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Ergodic Secret Message Capacity of the Wiretap
Channel with Finite-Rate Feedback

Zouheir Rezki, Senior Member, IEEEand Ashish Khisti,Senior Member, IEEEand Mohamed-Slim
Alouini, Fellow, IEEE,

Abstract—We study the secret message capacity of an ergodicderived in [3]. Should the main CSI be imperfect at the sender
block fading wiretap channel with partial channel state informa-  the secrecy capacity is still not known. In [4], using the so-
tion at the transmitter and perfect channel state information at called variational distance as a secrecy criterion, a sitegter
the receivers, under both a short term power constraint (STE) o - - .
and a long term power constraint (LTPC). We consider that character|;at|on of the secrecy capacity of an _arbnrarmap
in addition to the statistics of the main and the eavesdroppe channel with causal CSI at both the transmitter and the re-
channel state information (CSI), the sender is provided by e ceivers is provided. However, this characterization isaasily
legitimate receiver with a g-bit feedback, at the beginning of computable due to the large space over which the prefixed
each coherence block, through an error-free public channelwith random processes are taken, and thus the capacity expressio

capacity q bits. We establish upper and lower bounds on the . . .
secrecy capacity. We show that the lower and the upper bounds therein turns out to be useful only to derive achievablestate

coincide asymptotically asq — . When applied to Rayleigh Independently and concurrently with our work [5], achieeab
fading channels, we show that, a 4-bit feedback achieves alto rates for the ergodic and the block ergodic fading wiretap
9?‘1/?] Oftthe S?(t?treCyFPaFﬁaCity Whetn tl?erfeCtl main tCr?I ri]S ar\éaillable channel have also been derived in [6]. In [7], a lower and an
at the transmitter. Finally, asymptotic analysis at high ard low : :

Signal-to-Noise Ratio (SNR) is presented. It is found that he ypper bound§ on t_he seCIreC.y Capa(:.lt.y are derlve.d for a dass o
capacity is bounded at high-SNR, whereas at asymptoticalliow- independent identically distributed (i.i.d.) fast fadn:iganngls,
SNR, the lower bounds and the upper bound scale linearly with When the codeword length spans many coherence periods and
SNR under STPC. Furthermore, subject to LTPC, the capacity when the sender has imperfect main CSI. Schemes based
at low-SNR is equal to the capacity of the main channel withoi on sending an artificial noise to enhance the eavesdropper
secrecy constraint and with perfect CSI at both the transmiter equivocation are presented in, e.g., [8]-[12]. Discussion

and the receiver, under a mild condition on the fading statisics. the dfect of CSI estimati | ted
We also show that a positive secrecy rate is achievable evemen € 81€CLO estimation €rror on secrecy are also presente

the feedback is at the end of each coherence block argl= 1. in [13]-{19].

In this paper, we assume that Bob knows its own channel
instantaneously and Eve knows both its own channel and the
main channel, instantaneously; whereas Alice is only aware
of the statistics of these channels. There is also an ereer-f

| INTRODUCTION public feedback channel with limited capacity from Bob to

The role of fading in providing physical layer security haélice that may be tracked by Eve. In our setting, the feedback
been extensively highlighted recently, e.g. [1], [2]. Insth is exclusively used to send the output of a deterministic
context, we consider a wiretap channel consisting of a sendienction that describes the main channel state informafibe
(Alice), a legitimate receiver (Bob) and an eavesdroppeelE secret message capacity of this channel is not known. Severa
Alice wants to communicate a secret message to Bob whileevious works have highlighted the impact of limited-rate
keeping Eve in full ignorance of such a message. The md#edback on the capacity of fading channels without secrecy
channel, between Alice and Bob, and the eavesdropper cheprstraint, see for instance, [20]-[23] and referencegethe
nel, between Alice and Eve, are both block fading channeldowever, to the best of our knowledge, not much attention
For arbitrarily large coherence blocks, and assuming we chas been given to secret message capacity with limited-rate
code over sfficiently many coherence periods, and if théeedback.
sender is perfectly aware of either the main CSI or both theFor the setting described above, we first extend the scheme
main and the eavesdropper CSI, the secrecy capacity has bBeld] to incorporateg-bit feedback and observe numerically

that when Rayleigh fading channels are considered, a 4-bit
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aided upper bound similar to the one in e.g., [25], to includehere j = 1,...,m, with m representing the number of
g-bit feedback. Since the transmitter is not aware of the masgmbols in each coherence block; wheté, j) € C is the
channel gain, the proof of the upper bound has required softle transmitted symbol at time coherengeand h(i) € C,

extra technical steps following a similar approach as threion g(i) € C are zero-mean and unit-variance channel gains that
[26], with proper adaptation to secrecy. Finally, we alsoveh represent the main channel and the eavesdropper channel at
that even when the feedback is at the end of each coheretice coherencg, respectively; andJ(i, j) € C, V(i, j) € C are

block andq = 1, a positive secrecy rate is achievable. Thigero-mean, unite-variance circularly symmetric white &au
complements a result in [27] where a secret-key generatisian noises. The fading procefls} (resp.{g} ) is assumed
mechanism with 1-bit feedback at the end of the coherenitebe independent and identically distributed (i.i.d.)cessrthe
block is proposed. coherence blocks. Furthermore, the channel gaiasdg are

We then specialize our results to a short term poweassumed to be independent of each other in any coherence
constraint (STPC) and a LTPC, respectively. We formulage tinterval. We assume perfect CSI at the receiver sides. That
achievable rates and the upper bound &&dint optimization is, the legitimate receiver knows the instantaneous cHanne
problems and propose an algorithm that attempts to fin€alizationsh(i), whereas the eavesdropper is aware of both
the optimal solution iteratively. In both cases, we presehti) and g(i). For convenience, we legn, = |hi%, yq = |9,
asymptotic analysis at high-SNR and low-SNR and show thgf () and f,, (-) their PDF's, andr,, (), F,,(-) their cumulative
in contrast to the high-SNR regime where the capacity distribution functions (CDF).
bounded; at asymptotically low-SNR regime, the lower baund The transmitter is not aware of neithiei) nor g(i). How-
and the upper bound scale linearly with SNR under STP@ver, in addition to the statistics of both channels, thesra
Since the upper bound is strictly smaller than the capacityitter is provided a g-bit (q integer amp> 1) feedback at the
without secrecy constraint, we argue that the secrecy E&lugeginning (or at the end) of each coherence block, through an
a penalty even at low-SNR under STPC. On the contraetror-free public channel with limited capacity that is islle
under LTPC, the secrecy capacity is asymptotically equal ¢ Alice and tracked by Eve. The feedback link is used to
the capacity as if there is no secrecy constraint for a widsescl describe the main channel gajf to the transmitter. More
of fading channels. Furthermore, we present a simple fon-gpecifically, the channel gain support is split infbi@tervals
scheme that is asymptotically (at low-SNR) capacity-adh@® [0, 11), [r1,72),...,[r2_1, ) and Bob sends back to Alice the
and that only requires 1-bit feedback in each coherencéblogutput of a deterministic functior(-) defined by:x(h) = k,

The paper is organized as follows. Section Il describes tlfey,, e [ry, 74,1). The result of this feedback drives Alice’s
system model and related background. Achievable ratesrandijacision to either transmit with the highest fixed raig
upper bound on the secrecy capacity with finite rate feedbagk 1,..., N, whereN = 29-1, such thaRy < log (1 + n(i) P)
at the beginning and at the end of each coherence block Hréuch R exists, or to remain idle otherwise. Furthermore, the
presented in Section IlI. In Section IV, we apply our resultsource is constrained to either a short term power constrain
considering a STPC. In Section V, we analyze the ergoc{'@Tpc);E[n% En:l|x(i, j)|2] < Pmax OF to a long term power
secrecy capacity under L'.I'PC,.study th_e relatgd Opt'm'z"’,‘t'%nstraint (LTPC)E [% ZiL=1 n% ern:llx(i, j)|2] < Prax
problems and propose an iterative algorithm to find the agitim

solutions. In both Sections IV and V, asymptotic analysi We note that assuming statistical knowledge of the eaves-
: ' . ' ropper’s channel may seem somehow not reasonable since

at high and at low SNR are given under STPC and LTP\% PP y W I

[

. . . . e eavesdropper is passive and does not transmit. However,
re_spectlvely._ Numerical results are reported in Section case the eavesdropper belongs to the network, which is
Finally, .Sect.|on Vil conclugles the Paper. the case in this paper, the later assumption can be justified

Notations: The expectation operation I denqted Bi). quite reasonably. For instance, one can think of a local area
The symbol|x| is the modulus of the scalag, while [x]* =

0 The | thms | is th tural | ith fnetwork (LAN) inside a secure building. The building is
max(0, x). The ogag| ms 0§ is € na UE‘&) ogarithm o engineered such that artificial noise is injected isotralpic
x. We say thatf(x) ~ g(x) if and only if lim =2~ = 1. When

X

—a 9 in all directions. As a result of noise injection, the chdnne
it is clear from the context, we omit in ~ for convenience. between each mobile (either legitimate or eavesdroppet) an
the access point is roughly the same on average. This would
Il. SystEM MODEL allow the transmitter to estimate the statistics of all reodéh
Ipégh accuracy. Note that the idea of using artificial noise in

We consider a discrete-time memoryless wire-tap chan Her t i ific ch | diti that faverab
consisting of a transmitter (Alice), a legitimate recei(@ob) order 1o create specific channel conditions that are favera
lg secrecy has been already proposed in the literature, e.g.

and an eavesdropper (Eve). Each terminal is equipped w?

a single antenna, i.e., a single-input single-output singl J , . o .
eavesdropper case. Alice wants to communicate a confitlentia//é are interested in message transmission secrecy capacity
messagesV to Bob in the presence of Eve. THeh outputs of such a channel when both and m are stficiently large.

at both the legitimate destination and the eavesdropper,F& convenience, len = mL The level of uncertainty
coherence period, i = 1,...,L, are expressed, respectively200ut the message at the eavesdropper is measured by the
by: equivocation rate defined by:

Y(, j) = h) X, j) + UG, j) W L
Z(i, ) = o) XG, ) + VG, ), Rei= “H(W| 2" g" ht) ©)



where H (Wl zZ", gL,hL) denotes the conditional{ry |0=19<711<...< TN}kN:O describingyy. For the discrete-
entropy of W given Z", g- and h' and where time memoryless channel described by (1), with an errae-fre

A = (Z(l, 1),....Z(L,m),...,Z(L,1),...,Z(L, m)), g-bit feedback link at the beginning of _eagh cpherence block,
| AR (h(l),...,h(L)) and g- is defined similarly, @" UPPer bound on the secrecy capacity is given by:

The eavesdropper is ignorant about the message if N

lim = (W; Z”,gL,hL) = 0, wherel(-; -) denotes the R, = max - > Pritk < yn < 7}

mutual information. A rateR is an achievable secrecy rate if ‘Pk}:;oe“gg; k=0

for all e > 0, there exists a sequence(of "%, P¢) codes, for (Mo € O .

which Z“_R represents the number of messages to be sent to ‘E Hlo (1+7’h Pk)] e lroiall,  (6)

the destination, such th& > R— e and P, < €, WherePy is YhYg 1+ ygPx

the average error probability defined by: where for convenience, we sg{,; = co. FurthermoreR_; in

1 onR A Theorem 1 coincides witR, asN — oo,
Pe = iR Z Pr{W #W|W= W}, (3) Proof: The proo_f is giyen in_Appen_dix B. [
w=1 The lower bound in (4) is an increasing functionfand
whereW is the output of the decoder at the intended receiv@f Shown in Appendix B, the lower bourkl, in (4) and
as a result of observing™. Furthermore, the secrecy capacitj® UPPer boun®. in (6) match asN — co, hence fully
is given by:Cs := sup R, whereRs is the set of achievable characterizing the ergodic capacity in this case. Lethingpes

ReRs to co may be interpreted as if there is a noiseless public link
secrecy rates. with infinite capacity for which the secrecy capacity is give
by [3]:
M. l.JPPER A.ND LOWEl.( Bounps oN THE SecrRECY CApACITY R.. = max E H o (1 +ynP(h) )T | -
In this section, achievable rates and an upper bound are P(h) Yhv 1+ygP(h)

provided in Theorem 1 and Theorem 2, respectively. Theing N goes toco may seem too restrictive as our feed-
proofs of these theorems are relegated to Appendix A agdcy jink is of limited-capacity. Fortunately, this asyroiit
B, respectively. behavior starts showing up for relatively small values as

Theorem 11etII™ be the set of all discrete power policiess gy by our numerical results, i.e., it takes only few feskb
N - N e,
{Puliy that satisfy the STPC (resp. LTPC). L&™ be s 1o achieve most of the available secrecy capacity, at

the set of all reconstruction poin{s |0 <71 <... < 7N}y |east in a Rayleigh fading scenario. It is worth mentioning
describingyn. For discrete-time memoryless channel describgfa; guaranteeing a positive secrecy rate is not really toed
by (1), with an error-free-bit feedback link at the beginning knowing the feedback at thbeginning of each coherence
of each coherence block, the following rates are achievablg),ck. Providing a feedback at thend of each coherence

block instead, also guarantees a positive secrecy rateugh

N +
1 P . :
Ri1= max ZPr{rk <9Yh <Tks1} - E Hlog(&)] smaller than the one given by (4). To see this, let us assume

(P € 1T 42 7 1479 P that at the end of each coherence block, Bob feeds back a
s €@ (4) 1-bit ARQ to Alice informing her whether the actual frame
has been correctly decoded (ACK), or not (NACK). Alice
N keeps retransmitting the same block until she gets an ACK,
Ra2 = P kilpr{Tk < h < Thet) then moves on to the next frame. Clearly, because some
frf e @™ of the frames are transmitted more than once, this scheme
1+ yp Py leaks some information to the eavesdropper. Ultimately on
Y&, ['%(m) ¥h € [Tk Tk+1]], (5) can assume that the blocks repeated because of the NACK
g feedback are completely revealed to the eavesdropper as a
where for convenience, we sgj,;; = . worst-case scenario. Fortunately, even such a consesvativ
Proof: The proof is given in Appendix A. B scheme guarantees a positive secrecy rate as formalized in

It is particularly appealing to see that the lower bound hi¢4 Theorem 3.
the sum over all possible rates of the product of the proltgbil  Theorem 3:A lower bound on the secrecy capacity of the
of success times the average rates gleaned by Bob over Higtrete-time memoryless channel described by (1), with an

during all fading realizations. A similar fact has been olied error-free 1-bit ARQ feedback at the end of each coherence
in [27], but for secret key sharing (not message transm$siclock, is given by:

and for N = 1. Theorem 1 states that a 1-bit feedback at

the beginning of each coherence block guarantees a positive R_ = max &-E H|Og( 1+7P )H 8)
secrecy rate. We now present an upper bound on the secrecy iP}eH<11) 2 l+ygP
rate with proactive feedback. meo®

Theorem 2 (Upper bound)iet HES‘)) be the set of where ¢ is the probability of success defined by =
all power policies {Pk}l’:‘:0 that satisfy the STPC (resp.Pr{y, > 7}. The upper bound in (6), witt = 1, still holds.
LTPC). Let @E’a')) be the set of all reconstruction points Proof: The proof is presented in Appendix C. [ ]



While the rate in Theorem 3 only accounts for the contributioderivative of £ (7, A) with respect tory is equal to zero which
of the blocks that have not been repeated into the secrgoglds:
rate, it can be immediately improved by accounting for the 1 P
contribution of the blocks that have been repeated, say,once f, (z,) 2+ Tk-1Pmax f ( )d
. Yh k 1 P Yg ’}/g yg
into the secrecy rate. + YgFmax

Corollary 1: A lower bound on the secrecy capacity of the _f f 1+ 7Pmax d At — 1
discrete-time memoryless channel described by (1), with an m () 1+yg 7o (yg) o+ (1 = )
error-free 1-bit ARQ feedback at the end of each coherence ¥ Pmax
block, is given by: + (F% (fis) = Fy, (T")) j; 1+ 7P b (7’9) dyg

. , 1+7P = (12)
R'_ = max {6 log . . .

:P}eng)) g 1+y4P We note that there is no loss of optimality by taking<O
tre® . 71... < 77 Since if 7y = ks for somek = 1,...,N, then

+ (1-0) E ||log 1+7P ©) the kth element of the sum in (4) is equal to zero and hence
( 1+7§f)p ’ contributes nothing to the objective function. Since alk

are diferent, then by the complimentary slackness conditions

wherey(z) is a random variable distributed as the sum of tw@y (rx — 7¢+1) = 0, all A’s are equal to zero. Using the later

independenyy’s. fact, the condition (12) simplifies to
Proof: The proof is presented in Appendix D [ ] N N

We now apply our results considering STPC and LTPCf (Tk)( H (M)} }_ EH@;(M)] ])

respectively. 1+ ygPmax % 1+ vgPmax
( Yh (Tke1) — Fo (Tk)) Fyg (7k)Pmax
IV. Ercobic Capracity unDErR STPC - 1+ 7«Pmax

We note that under STPC, (4), (5), (6) and (8) inducﬁo’ (13)

different optimization problems which we designatefas fqor k = ,N. Along similar lines, the KKT condition for

i = 1,....4, for convenience. Fof's, i € {1,3,4}, it is ¢, can also be obtained as
easy to see that the optimal power policy consists of settmg
all power equa+l toPmax This follows from the fact that £ 1+ 7Pmax \IF (1— Fyh(r)) Fy, (1) Pmax
x = [log(§2*)]" is a non-decreasing function for ati> 0 (D) H (1+ Ve pmax) ] T+ 7P =
and alla andb reals. Hence, the upper bounds given by (6) (24)
and (7) are equal under STPC and we have: For #,, the integrand inR_, is not necessarily increasing
1+ Poa\[* in _Pk and hence it is ge_nerally not clear wheth@gay is
—)} (10) optimal or not. In fact, it is not even clear whether the rate
1+ vg Pmax R_; is non-negative for giveRPmaxandN values. Nevertheless,
Consequently, although our upper bouRd. has been estab-for a class of fading for which given the CSI feedback, the
lished by providing g-bit feedback only to the transmitier, Main channel distribution becomes “more informative” than
does not improve over the secrecy capacity under perfect miie eavesdropper’s, the target in (5) is increasingdand thus
CSl due to STPC. Moreover, f@t; andPs, the optimal recon- S€ttingP« = Pmax k =1,..., N, is optimal. The term “more
struction pointg ;| are obtained by solving the Karush Kuhrinformative” can be made more precise through stochastic
Tucker (KKT) conditions which are necessary conditionsyondominance theory. Before, formalizing our result above, we
due to the non-convexity aP; and #, in 7’s.>. Below, we need the following definition [29].
show calculation details of the KKT condition related#g. Definition 1: A random variable (r.v.)X is first-order
We first form the Lagrangian as stochastically dominant (FOSD) than a rY¥, denoted as

X =Y, if Pr{X >c} > Pr{Y > c}, for every realc.
1+ 7 PK)T} We now give a sfiicient condition on the fading statistics

ot o

YhsYg

N
L (T, )\ Z Fyh (Tk+1) - Fyh (Tk))yEg HbQ(

— 1+ 4Pk under which the rat& , in (5) is non-negative anBy = Py,
N—1 k=1,...,N, is optimal.

Z’l" (tk = Tke) (11) Lemma 1:Let a be an arbitrary real such that> 0. Let
Py Yhlac) DE the r.vyn conditioned on the event, € [a, ), i.e.,

Yhlac) = Yh | ¥h € [@ ). Then, if yhjaw) = g for all a > 0,

wherer = (vo,....7n:1), With 7o = 0 and7y.y = oo and 0 following statements hold true f@t:

where A = (do,...,An-1) is the vector of non-negative La- i )
grange multlpllers corresponding to the constraimts i1, i) Pk =Pmax k=1,...,N, is optimal.
k=0,...,N—-1. The KKT conditions imply that the partial i) Rz in (5)is equal 1o:

1+yP
INote that under STPC, the optimizations considered haveafitie R, =Pr{yn>7"} E [log — ¥h Tmax €[t )|,
constraints which is dfcient in order for the KKT conditions to provide Th-Yg 1+ Yg Pmax
necessary conditions. (15)




wheret* is given by: To determinery’'s in (20), we solve the necessary KKT

conditions:

exp|E [log(1 P Prmax 2\ *

< feeflte ) 2 i [g][ool 52| |-£ o5 )
o Yg Y9 Ya
ii) R220. (Fyh(Tk+1) - Fyh(Tk)) Fyg(Tk)

Proof: For convenience, the proof is presented in Ap- + p =0, (23)

pendix E. ] o . )
Lemma 1 states that for the class of fading where the CSI feé/vol]ereas the optimai” in (21) is equal to:
back renders_ the main ch_annel FOSD than the eavesdropper’s = exp(E [Iog (yg)] ' (24)
channel,R_, is non-negative for anPmnax. However, and as Yo

asserted by Lemma 1, the secrecy rte does not increase ) | ow-SNR RegimeMotivated by the boundedness of the
with N and thus providing more than 1 bit feedback to thgecrecy capacity at high-SNR, we analyze in this section the
source is unfortunately useless under STPC. secrecy capacity at low-SNR regime. Our result is rathei-pos
Remark 1: If the main channel and the eavesdropperie as it states that under STPC, the capacity is asymptlytic
channel are identically distributed, then for any> 0 and (at low-SNR) linear in SNR as formalized in Corollary 3.

anya> 0, we have: Corollary 3: At low-SNR (Pmax — 0), the secrecy capacity
o is linear in Ppax Furthermore, the following rates are achiev-
Pr{yhjas) > C} = f f e (X)X (16) able:

() Tiaw () N

_ f 7 (X) Laco) dx (17) R1~Pmac _Mmax Pr{rk < ¥h < Tke1} [ T} — 7g12}3)
¢ 1-F,(@) Osms.<tvim

> [t 18 Ro=Puc E[m-El| (26)

m>E[] 7o
= Prlyg>d] (19)

An upper bound on the secrecy capacity is given by:
wherelpa.) (X) is an indicator function that is equal to 1xfe N [ +]
[a, ) and O otherwise. and where (18) can be verified easily. R. % Prmax- yhl,Eyg [7’“ - 7’9] ‘ (27)
That is, ify, andyg are identically distributed, thepac) is Proof: The proof is presented in Appendix H. n
FOSD thanyg. This implies that assuming that the fading argjere again, to determing’s in (25), we solve the necessary
identically distributed is stronger than the assumpiigR.) > KKT conditions:
7g in Lemma 1. . .
In the sequel, we focus on fading andy, that satisfy the Fn (k) (5 [[Tk—l ~ g ] -E [[Tk ~ 4| ])

condition in Lemma 1, i.yn[ae) = vg, for alla> 0. ’ ’

+(Fn(mie) = P (719) Fy (1) =0. (29

A. Asymptotic Analysis at High-SNR and Low-SNR V. Ercopic Capaciry unber LTPC
Under LTPC, the results in Theorem 1, Theorem 2 and
the beginning of each coherence, i.e., the settings of Emnedr Theorem 3 remain valid, with the flierence that the LTPC

and we are interested in the secrecy capacity at asympt;oticerlnu_St _be .satlsﬁed. More specifically, we identify the related
high-SNR and low-SNR regimes. optimization problems as follows:
: . : : : +
1) High-SNR RegimeOur result is summarized in Corol- B max Z Pr{ri < Y1 < Thoa) - Hbg(ﬂrk P )] ]
Iary 2. P, - 0<‘r1< TN k=1 Vg Pk

Corollary 2: At high-SNR Pmax — o), the secrecy capacity t st Z Pr{tk < yh < Tke1) Pe < Prmaxe
is bounded, i.e., does not grow witPax Furthermore, the k=1 B B

In this section, we assume that there ig-bit feedback at

following rates are achievable: (29)
N +
max Pritk <ynh <
RY = o Max Pritk < yh < tke1} - H'OQ(B)} ](20) 0<7i<. <y kzl (Tl < < T}
<71<...<TN ’y —
k=1 g Py .)’hE)’g [Iog(iz—git) Yh € [Tk Tk+1]] (30)
Th N
RS = T>%X7§r [log(yg )] (21) S.t. 3, Pr{tk < vh < i1} Pk £ Pmax
k=1
An upper bound on the secrecy capacity is given by:
. O<Tr;rla)§‘rN kz Pr Tk =< Tk+1}
_ Yh — L+, P
RY= E ng(yg) ] . (22) Ps: 1 [llog(222)| ‘yh clioreal] (@31
N
Proof: The proof is presented in Appendix G. [] S.t. kgopr{Tk < ¥h < Tke1} P < Prmax




—pufy, (1) (Pr-1 = Pi) = (k-1 — )

maxPr{yn > 7}? - Hlog( e )]+] =0 (33)
D . S h 1+ :
Pa: { =0 7 0P (32) Again, since alk’s are diferent, then by the complimentary

slackness conditionsy (r«x — 7k+1) = 0O, all A’s are equal to

where the acronym s.t. stands for “subject to”. Althowgn Zero. Using the later fact, the conditi%i}[ in Table | follows

P5 andP, are convex irP,’s, none of the above optimizationimmediately from (35).

problems is convex im’s and hence they are all non-convex. Analyzing closely the derivatives with respect B’s in

However, one can focus again on the dual problem and reliEaple |, it can be shown that > 0 and thus the power

again on the KKT conditions that provide necessary conitioConstraint is satisfied with equality, %, P5 ands,. Indeed,

assuming a ceratin qualification constraint at the maxirsizeSincefy,() andf,,(-) are continuous and necessarily positive in

[30]. Similarly to STPC case, there is no loss of optimalitftn interval |nS|de1[k, Ti], for somek = 1,..., N, (otherwise

by taking 0 < 71... < 7y Since if 7x = 71 for some the objective function would be equal to zero) and since the

k=1,...,N, then thekth element in the sum of the objectivearguments of the expectation function in tg& condition for

function in®Py is equal to zero and hence contributes nothirf1, 3 andP4 are positive, them is necessarily positive. For

to the objective function. For convenience, the related KK¥2, it is not clear whethey is positive or equal to zero and

conditions for®;, i = 1,...,4, are provided in Table I, wherethis seems to depend on the fading’s PDF. Nevertheless, one

% and I,’Z represent the derivative of the dual objectivéan show that when the main and the eavesdropper channels

function with respect t®¢’s andri’s, respectively; and where are identically distributedy is in fact strictly positive?

u is the Lagrange multiplier associated with LTPC. Below, we Solving the KKT conditions in a closed form is very

show calculation details of the KKT conditions &%, similar ~ challenging. Instead, we present below an iterative atigori

derivations are used for othé@t's, i = 2,3,4. We first form that attempts to find the optimal solution using the KKT

the Lagrangian as conditions. A similar algorithm has been proposed in [21],
. but without secrecy constraint. Likewise in [21], we do not

Hlog( 1+ 7y Py )} ] claim the convergence of Algorithm 1.

1+ Yy Pk

S.t. Pyn = 7} P < Pmax

N
LB A 0)=) (Fy (1) = Fy () E

k=1

Algorithm 1 Secrecy Rate with Feedback under a Long Term

N
—u Z F,, (k1) = Foy (Tk)) P, — Pmax] Power Constraint (LTPC)
=) Initialize i = 0, P( ) = Prax Vi, setu© arbitrarily;
N-1 repeat _
Ak (Tk = Te1) (33) Fix {P{} andu®, solve for{r{’} using ;= in Table I;
k=0 ComputeR;
where P = (Py1,...,Pn); where T = (10,...,7ne1), With Fix { (')} find {PE”)} and y(+1) usmg— in Table I;
70 = 0 andrn.1 = oo and whereX = (Ao, ..., An-1) is the i—1+1;

. . . )_R0
vector of non-negative Lagrange multipliers correspogdm until Convergence%mRr <€

the constraintsy < 7¢s1, k=0,...,N-1. The KKT conditions
imply .that the partial deriyativg of (P, 7, A, u) with respect | Algorithm 1, RO represents eitheR 1, R2, R, or R__,
to Py is equal to zero which yields: at theith iteration; anck is an arbitrary smaII positive number.
i T Y, Note that for‘P., i =1,2,3, solving the;~ condition in Table
]
(Fy (rie2) = Fy (Tk))f (1+TkPk "1ty Pk) f, (v6)dvs | can be done recursively starting fokn= 1 until k = N,
0 g using standard root finding algorithms.
—H (Fyh (Tke1) — Fo (Tk))

=0.

(34) A. Asymptotic Analysis at High-SNR and Low-SNR

Again, there is no loss of optimality in considering that Here again, we assume that there is-ait feedback at
Fr, (11) < ... < Fq,(7n) since if Fy, (1) = Fo, (k1) for  the beginning of each coherence, and we are interested in
somek = 1,...,N, then thekth element in the sum of thethe secrecy capacity at asymptotically high-SNR and low-
objective function inP; contributes nothing to the objectiveSNR regimes. While at high-SNR, the results in Corollary 2
function. Hence, simplifying (34) yields thed- condition in  still hold confirming that likewise without secrecy condtta
Table I. Similarly, taking the partial derivative QT(P T,A. 1) power adaptation does not provide any additional capaeity g

with respect tory yields: at high-SNR under secrecy constraint; we show that at low-
1+ 1e1Pes SNR, power adaptation drastically increases the achievabl
[ (Tk)f ( 1 5 )f ( g) dyqg secrecy rate. More interestingly, we show that under LTPC,

T Y9F k-1 the capacity under secrecy constraint is asymptoticallyakq

_f, (n) f (1+ Tkpk) f, (yg) dyg to the capacity as if there is no secrecy constraint, fomigdi
channels with unbounded support. Moreover, 1-bit feedback

k Pk
+ (FYh (tk+1) = Fy, (Tk)) j; 1+ 74Py fr (79) dyg 2The proof of this result is provided in Appendix F.



Table |

SUMMARY OF 7_’1’5 KKT conprtions, i = 1,..., 4.
il il
IPx It
_ . + 1+7—1 Pe-1 +] _ H 1+7y P ]+] _ _
P1 ,Eg[[ 1+Ptrk - 1+giyg:| ]_# =0 f’Yh(Tk) ('I‘/Eg [[Iog( T+ygPr-1 )] ‘Eg Iog(l-wg Pk # (P =Py
(F'yh(Tk+1)_th(Tk))ng(Tk)Pk -0
+ I+7y Py -
D. be Yg _ 1+P 17 L+yg Prq _
P2 | B L] (e - Fn ) (E [ i 1) =0 | oion(2522) - E [ioa (26552 )|+ 1 (Pe- Pw] =0
— + L P || L P \ |
P | [~ i - Pt - Pn) 0| o [oa(bRt )] - & flon (28 | |- 8- o) -0
Y9
+
_ + f.@(-2(1-F EHI LirP H P
Pa (1_F7h(T))%“ﬁ_1+yTng J—,u=0 —Yh(T)( ( 'Yh(T))Z'vg 09(1+79P) TH
i E” g
is enough to achieve this capacity. These statements are mad = }Pr{yh > 71},
precise in Theorem 4. 2
1) Low-SNR Regime: While this scheme is not necessarily the best strategy at

Theorem 4:For fading channels with infinite support, thean arbitrary Pnax value, it is particularly pleasing to see
secrecy capacity at low-SNRGs(Pmay, Of the channel de- that it is in fact enough to achieve the secrecy capacity at
scribed by (1), with an error-freg-bit feedback link at the asymptotically low-SNR.

beginning of each coherence block is given by: Remark 4: The result in Theorem 4 relies on the fact that
0 the main channel fading has an infinite support. Should the
Cs (Pmax) ~ Cus (Pmax) » (36) ' main channel have a finite suppo@&,would be finite and the

where Cys() stands for the capacity of the main channé_imit in (122) is not equal to zero. In fact, if the fading supp
without secrecy constraint and with perfect CSI at both tH& bounded, the result in Theorem 4 does not hold anyrhore.
transmitter (CSI-T) and the receiver (CSI-R). Furthermore

1-bit feedback at the beginning of each coherence block is VI. NUMERICAL RESULTS

enough to achieve this capacity.

Proof: The proof is presented in Appendix I.
Few remarks are worthwhile: ;
Remark 2: The fact that the secrecy capacity is asymptotthe lower bounds and the upper bound in Theorem 1 and 2 in

cally equal to the capacity as if there is no secrecy comdfrainats per channel use (npcu) verd®s.x (designated here as
further stresses on the value of CSI at the transmitter at lo® NR, for differentg-bit feedback scenarios. Also shown in
SNR regime. Recall that with neither a feedback nor malfig. 1 are the achievable rat&_ in Theorem 3 andR’_ in
CSI at the transmitter, the secrecy capacity is equal to. ze@orollary 1 with 1-bit ARQ feedback. Figure 1 confirms the
Theorem 4 highlights the fact that even with 1-bit feedbackpsitive secrecy rate even for 1-bit feedback (at the beéginn
not only one can achieve secrecy at low-SNR, but this secremyat the end of each coherence block). As the number of
is obtained with a vanishing capacity-penalty to the leggiie feedback bits increases (hege= 4), the lower bound gets
receiver due to the presence of the eavesdropper. Newsthelcloser to the upper bound confirming the statement in Theorem
since our achievable ratB_, follows from Csiszar-Kérner 1 and about 90% of the upper bound is achieved for all SNR
characterization of the secrecy capacity [24], a wiretagecovalues displayed in Fig. 1. The high-SNR characterizations
is still needed to bin the secret message. R, and RY given in Corollary 2 are also plotted in Fig. 1
Remark 3: The encoding scheme relatedRo, exploits the where it can be seen that the relative gap between them is of
advantage that the legitimate receiver has over the eaygsdiorder 30%. UnlikeR_;, There is no hope to decrease the gap
per through the feedback link. As shown in [7], this schemgetweenR_, and R, by increasing the number of feedback
ensures (by properly optimizing ovei) a positive secrecy bits as discussed in Section V.
rate for an arbitraryPmax Value. This hinges on the fact that In Fig. 2, we have considered the setting where the main
if the main channel is “good”, it is more unlikely that thechannel is a Rayleigh fading, whereas the eavesdropper’s
eavesdropper’s channel be better. The later heuristiers&ait channel is a Rician fading described by [31]:
can be proven rigorously by computing the probability tat

be better thany,, given thaty, > , as follows: _ K~ 1
9=\ 79" Vi (37)

P =Y, Yh =
Pr{‘yg > | = T} r{’ylir{::zz: T}

1-F, (0 -3(1-F2 (1)
3 . . . . .
1-— |:th (‘r) The proof of this result is provided in Appendix J.

In this section, numerical results are provided for Rayleig
fading channels such th&{yy] = E[yg] = 1. Figure 1 depicts
Yh Y

where K is the Rician factorg is the mean component of
g and gy is the scattered (varying) component that follows
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Figure 2. Achievable rates and the upper bound under STROwt¢he Rician fading channels, with 1-bit feedback, at low-SNR.

factor K, for g-bit feedback,q = 1,4. The main channel is a normalized
Rayleigh fading channel, whereas the eavesdropper’s eh&a normalized

Rician fading with factork. The transmit power is equal #®mnax= 30 dBs

a CN (0,1). This model captures the case where the eaves-

of g is given by:

fo (vg) = (1+K) exp(~ (1+K) = 7+ K)) |0(,/4K (1+K) yg),

(38)

dropper in non-fading by settin — oo, and captures the ynere|, () is the Modified Bessel Function of the First Kind.
Rayleigh case by setting = 0. For the model (37), the pdf The transmit power has been setRgax = 30 dB to depict
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Figure 3. Achievable rates and the upper bound under STR@dyleigh

fading channels, with varioug-bit feedback,q = 1,2,4, at low-SNR.

the high-SNR insight and we have considered a STPC. We
have evaluated the ratd® ; and R, in Theorem 1 along
with the upper boundR, for the proactive feedback (at the
beginning of the blocks) scenario, versus the Rician factor
K. In addition, we have evaluated the rda®e_ presented in
Theorem 3 for the ARQ feedback versus the Rician factor
K. As shown in Fig.2, a positive secrecy rate is achievable
even when the eavesdropper’s channel is non fadihg 1)
and even with an ARQ feedback. All rates decrease \Kith
confirming that fading helps in providing secrecy. Note that
with 4-bit feedback, the gap to the upper bound is roughly the
same irrespective of the Rician factdr However, diferently
from the Rayleigh case presented in the paRer,with just 1-
bit feedback outperformiR_; with 4-bit feedback, foK > 13.
This suggests that if the eavesdropper’s channel is nangad
then using a constant rate wiretap code is a better strategy t
adapting the rate with the quantized main CSI feedback.

In Fig. 3, we have displayed performance of our lower



bounds and upper bound at low-SNR under STPC. The char-
acterization in Corollary 3 is also reported in Fig. 3 wheye f
convenience, we designate 5, and R the RHS of (26)
and (27), respectively. Although not fully characterized &
finite number of feedback bits, the secrecy capacity seems
scale linearly at low-SNR as shown in Fig. 3.

For LTPC, as shown in Fig. 4, performance has expectediy]
improved at finite SNR since one can exploit power adaptation
in a more @icient way. However, at high-SNR, performances,
under STPC and LTPC are equal. We note that here again,
with 4-bit feedback, more than 90% of the available capacity
may be achieved bR ;. [5]

For the low-SNR regime, we have plotted in Fig. 5, the
ergodic capacity of the main channel, the curves correspgnd
to the achievable rat&R , and the upper boundR,. We
note first that the curves correspondingRo, and R, are
undistinguishable for all SNR values below -10 dB, thus
fully characterizing the capacity in this case. Furtheredne
three curves get closer &,.x tends toward zero, to actually
coincide completely aPnax < —70 dBs (although not shown
in Fig. 5), in full agreement with Theorem 4. While such low!®!
SNR values have a little practical meaning, the insight ggin g
from our low SNR analysis seems to be very appealing.

(1]

(6]

[10]

VII. ConcLusioN

The secret message capacity of an ergodic block fadifg!
wiretap channels with limited-rate feedback has been ad-

] M. Bloch and J. Laneman,
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Let (P}, be an arbitrary power policy ifI™, and let a unique sequence in the sét = £1 x £ - x - £ that

{rk}i_, be a family of reconstruction points ®™. We assume belongs to the bin-index ofV. The size of this set is:

that the choice of rate) < Ry < Rp,... <Ry <Ryy1 =0}, g = 2m ZiL:l[R(i)*|09(1+7g(i)P(i))]+, which from the weak-law of

whereR,; = log(1+ Py p), is selected in advance. L&, = |arge numbers, approache8®9 asL — co. Since each

Prrp < yn < 7p1) for p = 1,...,N. We establish that the sequence in the set belongs to the bin oW with probability

rateR ; = Z’;ﬂ ApE|Rp—log(1+ ngp)] + € is achievable. 2-"R+ the overall error probability can be shown to vanish

We also letR = Yip-1ApRp — 26. We uniformly partiton asn — co. Indeed, by the asymptotic equipartition property

the set of all 2R sequences of lengthR into 2'R* bins (AEP) and the Packing Lemma [32, Chap. 3], it can be

so that there are"® R4 sequences per bin. Each messag@own that the probability of error at Eve is upper-bounded

W e [1,2"R1] corresponds to one bin-index. To transmit &@s follows:

messag@&V the transmitter selects the corresponding bin index PEYS < ¢ 4 p MR, om Sk, [RO-log(LeygPY)]*

and then select a binary sequengeuniformly at random ¢ - ARy on(Ramd)

from all of the sequences in that bin. Since all messages are =ea+27 20 (45)

equally likely, we induce a uniform distribution across afl = +2"° (46)

nR i
2"" sequences. In each lengthcoherence block, we transm'twhereq —, 0 asn — oo and where (45) holds ds— . The

the nextm- R, information bits using a Gaussian codebook, . .
For convenience, we let the transmit codeword in coherenr(I:%ht hand side of (46) vanishes to ZEroras» co and _hence
, = . . - 'S0 doesH (X" | Z", ht, g", W) due to Fano’s inequality.
block i be X™(i) = (X(i,1),...,X(i,m)) and the received
sequences at the legitimate receiver and eavesdropper by
Y™(i) = (Y@, 1),...,Y(i,m) andZ™(G) = (2@, 1),...,Z(i,m), B- Proof of the Lower Bound 2
respectively. By weak law of large numbers, wheiL > 1) We can think of the feedback as a deterministic mapping,
coherence periods are used for transmission, the entiegybinsay «(-), such thatk(yn) = k if yn € [1k, Tks1). Then, we
sequence is transmitted with high probability. Since in eachconstruct a new channel where the main channel fading is

APPENDIX A



amplified by /P (« (y1)), i.e., the outpuk(i, j) in (1) becomes P (ui) = E[|Xi|2|ui], since givenu', X; is independent of
Y, j) = h(i) X(@, j)+U(, j), whereh(i) = \/P(x (yn (0))) h(i). hi. The above upper bound is tight X" is a sequence with
Clearly, this is a specific use of CSI-T and thus the secrezgro-mean Gaussian componeHis statistically independent
capacity of the new channel is not higher than the originabnditionally onu‘. Let X; = +/P; (u) Tj, whereT; is i.i.d.
one. Moreover, the new channel has no CSI-T and perfeed (0, 1). Then we need only to prove that the above upper
CSI-R at the legitimate receiver. The rde, follows then bound is maximized by a power aIIocaticﬂn(ui) =A(y), a

from [24, Corollary 2], by takingy = X such thatp(x) = time-invariant function ofy; only. To do this, we have:
CN (0, 1). With this choice, the rate(X; ¥,h)-1(X; Z.h,g) = Lt yng P (u) .
I - P (w
I (X; Y| h) -1 (X; Zqg]| h) is achievable. The first term can be E |og{7h"7'_]}
evaluated as follows: T+ygiPi(u))]
; +
L(X;Y1h) = E[I 1+yni Pi(u!
(XYIF) = Elog@+Puom) ml  @7) O A 0 C M 58)
= E log(1+ yn Py)]. 48 _ i
z::lTkS‘}/h<Tk+1 [ g( h k)] ( ) el 1+ E['}’h,i Pi (u') | Yhis> Yagi» Ui] (59)
< 0og -
The second term can be evaluated similarly so that the rate 1+ E[yg,i P (u')|yh,i,yg,i, ui] |
S 1+ yh Py 1+ yni E[Pi ()| u] 1
Tk<7hE<Tk 1 log 1+y4P (49) = E||log ’ - (60)
ke 7ok 1+ g E[P; (u) |u]
is achievable. Maximizing over aRy's andry’s subject to the I 1+ yhi Ai (W) 1
. = E|llo D 61
power constraint completes the proof. [ (1 rer (Ui)) 7 (61)
1+ yn A (U)\]"]
Arpenpix B = E[[Iog(;%—/{(u)) (62)
ProoF oF THE UpPER Bounp R, +7g4i (U)/]

We assume that the transmitter has @SE « () at time where (59) follows from Jensen’s inequality since the fiorct

+ . -
instanti, whereas the legitimate receiver knows. We mainly X " [log(£53)]" s concave for any positiva andb; where
follow the approach in [33] with proper adaptation to segred60) follows because conditioned ap u' is independent of
and upper bound the equivocation rate as follows. yni @ndyg; due to the fact that the fading process;} is i.i.d.;
where we have defined (u;) in (61) asa; (ui) = E[Pi (u') ‘ ui].

_ L L
nRe = H(W|Z”,h ’9) (50)  since the fading processd$;} and {gj} are ergodic and
< | (W; Y"| Z”,hL,g'-,u'-) + Ny (51) stationary, then they have a stationary first-order distign

n and thus the expectation in (61) does not depend on their time
Z| (W:Yi |Zn,h'-,g'-,yi—1,u'-) +né, (52) indexi, from which (62) follows. Combining (57) and (62),
i-1 we obtain:

n +

n
= h(Yi| 2" k" g Y ut Re < = EHIO (“7“—W) +6 63
i:]_{(l| ) n; gl+7g/li(u) n ( )
—h(Yi| 2" kY g". V'™ ut W)} + 06, (53) L+yn iy ()]
n < E||log = + 6n (64)
< Zl:h(Yi!Za,hi,gi,uL) 1+7g%i:2/li (u)
1= +
~h(Yi| 2" h". g Y™ u- W X)) + ns, (54 = L)
n( || g u |)+ n (54) E||log 1+’)/g/l(U) +0n (65)
= Zh(Yi |Z,hi,gi,uL) where (64) follows again by Jensen’s inequality and where
i=1 A(u) in (65) is defined ag (u) = %Z“Ai (u). The above upper
i=1
~h(¥i|z. b, g, X, U") + néy (55) bound is tight if 4 (u) is independent of. Letting n — co
n L and maximizing over all power policigg (u)} that satisfy the
= Zl (Xi; Yi|Z.hi.g.u )+ Nén (56) STPC (resp. LTPC), we establish that
i=1
_ L+yn AW\
n 1+ yni P (u') " Re < max E[[Iog(—)] . (66)
S S Au)s.t. STPC 1+vyg4A(u
< ;E log{l'i')’g,i B () + Nop, (57) u)s Yg A (U)

Sinceu = «(h), wherex(:) is a deterministic mapping, the
where (51) follows from Fano’s inequality and also becausgper bound in Theorem 2 follows. It remains to show that
ub is a deterministic function o and where (57) fol- the lower and the upper bounds coincideNas» co. For this
lows because giverh, and g, the channel at hand is apurpose, let us choose’s such thatF,, (1) — Fy, (1)) =
wiretap channel with average transmit povR;r(ui), where % Note that this is possible as long as Alice is aware of the



statistics of the main channel gamwhich is the case. The AppenDIX D

results follows then adl — oo due to the ergodicity. Proor or CoroLLARY 1
The existence of a codebook with arbitrary low error proba-
AppenpIx C bility is justified similarly as in Appendix C. Here, we outé
ProoF OF THEOREM 3 the secrecy analysis.

The achievability scheme is similar to that of Theorem 1, nR. > h(XmLO,Xm'-1 | Zn,h",g",s")
with the diference that because the sender keeps repeating 3 ml wmly naL L L
the blocks that are NACKed until she receives an ACK, these h(X XTHIWZL R g ) (77)
repetitions leak additional information to the eavesdespp h(XmLO | Z", hL,gL,sL)

Again the Random Coding Theorem ensures that there exists +h(Xm L | Z" Bt g, st XmLo)
a Gaussian codebook of raR= log(1+ 7 P) such that the ’L o Lo
fraction of successfully decoded frames is given by: —h(XmL",Xm LW Z" h", g, s ) (78)

_ h(XmLo | ZmLO,hLO’gLO)
+h (Xm L1 | szLl,hZLl,QZLl)
—h (Xm LO,Xm L |VV,Zn,hL,gL,sL) (79)

Pr(success}y 1 - Pr{R> log(1+ y, P)}. (67)

For the secrecy analysis, we first lef be the number of

blocks that have been repeatedimes,i = 0,...,c0. For

instance,L, represents the number of blocks that have not Lo ) +
been repeated,; represents the number of blocks that have 2 Z m {[R— € — |09(1 + g (i) P)] }
been repeated once and so on. Alsoslee a binary random ':1L

variable that describes the ARQ feedback. Thasis,1 if an L @ [ +
ACK is received ands = 0 otherwise. One can upper bound +Z m {[R_ €~ IOg(lJ’yg (1) P)] }

i=1

the equivocation rate as follows:
q _h (Xm Lo,Xm Ly |W Zn,hL,gL,SL) , (80)

npt o LooL
nRe = H (Wl Z.h.gs ) (68) where (79) follows because the eavesdropper does not gain
> I(W;Xm"O | Z", h",gL,sL) (69) any information aboutX™% and X™M4 by observing the
_ h(XmL0 | 2", hL’gL’SL) remaining(L — Lo) and(L — L;) blocks, respectively, since the
blocks are independents and the channel is memoryless. To
—h(XmLO | W Z", h", g", SL) (70)  obtain (80), we expand the first term in (79) exactly as in the
_ h(XmLo | ZMbo plo glo case of no repetition (please see Appendix C) whereas the
second term in (79) can be expanded as follows:
—h(X™ |W 2" h-, g~ s") (71)
Lo h(Xm Ly | ZZm Ll,hZLl,QZLl)
. +
= Zl:m {[R‘ e - log(1+ 4 (i) P)] } = > h(X™) | 2™). 2™ + 1), (i), h(i + 1)
iz .
—h (XmLo | W Zn,hL,gL, SL), (72) repbelgtcé(glonce
»9(1). 9(i + 1)) (81)
where (71) follows because the eavesdropper does not gain Z [h(X™(i))
any information abouk™'> by observing the remaining-L, biocksi

blocks, since the blocks are independents and the channel j§Peated once

memoryless. The second term on the RHS of (72) can be=! (X™(); Z™(i), Z™(i + 1), h(i), h(i + 1), g(i). 9(i + 1))](82)
made arbitrary small using a list decoding argument sifyilar = Z [h(X™())
to Appendix A. Finally, whenLy — oo, the ratio% can be blocksi

computed as follows: repeated onee . _ N .
—1(X™(0); Z2™(i), Z2™(i + 1) | h(i), h(i + 1), (). 9(i + 10§3)

Ly
lim =0 — lim = Z 1 (73) zzl: {m [R— e —log (1 +y P)r}, (84)

Log— oo 0—00 L £
i=

= Prino rep_et|t|0r}|. where (81) follows again from the independence of the block
= Pr{blocksi and (i — 1) not repeatefl (74) pairs that have been repeated once and from the constrattion
= Pr(succes$) (75) the codeword sequencg1), ..., X(L), and where (83) follows
=6, (76) becauseX(i) and (H(i), H(i + 1), G(i), G(i + 1)) are indepen-
dent and where (84) follows from the fact that Gaussian
where 1; is an indicator function that is equal to one if theandom variables are entropy maximizers. The third term on
blocki is not repeated and is equal to zero otherwise. Using ttlee RHS of (80) can be made arbitrary small using a list
ergodicity of the channel in (72) along with (76), (8) follsw decoding argument similarly to Appendix C. Finally, when
immediately. Lo » o andL; — oo, the ratios% converges t@? due to



(76), Whereaé;_—1 can be computed as follows: Fact 1: If X > Y, thenu(X) > u(Y), for any increasing

Ly _ _ mapping ().
fim = = Pr{blocksi and (i — 2) are not repeated as a corollary of Fact 1, we also have:
14)00 .
and (i — 1) repeatef (85) Fact 2: If X =Y, thenE[X] > E[Y].

5 By assumption of Lemma 1, we know thaf[;.) > vy and
= 6°(1-96). (86) sincex > X5 is an increasing mapping, then by Fact 1 and
Using the ergodicity of the channels in (80) along with (76yact 2, we have®EP > 0 and henceK (7, P) is increasing
and (86), the equivocation rate can be upper-bounded by: in P. ThereforeP* = Prmay is optimal. In addition, since
K (r,0) = 0, thenR_; is necessarily non-negative. Lemma 1 is

Re > 62 E [[R— log (1 + g P)H thus proved folN = 1.
’ . HN=2
+6? (1-06) E |[R-log(1+yP P)] : ,
o) 9 Vg ’ In this case. the ratB_, may be written as
[¢)
from which the result in Corollary 1 follows immediately. R.— max £ 1+vynP1
2 T 0<PioPna | T1<Tn<r2 1+ygP1
AppENDIX E 0sP ﬁfsp;”;x
ProoF oF LEmma 1
For brevity, we prove Lemma 1 fol = 1 andN = 2, + E [Iog(m) . (92)
after that, it becomes clear that generalization of the fi@o e 1+ygP2
arltgltﬁryli follows immediately. Again, the KKT condition with respect te; implies that
- c(P;
In this case. the rateR., may be written asR, = 7= &, (93)
MaX) < p< Py E [Iog(“yhp)]. Writing the KKT condition P1
o<t T

<vn l+yg P ) X .
whereas with respect t, gives the necessary condition

1+75P; eC(P)
f,, (") (log(1+ 7" P) - E|log(1+yP)|) =0.  (87) Tr0,P, ) (94)

Since we focus on positive PDF'g(P*t)hat can be null onlMow, assume tha®; < P;. Let us define the functiof(-) on
_ * _ € -1 — TPr » . .
at x = 0, we co_nclude thatr. =5 where C(P) = [0, o) by: F (7) = iTE}_eC(Pi)'One can easily verify that()
E[log(1+gP)|. is the maximizer ofK (z,P). Note that A () )
>0, for anyP* > 0. is strictly monotonically decreasing, th{0) = 1 - %(P—lj >0
To show thatP* = Pmax let us define the functiok (t, P) b () P
1 % i 1 — 1
over [Q o) X [0, Pmay by: K (z,P) = E [log(lwhp)]' our SinceP; <P;and thatT_Il@F (v) = m ) Note that

Yy
with respect tor, the optimal value$* andr* must satisfy:

<h l+yg P
objective is to show thaK (z, P) is incrg%\sing inP and hence ﬂ _ exp(E[Iog(l +9 PE)D (95)
settingP* = Ppax can only increase the objective function. For eC(P3) 1+gP;

this purpose, we have: Pi
- > exp(E [Iog (P—) ) (96)

K(r,P) = f log(1+ xP) f,, (x) dx pr 2
' . = = (97)

~(1-F (@) f log(1+xP) f,, (x) dx (88) P

0 Thus, limF (r) < 0. Since F(-) is strictly monotonically

” fy (%) Lfreo) (X)
=(1-F, (T))j; log(1+ xP) [—7 - F)[’h (T))

decreasing, then there should exist a unigiye> 0, such
that F(r’é) = 0, and sincer; < 73, then eitherr] = 7 or

—f (X)] dx (89) F (rj) > 0. We rule out the last condition so that we are left
= (1 -F,, (T)) [E[1og(1 + Yh[re) P)] with the necessary conditiarj = 7. Taking into account (93),
“E[log(L+ 7P| (90) the conditionF (r}) > 0 can be equivalently written as
eCP) 1 &(F) —1
where (90) follows because the function— W is Fl,* < ; : (98)
the PDF of the rVinjre) = ¥h | yn = 7. Using (90), the 1 2
derivative ofK (7, P) can written as Let G(-) the function defined on (60) by G (P) = &,.)’1.
oK (1. P - Its derivative, denoteds'(-) can be computed a& (P) =
(nh) _ (1-F, () |E Thire) | _ 7o —€9(1-PC (P) - e°®). We show thaG'(P) < 0 for all
oP 1+'}’h[roo)P 1+’ng p2
Y 1) Pe (0, ) as follows:

1
1+gP

Now, we need the following facts which are know results in ,
stochastic dominance theory. 1-PC(P) = E

(99)




elod(El =) (100) for somery’s, 71 < 12 < ... < 7. Since for anyPmay value,
> eE[IC’g(rlgP)] (101) 1+ 7k Prax\|" = \["
log| ———— log| —
Yy
Vg

<
= eCP) (102) 1+ vy Pmax/| ~
where (101) follows by the Jensen’s inequality since Joig( for all 7 and allyg; and since
+
ol |
o . Y9
G(P3). Thus condition (98) cannot hold and neither ca : .
( 2) N ftion (98) : ! Hue to the fact thatf, (-) is continuous and bounded and
F(r’i > 0. Therefore, we must haveg = 7 if P} < P. Lf ¢

>

strictly concave. Henc&(:) is strictly monotonically decreas-
ing on (Qo) and sinceP; < P;, then we haveG(P*i) > E

l . .
But, If this is the case, the first part of the r&e, contributes |Jo log (X)d>4 = 1,. then by the Dominated Convergence
nothing to the objective function. Also, ®; = P;, the first heorem, we have:

part can_be merged with the second part so atcan be im E||log 1+ 7%Pmax\|" _gl| 1im log 1+ 7¢Pmax\|"
written simply as: Prmax—o0 g 1+ ygPmax Y |[Pmacoee ~\ 1+ ygPmax
1+ Yh P Tk *
Rz=_ max E |log I 5| (103) =E Iog(—) , (106)
Osgi fmaXT;,g)’h + g Ya Yg

which corresponds exactly to the case= 1. This completes Which implies that o lim Ry =
the proof of Lemma 1. N oo

S Pritk <vyn < Tk+1}EHIog(;—k)] ] Hence,Ve > 0, there

ArpENDIX F k=1 79 2

ON THE POSITIVENESS OF M FOR Pz

We assume here that the main and the eavesdropper chan
nels are identically distributed so thgf (x) = f, (x) for all x
in the support ofy, andyg. Let us write theaiPk condition in
Table | fork = N as:

exists a certairPg such thatvPnax > Pg, we have:
N +
RrE}stW<mn4%43)]se (107)
] 7 Yo
Taking the maximum over alt’s such thatr; < 7, < ... <
1 S S 7y on both sides of (107) establishes the desired result. The
h g imi i
f dvi— — 2  f diareof, of (21) follows along similar lines. To prove (22), we
1-— th (TN) IN 1+7h PN Flyn) Yh j(; 'Yh(Yg) Apd’ Il ( ) g p ( )

1+ Py (104) simply recall that under STP®, = R, and thatP lim R, =

Let us consider a functio () defined on [0) by: K(X) = g ng(ﬂ)n as it has been proved in [3], thus iR, =
@ Je ey Pt dyne The functionK () is monoton- ;s I Prasceo

ically increasing since its derivativi€'(-) given by i

, £ (X) ©0 X ArpenDIX H
K'(x) = Vh—)z f ( I ) frnim) dn
X

Proor or CoROLLARY 3

_ 1+ynPn 1+ xPy
(1-Fy ( . .

(105) In order to prove (25), we proceed similarly as in the proof
is non-negative. If in additiorf,, (x) > O for all x > 0, of Corollary 2 and verify that
then since the integrand in (105) is strictly positive for & ) R,
Yh € (X, ), thenK’ (x) > 0 on (Q o) and thusK(-) is strictly PrL'a’;‘lo N o 1
increasing on (Ox). Our claim is that'x > 0, K (x) > K (0). Pmax klef{Tk <¥n < Tk+1}yE [[Tk - '}’g] ]

= [¢]

Assume thaH xg > 0 such thaK (xp) = K (0). Take anye > 0 o )
such thatx, — € > 0, we have thaK (X — €) < K (xo) = K (0) This implies thatYe > 0, An > 0 such that ifPmax < 1,
due the monotonicity oK(-). But sinceK(-) is a continuous
function, the later statement implies thag € (0, Xo — €) such
that K (xo — €) < K() < K(0). Note that the most left side that:
of the later inequality contradicts the fact th&(:) is strictly N
increasing on (Ox). Therefore, our claim holds true and since (1-¢ PmaxZPr{Tk < vh < Te1) E
k=1

then| — Ry — 1| < e. This, in turn, implies
Pmaxkglpr{Tk§7h<Tk+l)Ej[[Tk_'}’g]+]

(7=l | < R

7N IS positive, we haveK (ty) > K (0) so thatu in (104) is — g
positive. In summary, to prove thatis positive, we needed N
to assume thay, and~y are identically distributed and that <(+e PmaxZPT{Tk <y < o1} E [[Tk B ygr}lOS)
f,, (X) > 0 for all x> 0. k=1 7o
AppENDIX G Taking the maximum over al’s, 11 < ... < 7y, on both

PROOF OF COROLLARY 2 sides of the last two inequalities, we obtain:

We prove (20) by showing that linR; = R™,. Let R4

Pmax—0
be defined by: - _ R4 1 <e
N + +
= 1+ Pmax)} ] Pmax:  max Y Pr{rk < yn < tks1}-E [[Tk - )/g] ]
R,= Pr{r < < T E |o s 0<71<..<TNK=1 Yg
1 kZ:; {tk < n |<+1}yg H g(1+ 7o Prax 109)



which proves (25). The proof of (26) follows along similar log(l+5[7g] Pmax)

lines, and thus one can prove that: < lim Prmax (120)
= Praco0 E 09 (1n 7]
R ~1<e (110) P
Pmax-max E ['}’h - '}’g] E [Vg]
>0 Yh2T,yy Y (121)
. . . . . TG
In addition, 7" = E[yg] is the maximizer of the denominator _o, (122)

Y
in (110) and hence the proof of (26) is completed. FinaIIT th

: . Pmayn | Where (120) is due to the Jensen’s inequality and (121)allo
proof of (27) follows from a series expansion of |H§m because the inpuk is first-order optimal. HenceR ; is

aroundPmax = O to the second order and by averaging th&symptotically equal to
obtained expression.
R~ E [log(L+ynIx?)]. (123)
APPENDIX | Th:X
Proor or THEOREM 4 The rate on the RHS of (123) is asymptotically equal to the

Since the capacity without secrecy constraint cannot k@pacity of the main channel and hence is the best rate one
smaller than the one under secrecy constraint, the conve$d8 achieve. To conclude the proof, we note that to set the
part of Theorem 4 is immediate. To prove the achievabiliffPut distribution (111), one only needs to know when the
part, let us first define the maximum channel g@nby actual channel gain is above the threshelahich is possible

[34]: G = sup %ﬁ“x'—]ﬁzl Let us consider the conditional inputthroth a 1-bit feedback.
X,

distribution defined by APPENDIX J
5 (X _ \/P_o) it yh > PRrROOF OF THE STATEMENT IN REMARK 4
fxiyn (X1 ¥n) = {6(x) otherwise (111)  \we prove the statement in Remark 4 via an example. Let
us consider fading channels with PDF defined ora](y:
whered(:) is the Dirac delta function, wheriey = lf;'“ax(v) and 1
. . Yh
wherev is a threshold that needs to be determined. Clearly, frn () = £, () = > (124)
the input distribution (111) satisfies the LTPC since: . _ . . :
oo wherea is an arbitrary positive number. The capacity without
E[|X|2]:f IX12fy (X) dx (112) secrecy over the main channel is given by [35]:
oo a 1
e Cus(Pma) = f log(2*) = d 125
- f X (Fy, ()6 () + (1= Fy, (%)) 6 (x— v/Po})ti8) ws (Pmay) o9 T e (125)
- A a
~(1-F,, () Po (114) = -1+Z+log(3),  @28)
=Pmax (115) where 1 is the cut-df rate obtained by solving
Furthermore, we verify that: L (%b_ y_lh)é%l dyT_ " Prmax It can be verirf]ied Vt\;]au Cﬁn
[N e obtained explicitly ad = ~W(oet ey Where () is the

im (1-F,, () (116) principal branch of the Lambertw function. Substituting th

2 —
PmaﬁO[E“X'z} Pma*_'of later expression oft in (126), we obtain:
E|nlX [Ty ) 1
= < - - _ ~1-
Pl E[|x?] Pracs0 1—F, (v) (117) Cus(Pma) = -1- W(Ce Py +log (—W(—e a'f’laz)j)
Now, choosingv such that the limit in (116) is equal to zero = a Pnax+ 0(Pmax (128)
and the limit in (117) is equal t& ensures that the input ~ aPrax (129)

distribution in (111) is first-order optimal in the sense 84]

Theorem 4]. Note that since the transmitter knows the majyere we have used the fact ”W‘(—e_l_ax) = -1+ v2ax-

channel gairh, thenG = supyn, [34]. The fact that the support § & x+0(X) to obtain (128). Note that (129) is in full agreement

with the framework in [34] sinceG = a for the PDF’s

considered above. Next, we show that the secrecy capacity

8 this channel is at most asymptotically equal §Pnax

and is thus strictly smaller than the capacity without segre

R = E [log(1+yIx?)|- E [log(1+y4Ix?)]. (118) constraint. To that end, we upper-bound the secrecy capacit
mx YarX with perfect main CSI given in (7) as follows:

As Pmax — 0, the first term in (118) is much larger than the N .
second one as shown below: E H|o (M) ]< E Hlog(1+a7P(h))] 4130)
g 1+ygP(h)
1+aE[P(h)]
Iog[ i ]

: 1+y4P(h
E [log(1+ g 1x?)] E [log (1470 47)] e +vgP ()
Yg-X
1+ygE[P (0]
Yh

of his infinite (by assum?ahtion of Theorem 4) induces tBat
0. The secrecy rate achieved by the above input distributi
is given by:

; P
= |lim —————(119

a0 E TI0G(L+ )] Pracco Efoalieni] ) <E

Yhs L,

Pmax

(131)




where (131) follows from the Jensen’s inequality since thHe4] J. Taylor, M. Hempel, H. Sharif, S. Ma, and Y. Yang, “Ingbaof

functionx — log

1+cx) js concave for all & d < ¢. Since the

d
RHS of (131) is in::réasing i& [P (h)], then maximizing both
Yh
sides of (131) with respect to the LTPE:[P (h)] < Pmax We
h

obtain:

< Ellog| —m— 132

Ris ’Yg[ g(1+79 Pmax ( )
~ PmaxE[a-yq (133)
g
a

= E PmaXa (134)
which we wanted to show.
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