellation of sizel/. The number of EM values that need
® to be stored for a single sub-blotk ;, 1 < j < k, is

Mem (Uyj) = M + M? + ...+ M7

1) I' = 2: Consider a BQSTBC yvith pargmete(r;s kq). M@ M M(MY-1)
The structure of théR matrix for this code is as mentioned =T M -1 M -1
in (@2) with two blocksR; andR.. This code is fast sphere )
decodable, i.e., for a given set of values of variables in suphese values will need to be.stored for — 1) SUCh, sub-
blocks U, j = 1,...k, we can decode the variables irplocks. The total memory requirement for the bldk is,
U;; andUy;, 1 < j < I < k, independently. The ML M R) = (k1 M (M7 -1)
decoding complexity of this code will b® (M*7+7). Due em (Ry) = (k —1) —rr——.
to the structure of the block orthogonal code, we can see thaly,e now find the maximum number of reductions possible

the variables in the blocks ; andUs;, 1 < j <1<k, are ¢4 the EM calculations for this BOSTBC. This will occur

also independent in the sense that the EM calculations &d {fyoy 51 the nodes are visited in the depth first search. Feor th
Schnorr-Euchner enumeration based sorting operationséor ¢k R, the number of EM calculations for a code without
variables inUs ; are independent of the values taken by thg« pock orthogonal structure would be

variables inU; ;. We illustrate this point with an example.

Example 6:Consid_er a hypothetical BOSTBC having the Osrpo = M+ M? + ..+ MM = M (le — 1)_

parameters(2,2,1) with variables{x1,z2, x5, 24}. The R M -1

matrix for this BOSTBC will be of the form For a BOSTBC, if we use the look up table, we would be
t 0 t ¢t performing the EM calculations only once per each of the
0 t t ¢t sub-block. Fork sub-blocks, the number of EM calculations

R=1001to0 will be

000t OBOSTBC:]C(M—FMQ—F...-FMV)

The first two levels of the search tree for the sphere decoder M (M7 —1)

are shown in in Figur€ll with the variables assumed to be VT =1

taking values from a 2-PAM constellation - A. As it can b

seen from the figure, irespective of the value takempythe We therefore perform only a small percentage of EM calcula-

edge weights (Euclidean metrics) for the variableremain tions if the code exhibits a block orthogonal structure. \&k c
9 9 the ratio of the the number of EM calculated for a BOSTBC

the same. ho the number of EM calculated if the STBC did not possess

From exampld 6 we can see that instead of calculating t . . ;
ple] . 9 B%lock orthogonal structure as Euclidean Metric Reduction
EM repeatedly, we can store these values in a look up tahle

when they are calculated for the first time and retrieve thematlo (EMRR) given by

MO 1)

whenever needed. This technique of avoiding repeated -calcu OBoSTBC =i k(MY —1)
lations by storing the previously calculated values is know Osrpo = M1 (MF —1)
as Memoization[24]. This approach reduces the number of M-1
floating point operations (FLOPS) significantly. ~ k

2) ' > 2: Consider a BOSTBC with paramete(, k, ). M(k=1)y"

The structure of théR matrix for this code is as mentionedwhich is a decreasing function & M and~.



2) ' > 2: Considering a(T',k,v) BOSTBC, we first The EM calculations for all the blocks is given by
calculate the memory requirements for storing the EM values

r
The memory requirement per sub-blodk ;, 1 < j < k, of Oposrpe — ZkM(Ffi)k'yw
any blockR;, 1 < j7 < T, under consideration is the same as P M -1
that of the case of the sub-blotk ; in thel' = 2 case. This kM (MY —1) MT=Dky _ 1

is so because, for a given set of values for the variables in
the blocksR,,, i < m < T', the memory requirement for the o _
sub-blockU; ; can be calculated in the similar way as it wad "€ EMRR in this case will be

calculated forU, ; for the I" = 2 case. Hence, the memory EM(M™—1) pM(T-Dky_q

M—-1 Mk —1

0] - T —
requirements for a blocR; for a given set of values for the SOSTBC = Ajf(;ﬂrfl)fﬁl) !
variables in the block®,,, is the same as that d?, in the STBC — =T
I' = 2 case. k(MY —1) k
M (MY 1) S (MF—1) T MDY
M R; iy =(k-1) ————. . . . .
em (Ri)eonaitionat = ( ) M -1 We can see that the ratio of the reduction of operations is

. independent of* and dependent only ok and .
We can reuse the same memory for another set of given values P P y 7

of the variables oRR,,, as the previous EM values will notC. QRDM decoding complexity reductidn [3]

be retrieved again as the depth first search algorithm does nQp, this section we review the simplified QRDM decoding
revisit any of the previously visited nodes (i.e., any poessly  ethod which exploits the block orthogonal structure of a

given s_et of values for the variables in the tree). Hence, W@ qe as presented if][3]. The traditional QRDM decoder is
can write, a breadth first search decoder in whighi, surviving paths
M (MY —1) with the smallest Euclidean met_rics are picked at each stage
— -1 and the rest of the paths are discardedMf = MT=Dky
for a block orthogonal code with parametéis, k,~), then
for 1 < i < T. Since there aré& — 1 such blocks, the total the QRDM decoder gives ML performance. The simplified
memory requirement for storing the EM values will be QRDM decoder utilizes the block orthogonal structure of the
, code to find virtual paths between nodes, which reduces the
Mem (R) = (I —1) (k — 1) M (M7 — 1). number of surviving paths to effectively/..,, to reduce the
M -1 number of Euclidean metric calculations. For details of how

We now find the maximum number of reductions possibfé1iS is. achieved, refer to[3]. The maximum redu_ction in
for the EM calculations for this BOSTBC. This will occurd®coding complexity bound for a QRDM decoder is given

when all the nodes are visited in the depth first search. OposTBe MY
blocks other tharR,, the number of EM calculations for a = .
code without the block orthogonal structure would be Osrao k(MY —1)

VI. SIMULATION RESULTS AND DISCUSSION

Osrpc = M+ M? + ..+ MT=DE In all the simulation scenarios in this section, we consider
M (MT—Dky — 1) quasi-static Rayleigh flat fading channels and the chanat s
M—1 : information (CSI) is known at the receiver perfectly. Any
) . . STBC which does not have a block orthogonal property is
For a BOSTBC, if we consider the blodk; and for a given ,55umed to be a fast decodable STBC which is conditiokally

set of values for the variables R, i <m <T', if we use the 4,5 decodable with symbols per group, but not possessing
look up table, we would be performing the EM calculationg,e piock diagonal structure for the blocks, ..., Rr.
only once per each of the sub-block. Forsub-blocks, the T

Mem (R;) = (k—1)

number of EM calculations will be A. Sphere decoding using depth first search
) , We first plot the EMRR for BOSTBCs with different
Opostsc (Ri)onditionar = & (M + M* + ...+ M7) parameters against the SNR. Figulés 2 @hd 3 show the plot
_ M@ -1 of Oposrsc/Osrae vs SNR for a(2,4,1) BOSTBC (ex-
N M-1 amples - Silver code, BHV code) with the symbols being

. ) drawn from 4-QAM, 16-QAM and 64-QAM. We can clearly
These calculations need to be repeated for all i€ ~7*7 o0 that the reduction in the EMRR with the increasing size
values of the variables iR,,. of signal constellation as explained in section V-B. It can
N (T—i)ky 5 N also be seen that a larger value lofgives a lower EMRR
Oposrec (Ri) = kM (M +M* + ...+ M) if we keep the product:y constant. Figurd]4 shows the
_ kM(r—i)mM(JW -1 plot of Oposrac/Osrae Vs SNR for a(2,4,2) BOSTBC
M—-1 (examples -4 x 2 code from Pavan et al [23]) with the
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Oostrc/Ostsc for a BOSTBC with parameter€, 2, 2) parameterg2,4, 1)

symbols being drawn from 4-QAM and 16-QAM. Notice thaP- Comparison with the QRDM decoder approach
the (2, 4,2) BOSTBC offers a lower EMRR as compared to the The primary difference between the depth first and the
(2,4,1) BOSTBC due to the higher value of as explained preadth first (QRDM) approach is the variation of the EMRR
in section V-B. with respect to SNR. As seen in the figures from sedfion VI-A,
We now compare the total number of FLOPS performdtie effect of the block orthogonal property reduces as the SN
by the sphere decoder for a BOSTBC against that of amreases in the depth first sphere decoder. This is owing to
STBC without a block orthogonal structure for various SNR#he Schnorr-Euchner enumeration and pruning of branches. A
Figures[b[B[17 show the plot of number of FLOPS vs SNfe SNR increases, the decoder needs to visit fewer number of
for a (2,4,1) BOSTBC, a(2,2,2) BOSTBC and a2,4,2) nodes in order to find the ML solution and hence the EMRR
BOSTBC respectively with the symbols being drawn from 4also tends to 1. However, in the case of a breadth first search
QAM, 16-QAM and 64-QAM for the first two figures andalgorithm, all the nodes need to be visited in order to arrive
from 4-QAM and 16-QAM for the last one. We can see thdb a solution. Hence the EMRR is independent of the SNR in
the BOSTBCs offer around 30% reduction in the number diie breadth first search case. To reduce the nhumber of nodes
FLOPS for the(2,4,1) and (2,4,2) BOSTBCs and around visited, only M. paths are selected in the QRDM algorithm
15% for the(2,2,2) BOSTBC at low SNRs. to reduce complexity. The value df/. chosen needs to be
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varied with SNR in order to get near ML performance.

VII. CONCLUSION
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APPENDIXA APPENDIXC
PrROOF OFLEMMA [3 STRUCTURE OF THER MATRIX OBTAINED FROM

) ) ) CONSTRUCTIONI
Following the system model in Sectidn Il, we have the

equivalent channel matrit,, € R?™mx2 as H,,

[Hi Ho] = [hy ... hy hiyy ... hy]. We know from Theorem
2 of [23] that, if any two weight matriceé\; and A; are

Hurwitz-Radon orthogonal, then thieh and thej-th columns X = X1 (51,82, 840) +MX2 (84341, S0rt25 -, 881 ) 5

of the H., matrix are orthogonal. Due to the conditions on

the weight matrices, we have th&tlTHl and |-|2T|-|2 are WhereX; is a rate-1 four group decodable STBCs obtained
block diagonal withk blocks, each of sizey x ~. Under from CUWDs as described in Sectibn [V-A1.

QR decompositionH., = QR with Q = [Q; Q,] with Let theR matrix for this code have the following structure:

R, E .
2n,-me X1 _ 1
Q:,Q, € R andR = 0 R as mentioned. It { R, E }

According to construction |, the structure of the STBC is

can be seen from Lemma 2 21] that the maRixis block =
diagonal withk blocks, each of size x ~. We can now write,

whereR;, E andR, are4\ x 4\ matrices.
Hy = QE+ QsR2, ! 2

(H2 — Q,E)" (H2 — Q,E) = R7QI Q;R». A. Structure oR;
Simplifying, From [21], it can be easily seen that has a block diagonal
HTH, — ETE = RTR, structure with four blocks, and each block of the size .
2 - — \2 .

Now, if ETE is block diagonal withk blocks of sizey x ~ R 0 0 0

each= R R, is block diagonal withk blocks of sizey x v R, = 0 Rp O 0 7

each. SinceRy is upper triangular and full rank, this means 8 8 R(1)3 FS
4

that R, is block diagonal withk blocks of sizey x v each.

APPENDIX B WhereRh—., -i =1,..4is a\ x A given by [16).

PROOF OFLEMMA [ Proposmon 1: The non-zero blocks of the matriR; are
equal i.e.,R;; = Ry;, fori =2,3,4.

Following the system model in Sectidn Il, we have the  Proof: It is sufficient for us to prove that
equivalent channel matrit,, € R2mexL+l asH,, =
[Hi Ha] = [hy ... hy hpyy oo hpyy]. We know from
Theorem 2 of[[2B] that, if any two weight matricé&s and
B, are Hurwitz-Radon orthogonal, then thigh and thej- d

th columns of theH., matrix are orthogonal. Due to the@"

cond|t|o_ns on the_ weight matrices, we have thidH, is <qj7hk> — <q4(i—1)>\+jah4(i—l)>\+k>a (18)
block diagonal withk blocks, each of sizey x ~. Under
QR decompositionH., = QR with Q = [Q; Q,] with

5 =1 rag—vaes | (17)

R, E fori=2,34,7=1,., A —1landk=j5+1,..., \
Q; € Rl andQ, € R*"™*! andR = [ 0 R, ] The proof is by induction. We first consider the case of
as mentioned. We can now write, j =1. We also recall[[23] that
Hy = Q.E+ QyRo, 1 w s T T
2= QE+ Q3R (hi.hy) = 5tr (HAkAj H ) :

T  STAT
(Hz = Q,E)" (Hz — QE) = R; Q3 QyRs. Now, for (I7) we have,

Simplifying,

HIH, — ETE = RIR, ol = . h)
. ) o
_ | | | _ = tr (HAART)
Now, if ETE is block diagonal withk blocks of sizey x ~ %
each= RgRQ i; block diagonal withk blocks of sizgy X 7y _ §tr (HA4(i—1),\+1A4T(Z—,1)A+1HT)
each. SinceRy is upper triangular and full rank, this means )
that R, is block diagonal withk blocks of sizey x + each. =l rag-nas %



[ Fagi—yate | <q4(i—1))\+1’h4(i*1))\+2> <q4(i—1))\+17h4(i71))\+)\

R, — 0 I Fag—1ya+2 | <q4(i,1)A+2,h4(i,1)A+A 7 (16)
0 0 Il Fagi—yaga |l
since ryi-1yat1 = Nig-1)a41 and AkAf = | for k = which follows from the induction hypothesis and the factttha
1,...,4\. For (18) we have, AjA;F =1 forj=1,..,4)\ . For equation[(18),
(G he) = —— (i, hi) | i
[ re |l <qjahk> = m (q;,hj)q; , hy
tr (FAALHT) ’ =
= @ 7 1 =
2 ry | o = m [<hj7hk> (a;, hy) <anhk>]
. v J —
tr (HA4(Z 1)A+1A4(1 1),\+1Ak H ) - j—1
= 1 w5 T ~T 3
2 H r4(i_1))\+1 H = D) H r H tr (HAJAk H ) Z <qla > <qla hk>‘|
. o T J
tr (HA4(i—1)>\+1A4(i—l))\+kH ) = lT T

= tr HA A i A i A H )
2 || rag—1yat1 |l _ ( A=A (=) A+1

2 || F4(i—1)2+j I

1 -1
I Z <q4(i71)>\+l, h4(i—1)>\+j> '

sinceArA4i—1)x+1 = A4ii—1)r+k- NOW we prove equations 2 [ rag—nyaty =1
(I7) and [(IB) for arbitrary. We prove this by induction. Let
the equations hold true for dll< j. We now have for equation

- <q4(i71)>\+1a h4(i*1>”k> ’

<q4(i—1)>\+l7 h4(i—1),\+k>

@@,
- X T - T
[rs 1% =(rjr)) tr (HA4(i71)>\+jA4(i—1))\+kH )
S S - 2T Faioines |
=(h - lz; (a;,hj)a,, hy - kz:l (k> hj) ay. . i1
g - T2 Taas | Z <q4(i71>x+lv h4(i*1)k+j> -
2 a(i-)a4 | =1
= (h;,h;) =2 (a;,h;)
=1 <q4(i71))\+l7 h4(i71))\+k>
Jj—1j-1
303 () e hy) (a0 = (Gagimnress M- Dx4) -
k=11=1
1 « i« xT.T i 9 u
= 5t (RAATR") =23 (a,.hy)
=1
j—1j-1 B. Structure ofe
+ ,h ,h , o .
Pt (G ) (. ) {0 G) The matrixE is key for the block orthogonality property
1 . 5 of the STBC in question. It is required to be para-unitary
- 5”’ (HA4(1 1)>\+JA4(1 ;i H ) for achieving this property. The structure of the matéxor
j—1 ) Construction | is described in the following proposition.
-2 <q4(i,1)A+l, h4(i,1)”j> Proposition 2: The matrixE is of the form
=1
j—1j-1 Ei. —-Ey —-E3 —E4
+ <q4(i—1)A+lv h4(i—1)/\+j> : E_ Es Ei —E4P E3P (19)
=11=1 o E3 E4P El —EQP ’

<q4 (i—1)A+k> h4 (i— 1)>\+g> <Q4(i,1))\+l, q4(i71))\+k> Es —E3P E2P E

= | rag-1r+s 1%, whereE;, i = 1,...,4 are A\ x A matrices andP is a A x A



permutation matrix given by and thej-th row of E;; is given by

00 0 1 Eii (J,k) = <q4(i—1))\+j ; h4)\+4(i71))\+k>
0 0 10 1 <
_ . T (Nag—1)asj
P= : Hr411A+gH (A
0 1 0 0
1 0 0 - Z <Q4(z Datms Nagi— l))\+J> Aa(i—1)Afm>
h4>\+4(i—1)>\+k>
Proof: Let us represent the matrk using A x A blocks 1
as: =T, <h4(i71))\+j7 h4>\+4(i71)>\+k>
Il ragi—yats |l
Ein Ei2 Eiz Euns < hag >
E_ E21 Eaz2 Eaz Eou H F4(i—1)A+j || Z Gagi=1)rmr G-/ -
Es1 Eszx Esz3 Eszq |7
Esx Esgo Egq3 Egy <Q4(i—1),\+m7 h4>\+4(i—1)>\+k>
tr (HA Ai— 1))\+JA4(1 DareM "H )
We first prove thatt,; = E; for i = 2,3,4. The proof N 2 || M- mﬂ» I
is by induction on the rows of the matrk;;. The first row
entries of the matriXe;; are given by (Q,,, 1) (A, Narsr)
2 || F4(i—1)A+j H Z ! "

Eui (1, k) = (dy, haxnsr)

. v v T T T
and for the matrixE;; are given by _ tr (HAjA4(i_1)A+1A4(1 1 AMTH )
2 r; |
Jj—1
Eii (1,k) = <Q4(i_1),\+1, h4)\+4(i—1))\+k> 3 H ;] 2 Z Upns D7) (G Narti)
J
_ (hagi—1)r+15 Naxag—1)rtk) 1
[Tag—nas | =30 ” (g Rans)
J—1
Due to the construction of the STBC, we hakg, ,; = MA;, -3 H o Z U D) (Grs Nansk)
for i = 1,...,4)\. Using this, we get 7 Hm=1
=E11(j, k).
- x o7 T T
Eui (1, ) = tr (HA4(Z"1)“1A4(1’—1)/\+’€M H ) We now prove thaEy = Eg; = —Eqy = Ey3P = —Es4P.
T 2 || rag—1yatr The proofs for the matriceB3 andE, are very similar. First
A T T T T step is to prove thaEs; = —E;5. The proof is by induction
_ tr (HA‘*(Z‘l)“lA‘l“ 1AM TH ) on the rows of the matriXE,;. The first row entries of the
2 [ rag—nyagr |l matrix E,; are given by
(HAlAfMTHT)
2 ry | SHELA <q>\-1i-1’h4)\+k> o
= <q17 h4>\+/€> = mt’f’ (HA)\+1A)\+kM H )
=E (1,k).

and for the matrixe,, are given by
Now, let us assume that rom of E;; is equal to the rown
of E1; for all m < j. The j-th row of Ey; is given by Ero (1, k) = (Qy, Nsask)

1
= —— (hi, hsag)
Eir (J, k) = (95, harte) » [ re |l



Due to the construction of the STBC, we hakg,,; = MA;, Due to the construction of the STBC, we hakg\,,; = MA,

for l =1,...,4\. Using this, we get for l =1,...,4\. Using this, we get
1 o o T 1 w s T T T
Ei2 (1,k) = ————tr (HA1A§+;€MTHT) Eip (L k)= tr (HAlA)\+kM H )
2 ry || 2|l
1 wx T T T T 1 wxT T T ~T
=7tHAAMH) :7tr(HA AMH),
2HF1HT( AT 2 ry | AR
1 . (HAAHAZMTHT) We need to show that this is equal 443 (1, A — k + 1).
2 ry |
= (Gxy 1> harss) Eas (LA—k+1) = (dgpny1: hiia—ks1)
1
=E2 (1,k). = (haxg1, hiia—ry1)
[ Taxtr ||
Now, let us assume that rom of Es; is equal_ to the rown o (HA3A+1A§>\_1€+1MTHT)
of Ey5 for all m < j. The j-th row of Eo; is given by = ST
1
Ea1 (j: k) = (dayyr harrn) tr (FAsxs iAoy As M R
and thej-th row of E;» is given by 2 ry |

- T LT T T
tr (HA3>\+1A2)\+1A>\71¢+1M H )
. -1 20 r |
= <hj > (@ hy)d,, s h5>\+k> Substituting the values of the weight matrices frdml (14) for
m=1

Ei2 (4, k) = (a;, hsasx) = _

e | Axi1, Aoxy1 andAsyyq, and simplifying, we see that it is
~ (hy,hsxg) — Zm 1 (A N5) (A, Nsx4R) sufficient to show that
o r a— . . a
Sl (15" @) AT i = oA
- (HAJ-AH,CM HY) .
2 U+7‘ | or equivalently,
Z Q> N5) (A N5ATE) ('5@1_1 ®j0’3) Al kAL = joge.
2 ” r>\+J ”
Since\ — k+ 1 andk are one’s complement of each other in
the binary representation, we have,
1 s xT T T T
= (HAJ-A/\HA,CM H ) ot
e . ®a—
*; i Ar-iiiAr =[] ai = Ax=jof 7 Q1.
i=1

20 ragsll Therefore we have,

m=1
1 _— T T T
= e (FAsAMTH) (157 @idrs) A = (157 @) (o5 @12)

1 Jj—1 _ jo?a
+ m? h m? h . . .
2 rasg H Z Dt A+J> <qA+ 4A+k> The equality forE; andE,4 can be shown similarly. =
1
== —m <h)\+j, h4)\+k> C Structure OfRQ
AHj . . _ . .
) 7 -1 Proposition 3: The matrix R, is block diagonal with4

Ut D) (s Nark blocks, each of size\ x A.
2 Fass |l ,,;< a 37 (O ) Proof. For the matrixR, to be block diagonal witht

=Ea1 (. k). blocks, each of size\ x A\, we need to satisfy the following
conditions
We now prove thaE; = E43P. The proof is by induction  « The matriceMA 1, MA, ..., MA 4, } form a four group
on the rows of the matriXE;>. The first row entries of the decodable STBC with\ variables per group
matrix E;» are given by « The matrixE is such thaE”E is block diagonal witht
blocks, each of size. x .
Ei2 (1,k) = (A, Nsasr) Since the matrice§A1,A,,...,A;n} form a four group
_ 1 (h1, hsaik) - decodable STBC with A variables per group, it is

[ ral easily seen that the matriceMA1,MA,,....MA 4}



also form a four group decodable STBC with vari- APPENDIXD
ables per group asﬁMAi)(MAj)H + (MAJ»)(MAZ-)H = STRUCTURE OFR MATRIX OBTAINED FROM
M [AZ-A;H +AjAﬂ M# =0 for i and in different groups. CONSTRUCTIONII
We now introduce some notation before we address theThe STBCX can be written as
structure of the matrbEXE. Let m be an integer such that K
1 < m < A. We denote byf (m), the binary representation X = inAi,
of m — 1 usinga — 1 bits. Let @ denote the bitwise XOR i=1

operation between any two binary numbers. wherez; = x; + jx;q. Tweaking the system model in section
Now, we turn to the structure of the matfix From Propo- [ we can get a generator matrix for this STBC as
sition[d, we know the structure of the matiix Computing

ETE, we see that for it to be block diagonal withblocks, G = [vec (A1) vec(As) --- vee(Ag) .
each of size\ x ), it is sufficient to show that the matricesHence ) can be written as
E/ E; are symmetric with identical entries on the diagonal for '

i,j=1,...,4, i # j. The entries oE; E; are given by vec(Y) = H;q>~<+ vec (N),
. A whereH;q € Crmex K s given byH;q =(I,, ®H)G, and
EVE; (k1) = (G Nanir) Oy s Narsr) - X = [z1,Z3..., k], With eachz; drawn from a 2-dimensional
m=1 constellation. It can be easily seen tlihi, = H;q.
Expanding and simplifying, we get Let the QR decomposition of the complex matHﬁéq yield

matricesQ and R'. Using the relation: IfA = BC, then
A = BC, we can see thaR = R". The QR decomposition
of a complex matrix yields a unitar matrix and an upper
triangular matrixR with real diagonal entries. Hence, the
wherea,,, = a;, t = f~1 (f (m) & f (n)) anda, is given by diagonal entries of the matrR are real. Sinc® = R', we'll
haveR (2i — 1,2¢) = 0 for i = 1,...K. Hence, the STBX
— g, (Ax_ss1>Mampr1) exhibits a block orthogonal property with parametgis 2, 1).

p=

2
E/E;j (k1) = Z Z amn Ny Naxr) (Mans i)

m=1n=1

“ I Tomeet | ’
—t+ APPENDIX E
STRUCTURE OFR MATRIX OBTAINED FROM

fort =2,3,..,Aanda; = ——. We now see that for ever,
Il CONSTRUCTIONIII

there exists a unique  such tha h,,,h =<(h_/,h . ) .
q { k) = (s Rarea) Let theR matrix for this code have the following structure:

as
R, E
e T T T _
(N hargn) = tr (HAmA)\JrkM H ) R= { 0 Ry } ’
=tr (H AmAL,CAAH} A;FHI\?ITHT) whereR;, E andR, are2K x 2K matrices.

From [21], it can be easily seen tHat has a block diagonal
structure with two blocks, and each block of the siFex K.

wherem' = f=1(f(m)® f (k) @ f(1)). Similarly, for ev- R, — [ Ri O }
ery n, there exists a unique such that(hy,, hsy) = 0 R |’

<hA+n’ah4M&k> wheren = f~1(f (n) & f (k) & f (I)). We whereR;; andR;, are K x K upper triangular matrices.
can now write, Proposition 4: The non-zero blocks of the matriR; are

= <hm’ 9 h4>\+l> 9

equal i.e.,R11 = Rys.
ELE;) (k1) = Z Zam’n’ (s M) (P Raxer) Proof: Proof is similar to the proof of Propositidn 1m
m:; n' The structure of the matri€ is described in the following
=EE; (LK), proposition.
. Proposition 5: The matrixE is of the form

if a,,, = Gmn. Let a, . = ay. t is given by,
{ = flfmaf®aerhefmaefkersd) = E- { i B ] ,
f~Y(f(m)® f(n)) = t. Therefore, we can see thEliTEj Ex B
is symmetric. Using the above arguments, it is also easly s&ghereE;, i = 1,...,4 are K x K matrices.
that the diagonal elements of the matE%Ej are identical. Proof: Proof is similar to the proof of Propositidd 2m

Hence, we have shown that the matRx is block diagonal  Proposition 6: The matrix R, is block diagonal with2
with 4 blocks, each of size. x \. blocks, each of sizé{ x K.

[ | Proof: Proof is similar to the proof of Propositidi 3m



APPENDIXF
STRUCTURE OFR MATRIX OBTAINED FROM
CONSTRUCTIONIV

As only rate-1 CIODs are considered in this construction,
this can only be done for eith@rx 2 CIODs or4 x 4 CIODs.
The structure of th&k matrix obtained from th& x 2 CIOD
is the same as the structure Bf matrix obtained from the
construction Ill. The proof of the structure is also the sase
given in AppendiX’F. We now consider the structure of Ehe
matrix obtained from using 4 x 4 CIOD. Let theR matrix
for this code have the following structure:

- [% e

whereR1, E andR, are8 x 8 matrices.
From [21], it can be easily seen tHat has a block diagonal
structure with4 blocks, and each block of the si2ex 2.

Rk 0 0 0
0 R 0 O
0 0 Rs3 0 |’
0 0 0 Ru

whereRy; are2 x 2 upper triangular matrices far=1, ..., 4.

Ry =

Proposition 7: The non-zero blocks of the matrir, are
such thalRll =Rqs and Ri3 = Ry4.
Proof: Proof is similar to the proof of Propositidd 1m
The structure of the matrik is described in the following
proposition.
Proposition 8: The matrixE is of the form

E, -E, E; —Eg
E, E, E; E;
E, -E, E; —Eg |’
E, E; Es E;

whereE;, 1 = 1,...,8 are2 x 2 matrices.
Proof: Proof is similar to the proof of Propositidi 2m
Proposition 9: The matrix Ry is block diagonal with2
blocks, each of sizé x 2.
Proof: Proof is similar to the proof of Propositiéi 3m

E =
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