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1

Ergodic Secret Message Capacity of the Wiretap
Channel with Finite-Rate Feedback

Zouheir Rezki, Senior Member, IEEE,and Ashish Khisti,Senior Member, IEEE,and Mohamed-Slim
Alouini, Fellow, IEEE,

Abstract—We study the secret message capacity of an ergodic
block fading wiretap channel with partial channel state informa-
tion at the transmitter and perfect channel state information at
the receivers, under both a short term power constraint (STPC)
and a long term power constraint (LTPC). We consider that
in addition to the statistics of the main and the eavesdropper
channel state information (CSI), the sender is provided by the
legitimate receiver with a q-bit feedback, at the beginning of
each coherence block, through an error-free public channel, with
capacity q bits. We establish upper and lower bounds on the
secrecy capacity. We show that the lower and the upper bounds
coincide asymptotically asq → ∞. When applied to Rayleigh
fading channels, we show that, a 4-bit feedback achieves about
90% of the secrecy capacity when perfect main CSI is available
at the transmitter. Finally, asymptotic analysis at high and low
Signal-to-Noise Ratio (SNR) is presented. It is found that the
capacity is bounded at high-SNR, whereas at asymptoticallylow-
SNR, the lower bounds and the upper bound scale linearly with
SNR under STPC. Furthermore, subject to LTPC, the capacity
at low-SNR is equal to the capacity of the main channel without
secrecy constraint and with perfect CSI at both the transmitter
and the receiver, under a mild condition on the fading statistics.
We also show that a positive secrecy rate is achievable even when
the feedback is at the end of each coherence block andq = 1.

Index Terms—Secrecy capacity, proactive feedback, ARQ feed-
back, high-SNR, low-SNR, capacity of fading channels.

I. Introduction

The role of fading in providing physical layer security has
been extensively highlighted recently, e.g. [1], [2]. In this
context, we consider a wiretap channel consisting of a sender
(Alice), a legitimate receiver (Bob) and an eavesdropper (Eve).
Alice wants to communicate a secret message to Bob while
keeping Eve in full ignorance of such a message. The main
channel, between Alice and Bob, and the eavesdropper chan-
nel, between Alice and Eve, are both block fading channels.
For arbitrarily large coherence blocks, and assuming we can
code over sufficiently many coherence periods, and if the
sender is perfectly aware of either the main CSI or both the
main and the eavesdropper CSI, the secrecy capacity has been
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derived in [3]. Should the main CSI be imperfect at the sender,
the secrecy capacity is still not known. In [4], using the so-
called variational distance as a secrecy criterion, a single letter
characterization of the secrecy capacity of an arbitrary wiretap
channel with causal CSI at both the transmitter and the re-
ceivers is provided. However, this characterization is noteasily
computable due to the large space over which the prefixed
random processes are taken, and thus the capacity expression
therein turns out to be useful only to derive achievable rates.
Independently and concurrently with our work [5], achievable
rates for the ergodic and the block ergodic fading wiretap
channel have also been derived in [6]. In [7], a lower and an
upper bounds on the secrecy capacity are derived for a class of
independent identically distributed (i.i.d.) fast fadingchannels,
when the codeword length spans many coherence periods and
when the sender has imperfect main CSI. Schemes based
on sending an artificial noise to enhance the eavesdropper
equivocation are presented in, e.g., [8]–[12]. Discussions on
the effect of CSI estimation error on secrecy are also presented
in [13]–[19].

In this paper, we assume that Bob knows its own channel
instantaneously and Eve knows both its own channel and the
main channel, instantaneously; whereas Alice is only aware
of the statistics of these channels. There is also an error-free
public feedback channel with limited capacity from Bob to
Alice that may be tracked by Eve. In our setting, the feedback
is exclusively used to send the output of a deterministic
function that describes the main channel state information. The
secret message capacity of this channel is not known. Several
previous works have highlighted the impact of limited-rate
feedback on the capacity of fading channels without secrecy
constraint, see for instance, [20]–[23] and references therein.
However, to the best of our knowledge, not much attention
has been given to secret message capacity with limited-rate
feedback.

For the setting described above, we first extend the scheme
in [3] to incorporateq-bit feedback and observe numerically
that when Rayleigh fading channels are considered, a 4-bit
feedback achieves 90% of the secrecy capacity when perfect
main CSI is available at the transmitter. Asq→ ∞, we prove
that this achievable rate coincides with the secrecy capacity
when perfect main channel CSI is available at the transmitter.
Then, we provide another achievable rate based on the wiretap
code in [24], but accounting for the fading and the proactive
feedback mechanism. We show that under a long term power
constraint (LTPC), it achieves the capacity at asymptotically
low SNR regime, withq = 1. Then, we establish a genie-



aided upper bound similar to the one in e.g., [25], to include
q-bit feedback. Since the transmitter is not aware of the main
channel gain, the proof of the upper bound has required some
extra technical steps following a similar approach as the one in
[26], with proper adaptation to secrecy. Finally, we also show
that even when the feedback is at the end of each coherence
block andq = 1, a positive secrecy rate is achievable. This
complements a result in [27] where a secret-key generation
mechanism with 1-bit feedback at the end of the coherence
block is proposed.

We then specialize our results to a short term power
constraint (STPC) and a LTPC, respectively. We formulate the
achievable rates and the upper bound as different optimization
problems and propose an algorithm that attempts to find
the optimal solution iteratively. In both cases, we present
asymptotic analysis at high-SNR and low-SNR and show that
in contrast to the high-SNR regime where the capacity is
bounded; at asymptotically low-SNR regime, the lower bounds
and the upper bound scale linearly with SNR under STPC.
Since the upper bound is strictly smaller than the capacity
without secrecy constraint, we argue that the secrecy induces
a penalty even at low-SNR under STPC. On the contrary,
under LTPC, the secrecy capacity is asymptotically equal to
the capacity as if there is no secrecy constraint for a wide class
of fading channels. Furthermore, we present a simple on-off

scheme that is asymptotically (at low-SNR) capacity-achieving
and that only requires 1-bit feedback in each coherence block.

The paper is organized as follows. Section II describes the
system model and related background. Achievable rates and an
upper bound on the secrecy capacity with finite rate feedback
at the beginning and at the end of each coherence block are
presented in Section III. In Section IV, we apply our results
considering a STPC. In Section V, we analyze the ergodic
secrecy capacity under LTPC, study the related optimization
problems and propose an iterative algorithm to find the optimal
solutions. In both Sections IV and V, asymptotic analysis
at high and at low SNR are given under STPC and LTPC,
respectively. Numerical results are reported in Section VI.
Finally, Section VII concludes the paper.

Notations: The expectation operation is denoted byE[·].
The symbol|x| is the modulus of the scalarx, while [x]+ =
max(0, x). The logarithms log(x) is the natural logarithm of
x. We say thatf (x)

a≈ g(x) if and only if lim
x→a

f (x)
g(x) = 1. When

it is clear from the context, we omita in
a≈ for convenience.

II. System Model

We consider a discrete-time memoryless wire-tap channel
consisting of a transmitter (Alice), a legitimate receiver(Bob)
and an eavesdropper (Eve). Each terminal is equipped with
a single antenna, i.e., a single-input single-output single-
eavesdropper case. Alice wants to communicate a confidential
messagesW to Bob in the presence of Eve. Thejth outputs
at both the legitimate destination and the eavesdropper, at
coherence periodi, i = 1, . . . , L, are expressed, respectively
by:















Y(i, j) = h(i) X(i, j) + U(i, j)

Z(i, j) = g(i) X(i, j) + V(i, j),
(1)

where j = 1, . . . ,m, with m representing the number of
symbols in each coherence block; whereX(i, j) ∈ C is the
jth transmitted symbol at time coherencei, and h(i) ∈ C,
g(i) ∈ C are zero-mean and unit-variance channel gains that
represent the main channel and the eavesdropper channel at
time coherencei, respectively; andU(i, j) ∈ C, V(i, j) ∈ C are
zero-mean, unite-variance circularly symmetric white Gaus-
sian noises. The fading process{hi} (resp. {gi} ) is assumed
to be independent and identically distributed (i.i.d.) across the
coherence blocks. Furthermore, the channel gainsh andg are
assumed to be independent of each other in any coherence
interval. We assume perfect CSI at the receiver sides. That
is, the legitimate receiver knows the instantaneous channel
realizationsh(i), whereas the eavesdropper is aware of both
h(i) and g(i). For convenience, we letγh = |h|2, γg = |g|2,
fγh(·) and fγg(·) their PDF’s, andFγh(·), Fγg(·) their cumulative
distribution functions (CDF).

The transmitter is not aware of neitherh(i) nor g(i). How-
ever, in addition to the statistics of both channels, the trans-
mitter is provided a q-bit (q integer andq ≥ 1) feedback at the
beginning (or at the end) of each coherence block, through an
error-free public channel with limited capacity that is available
to Alice and tracked by Eve. The feedback link is used to
describe the main channel gainγh to the transmitter. More
specifically, the channel gain support is split into 2q intervals
[0, τ1), [τ1, τ2), . . . , [τ2q−1,∞) and Bob sends back to Alice the
output of a deterministic functionκ (·) defined by:κ(h) = k,
if γh ∈ [τk, τk+1). The result of this feedback drives Alice’s
decision to either transmit with the highest fixed rateRk,
k = 1, . . . ,N, whereN = 2q−1, such thatRk < log(1+ γh(i) P)
if suchRk exists, or to remain idle otherwise. Furthermore, the
source is constrained to either a short term power constraint
(STPC):E

[

1
m

∑m
j=1 |X(i, j)|2

]

≤ Pmax, or to a long term power

constraint (LTPC):E
[

1
L

∑L
i=1

1
m

∑m
j=1 |X(i, j)|2

]

≤ Pmax.
We note that assuming statistical knowledge of the eaves-

dropper’s channel may seem somehow not reasonable since
the eavesdropper is passive and does not transmit. However,
in case the eavesdropper belongs to the network, which is
the case in this paper, the later assumption can be justified
quite reasonably. For instance, one can think of a local area
network (LAN) inside a secure building. The building is
engineered such that artificial noise is injected isotropically
in all directions. As a result of noise injection, the channel
between each mobile (either legitimate or eavesdropper) and
the access point is roughly the same on average. This would
allow the transmitter to estimate the statistics of all nodes with
high accuracy. Note that the idea of using artificial noise in
order to create specific channel conditions that are favorable
to secrecy has been already proposed in the literature, e.g.,
[28].

We are interested in message transmission secrecy capacity
of such a channel when bothL and m are sufficiently large.
For convenience, letn = m L. The level of uncertainty
about the messagew at the eavesdropper is measured by the
equivocation rate defined by:

ReB
1
n

H
(

W | Zn, gL,hL
)

(2)



where H
(

W | Zn, gL,hL
)

denotes the conditional
entropy of W given Zn, gL and hL and where
Zn =

(

Z(1, 1), . . . ,Z(1,m), . . . ,Z(L, 1), . . . ,Z(L,m)
)

,

hL =
(

h(1), . . . , h(L)
)

and gL is defined similarly.
The eavesdropper is ignorant about the message if
lim
n→∞

1
n I

(

W;Zn, gL,hL
)

= 0, where I (· ; ·) denotes the
mutual information. A rateR is an achievable secrecy rate if
for all ε > 0, there exists a sequence of

(

n, 2nR,Pe

)

codes, for
which 2n R represents the number of messages to be sent to
the destination, such thatRe ≥ R− ε and Pe ≤ ε, wherePe is
the average error probability defined by:

Pe =
1

2n R

2n R
∑

w=1

Pr
{

W , Ŵ |W = w
}

, (3)

whereŴ is the output of the decoder at the intended receiver
as a result of observingY n. Furthermore, the secrecy capacity
is given by:Cs B sup

R∈Rs

R, whereRs is the set of achievable

secrecy rates.

III. U pper and Lower Bounds on the Secrecy Capacity

In this section, achievable rates and an upper bound are
provided in Theorem 1 and Theorem 2, respectively. The
proofs of these theorems are relegated to Appendix A and
B, respectively.

Theorem 1:LetΠ(N) be the set of all discrete power policies
{Pk}Nk=1 that satisfy the STPC (resp. LTPC). LetΘ(N) be
the set of all reconstruction points{τk | 0 ≤ τ1 ≤ . . . ≤ τN}Nk=1
describingγh. For discrete-time memoryless channel described
by (1), with an error-freeq-bit feedback link at the beginning
of each coherence block, the following rates are achievable:

R−1 = max
{Pk}Nk=1 ∈ Π(N)

{τk}Nk=1 ∈ Θ(N)

N
∑

k=1

Pr{τk ≤ γh < τk+1} · E
γg

[[

log

(

1+ τk Pk

1+ γg Pk

)]+]

(4)

R−2 = max
{Pk}Nk=1 ∈ Π(N)

{τk}Nk=1 ∈ Θ(N)

N
∑

k=1

Pr{τk ≤ γh < τk+1}

· E
γh,γg

[

log

(

1+ γh Pk

1+ γg Pk

)
∣

∣

∣

∣

∣

∣

γh ∈ [τk, τk+1]

]

, (5)

where for convenience, we setτN+1 = ∞.
Proof: The proof is given in Appendix A.

It is particularly appealing to see that the lower bound in (4) is
the sum over all possible rates of the product of the probability
of success times the average rates gleaned by Bob over Eve
during all fading realizations. A similar fact has been observed
in [27], but for secret key sharing (not message transmission)
and for N = 1. Theorem 1 states that a 1-bit feedback at
the beginning of each coherence block guarantees a positive
secrecy rate. We now present an upper bound on the secrecy
rate with proactive feedback.

Theorem 2 (Upper bound):Let Π(N)
(0) be the set of

all power policies {Pk}Nk=0 that satisfy the STPC (resp.
LTPC). Let Θ(N)

(0) be the set of all reconstruction points

{τk | 0 = τ0 ≤ τ1 ≤ . . . ≤ τN}Nk=0 describingγh. For the discrete-
time memoryless channel described by (1), with an error-free
q-bit feedback link at the beginning of each coherence block,
an upper bound on the secrecy capacity is given by:

R+ = max
{Pk}Nk=0 ∈ Π

(N)
(0)

{τk}Nk=0 ∈ Θ
(N)
(0)

N
∑

k=0

Pr{τk ≤ γh < τk+1}

· E
γh,γg

[[

log

(

1+ γh Pk

1+ γg Pk

)]+
∣

∣

∣

∣

∣

∣

γh ∈ [τk, τk+1]

]

, (6)

where for convenience, we setτN+1 = ∞. Furthermore,R−1 in
Theorem 1 coincides withR+ as N→ ∞.

Proof: The proof is given in Appendix B.
The lower bound in (4) is an increasing function ofN and

as shown in Appendix B, the lower boundR−1 in (4) and
the upper boundR+ in (6) match asN → ∞, hence fully
characterizing the ergodic capacity in this case. LettingN goes
to ∞ may be interpreted as if there is a noiseless public link
with infinite capacity for which the secrecy capacity is given
by [3]:

R++ = max
P(h)

E
γh,γg

[[

log

(

1+ γh P (h)
1+ γg P (h)

)]+]

. (7)

Letting N goes to∞ may seem too restrictive as our feed-
back link is of limited-capacity. Fortunately, this asymptotic
behavior starts showing up for relatively smallN values as
shown by our numerical results, i.e., it takes only few feedback
bits to achieve most of the available secrecy capacity, at
least in a Rayleigh fading scenario. It is worth mentioning
that guaranteeing a positive secrecy rate is not really tiedto
knowing the feedback at thebeginning of each coherence
block. Providing a feedback at theend of each coherence
block instead, also guarantees a positive secrecy rate, although
smaller than the one given by (4). To see this, let us assume
that at the end of each coherence block, Bob feeds back a
1-bit ARQ to Alice informing her whether the actual frame
has been correctly decoded (ACK), or not (NACK). Alice
keeps retransmitting the same block until she gets an ACK,
then moves on to the next frame. Clearly, because some
of the frames are transmitted more than once, this scheme
leaks some information to the eavesdropper. Ultimately, one
can assume that the blocks repeated because of the NACK
feedback are completely revealed to the eavesdropper as a
worst-case scenario. Fortunately, even such a conservative
scheme guarantees a positive secrecy rate as formalized in
Theorem 3.

Theorem 3:A lower bound on the secrecy capacity of the
discrete-time memoryless channel described by (1), with an
error-free 1-bit ARQ feedback at the end of each coherence
block, is given by:

R−− = max
{P} ∈ Π(1)

{τ} ∈ Θ(1)

θ2 · E
γg

[[

log

(

1+ τP
1+ γg P

)]+]

, (8)

where θ is the probability of success defined byθ =
Pr{γh ≥ τ}. The upper bound in (6), withN = 1, still holds.

Proof: The proof is presented in Appendix C.



While the rate in Theorem 3 only accounts for the contribution
of the blocks that have not been repeated into the secrecy
rate, it can be immediately improved by accounting for the
contribution of the blocks that have been repeated, say once,
into the secrecy rate.

Corollary 1: A lower bound on the secrecy capacity of the
discrete-time memoryless channel described by (1), with an
error-free 1-bit ARQ feedback at the end of each coherence
block, is given by:

R+−− = max
{P} ∈ Π(1)

{τ} ∈ Θ(1)

{

θ2 E
γg

[[

log

(

1+ τP
1+ γg P

)]+]

+θ2 (1− θ) E
γ

(2)
g





























log















1+ τP

1+ γ(2)
g P





























+


























, (9)

whereγ(2)
g is a random variable distributed as the sum of two

independentγg’s.
Proof: The proof is presented in Appendix D

We now apply our results considering STPC and LTPC,
respectively.

IV. Ergodic Capacity under STPC

We note that under STPC, (4), (5), (6) and (8) induce
different optimization problems which we designate asPi ,
i = 1, . . . , 4, for convenience. ForPi ’s, i ∈ {1, 3, 4}, it is
easy to see that the optimal power policy consists of setting
all power equal toPmax. This follows from the fact that
x 7→

[

log
(

1+a x
1+b x

)]+
is a non-decreasing function for allx ≥ 0

and all a and b reals. Hence, the upper bounds given by (6)
and (7) are equal under STPC and we have:

R+ = R++ = E
γh,γg

[[

log

(

1+ γh Pmax

1+ γg Pmax

)]+]

. (10)

Consequently, although our upper boundR++ has been estab-
lished by providing q-bit feedback only to the transmitter,it
does not improve over the secrecy capacity under perfect main
CSI due to STPC. Moreover, forP1 andP4, the optimal recon-
struction points

{

τ∗k

}

are obtained by solving the Karush Kuhn
Tucker (KKT) conditions which are necessary conditions only
due to the non-convexity ofP1 andP4 in τk’s.1. Below, we
show calculation details of the KKT condition related toP1.
We first form the Lagrangian as

L (τ ,λ) =
N

∑

k=1

(

Fγh (τk+1) − Fγh (τk)
)

E
γg

[[

log

(

1+ τk Pk

1+ γg Pk

)]+]

−
N−1
∑

k=0

λk (τk − τk+1) (11)

where τ = (τ0, . . . , τN+1), with τ0 = 0 and τN+1 = ∞ and
whereλ = (λ0, . . . , λN−1) is the vector of non-negative La-
grange multipliers corresponding to the constraintsτk ≤ τk+1,
k = 0, . . . ,N − 1. The KKT conditions imply that the partial

1Note that under STPC, the optimizations considered have allaffine
constraints which is sufficient in order for the KKT conditions to provide
necessary conditions.

derivative ofL (τ ,λ) with respect toτk is equal to zero which
yields:

fγh (τk)
∫ τk−1

0
log

(

1+ τk−1Pmax

1+ γgPmax

)

fγg

(

γg

)

dγg

− fγh (τk)
∫ τk

0
log

(

1+ τkPmax

1+ γgPmax

)

fγg

(

γg

)

dγg + (λk−1 − λk)

+
(

Fγh (τk+1) − Fγh (τk)
)

∫ τk

0

Pmax

1+ τkPmax
fγg

(

γg

)

dγg

= 0. (12)

We note that there is no loss of optimality by taking 0<
τ1 . . . < τN since if τk = τk+1 for somek = 1, . . . ,N, then
the kth element of the sum in (4) is equal to zero and hence
contributes nothing to the objective function. Since allτk’s
are different, then by the complimentary slackness conditions
λk (τk − τk+1) = 0, all λk’s are equal to zero. Using the later
fact, the condition (12) simplifies to

fγh(τk)

(

E
γg

[[

log

(

1+ τk−1Pmax

1+ γgPmax

)]+]

− E
γg

[[

log

(

1+ τkPmax

1+ γgPmax

)]+])

+

(

Fγh(τk+1) − Fγh(τk)
)

Fγg(τk)Pmax

1+ τkPmax

=0, (13)

for k = 1, . . . ,N. Along similar lines, the KKT condition for
P2 can also be obtained as

2 fγh(τ) E
γg

[[

log

(

1+ τPmax

1+ γg Pmax

)]+]

−

(

1− Fγh(τ)
)

Fγg(τ) Pmax

1+ τPmax
= 0.

(14)
For P2, the integrand inR−2 is not necessarily increasing

in Pk and hence it is generally not clear whetherPmax is
optimal or not. In fact, it is not even clear whether the rate
R−2 is non-negative for givenPmax andN values. Nevertheless,
for a class of fading for which given the CSI feedback, the
main channel distribution becomes “more informative” than
the eavesdropper’s, the target in (5) is increasing inPk and thus
settingPk = Pmax, k = 1, . . . ,N, is optimal. The term “more
informative” can be made more precise through stochastic
dominance theory. Before, formalizing our result above, we
need the following definition [29].

Definition 1: A random variable (r.v.)X is first-order
stochastically dominant (FOSD) than a r.v.Y, denoted as
X � Y, if Pr {X ≥ c} ≥ Pr{Y ≥ c}, for every realc.
We now give a sufficient condition on the fading statistics
under which the rateR−2 in (5) is non-negative andPk = Pmax,
k = 1, . . . ,N, is optimal.

Lemma 1:Let a be an arbitrary real such thata > 0. Let
γh,[a,∞) be the r.v.γh conditioned on the eventγh ∈ [a,∞), i.e.,
γh,[a,∞) = γh | γh ∈ [a,∞). Then, if γh,[a,∞) � γg for all a > 0,
the following statements hold true forP2:

i) Pk = Pmax, k = 1, . . . ,N, is optimal.
ii) R−2 in (5) is equal to:

R−2 = Pr{γh ≥ τ∗} E
γh,γg

[

log

(

1+ γh Pmax

1+ γg Pmax

)
∣

∣

∣

∣

∣

∣

γh ∈ [τ∗,∞)

]

,

(15)



whereτ∗ is given by:

τ∗ =

(

exp

(

E
γg

[

log
(

1+ γg Pmax

)]

)

− 1

)

/Pmax.

iii) R−2 ≥ 0.

Proof: For convenience, the proof is presented in Ap-
pendix E.
Lemma 1 states that for the class of fading where the CSI feed-
back renders the main channel FOSD than the eavesdropper’s
channel,R−2 is non-negative for anyPmax. However, and as
asserted by Lemma 1, the secrecy rateR−2 does not increase
with N and thus providing more than 1 bit feedback to the
source is unfortunately useless under STPC.

Remark 1: If the main channel and the eavesdropper’s
channel are identically distributed, then for anyc ≥ 0 and
any a > 0, we have:

Pr
{

γh,[a,∞) ≥ c
}

=

∫ ∞

c
fγh,[a,∞) (x) dx (16)

=

∫ ∞

c

fγh (x) 1[a,∞) (x)

1− Fγh (a)
dx (17)

≥
∫ ∞

c
fγh (x) dx (18)

= Pr
{

γg ≥ c
}

(19)

where1[a,∞) (x) is an indicator function that is equal to 1 ifx ∈
[a,∞) and 0 otherwise. and where (18) can be verified easily.
That is, if γh andγg are identically distributed, thenγh,[a,∞) is
FOSD thanγg. This implies that assuming that the fading are
identically distributed is stronger than the assumptionγh,[a,∞) �
γg in Lemma 1.

In the sequel, we focus on fadingγh andγg that satisfy the
condition in Lemma 1, i.e.,γh,[a,∞) � γg, for all a > 0.

A. Asymptotic Analysis at High-SNR and Low-SNR

In this section, we assume that there is aq-bit feedback at
the beginning of each coherence, i.e., the settings of Theorem 1
and we are interested in the secrecy capacity at asymptotically
high-SNR and low-SNR regimes.

1) High-SNR Regime:Our result is summarized in Corol-
lary 2.

Corollary 2: At high-SNR (Pmax→ ∞), the secrecy capacity
is bounded, i.e., does not grow withPmax. Furthermore, the
following rates are achievable:

R∞−1 = max
0≤τ1≤...≤τN

N
∑

k=1

Pr{τk ≤ γh < τk+1} · E
γg

[[

log

(

τk

γg

)]+]

(20)

R∞−2 = max
τ≥0

E
γh≥τ
γg

[

log

(

γh

γg

)]

. (21)

An upper bound on the secrecy capacity is given by:

R∞+ = E
γh , γg

[[

log

(

γh

γg

)]+]

. (22)

Proof: The proof is presented in Appendix G.

To determineτk’s in (20), we solve the necessary KKT
conditions:

fγh(τk)

(

E
γg

[[

log

(

τk−1

γg

)]+]

− E
γg

[[

log

(

τk

γg

)]+])

+

(

Fγh(τk+1) − Fγh(τk)
)

Fγg(τk)

τk
= 0, (23)

whereas the optimalτ∗ in (21) is equal to:

τ∗ = exp

(

E
γg

[

log
(

γg

)]

)

. (24)

2) Low-SNR Regime:Motivated by the boundedness of the
secrecy capacity at high-SNR, we analyze in this section the
secrecy capacity at low-SNR regime. Our result is rather posi-
tive as it states that under STPC, the capacity is asymptotically
(at low-SNR) linear in SNR as formalized in Corollary 3.

Corollary 3: At low-SNR (Pmax→ 0), the secrecy capacity
is linear inPmax. Furthermore, the following rates are achiev-
able:

R−1 ≈ Pmax · max
0≤τ1≤...≤τN

N
∑

k=1

Pr{τk ≤ γh < τk+1} · E
γg

[

[

τk − γg

]+
]

(25)

R−2 ≈ Pmax · E
γh≥E

γg
[γg]

[

γh − E
γg

[

γg

]

]

. (26)

An upper bound on the secrecy capacity is given by:

R+ ≈ Pmax · E
γh , γg

[

[

γh − γg

]+
]

. (27)

Proof: The proof is presented in Appendix H.
Here again, to determineτk’s in (25), we solve the necessary
KKT conditions:

fγh(τk)

(

E
γg

[

[

τk−1 − γg

]+
]

− E
γg

[

[

τk − γg

]+
]

)

+
(

Fγh(τk+1) − Fγh(τk)
)

Fγg(τk) = 0. (28)

V. Ergodic Capacity under LTPC

Under LTPC, the results in Theorem 1, Theorem 2 and
Theorem 3 remain valid, with the difference that the LTPC
must be satisfied. More specifically, we identify the related
optimization problems as follows:

P̄1 :



























max
0≤τ1≤...≤τN

N
∑

k=1
Pr{τk ≤ γh < τk+1} · E

γg

[[

log
(

1+τk Pk
1+γg Pk

)]+]

s.t.
N
∑

k=1
Pr{τk ≤ γh < τk+1}Pk ≤ Pmax,

(29)

P̄2 :















































max
0≤τ1≤...≤τN

N
∑

k=1
Pr{τk ≤ γh < τk+1}

· E
γh,γg

[

log
(

1+γh Pk

1+γg Pk

)

∣

∣

∣

∣

∣

γh ∈ [τk, τk+1]
]

s.t.
N
∑

k=1
Pr{τk ≤ γh < τk+1}Pk ≤ Pmax,

(30)

P̄3 :















































max
0≤τ1≤...≤τN

N
∑

k=0
Pr{τk ≤ γh < τk+1}

· E
γh,γg

[[

log
(

1+γh Pk

1+γg Pk

)]+
∣

∣

∣

∣

∣

γh ∈ [τk, τk+1]
]

s.t.
N
∑

k=0
Pr{τk ≤ γh < τk+1}Pk ≤ Pmax

(31)



P̄4 :



















max
τ≥0

Pr{γh ≥ τ}2 · E
γg

[[

log
(

1+τP
1+γg P

)]+]

.

s.t. Pr{γh ≥ τ}P ≤ Pmax,

(32)

where the acronym s.t. stands for “subject to”. AlthoughP̄1,
P̄3 andP̄4 are convex inPk’s, none of the above optimization
problems is convex inτk’s and hence they are all non-convex.
However, one can focus again on the dual problem and relies
again on the KKT conditions that provide necessary conditions
assuming a ceratin qualification constraint at the maximizers
[30]. Similarly to STPC case, there is no loss of optimality
by taking 0 < τ1 . . . < τN since if τk = τk+1 for some
k = 1, . . . ,N, then thekth element in the sum of the objective
function in P̄1 is equal to zero and hence contributes nothing
to the objective function. For convenience, the related KKT
conditions forP̄i , i = 1, . . . , 4, are provided in Table I, where
∂
∂Pk

and ∂
∂τk

represent the derivative of the dual objective
function with respect toPk’s andτk’s, respectively; and where
µ is the Lagrange multiplier associated with LTPC. Below, we
show calculation details of the KKT conditions for̄P1, similar
derivations are used for other̄Pi ’s, i = 2, 3, 4. We first form
the Lagrangian as

L (P , τ ,λ, µ)=
N

∑

k=1

(

Fγh (τk+1) − Fγh (τk)
)

E
γg

[[

log

(

1+ τk Pk

1+ γg Pk

)]+]

−µ














N
∑

k=1

(

Fγh (τk+1) − Fγh (τk)
)

Pk − Pmax















−
N−1
∑

k=0

λk (τk − τk+1) (33)

where P = (P1, . . . ,PN); where τ = (τ0, . . . , τN+1), with
τ0 = 0 and τN+1 = ∞ and whereλ = (λ0, . . . , λN−1) is the
vector of non-negative Lagrange multipliers corresponding to
the constraintsτk ≤ τk+1, k = 0, . . . ,N−1. The KKT conditions
imply that the partial derivative ofL (P , τ ,λ, µ) with respect
to Pk is equal to zero which yields:

(

Fγh (τk+1) − Fγh (τk)
)

∫ τk

0

(

τk

1+ τkPk
−

γg

1+ γgPk

)

fγg

(

γg

)

dγg

−µ
(

Fγh (τk+1) − Fγh (τk)
)

= 0. (34)

Again, there is no loss of optimality in considering that
Fγh (τ1) < . . . < Fγh (τN) since if Fγh (τk) = Fγh (τk+1) for
somek = 1, . . . ,N, then thekth element in the sum of the
objective function inP̄1 contributes nothing to the objective
function. Hence, simplifying (34) yields the∂

∂Pk
condition in

Table I. Similarly, taking the partial derivative ofL (P , τ ,λ, µ)
with respect toτk yields:

fγh (τk)
∫ τk−1

0
log

(

1+ τk−1Pk−1

1+ γgPk−1

)

fγg

(

γg

)

dγg

− fγh (τk)
∫ τk

0
log

(

1+ τkPk

1+ γgPk

)

fγg

(

γg

)

dγg

+
(

Fγh (τk+1) − Fγh (τk)
)

∫ τk

0

Pk

1+ τkPk
fγg

(

γg

)

dγg

−µ fγh (τk) (Pk−1 − Pk) − (λk−1 − λk)

= 0. (35)

Again, since allτk’s are different, then by the complimentary
slackness conditionsλk (τk − τk+1) = 0, all λk’s are equal to
zero. Using the later fact, the condition∂

∂τk
in Table I follows

immediately from (35).
Analyzing closely the derivatives with respect toPk’s in

Table I, it can be shown thatµ > 0 and thus the power
constraint is satisfied with equality, for̄P1, P̄3 andP̄4. Indeed,
since fγh(·) and fγg(·) are continuous and necessarily positive in
an interval inside [τk, τk+1], for somek = 1, . . . ,N, (otherwise
the objective function would be equal to zero), and since the
arguments of the expectation function in the∂

∂Pk
condition for

P̄1, P̄3 andP̄4 are positive, thenµ is necessarily positive. For
P̄2, it is not clear whetherµ is positive or equal to zero and
this seems to depend on the fading’s PDF. Nevertheless, one
can show that when the main and the eavesdropper channels
are identically distributed,µ is in fact strictly positive.2

Solving the KKT conditions in a closed form is very
challenging. Instead, we present below an iterative algorithm
that attempts to find the optimal solution using the KKT
conditions. A similar algorithm has been proposed in [21],
but without secrecy constraint. Likewise in [21], we do not
claim the convergence of Algorithm 1.

Algorithm 1 Secrecy Rate with Feedback under a Long Term
Power Constraint (LTPC)

Initialize i = 0, P(0)
k = Pmax, ∀ i, setµ(0) arbitrarily;

repeat
Fix

{

P(i)
k

}

andµ(i), solve for
{

τ
(i)
k

}

using ∂
∂τk

in Table I;
ComputeRi ;
Fix

{

τ
(i)
k

}

, find
{

P(i+1)
k

}

andµ(i+1) using ∂
∂Pk

in Table I;
i ← i + 1;

until Convergence:R
(i+1)−R(i)

R(i+1) ≤ ε;

In Algorithm 1, R(i) represents eitherR−1, R−2, R+ or R−−,
at theith iteration; andε is an arbitrary small positive number.
Note that forP̄i , i = 1, 2, 3, solving the ∂

∂τk
condition in Table

I can be done recursively starting fromk = 1 until k = N,
using standard root finding algorithms.

A. Asymptotic Analysis at High-SNR and Low-SNR

Here again, we assume that there is aq-bit feedback at
the beginning of each coherence, and we are interested in
the secrecy capacity at asymptotically high-SNR and low-
SNR regimes. While at high-SNR, the results in Corollary 2
still hold confirming that likewise without secrecy constraint,
power adaptation does not provide any additional capacity gain
at high-SNR under secrecy constraint; we show that at low-
SNR, power adaptation drastically increases the achievable
secrecy rate. More interestingly, we show that under LTPC,
the capacity under secrecy constraint is asymptotically equal
to the capacity as if there is no secrecy constraint, for fading
channels with unbounded support. Moreover, 1-bit feedback

2The proof of this result is provided in Appendix F.



Table I
Summary of P̄i ’s KKT conditions, i = 1, . . . , 4.

∂
∂Pk

∂
∂τk

P̄1 E
γg

[[

τk
1+Pk τk

− γg
1+Pk γg

]+]

− µ = 0 fγh(τk)

(

E
γg

[[

log
(

1+τk−1 Pk−1
1+γg Pk−1

)]+]

− E
γg

[[

log
(

1+τk Pk
1+γg Pk

)]+]

− µ (Pk−1 − Pk)

)

+

(

Fγh (τk+1)−Fγh(τk)
)

Fγg (τk)Pk

1+τk Pk
= 0

P̄2 E
τk≤γh≤τk+1

[

γh
1+Pk γh

]

−
(

Fγh (τk+1) − Fγh (τk)
)

(

E
γg

[

γg
1+Pk γg

]

+ µ

)

= 0 fγh(τk)

(

log
(

1+Pk−1 τk
1+Pk τk

)

− E
γg

[

log
(

1+γg Pk−1
1+γg Pk

)]

+ µ (Pk − Pk−1)

)

= 0

P̄3 E
τk≤γh<τk+1

γg

[[

γh
1+γh Pk

− γg
1+γg Pk

]+]

− µ
(

Fγh (τk+1) − Fγh (τk)
)

= 0 fγh(τk)

(

E
γg

[[

log
(

1+τk Pk−1
1+γg Pk−1

)]+]

− E
γg

[[

log
(

1+τk Pk
1+γg Pk

)]+]

− µ (Pk−1 − Pk)

)

= 0

P̄4

(

1− Fγh (τ)
)

E
γg

[[

τ
1+Pτ −

γg
1+Pγg

]+]

− µ = 0 fγh(τ)

(

−2
(

1− Fγh (τ)
)

E
γg

[[

log
(

1+τP
1+γg P

)]+]

+ µP

)

+

(

1−Fγh (τ)
)2

Fγg (τ) P

1+τP = 0

is enough to achieve this capacity. These statements are made
precise in Theorem 4.

1) Low-SNR Regime:
Theorem 4:For fading channels with infinite support, the

secrecy capacity at low-SNR,Cs (Pmax), of the channel de-
scribed by (1), with an error-freeq-bit feedback link at the
beginning of each coherence block is given by:

Cs (Pmax)
0≈ Cw.s (Pmax) , (36)

where Cw.s (·) stands for the capacity of the main channel
without secrecy constraint and with perfect CSI at both the
transmitter (CSI-T) and the receiver (CSI-R). Furthermore,
1-bit feedback at the beginning of each coherence block is
enough to achieve this capacity.

Proof: The proof is presented in Appendix I.
Few remarks are worthwhile:
Remark 2: The fact that the secrecy capacity is asymptoti-

cally equal to the capacity as if there is no secrecy constraint,
further stresses on the value of CSI at the transmitter at low-
SNR regime. Recall that with neither a feedback nor main
CSI at the transmitter, the secrecy capacity is equal to zero.
Theorem 4 highlights the fact that even with 1-bit feedback,
not only one can achieve secrecy at low-SNR, but this secrecy
is obtained with a vanishing capacity-penalty to the legitimate
receiver due to the presence of the eavesdropper. Nevertheless,
since our achievable rateR−2 follows from Csiszár-Körner
characterization of the secrecy capacity [24], a wiretap code
is still needed to bin the secret message.

Remark 3: The encoding scheme related toR−2 exploits the
advantage that the legitimate receiver has over the eavesdrop-
per through the feedback link. As shown in [7], this scheme
ensures (by properly optimizing overτ) a positive secrecy
rate for an arbitraryPmax value. This hinges on the fact that
if the main channel is “good”, it is more unlikely that the
eavesdropper’s channel be better. The later heuristic statement
can be proven rigorously by computing the probability thatγg

be better thanγh, given thatγh ≥ τ, as follows:

Pr
{

γg ≥ γh | γh ≥ τ
}

=
Pr

{

γg ≥ γh , γh ≥ τ
}

Pr{γh ≥ τ}

=
1− Fγh (τ) − 1

2

(

1− F2
γh

(τ)
)

1− Fγh (τ)

=
1
2

Pr{γh ≥ τ} .

While this scheme is not necessarily the best strategy at
an arbitrary Pmax value, it is particularly pleasing to see
that it is in fact enough to achieve the secrecy capacity at
asymptotically low-SNR.

Remark 4: The result in Theorem 4 relies on the fact that
the main channel fading has an infinite support. Should the
main channel have a finite support,G would be finite and the
limit in (122) is not equal to zero. In fact, if the fading support
is bounded, the result in Theorem 4 does not hold anymore.3

VI. Numerical Results

In this section, numerical results are provided for Rayleigh
fading channels such thatE

γh

[

γh
]

= E
γg

[

γg

]

= 1. Figure 1 depicts

the lower bounds and the upper bound in Theorem 1 and 2 in
nats per channel use (npcu) versusPmax (designated here as
S NR), for differentq-bit feedback scenarios. Also shown in
Fig. 1 are the achievable ratesR−− in Theorem 3 andR+−− in
Corollary 1 with 1-bit ARQ feedback. Figure 1 confirms the
positive secrecy rate even for 1-bit feedback (at the beginning
or at the end of each coherence block). As the number of
feedback bits increases (hereq = 4), the lower bound gets
closer to the upper bound confirming the statement in Theorem
1 and about 90% of the upper bound is achieved for all SNR
values displayed in Fig. 1. The high-SNR characterizations
R∞−2 and R∞+ given in Corollary 2 are also plotted in Fig. 1
where it can be seen that the relative gap between them is of
order 30%. UnlikeR−1, There is no hope to decrease the gap
betweenR−2 and R+ by increasing the number of feedback
bits as discussed in Section IV.

In Fig. 2, we have considered the setting where the main
channel is a Rayleigh fading, whereas the eavesdropper’s
channel is a Rician fading described by [31]:

g =

√

K
K + 1

ḡ+

√

1
K + 1

gw, (37)

where K is the Rician factor, ¯g is the mean component of
g and gw is the scattered (varying) component that follows

3The proof of this result is provided in Appendix J.
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Figure 1. Achievable rates and the upper bound under STPC, for Rayleigh
fading channels, with variousq-bit feedback,q = 1,2, 3, 4.
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factor K, for q-bit feedback,q = 1, 4. The main channel is a normalized
Rayleigh fading channel, whereas the eavesdropper’s channel is a normalized
Rician fading with factorK. The transmit power is equal toPmax= 30 dBs

a CN (0, 1). This model captures the case where the eaves-
dropper in non-fading by settingK → ∞, and captures the
Rayleigh case by settingK = 0. For the model (37), the pdf
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Figure 5. Achievable rateR−2 and the upper bound under LTPC, for Rayleigh
fading channels, with 1-bit feedback, at low-SNR.

of γg is given by:

fγg

(

γg

)

= (1+K) exp
(

−
(

1+ K) ∗ γg + K
))

I0

(√

4K (1+ K) γg

)

,

(38)
whereI0 (·) is the Modified Bessel Function of the First Kind.
The transmit power has been set toPmax = 30 dB to depict
the high-SNR insight and we have considered a STPC. We
have evaluated the ratesR−1 and R−2 in Theorem 1 along
with the upper boundR+ for the proactive feedback (at the
beginning of the blocks) scenario, versus the Rician factor
K. In addition, we have evaluated the rateR−− presented in
Theorem 3 for the ARQ feedback versus the Rician factor
K. As shown in Fig.2, a positive secrecy rate is achievable
even when the eavesdropper’s channel is non fading (K >> 1)
and even with an ARQ feedback. All rates decrease withK
confirming that fading helps in providing secrecy. Note that
with 4-bit feedback, the gap to the upper bound is roughly the
same irrespective of the Rician factorK. However, differently
from the Rayleigh case presented in the paper,R−2 with just 1-
bit feedback outperformsR−1 with 4-bit feedback, forK ≥ 13.
This suggests that if the eavesdropper’s channel is non-fading,
then using a constant rate wiretap code is a better strategy than
adapting the rate with the quantized main CSI feedback.

In Fig. 3, we have displayed performance of our lower



bounds and upper bound at low-SNR under STPC. The char-
acterization in Corollary 3 is also reported in Fig. 3 where for
convenience, we designate byR0

−2 and R0
+ the RHS of (26)

and (27), respectively. Although not fully characterized for a
finite number of feedback bits, the secrecy capacity seems to
scale linearly at low-SNR as shown in Fig. 3.

For LTPC, as shown in Fig. 4, performance has expectedly
improved at finite SNR since one can exploit power adaptation
in a more efficient way. However, at high-SNR, performances
under STPC and LTPC are equal. We note that here again,
with 4-bit feedback, more than 90% of the available capacity
may be achieved byR−1.

For the low-SNR regime, we have plotted in Fig. 5, the
ergodic capacity of the main channel, the curves corresponding
to the achievable rateR−2 and the upper boundR+. We
note first that the curves corresponding toR−2 and R+ are
undistinguishable for all SNR values below -10 dB, thus
fully characterizing the capacity in this case. Furthermore, the
three curves get closer asPmax tends toward zero, to actually
coincide completely atPmax ≤ −70 dBs (although not shown
in Fig. 5), in full agreement with Theorem 4. While such low
SNR values have a little practical meaning, the insight gained
from our low SNR analysis seems to be very appealing.

VII. Conclusion

The secret message capacity of an ergodic block fading
wiretap channels with limited-rate feedback has been ad-
dressed. Lower bounds and an upper bound have been derived
when an arbitrary number of feedback bits at the beginning
of each coherence block are provided to the sender by the
legitimate receiver, through an error free public channel with
limited capacity. We have also shown that a positive secrecy
rate is achievable when only 1-bit ARQ feedback is given
to the sender at the end of each coherence block. When the
number of feedback bits is large enough, one of our lower
bounds and the upper bounds coincide, thus fully characteriz-
ing the capacity in this case. While the capacity at high-SNR
is bounded, it has been found that at asymptotically low-SNR
regime, the lower and the upper bounds scale linearly with
SNR under STPC whereas under LTPC and for a class of
fading channels, 1-bit feedback is enough to achieve a secrecy
rate equal to the ergodic capacity of the main channel as
if there is no secrecy constraint. Our framework highlights
the role of feedback in providing secure communication and
emphasizes on the efficiency of secure communication at low-
SNR regime as secrecy may be obtained with a marginal
penalty.

We note that in this work, we have focused on a single layer
coding approach; an interesting study would be to generalize
our framework to a multi-layer coding or the so-called broad-
cast approach. Without secrecy constraint, It has been shown
by previous studies that the broadcast approach outperforms
single layer coding in terms of the average achievable rate,
especially when the number of feedback bits is small (1 or 2).
Whether this behavior holds or not under secrecy constraintis
worth investigating.
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Appendix A
Proof of Theorem 1

A. Proof of the Lower Bound R−1

Let {Pk}Nk=1 be an arbitrary power policy inΠ(N), and let
{τk}Nk=1 be a family of reconstruction points inΘ(N). We assume
that the choice of rates{0 ≤ R1 ≤ R2, . . . ≤ RN < RN+1 = ∞},
whereRp = log

(

1+ Pp τp

)

, is selected in advance. Let∆p =

Pr(τp ≤ γh < τp+1) for p = 1, . . . ,N. We establish that the
rateR−1 =

∑N
p=1∆p E

[

Rp − log(1+ γgPp)
]+
+ ε is achievable.

We also let R =
∑N

p=1∆pRp − 2ε. We uniformly partition
the set of all 2n R sequences of lengthn R into 2n R−1 bins
so that there are 2n(R−R−1) sequences per bin. Each message
W ∈ [1, 2nR−1] corresponds to one bin-index. To transmit a
messageW the transmitter selects the corresponding bin index
and then select a binary sequencev uniformly at random
from all of the sequences in that bin. Since all messages are
equally likely, we induce a uniform distribution across allof
2n R sequences. In each lengthm coherence block, we transmit
the nextm · Rp information bits using a Gaussian codebook.
For convenience, we let the transmit codeword in coherence
block i be Xm(i) = (X(i, 1), . . . ,X(i,m)) and the received
sequences at the legitimate receiver and eavesdropper by
Y m(i) = (Y(i, 1), . . . ,Y(i,m)) andZm(i) = (Z(i, 1), . . . ,Z(i,m)),
respectively. By weak law of large numbers, whenL (L� 1)
coherence periods are used for transmission, the entire binary
sequencev is transmitted with high probability. Since in each

block Rp ≤ log(1+ γhPp) holds, the receiver can decode the
sequencev with high probability. For the secrecy analysis,
we observe that from our construction the codeword sequence
Xm(1),Xm(2), . . .Xm(L) is independent and hence

H
(

Xn | Zn,hL, gL
)

=

L
∑

i=1

H (Xm(i) | Zm(i), h(i), g(i)) (39)

Furthermore from the analysis of a Gaussian wiretap code
we have that

H (Xm(i) | Zm(i), h(i), g(i)) ≥ m E
[

R(i) − log
(

1+ γgP(i)
)

− ε
]+

(40)

whereR(i) ∈ {0,R1, . . . ,RN} and P(i) ∈ {0,P1, . . . ,PN} are the
rate and the power selected in blocki. Thus, we have:

n Re=H
(

W | Zn,hL,GL
)

(41)

≥I
(

W;Xn | Zn,hL, gL
)

(42)

=H
(

Xn | Zn,hL, gL
)

− H
(

Xn | Zn,hL, gL,W
)

(43)

≥
L

∑

i=1

mE
[

R(i) − log
(

1+ γgP(i)
)]+
− H

(

Xn | Zn,hL, gL,W
)

(44)

Using weak-law of large numbers it can be seen that

1
L

L
∑

i=1

[R(i)−log
(

1+ γgP(i)
)

]+
L→∞−→

N−1
∑

p=0

∆pE
[

[

Rp − log
(

1+ γgPp

)]+
]

.

Thus it only remains to show that the second term satisfies
H

(

Xn | Zn,hL, gL,W
)

≤ nε. We argue that given the message
W the eavesdropper can uniquely decode the sequencev

and hence the codeword sequenceXn. In coherence block
i, the eavesdropper constructs a listLi for all codeword
sequences that are jointly typical with the received sequence
Zm(i). From standard typicality analysis there are a total
of 2m[R(i)−log(1+γg(i)P(i))]+ such sequences. It then searches for
a unique sequence in the setL = L1 × L2 · × · LL that
belongs to the bin-index ofW. The size of this set is:
|L| = 2m

∑L
i=1[R(i)−log(1+γg(i)P(i))]+ , which from the weak-law of

large numbers, approaches 2n (R−1−ε) as L → ∞. Since each
sequence in the setL belongs to the bin ofW with probability
2−n R−1 the overall error probability can be shown to vanish
as n → ∞. Indeed, by the asymptotic equipartition property
(AEP) and the Packing Lemma [32, Chap. 3], it can be
shown that the probability of error at Eve is upper-bounded
as follows:

P(Eve)
e ≤ ε1 + 2−n R−1 · 2m

∑L
i=1[R(i)−log(1+γg(i)P(i))]+

= ε1 + 2−n R−1 · 2n (R−1−ε) (45)

= ε1 + 2−nε (46)

whereε1 → 0 asn→ ∞ and where (45) holds asL→ ∞. The
right hand side of (46) vanishes to zero asn→ ∞ and hence
so doesH

(

Xn | Zn,hL, gL,W
)

due to Fano’s inequality.

B. Proof of the Lower Bound R−2

We can think of the feedback as a deterministic mapping,
say κ(·), such thatκ (γh) = k if γh ∈ [τk, τk+1). Then, we
construct a new channel where the main channel fading is



amplified by
√

P (κ (γh)), i.e., the outputY(i, j) in (1) becomes
Ỹ(i, j) = h̃ (i) X(i, j)+U(i, j), whereh̃(i) =

√

P (κ (γh (i))) h (i).
Clearly, this is a specific use of CSI-T and thus the secrecy
capacity of the new channel is not higher than the original
one. Moreover, the new channel has no CSI-T and perfect
CSI-R at the legitimate receiver. The rateR−2 follows then
from [24, Corollary 2], by takingV = X such thatp (x) =
CN (0, 1). With this choice, the rateI

(

X; Ỹ, h̃
)

− I
(

X; Z, h̃, g
)

=

I
(

X; Ỹ | h̃
)

− I
(

X; Z, g | h̃
)

is achievable. The first term can be
evaluated as follows:

I
(

X; Ỹ | h̃
)

= E
γh

[

log(1+ P (κ (γh)) γh)
]

(47)

=

N
∑

k=1

E
τk≤γh<τk+1

[

log(1+ γh Pk)
]

. (48)

The second term can be evaluated similarly so that the rate

N
∑

k=1

E
τk≤γh<τk+1
γg

[

log

(

1+ γh Pk

1+ γg Pk

)]

(49)

is achievable. Maximizing over allPk’s andτk’s subject to the
power constraint completes the proof.

Appendix B
Proof of the Upper Bound R+

We assume that the transmitter has CSIui = κ (hi) at time
instanti, whereas the legitimate receiver knowsγh,i . We mainly
follow the approach in [33] with proper adaptation to secrecy
and upper bound the equivocation rate as follows.

n Re = H
(

W
∣

∣

∣Zn,hL, gL
)

(50)

≤ I
(

W;Y n
∣

∣

∣Zn,hL, gL,uL
)

+ nδn (51)

=

n
∑

i=1

I
(

W; Yi

∣

∣

∣Zn,hL, gL,Y i−1,uL
)

+ nδn (52)

=

n
∑

i=1

{

h
(

Yi

∣

∣

∣Zn,hL, gL,Y i−1,uL
)

−h
(

Yi

∣

∣

∣Zn,hL, gL,Y i−1,uL,W
)}

+ nδn (53)

≤
n

∑

i=1

h
(

Yi

∣

∣

∣ Zi , hi, gi ,u
L
)

−h
(

Yi

∣

∣

∣Zn,hL, gL,Y i−1,uL,W,Xi

)

+ nδn (54)

=

n
∑

i=1

h
(

Yi

∣

∣

∣ Zi , hi, gi ,u
L
)

−h
(

Yi

∣

∣

∣ Zi , hi, gi,Xi ,U
L
)

+ nδn (55)

=

n
∑

i=1

I
(

Xi ; Yi
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L
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+ nδn (56)
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where (51) follows from Fano’s inequality and also because
uL is a deterministic function ofhL and where (57) fol-
lows because givenhi and gi , the channel at hand is a
wiretap channel with average transmit powerPi

(

ui
)

, where

Pi

(

ui
)

= E
[

|Xi |2
∣

∣

∣ui
]

, since givenuL, Xi is independent of
hi . The above upper bound is tight ifXn is a sequence with
zero-mean Gaussian componentsXi , statistically independent
conditionally onuL. Let Xi =

√

Pi
(

ui
)

Ti , whereTi is i.i.d.
CN (0, 1). Then we need only to prove that the above upper
bound is maximized by a power allocationPi

(

ui
)

= λ (ui), a
time-invariant function ofui only. To do this, we have:
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where (59) follows from Jensen’s inequality since the function
x 7→

[

log
(

1+a x
1+b x

)]+
is concave for any positivea andb; where

(60) follows because conditioned onui , ui is independent of
γh,i andγg,i due to the fact that the fading process

{

γh,i
}

is i.i.d.;
where we have definedλi (ui) in (61) asλi (ui) = E

[

Pi

(

ui
)

∣

∣

∣

∣
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]

.
Since the fading processes{hi} and {gi} are ergodic and
stationary, then they have a stationary first-order distribution
and thus the expectation in (61) does not depend on their time
index i, from which (62) follows. Combining (57) and (62),
we obtain:

Re ≤ 1
n

n
∑

i=1

E
[[

log

(

1+ γh λi (u)
1+ γg λi (u)

)]+]

+ δn (63)

≤ E















































log























1+ γh
1
n

∑n

i=1
λi (u)

1+ γg
1
n

∑n

i=1
λi (u)













































+






















+ δn (64)

= E
[[

log

(

1+ γh λ (u)
1+ γg λ (u)

)]+]

+ δn (65)

where (64) follows again by Jensen’s inequality and where
λ (u) in (65) is defined asλ (u) = 1

n

∑n

i=1
λi (u). The above upper

bound is tight if λi (u) is independent ofi. Letting n → ∞
and maximizing over all power policies{λ (u)} that satisfy the
STPC (resp. LTPC), we establish that

Re ≤ max
λ(u) s.t. STPC

E
[[

log

(

1+ γh λ (u)
1+ γg λ (u)

)]+]

. (66)

Since u = κ (h), where κ(·) is a deterministic mapping, the
upper bound in Theorem 2 follows. It remains to show that
the lower and the upper bounds coincide asN→ ∞. For this
purpose, let us chooseτk’s such that

(

Fγh (τk+1) − Fγh (τk)
)

=
1
N . Note that this is possible as long as Alice is aware of the



statistics of the main channel gainh which is the case. The
results follows then asN → ∞ due to the ergodicity.

Appendix C
Proof of Theorem 3

The achievability scheme is similar to that of Theorem 1,
with the difference that because the sender keeps repeating
the blocks that are NACKed until she receives an ACK, these
repetitions leak additional information to the eavesdropper.
Again the Random Coding Theorem ensures that there exists
a Gaussian codebook of rateR = log(1+ τP) such that the
fraction of successfully decoded frames is given by:

Pr(success)= 1− Pr
{

R> log(1+ γh P)
}

. (67)

For the secrecy analysis, we first letLi be the number of
blocks that have been repeatedi times, i = 0, . . . ,∞. For
instance,L0 represents the number of blocks that have not
been repeated,L1 represents the number of blocks that have
been repeated once and so on. Also, lets be a binary random
variable that describes the ARQ feedback. That is,s= 1 if an
ACK is received ands = 0 otherwise. One can upper bound
the equivocation rate as follows:

n Re = H
(

W | Zn, hL, gL, sL
)

(68)

≥ I
(

W;Xm L0 | Zn,hL, gL, sL
)

(69)

= h
(

Xm L0 | Zn,hL, gL, sL
)

−h
(

Xm L0 |W,Zn,hL, gL, sL
)

(70)

= h
(

Xm L0 | Zm L0 ,hL0 , gL0
)

−h
(

Xm L0 |W,Zn,hL, gL, sL
)

(71)

≥
L0
∑

i=1

m
{

[

R− ε − log
(

1+ γg (i) P
)]+

}

−h
(

Xm L0 |W,Zn,hL, gL, sL
)

, (72)

where (71) follows because the eavesdropper does not gain
any information aboutXm L0 by observing the remainingL−L0

blocks, since the blocks are independents and the channel is
memoryless. The second term on the RHS of (72) can be
made arbitrary small using a list decoding argument similarly
to Appendix A. Finally, whenL0 → ∞, the ratio L0

L can be
computed as follows:

lim
L0→∞

L0

L
= lim

L0→∞

1
L

L
∑

i=1

1i (73)

= Pr
{

no repetition
}

= Pr
{

blocksi and (i − 1) not repeated
}

(74)

= Pr(success)2 (75)

= θ2, (76)

where1i is an indicator function that is equal to one if the
block i is not repeated and is equal to zero otherwise. Using the
ergodicity of the channel in (72) along with (76), (8) follows
immediately.

Appendix D
Proof of Corollary 1

The existence of a codebook with arbitrary low error proba-
bility is justified similarly as in Appendix C. Here, we outline
the secrecy analysis.

n Re ≥ h
(

Xm L0 ,Xm L1 | Zn,hL, gL, sL
)

−h
(

Xm L0,Xm L1 |W,Zn,hL, gL, sL
)

(77)

= h
(

Xm L0 | Zn,hL, gL, sL
)

+h
(

Xm L1 | Zn,hL, gL, sL,Xm L0
)

−h
(

Xm L0,Xm L1 |W,Zn,hL, gL, sL
)

(78)

= h
(

Xm L0 | Zm L0 ,hL0 , gL0
)

+h
(

Xm L1 | Z2m L1 ,h2L1 , g2L1
)

−h
(

Xm L0,Xm L1 |W,Zn,hL, gL, sL
)

(79)

≥
L0
∑

i=1

m
{

[

R− ε − log
(

1+ γg (i) P
)]+

}

+

L1
∑

i=1

m
{

[

R− ε − log
(

1+ γ(2)
g (i) P

)]+
}

−h
(

Xm L0,Xm L1 |W,Zn,hL, gL, sL
)

, (80)

where (79) follows because the eavesdropper does not gain
any information aboutXm L0 and Xm L1 by observing the
remaining(L − L0) and(L − L1) blocks, respectively, since the
blocks are independents and the channel is memoryless. To
obtain (80), we expand the first term in (79) exactly as in the
case of no repetition (please see Appendix C) whereas the
second term in (79) can be expanded as follows:

h
(

Xm L1 | Z2m L1 ,h2L1 , g2L1
)

=
∑

blocksi
repeated once

h (Xm(i) | Zm(i),Zm(i + 1), h(i), h(i + 1)

, g(i), g(i + 1)) (81)

=
∑

blocksi
repeated once

[

h (Xm(i))

−I (Xm(i);Zm(i),Zm(i + 1), h(i), h(i + 1), g(i), g(i + 1))
]+(82)

=
∑

blocksi
repeated once

[

h (Xm(i))

−I (Xm(i);Zm(i),Zm(i + 1) | h(i), h(i + 1), g(i), g(i + 1))
]+(83)

≥
L1
∑

i=1

{

m
[

R− ε − log
(

1+ γ(2)
g P

)]+
}

, (84)

where (81) follows again from the independence of the block
pairs that have been repeated once and from the constructionof
the codeword sequenceX(1), ...,X(L), and where (83) follows
becauseX(i) and (H(i),H(i + 1),G(i),G(i + 1)) are indepen-
dent and where (84) follows from the fact that Gaussian
random variables are entropy maximizers. The third term on
the RHS of (80) can be made arbitrary small using a list
decoding argument similarly to Appendix C. Finally, when
L0 → ∞ and L1 → ∞, the ratios L0

L converges toθ2 due to



(76), whereasL1
L can be computed as follows:

lim
L1→∞

L1

L
= Pr

{

blocksi and (i − 2) are not repeated

and (i − 1) repeated
}

(85)

= θ2 (1− θ) . (86)

Using the ergodicity of the channels in (80) along with (76)
and (86), the equivocation rate can be upper-bounded by:

Re ≥ θ2 E
γg

[

[

R− log
(

1+ γg P
)]+

]

+θ2 (1− θ) E
γ

(2)
g

[

[

R− log
(

1+ γ(2)
g P

)]+
]

,

from which the result in Corollary 1 follows immediately.

Appendix E
Proof of Lemma 1

For brevity, we prove Lemma 1 forN = 1 and N = 2,
after that, it becomes clear that generalization of the proof to
arbitraryN follows immediately.

1) N = 1
In this case. the rateR−2 may be written asR−2 =

max0≤P≤Pmax
0≤ τ

E
τ≤ γh
γg

[

log
(

1+γh P
1+γg P

)]

. Writing the KKT condition

with respect toτ, the optimal valuesP∗ andτ∗ must satisfy:

fγh (τ∗)
(

log(1+ τ∗ P∗) − E
[

log
(

1+ γg P
)])

= 0. (87)

Since we focus on positive PDF’s that can be null only
at x = 0, we conclude thatτ∗ = eC(P∗)−1

P∗ , where C (P) =
E

[

log
(

1+ γg P
)]

, is the maximizer ofK (τ,P∗). Note that
τ∗ > 0, for anyP∗ > 0.

To show thatP∗ = Pmax, let us define the functionK (τ,P)

over [0,∞) × [0,Pmax] by: K (τ,P) = E
τ≤ γh
γg

[

log
(

1+γh P
1+γg P

)]

. Our

objective is to show thatK (τ,P) is increasing inP and hence
settingP∗ = Pmax can only increase the objective function. For
this purpose, we have:

K (τ,P) =
∫ ∞

τ

log(1+ x P) fγh (x) dx

−
(

1− Fγh (τ)
)

∫ ∞

0
log(1+ x P) fγg (x) dx (88)

=
(

1− Fγh (τ)
)

∫ ∞

0
log(1+ x P)

[

fγh (x) 1[τ,∞) (x)

1− Fγh (τ)

− fγg (x)
]

dx (89)

=
(

1− Fγh (τ)
)

[

E
[

log
(

1+ γh,[τ,∞) P
)]

−E
[

log
(

1+ γg P
)]]

(90)

where (90) follows because the functionx 7→ fγh(x)1[τ,∞)(x)
1−Fγh (τ) is

the PDF of the r.v.γh,[τ,∞) = γh | γh ≥ τ. Using (90), the
derivative ofK (τ,P) can written as

∂K (τ,P)
∂P

=
(

1− Fγh (τ)
)

[

E
[

γh,[τ,∞)

1+ γh,[τ,∞) P

]

− E
[

γg

1+ γg P

]]

.

(91)
Now, we need the following facts which are know results in
stochastic dominance theory.

Fact 1: If X � Y, then µ (X) � µ (Y), for any increasing
mappingµ (·).
as a corollary of Fact 1, we also have:

Fact 2: If X � Y, thenE[X] ≥ E[Y].
By assumption of Lemma 1, we know thatγh,[τ,∞) � γg and

sincex 7→ x
1+x P is an increasing mapping, then by Fact 1 and

Fact 2, we have∂K(τ,P)
∂P ≥ 0 and henceK (τ,P) is increasing

in P. ThereforeP∗ = Pmax is optimal. In addition, since
K (τ, 0) = 0, thenR−2 is necessarily non-negative. Lemma 1 is
thus proved forN = 1.

1) N = 2
In this case. the rateR−2 may be written as

R−2 = max
0≤P1≤Pmax
0≤P2≤Pmax

0≤ τ1≤τ2



















E
τ1≤ γh ≤τ2
γg

[

log

(

1+ γh P1

1+ γg P1

)]

+ E
τ2≤ γh
γg

[

log

(

1+ γh P2

1+ γg P2

)]



















. (92)

Again, the KKT condition with respect toτ1 implies that

τ∗1 =
eC(P∗1) − 1

P∗1
, (93)

whereas with respect toτ2 gives the necessary condition

1+ τ∗2 P∗1
1+ τ∗2 P∗2

=
eC(P∗1)

eC(P∗2)
. (94)

Now, assume thatP∗1 < P∗2. Let us define the functionF(·) on

[0,∞) by: F (τ) =
1+τP∗1
1+τP∗2

− eC(P∗1)

eC(P∗2)
. One can easily verify thatF(·)

is strictly monotonically decreasing, thatF(0) = 1− eC(P∗1)

eC(P∗2)
> 0

sinceP∗1 < P∗2 and that lim
τ→∞

F (τ) =
P∗1
P∗2
− eC(P∗1)

eC(P∗2)
. Note that

eC(P∗1)

eC(P∗2)
= exp

(

E
[

log

(

1+ g P∗1
1+ g P∗2

)])

(95)

> exp

(

E
[

log

(

P∗1
P∗2

)])

(96)

=
P∗1
P∗2
. (97)

Thus, lim
τ→∞

F (τ) < 0. Since F(·) is strictly monotonically

decreasing, then there should exist a uniqueτ∗2 > 0, such
that F

(

τ∗2

)

= 0, and sinceτ∗1 ≤ τ
∗
2, then eitherτ∗1 = τ

∗
2 or

F
(

τ∗1

)

> 0. We rule out the last condition so that we are left
with the necessary conditionτ∗1 = τ

∗
2. Taking into account (93),

the conditionF
(

τ∗1

)

> 0 can be equivalently written as

eC(P∗1) − 1
P∗1

<
eC(P∗2) − 1

P∗2
. (98)

Let G(·) the function defined on (0,∞) by G (P) = eC(P)−1
P .

Its derivative, denotedG
′
(·) can be computed asG

′
(P) =

− eC(P)

P2

(

1− P C
′
(P) − e−C(P)

)

. We show thatG
′
(P) ≤ 0 for all

P ∈ (0,∞) as follows:

1− P C
′
(P) = E

[

1
1+ g P

]

(99)



= elog
(

E
[

1
1+g P

])

(100)

> eE
[

log
(

1
1+g P

)]

(101)

= e−C(P), (102)

where (101) follows by the Jensen’s inequality since log(·) is
strictly concave. HenceG(·) is strictly monotonically decreas-
ing on (0,∞) and sinceP∗1 < P∗2, then we haveG

(

P∗1
)

>

G
(

P∗2
)

. Thus condition (98) cannot hold and neither can

F
(

τ∗1

)

> 0. Therefore, we must haveτ∗1 = τ
∗
2 if P∗1 < P∗2.

But, if this is the case, the first part of the rateR−2 contributes
nothing to the objective function. Also, ifP∗1 = P∗2, the first
part can be merged with the second part so thatR−2 can be
written simply as:

R−2 = max
0≤P≤Pmax

0≤ τ

E
τ≤ γh
γg

[

log

(

1+ γh P
1+ γg P

)]

, (103)

which corresponds exactly to the caseN = 1. This completes
the proof of Lemma 1.

Appendix F
On the positiveness of µ for P2

We assume here that the main and the eavesdropper chan-
nels are identically distributed so thatfγh(x) = fγg(x) for all x
in the support ofγh andγg. Let us write the ∂

∂Pk
condition in

Table I for k = N as:
1

1− Fγh (τN)

∫ ∞

τN

γh

1+ γh PN
fγh(γh) dγh−

∫ ∞

0

γg

1+ γg PN
f
γh(γg) dγg = µ.

(104)
Let us consider a functionK(·) defined on [0,∞) by: K (x) =

1
1−Fγh

(x)

∫ ∞
x

γh

1+γh PN
fγh(γh) dγh. The functionK(·) is monoton-

ically increasing since its derivativeK
′
(·) given by

K
′
(x) =

fγh (x)
(

1− Fγh (x)
)2

∫ ∞

x

(

γh

1+ γh PN
− x

1+ x PN

)

fγh(γh) dγh

(105)
is non-negative. If in additionfγh

(x) > 0 for all x > 0,
then since the integrand in (105) is strictly positive for for all
γh ∈ (x,∞), thenK

′
(x) > 0 on (0,∞) and thusK(·) is strictly

increasing on (0,∞). Our claim is that∀x > 0, K (x) > K (0).
Assume that∃ x0 > 0 such thatK (x0) = K (0). Take anyε > 0
such thatx0 − ε > 0, we have thatK (x0 − ε) < K (x0) = K (0)
due the monotonicity ofK(·). But sinceK(·) is a continuous
function, the later statement implies that∃ η ∈ (0, x0− ε) such
that K (x0 − ε) < K (η) < K (0). Note that the most left side
of the later inequality contradicts the fact thatK(·) is strictly
increasing on (0,∞). Therefore, our claim holds true and since
τN is positive, we haveK (τN) > K (0) so thatµ in (104) is
positive. In summary, to prove thatµ is positive, we needed
to assume thatγh andγg are identically distributed and that
fγh (x) > 0 for all x > 0.

Appendix G
Proof of Corollary 2

We prove (20) by showing that lim
Pmax→∞

R−1 = R∞−1. Let R̃−1

be defined by:

R̃−1 =

N
∑

k=1

Pr{τk ≤ γh < τk+1}E
γg

[[

log

(

1+ τk Pmax

1+ γg Pmax

)]+]

,

for someτk’s, τ1 ≤ τ2 ≤ . . . ≤ τN. Since for anyPmax value,
[

log

(

1+ τk Pmax

1+ γg Pmax

)]+

≤
[

log

(

τk

γg

)]+

,

for all τk and allγg; and since

E
γg

[[

log

(

τk

γg

)]+]

< ∞;

due to the fact thatfγg(·) is continuous and bounded and
∣

∣

∣

∣

∫ 1

0
log(x) dx

∣

∣

∣

∣
= 1; then by the Dominated Convergence

Theorem, we have:

lim
Pmax→∞

E
γg

[[

log

(

1+ τkPmax

1+ γgPmax

)]+]

= E
γg

[[

lim
Pmax→∞

log

(

1+ τkPmax

1+ γgPmax

)]+]

= E
γg

[[

log

(

τk

γg

)]+]

, (106)

which implies that lim
Pmax→∞

R̃−1 =

N
∑

k=1
Pr{τk ≤ γh < τk+1}E

γg

[[

log
(

τk
γg

)]+]

. Hence, ∀ε > 0, there

exists a certainP0 such that∀Pmax> P0, we have:
∣

∣

∣

∣

∣

∣

∣

R̃−1 −
N

∑

k=1

Pr{τk ≤ γh < τk+1}E
γg

[[

log

(

τk

γg

)]+]
∣

∣

∣

∣

∣

∣

∣

≤ ε. (107)

Taking the maximum over allτk’s such thatτ1 ≤ τ2 ≤ . . . ≤
τN on both sides of (107) establishes the desired result. The
proof of (21) follows along similar lines. To prove (22), we
simply recall that under STPC,R+ = R++ and that lim

Pmax→∞
R++ =

E
γh , γg

[[

log
(

γh

γg

)]+]

as it has been proved in [3], thus lim
Pmax→∞

R+ =

R∞++.

Appendix H
Proof of Corollary 3

In order to prove (25), we proceed similarly as in the proof
of Corollary 2 and verify that

lim
Pmax→0

R̃−1

Pmax

N
∑

k=1
Pr{τk ≤ γh < τk+1}E

γg

[

[

τk − γg

]+
]

= 1.

This implies that∀ ε > 0, ∃ η > 0 such that ifPmax ≤ η,

then

∣

∣

∣

∣

∣

∣

∣

∣

R̃−1

Pmax

N
∑

k=1
Pr{τk≤γh<τk+1}E

γg

[

[τk−γg]+
]

− 1

∣

∣

∣

∣

∣

∣

∣

∣

≤ ε. This, in turn, implies

that:

(1− ε) Pmax

N
∑

k=1

Pr{τk ≤ γh < τk+1}E
γg

[

[

τk − γg

]+
]

< R̃−1

< (1+ ε) Pmax

N
∑

k=1

Pr{τk ≤ γh < τk+1}E
γg

[

[

τk − γg

]+
]

.(108)

Taking the maximum over allτk’s, τ1 ≤ . . . ≤ τN, on both
sides of the last two inequalities, we obtain:
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

R−1

Pmax · max
0≤τ1≤...≤τN

N
∑

k=1
Pr{τk ≤ γh < τk+1} · E

γg

[

[

τk − γg

]+
]

− 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

< ε,

(109)



which proves (25). The proof of (26) follows along similar
lines, and thus one can prove that:

∣

∣

∣

∣

∣

∣

∣

∣

∣

R−2

Pmax ·max
τ≥0

E
γh≥τ ,γg

[

γh − γg

] − 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

< ε. (110)

In addition,τ∗ = E
γg

[

γg

]

is the maximizer of the denominator

in (110) and hence the proof of (26) is completed. Finally, the

proof of (27) follows from a series expansion of log
[

1+Pmaxγh

1+Pmaxγg

]

aroundPmax = 0 to the second order and by averaging the
obtained expression.

Appendix I
Proof of Theorem 4

Since the capacity without secrecy constraint cannot be
smaller than the one under secrecy constraint, the converse
part of Theorem 4 is immediate. To prove the achievability
part, let us first define the maximum channel gainG by
[34]: G = sup

p(x)

E[γh|x|2]
E[ |x|2] . Let us consider the conditional input

distribution defined by

fx|γh(x | γh) =















δ
(

x−
√

P0

)

if γh ≥ ν,
δ(x) otherwise,

(111)

whereδ(·) is the Dirac delta function, whereP0 =
Pmax

1−Fγh (ν) and
whereν is a threshold that needs to be determined. Clearly,
the input distribution (111) satisfies the LTPC since:

E
[

|x|2
]

=

∫ +∞

−∞
|x|2 fx (x) dx (112)

=

∫ +∞

−∞
|x|2

(

Fγh (ν) δ (x) +
(

1− Fγh (ν)
)

δ
(

x−
√

P0

))

dx(113)

=
(

1− Fγh (ν)
)

P0 (114)

=Pmax. (115)

Furthermore, we verify that:

lim
Pmax→0

|E[x]|2

E
[|x|2] = lim

Pmax→0

(

1− Fγh (ν)
)

(116)

lim
Pavg→0

E
[

γh|x|2
]

E
[|x|2] = lim

Pmax→0

∫ ∞
ν
γh fγh (γh)

1− Fγh (ν)
. (117)

Now, choosingν such that the limit in (116) is equal to zero
and the limit in (117) is equal toG ensures that the input
distribution in (111) is first-order optimal in the sense of [34,
Theorem 4]. Note that since the transmitter knows the main
channel gainh, thenG = sup

γh

γh [34]. The fact that the support

of h is infinite (by assumption of Theorem 4) induces thatG =
∞. The secrecy rate achieved by the above input distribution
is given by:

R−2 = E
γh,x

[

log
(

1+ γh |x|2
)]

− E
γg,x

[

log
(

1+ γg |x|2
)]

. (118)

As Pmax→ 0, the first term in (118) is much larger than the
second one as shown below:

lim
Pmax→0

E
γg,x

[

log
(

1+ γg |x|2
)]

E
γh,x

[

log
(

1+ γh |x|2
)] = lim

Pmax→0

E
γg,x

[ log(1+γg |x|2)]
Pmax

E
γh,x

[ log(1+γh |x|2)]
Pmax

(119)

≤ lim
Pmax→0

log

(

1+E
γg
[γg] Pmax

)

Pmax

E
γh,x

[ log(1+γh |x|2)]
Pmax

(120)

=

E
γg

[

γg

]

G
(121)

= 0, (122)

where (120) is due to the Jensen’s inequality and (121) follows
because the inputx is first-order optimal. Hence,R−2 is
asymptotically equal to

R−2 ≈ E
γh,x

[

log
(

1+ γh |x|2
)]

. (123)

The rate on the RHS of (123) is asymptotically equal to the
capacity of the main channel and hence is the best rate one
can achieve. To conclude the proof, we note that to set the
input distribution (111), one only needs to know when the
actual channel gain is above the thresholdν which is possible
through a 1-bit feedback.

Appendix J
Proof of the statement in Remark 4

We prove the statement in Remark 4 via an example. Let
us consider fading channels with PDF defined on [0, a] by:

fγh (x) = fγg (x) =
1
a
, (124)

wherea is an arbitrary positive number. The capacity without
secrecy over the main channel is given by [35]:

Cw.s (Pmax) =

∫ a

λ

log
(

γh

λ

) 1
a

dγh (125)

= −1+
λ

a
+ log

(a
λ

)

, (126)

where λ is the cut-off rate obtained by solving
∫ a

λ

(

1
λ
− 1
γh

)

1
a dγh = Pmax. It can be verified thatλ can

be obtained explicitly asλ = − a
W(−e−1−a Pmax) , whereW(·) is the

principal branch of the LambertW function. Substituting the
later expression ofλ in (126), we obtain:

Cw.s (Pmax) = −1− 1
W

(−e−1−a Pmax
) + log

(

−W
(

−e−1−a Pmax
))

(127)

= a Pmax+ o(Pmax) (128)

≈ a Pmax, (129)

where we have used the fact thatW
(

−e−1−a x
)

= −1+
√

2a x−
2
3 a x+o(x) to obtain (128). Note that (129) is in full agreement
with the framework in [34] sinceG = a for the PDF’s
considered above. Next, we show that the secrecy capacity
of this channel is at most asymptotically equal toa

2 Pmax

and is thus strictly smaller than the capacity without secrecy
constraint. To that end, we upper-bound the secrecy capacity
with perfect main CSI given in (7) as follows:

E
γh,γg

[[

log

(

1+ γh P (h)
1+ γg P (h)

)]+]

≤ E
γh,γg

[[

log

(

1+ a P(h)
1+ γg P (h)

)]+]

(130)

≤E
γg





















log





















1+ aE
γh

[P (h)]

1+ γg E
γh

[P (h)]









































,(131)



where (131) follows from the Jensen’s inequality since the
functionx 7→ log

(

1+c x
1+d x

)

is concave for all 0≤ d ≤ c. Since the
RHS of (131) is increasing inE

γh

[P (h)], then maximizing both

sides of (131) with respect to the LTPC:E
γh

[P (h)] ≤ Pmax, we

obtain:

R++ ≤ E
γg

[

log

(

1+ a Pmax

1+ γg Pmax

)]

(132)

≈ Pmax E
γg

[

a− γg

]

(133)

=
a
2

Pmax, (134)

which we wanted to show.
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the Ph.D. degree froḿEcole Polytechnique, Mon-
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