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Abstract

Consider the problem of joint uplink scheduling and power allocation. Being inherent to almost any

wireless system, this resource allocation problem has received extensive attention. Yet, most common

techniques either adopt classical power control, in which mobile stations are received with the same

Signal-to-Interference-plus-Noise Ratio, or use centralized schemes, in which base stations coordinate

their allocations.

In this work, we suggest a novel scheduling approach in whicheach base station, besides allocating

the time and frequency according to given constraints, alsomanages its uplink power budget such that

the aggregate interference, “Noise Rise”, caused by its subscribers at the neighboring cells is bounded.

Our suggested scheme is distributed, requiring neither coordination nor message exchange.

We rigorously define the allocation problem under noise riseconstraints, give the optimal solution

and derive an efficient iterative algorithm to achieve it. Wethen discuss a relaxed problem, where the

noise rise is constrained separately for each sub-channel or resource unit. While sub-optimal, this view

renders the scheduling and power allocation problems separate, yielding an even simpler and more

efficient solution, while the essence of the scheme is kept. Via extensive simulations, we show that

the suggested approach increases overall performance dramatically, with the same level of fairness and

power consumption.

I. INTRODUCTION

The desire to provide integrated broadband services while maintainingQuality of Service(QoS)

guarantees growing interest in scheduled access techniques used in multiple-access protocols
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for future broadband radio systems. Such schedule-based techniques are utilized to ensure that

a transmission, whenever made, is not hindered by any other transmission and is therefore

successful. Accordingly,Orthogonal Frequency-Division Multiple Access(OFDMA) has been

widely adopted as the core technology for various broadbandwireless data systems, includ-

ing the next generation cellular systems, 3GPPLong Term Evolution(LTE), [1], and IEEE

802.16e/m (WiMAX), [2], [3]. In these systems, thebase station(BS) allocates (schedules)

distinct frequency-time chunks among the activemobile stations(MS) within its cell, both

for their downstream (BS to MS) and for their uplink (MS to BS)traffic. In addition to

the frequency-time allocation, the BS also determines the uplink transmission power of the

preselected (scheduled) MS, a.k.a.uplink power-control.

Common power-control approaches to the uplink resource allocation problem are either to

assign transmission power to the MSs such that all are received at the BS with the same

Signal to Interference-plus-Noise Ratio(SINR) [4], [5], or to allow MSs to transmit at their

maximal available power [6]. Both of these techniques optimize the MS/cell throughput (intra-

cell throughput), neglecting the interference injected toneighboring cells (inter-cell interference).

Note that in the more common modes of operations today, duplexing is achieved via either time

or frequency domain division. Thus, the uplink and downlinktransmissions are separated, and

when considering, e.g., uplink inter-cell interference, one has to consider only the interference

caused at a given BS by transmitting users in the surroundingcells, and not the transmissions

of other BSs close by.

Since OFDMA systems are sensitive to inter-cell interference, the interference from neighbor-

ing cells can dramatically decrease the SINR received at theBS, hence reduce the MS throughput.

Moreover, without knowing in advance the interference a BS is expected to experience in a

transmission, an MS is unable to fine-tune its modulation andcoding scheme to the expected

SINR at the receiving BS. Accordingly, power control plays adecisive role in providing the

desired SINR, not only by controlling the MS received signalstrength at its intended BS, but

also by controlling the interference caused to neighboringcells. This double role is challenging,

as on the one hand as far as intra-cell throughput is concerned, an MS in the proximity of the

BS is expected to have high quality link, hence high throughput, even when transmitting in low

power, while a distant MS needs to transmit at much higher power to attain the same throughput,

and on the other hand as far as inter-cell interference is concerned, MSs near a BS can transmit
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at high power since they are not in the proximity of other cells, while distant MSs which can

be in the proximity of other cells should not transmit at highpower as they can interfere with

other (neighboring) BSs.

In order to limit the interference to neighboring cells, 3GPP has approved the use ofFractional

Power Control(FPC) [7]. According to this approach, MSs with higher path-loss, which are

expected to be far from their BS, should operate at a lower SINR requirement so that they

will generate less interference to neighboring cells. Nonetheless, according to this approach,

in order to maintain some notion of fairness, most of the resources should be allocated to

far-away MSs which will transmit in lower modulation schemes. Similarly, the IEEE 802.16m

power control scheme deducts a fraction of the downlink signal-to-interference ratio (SIR) from

the transmission power. By that, it reduces the interference caused by cell-edge MSs. The

3GPP LTE standard suggests a different approach for combating inter-cell interference termed

Inter-cell Interference Coordination(ICIC) (e.g., [8]). ICIC provides tools for dynamic inter-

cell-interference coordination of the scheduling in neighboring cells such that cell-edge MSs

in different cells are preferably scheduled in complementary parts of the spectrum. However,

ICIC requires coordination between neighboring cells, both in terms of exchanging information

regarding subscribers at one cell and their interference level on other neighboring cells, as well

as coordination in the resource allocation, which further complicates the scheduling process.

In this work, we introduce a different approach, which controls the inter-cell interference, yet

does not require any cross deployment communication or coordination. In our approach, the

aggregate uplink inter-cell interference that all MSs in a cell are allowed to induce is bounded.

This limited egress interference budget, termed Noise Rise, is treated as an additional limited

resource which is allocated to MSs by the BS in conjunction with the ordinary resources (time and

frequency), according to some fairness criterion and channel condition. We show that controlling

the interference generated by each cell also controls the average interference level sensed by each

BS and provides a more predictable uplink SINR, which allowslower interference margins and

more efficient rate selection. Hence, it obtains higher capacity and better coverage. In particular,

our contributions are as follows.

First, we introduce the Noise Rise concept which bounds the aggregate uplink interference

that all MSs in a cell are allowed to interfere with all the surrounding cells. We suggest means

for a BS to estimate the normalized interference of each of its MSs, and show that by limiting
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the egress interference the ingress interference is controllable. We show that by utilizing the

Noise Rise concept we can solve the joint scheduling problembetween all BSs in the network

distributively, by each BS independently from even neighboring BSs.

Second, we formalize the scheduling problem under the noiserise constraint as a convex

constrained optimization problem, and provide an efficientiterative algorithm that is proved to

solve it optimally. Moreover, we suggest a second setting, in which instead of bounding the

average noise rise over all channels, allowing some sub-channels to contribute more noise rise

at the expense of further limiting the noise rise on others, we bound the noise rise on each

sub-channel to the exact same value. The latter setting allows the decoupling of the scheduling

algorithm from the power control and thus facilitates an even simpler algorithm.

Third, we thoroughly evaluate the noise rise concept via an extensive set of simulations, using

both an all-inclusive simulator as defined by IMT-Advanced [9] and numerical results for the

exact expressions we analyze utilizing the Shannon-capacity based approach. Our numerical

results clearly depict that the suggested approach dramatically increases the overall throughput

achieved in each cell compared to the traditional approach,while maintaining fairness. The

results obtained by the IMT-Advanced simulator include a more realistic setup which takes

into account modulation, coding and several other practical aspects, and show that even though

MSs in the proximity of the BS (hence can take advantage of transmitting in high power and

high modulation rates), lose throughput due to the noise rise constraint, MSs further away from

the BS, and in particular those closer to the cell edge, gain dramatically due to the noise rise

constraint.

II. NOISE RISE

In this paper we study the joint uplink scheduling and power control problem for wireless

cellular networks. We consider a multi-cell network comprising B Base Stations (BSs) each

serving a set of Mobile Stations (MSs). We denote byMi the set of MSs served by BSi.

The BS deployment is assumed to be fully symmetric, i.e., we assume that the BSs form a two

dimensional lattice e.g., hexagonal grid. We assume that the number of MSs (Mi) and their

distribution over each cell isi.i.d.

Interference is one of the key factors impacting the performance of wireless networks. It can

be partitioned into external interference, which is causedby the coexistence of other wireless
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networks that operate on the same frequency bands and to internal interference, which is caused

by other transmissions within the same network. In cellularnetworks, internal interference can

be further partitioned into intra-cell interference, which relates to other transmissions within the

same cell, and inter-cell interference, which relates to interference from neighboring cells. Tradi-

tional cellular communications such as CDMA networks suffer from Intra-cell interference due

to the pseudo orthogonality of the CDMA codes used within a cell. Such intra-cell interference

is resolved in OFDMA systems due to the orthogonality characteristics of the subcarriers in

these systems. Nonetheless, OFDMA technology does not provide any solution to the inter-cell

interference. Particularly, the received SINR on one cell is highly dependent on neighboring cell

transmissions, i.e., the received SINR on a specific resource unit (here we denote by resource unit

the smallest time-frequency resource allocation used for downlink/uplink transmission) highly

depends on the scheduled MSs on the same resource unit and their associated transmission

powers in the neighborhood cells. Consequently, when each cell performs its own power control

and scheduling independent of its neighboring cells (no coordination between the cells), the

interference profile seen in uplink transmission becomes highly dynamic, i.e., the interference

level at a BS can vary considerably; such variability is verydetrimental to the transmission rate

and coding scheme selection. Accordingly, in order to maintain low packet drop ratio (PDR)

despite this variability, a high interference margin should be accounted for while selecting the

transmission rate and coding scheme. That is, transmittingin a more robust rate (lower rate) to

maintain reliability at worse cases of the interference pattern.

Clearly, this inter-cell interference effect reduces cells’ uplink spectral efficiency, resulting in

poor resource utilization and performance. In order to combat co-channel interference (CCI),

several studies addressed the problem both for setups in which a single antenna is utilized

and for the case in which multiple antennas are utilized. In the context of Single Antenna

Interference Cancelation (SAIC) for which most attention was drawn toward GSM networks,

the most prominent classes of algorithms suggested are joint demodulation and interference

cancelation, e.g. [10]–[12]. In the context of Multiple Antenna Interference Cancelation (MAIC)

most attention was drawn to intra-cell downlink Multi-Usermultiple-input multiple-output (MU-

MIMO) wireless systems, and was aimed at suppressing the co-channel interference (CCI), by

designing multi-user transmit beamforming (or precoding)vectors or matrices which optimize

the signal-to-leakage ratio (SLNR), e.g., [13]–[16]. Note, however, that the above setting, as well
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as the resulting optimization problems, are different fromthe ones we consider in this paper.

In addition to the inter-cell interference effect on cell capacity, inter-cell interference can

be also vital for cell coverage, i.e., if noise plus interference is not constrained, due to the

maximal power transmission of an MS, certain MSs (typicallyat the cell edge) will not be able

to maintain a reasonable communication capacity. These MSswill be blocked and removed from

the coverage area, resulting in reduced cell coverage.

The key concept we wish to consider in this paper is theuplink noise-rise.

Definition 1. Uplink noise riseis defined as the total uplink received noise plus interference

power over the background noise power. Formally, letN0 denote the background noise level

and I denote the total interference at the BS (receiver). Then, the noise riseγ is defined by

γ = N0+I
N0

.

In the following subsection we present the constrained noise rise approach, which provides a

fully distributed mechanism (without cross deployment coordination and synchronization) that

dramatically reduces the variability of the noise rise (dueto inter-cell interference) allowing

more aggressive rate selection (taking a much smaller noiserise margin).

A. Constrained noise rise approach

The constrained noise rise approach aims at allowing the scheduler to operate in fixed Noise

plus Interference conditions and facilitating a more aggressive rate selection. Specifically, we

aim at bounding the egress interference and show that it alsobounds the noise rise seen by

uplink transmission at all cells. Formally, letB denote the set of all BSs in the network, and

M(k), k ∈ B denote the set of backlogged MSs at BSk. Denote byIin(k∗) the ingress

interference level per resource unit at BSk∗ receiver,

Iin(k
∗) =

∑

k∈B\k∗

∑

i(k)∈M(k)

Li(k),k∗ · pi(k) (1)

where Li(k),k∗ denotes the channel gain between MSi(k) of BS k and BSk∗ and pi(k) is

the transmission power of MSi(k). Note that in order to compute the aggregate interference

experienced by BSk∗ one has to sum the interference induced to BSk∗ by each and every

transmission by any MS in any cell in the network other than the MSs in cellk∗. Accordingly,
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the first summation in (1) is over all BSs besides BSk∗ itself, and the second summation is

over all scheduled MSs (transmitters) in each such cell.

On the other hand, the egress interference by the MSs of cellk∗, which is the aggregate

interference induced by each transmitting MS on cellk∗ on all BSs other than BSK∗ itself, is

given by:

Ieg(k
∗) =

∑

i(k∗)∈M(k∗)

∑

k∈B\k∗

Li(k∗),k · pi(k∗) (2)

where the first sum is over all MSs in BSk∗, and the second sum is the aggregate interference

induced by each such transmission on all BSs other thank∗ to which the transmitter belongs.

We assume a fully homogeneous deployment which implies that(i) the topology seen by

each BS (i.e., the number of neighboring BSs and their location) is i.i.d (ii) the backlogged MS

distribution in different cells is alsoi.i.d, given that all BSs deploy the same scheduling strategy

(e.g., power control and link adaptation mechanisms). Notethat both assumptions relate to the

distribution and do not require identical spreading of MSs within each cell. We now show that

in such a deployment, if the average egress interference caused by the MSs in each cell to the

surrounding BSs is the same for all cells, then the average ingress interference experienced by

each BS due to its neighboring cells is fixed and equal to the aforementioned average egress

interference. That is,

E [Iin(k
∗)] = E





∑

k∈B\k∗

∑

i(k)∈M(k)

Li(k),k∗ · pi(k)





=
∑

k∈B\k∗

E





∑

i(k)∈M(k)

Li(k),k∗ · pi(k)





A
=
∑

k∈B\k∗

E





∑

i(k∗)∈M(k∗)

Li(k∗),k · pi(k∗)





= E





∑

i(k∗)∈M(k∗)

∑

k∈B\k∗

Li(k∗),k · pi(k∗)





= E [Ieg(k
∗)] , (3)

where A relies on the homogeneity assumptions above, that is, instead of averaging the
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interference induced by MS transmissions from cellk on BS k∗, we average the interference

induced by MS transmissions from cellk∗ on BSk.

Let li(k) denote the normalized interference (interference per unitpower) that MSi of BS k

uplink transmission injects to its neighboring cells, thatis

li(k) =
∑

k′∈B\k

Li(k),k′.

When the BS identity (index) is clear from the context, we will omit it and simply denote it by

li. The aggregate interference caused by all MSs of cellk∗,Ieg(k∗) , can be written as

Ieg(k
∗) =

∑

i(k∗)∈M(k∗)

li(k∗) · pi(k∗).

As previously shown, in order to control the average ingressinterference and keep its variability

low it is sufficient to bound the egress interference caused by each cell uplink transmission.

Accordingly, the noise rise constraint on the scheduler andpower control allocation we offer to

impose is:
∑

i(k∗)∈M(k∗)

li(k∗) · pi(k∗) ≤ I (4)

whereI is the pre-defined, fixed, noise rise constraint.

We note that (4) implies that the scheduler should consider noise rise as a resource to be

allocated to transmitting MSs in the same manner as resourceunits. Accordingly, each BS has a

noise rise budgetI which it can distribute between the scheduled MSs and with respect to each

MS’s egress interferenceli. For example, if the egress interference of a given MS is high, the

scheduler could reduce its transmission power and increaseits allocated bandwidth. Alternatively,

the scheduler could allocate a large portion of its noise rise budget on this MS and co-allocate

it with another MS that consumes less noise-rise such that the noise rise budget is kept.

In the following we provide the means for a BS to estimate the normalized interference.

B. Normalized interference via downlink SINR

To comply with (4), each BSk ∈ B should have information on the normalized interference

li(k) of its MSs. Typically, a BS cannot directly measure this coefficient. By coordinating

between pilot transmissions of different MSs across the network, each MS’s normalized in-
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terference can be measured by the surrounding cells and reported to the BS (e.g., via Inter

Cell Interference Coordination). This, however, requirescoordination among the BSs. Such

coordination is supported by the 4G technologies. Alternatively, in the case that the network

operates on Time Domain Duplexing (TDD) mode, in which uplink and downlink transmissions

are separated in time domain each utilizing the entire spectrum in its turn, a BS may estimate

the normalized interference from its MSs’ downlink channelstate reports without the need for

inter-cell communication or coordination.

The downlink SIR (signal-to-interference ratio) measuredby an MS is given by

SIRDL
i(k∗) =

Lk∗,i(k∗)P
DL

∑

k∈B\k∗
Lk,i(k∗)PDL

(5)

where PDL is the BS downlink transmission power. With the channel reciprocity [17], i.e.,

Lk,i = Li,k, we have

SIRDL
i(k∗) =

Li(k∗),k∗
∑

k∈B\k∗
Li(k∗),k

(6)

Therefore,

li =
∑

k∈B\k∗

Li(k∗),k =
Li(k∗),k∗

SIRDL
i(k∗)

(7)

Finally, we note that in an interference-limited scenario,when the interference isconsiderably

greater than the background noise (which is typically the case), onecould use the measured

downlink SINR instead of the downlink SIR (required in equation (7)), neglecting effect of the

background noise on the measurement.

III. SYSTEM MODEL

As shown in Section II, by limiting the egress interference caused byeach cell’s uplink

transmission, independently between cells, we controleach cell’singress interference and keep

its variability low. Accordingly, we focus on a single cell,and consider the problem of resource

allocation for the uplink of an OFDMA cell, where a setM = {1, ...,M} of backlogged MSs

transmits to the same BS.

Time is divided into equal length time slots (sub-frames according to the IEEE 802.16m

terminology). According to OFDMA, each time slot is dividedinto a setN = {1, ..., N} of
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basic (time-frequency) logical allocation units termedresource units. We distinguish between

logical resource units and physical resource units. Specifically, as widely used in WiMAX, we

assume that each logical resource unit is mapped to the same size physical resource unit that has

undergone partitioning and permutations. The permutationspreads the (logical) resource units’

sub-carriers across the whole frequency band. Alternatively, for the LTE Single Carrier Frequency

Division Multiple Access (SC-FDMA) we assume the distributed transmissions, where the users

occupy different sets of subcarriers. Accordingly, for each MS i the channel quality of all logical

resource units are assumed to bei.i.d. Let us denote byxi(t) the fraction of the frequency band

allocated to MSi at time slott, such that
∑

i∈M xi(t) ≤ 1. Even though as previously explained

the frequency band is divided to a fixed number of channels, throughout the analytical part of

this paper, we assume that the frequency band is infinitely divisible, i.e., we allowxi(t) to take

any value between zero and one (0 ≤ xi(t) ≤ 1). Note that typically, the number of resource

units in a frequency band is large (e.g., in IEEE 802.16m, 48 and 92 resource units for a 10MHz

and 20MHz bands, respectively). Obviously, the rounding error is a function of the number of

MSs allocated at each time slot, i.e., if only few users are scheduled in a time-slot then the

error is expected to be small as only a small subset of the resource units are rounded, and if

the number of users scheduled in a time slot is high the error is expected to be high. In the

simulation part of the paper we examine our results over boththe continuous and the quantized

allocation setup, and show that since typically the number of users scheduled in each time slot is

low, the rounding errors arising from changing continuous frequency allocations into quantized

ones does not affect the results dramatically.

The capacity of a band-limited Gaussian channel (considering other interfering signals as noise

[18, Chapter 15]) isW log(1 + P
(N0+I)W

), whereW is the bandwidth in Hz,P is the received

power in Watts andN0 + I is the noise plus interference spectral density in Watts/Hz. Now,

denote the total bandwidth available byB. Accordingly, the bandwidth allocated to MSi is

W = Bxi(t). Further denote bypi(t) the power allocated to MSi at time t and byLi(t) the

path gain between MSi and its BS (i.e.,P = piLi(t)). Note, the scheduler is assumed to have

knowledge of the channel gain, comprising the long term parameters of the link between the

BS and the MS, such as path loss and shadowing factor, as well as the short-term time-varying

spatial fading.
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Thus, the capacity of MSi at time t, denotedri(t), can be written as

ri(t) = Bxi(t) log

(

1 +
pi(t)Li(t)

(N0 + I(t))Bxi(t)

)

.

Note that based on Section II, keeping a fixed noise-rise (i.e., fixed egress interference) by

each cell ensures that the Noise plus Interference has smallvariance. Hence, the Noise plus

Interference is assumed fixed over time. Next, for MSi at time t, let us denote byei(t) the

normalizedreceived SINR, that is,ei(t) =
Li(t)

(N0+I)B
. Hence,

ri(t) = Bxi(t) log

(

1 +
pi(t)ei(t)

xi(t)

)

. (8)

Note that a similar formulation was also used in [6, Section III], when thesingle-cellresource

allocation problem was discussed (disregarding inter-cell interference).

Typically, pi(t) is constrained by the maximum power a user can transmit, i.e., pi(t) < Pi.

Nonetheless, throughout the theoretical part of this paperwe will assume an interference limited

scenario, that is, the maximal power a user can transmit withis higher than the maximal power

limit resulting from the noise-rise constraint, even if it was the only transmitter, i.e.,Pi ≥
I

li(t)
,

where, li(t) is the normalized interference of MSi at time slott. In other words, the desire

not to inflict high interference on the neighboring cells is the actual power limit. We assume

that li(t) is estimated by the BS according to (7), i.e.,li(t) = Li(t)
SIRDL(t)

where the downlink

Signal-to-Interference (SIRDL(t)) is available to the BS (scheduler) via theChannel Quality

Indicator (CQI). In the simulation part of the paper we will also examine thescenario in which

the max-power constraint can be lower than the one which is due to the noise-rise constraint.

Throughout this paper we only consider the uplink allocation of resources (fraction of the

frequency band and power) to the backlogged MSs. We assume that the scheduler objective

is to maximize a weighted sum throughput. Accordingly, at the beginning of each time slot,

the scheduler seeks to maximize a (time-varying) weighted sum of the MS rates. We adopt the

gradient-based scheduling framework [19]–[23]. Specifically, the scheduler solves the following

optimization

max
∑

i∈M

ωi(t)ri(t) (9)
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whereωi(t) ≥ 0 is a time-varying QoS weight assigned to thei-’th MS at time t.

We concentrate on weights that depend on the average throughput attained by each MS up to

the t-th slot, and capture some fairness notation. For example,ωi(t) =
1

Ti(t)
, whereTi(t) is the

average throughput of MSi at time t, which captures proportional fairness [19], [22], [23].

Note that (9) must be re-solved at each scheduling instant (e.g., each sub-frame) due to of

changes in both the resource unit state and the weights. Consequently, for the ease of presentation,

in the following we omit the time indext.

IV. OPTIMAL JOINT UPLINK SCHEDULING AND POWER CONTROL

In this section, we consider the optimal solution to the general problem of joint scheduling

and power control. We formalize the optimization problem, characterize the optimal solution and

give an efficient iterative algorithm to achieve it.

The problem at hand is as follows. At the beginning of each time slot, the BS schedules a

subset of backlogged MSs to available resource units and assigns transmission power to each

scheduled MS. The BS aims at maximizing the achievable rate while providing MSs with a

fair share of resources according to a predefined fairness metric and maintaining a bounded

interference with neighboring cells.

In conjunction with the scheduler and the power control, a rate adaptation mechanism adjusts

the transmission rate according to the allocated power. Clearly, the resulting throughput in a time

slot (sub-frame) for a given scheduled MS is derived from theallocated resource units and the

allocated power. In other words, the scheduling and power allocation are coupled, in devising

the allocated throughput, and should be performed jointly.The power control scheme optimizes

the tradeoff between allocated rate and contribution to theoverall Noise Rise. Typically, MSs

far from the BS are required to transmit at high power in orderto maintain a reasonable rate.

However, these MSs are closer to neighboring cells, hence contribute more to the noise rise in

those cells. Nonetheless, cell edge MSs are required to transmit at low power in order to bound

the interference with neighboring cells.

To state the optimization problem formally, at the beginning of each time slot the scheduling

and power control scheme selects a feasible resource and power allocation tuple(x,p) (through-

out, we use bold symbols to denote vectors) that complies with the noise rise constraints and
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maximizes a time-varying weight assigned to each MS, i.e.,

maximize
x,p

{

∑

i∈M

ωi · ri(xi, pi)

}

whereri(xi, pi) is the rate related to the resource and power allocation andωi ≥ 0 is the time-

varying weight assigned to thei-th MS at the beginning of the time slot. These weights are the

gradient of an increasing concave utility function of each MS. Taking the rate asri(xi, pi) =

Bxi log
(

1 + piei
xi

)

(equation (8)), we can formulate the joint power control andscheduling with

noise rise constraint optimization problem: for each time slot, find the channel allocated to each

MS, denoted byx = {x1, x2, . . . , xM}, as well as the power assigned to each MS, denoted by

p = {p1, p2, . . . , pM}, such that the total weighted throughput is maximized. Thatis,

maximize
x,p

∑

i∈M

Bωixi log

(

1 +
piei
xi

)

subject to xi, pi ≥ 0, ∀i ∈M,
∑

i∈M

xi ≤ 1,

∑

i∈M

lipi ≤ I.

(10)

Proposition 1. Optimization problem (10) is convex with linear constraints.

Proof: Consider the negative utility function

−
∑

i∈M

ωixi log

(

1 +
piei
xi

)

(11)

We first show that this function is convex. To this end, consider a single summand

f(xi, pi) = −ωixi log

(

1 +
piei
xi

)

.

The Hessian matrix, restricted to the variablesxi andpi is given by




∂f

∂x2

i

∂f

∂xipi

∂f

∂pixi

∂f

∂p2i



 =
ωie

2
i

(1 + eipi
xi

)2xi





p2i
x2

i

− pi
xi

− pi
xi

1




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Note that,
(

α1 α2

)





p2i
x2

i

− pi
xi

− pi
xi

1









α1

α2



 =

(

α1
pi
xi

− α2

)2

Hence, for all(α1, . . . , α2M) ∈ R
2M , the Hessian matrix of (11),H(x,p), satisfies

(α1, . . . , α2M)H(x,p)(α1, . . . , α2M)T =
∑

i∈M

ωie
2
i

(1 + eipi
xi

)2xi

(

α2i−1
pi
xi

− α2i

)2

≥ 0

When solving (10) for the optimalx andp, for fixed B the values of{ωi}i∈M and{ei}i∈M

are fixed non-negative reals. Hence, for ease of notation, from this point on, we omitB and

focus on the optimization of
∑

i∈M ωixi log
(

1 + piei
xi

)

for any {ωi}i∈M and {ei}i∈M, subject

to the constraints. However, note thatei does depend on the givenB and while computing the

cell capacity under the resulting schedule one should multiply by the sameB.

From Proposition 1, it is clear that the optimal solution canbe found numerically using

standard optimization techniques. For example, it can be found through a similar method to

that used in [6], [24]. Yet, this direct approach might be prohibitively complex and unfeasible

for practical implementation in commercial BSs. Accordingly, a simpler solution is called for.

To this end, we give an efficient iterative algorithm, which uses theanalytical solutions to two

related sub-problems, to solve the above problem. Moreover, we show that the iterative algorithm

converges to the global optimum.

A. An Analytic Solution to the Joint Scheduling and Power Control Problem

Herein, we show that the optimal solution can be viewed as twointertwined water-filling-

like problems, facilitating a highly efficient solution which solves the complete optimization

problem by fixing a subset of the variables each time (either powers or bandwidth) and solving

the resulting water-filling problem. We show that this iterative procedure is bound to converge,

and, moreover, give analytical bounds on the possible values of the slack variables in each of

the separate water filling problems, enabling us to convergeto their solutions using afast binary

search.
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The optimization problem we discuss is as follows.

maximize
x,p

∑

i∈M

ωixi log

(

1 +
piei
xi

)

subject to xi, pi ≥ 0, ∀i ∈M,
∑

i∈M

xi = 1,

∑

i∈M

lipi = I.

(12)

Denotemax{x, 0} by [x]+. We first consider the analytical solution to this problem. Proposi-

tion 2 below gives a set of equations satisfied by the optimal bandwidth and power allocations.

Proposition 2. Consider the joint power and bandwidth optimization problem in (12). The

optimal power and bandwidth allocations,{p∗i }i∈M, and{x∗
i }i∈M, respectively, satisfy

p∗i = x∗
i

[

ωi

λ1li
−

1

ei

]+

; x∗
i = [x̃i]

+ (13)

wherex̃i, λ1, andλ2 are the solution to the following set of equations:

ωi log(1 +
p∗i ei
x̃i

)−
p∗i eiωi

x̃i + p∗i ei
+ λ2 = 0,

∑

i

lix
∗
i

[

ωi

λ1li
−

1

ei

]+

= I,

and
∑

i

x∗
i = 1.

Proof: In the proof of Proposition 1 we show the convexity of the optimization problem.

The proposition will now follow from a straightforward application of the KKT conditions [25,

Section 5.5.3]. Namely, we write

L (p,x, λ1, λ2, {µi}i∈M, {µ̃i}i∈M)

=
∑

i∈M

ωixi log

(

1 +
piei
xi

)

+ λ1

(

∑

i∈M

lipi − I

)

+ λ2

(

∑

i∈M

xi − 1

)

−
∑

i∈M

µixi −
∑

i∈M

µ̃ipi
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and the proposition follows by requiring∇L = 0 and that for alli ∈ M we havẽµipi = 0,

µixi = 0, µ̃i ≥ 0 andµi ≥ 0.

Remark1. A key result of the Noise Rise concept is that users with a highli are less likely

to receive high power, as they may consume a significant shareof the noise rise budget. These

users can either be compensated by a larger bandwidth, or, incase they are superior in terms of

channel statistics and weights, indeed receive the significant portion of the noise rise budget. Of

course, the resulting bandwidth and power allocation is a function of all the parameters in the

problem, and must be solved using the optimality equations above or the iterative algorithm we

suggest below. Yet, to rectify the dependence of the powers on {li}, fix the bandwidth parameters

{xi} and assumewi = 1 for all i. The resulting equation forpi is

pi = xi

(

I +
∑

i
xili
ei

li
−

1

ei

)

.

The first summand in the parenthesis can be viewed as thewater level. It is thus clear that in

this case, a largerli results in a lower water level, hence a lowerpi. However, note that the

actual result depends onxi, and this value is part of the optimization problem as well.

While Proposition 2 gives necessary and sufficient conditions for power allocationsp and

bandwidth allocationsx to be optimal, its direct computation is cumbersome, as the equations

for both types of variables are intertwined. However, in thenext sub-section, we show that

the problem in (12) can be solved optimally by a highly efficient iterative algorithm, which,

unlike standard iterative optimization procedures, does not jointly optimize over all variables,

but rather utilizes the fact that when separating the power variables from the bandwidth ones,

each optimization problem has a relatively easy water-filling-like analytical solution.

B. An Iterative Algorithm

The important observation is as follows. Fixing the bandwidth variables{xi}i∈M, the resulting

optimization problem is

maximize
p

∑

i∈M

ωixi log

(

1 +
piei
xi

)

subject to: pi ≥ 0, ∀i ∈M
∑

i∈M

lipi = I

(14)
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The solution to this problem is the well-knownwater filling, e.g., [25, Example 5.2]. Hence,

it is easily solvable (note that the weightsωixi and the noise rise constraintsli only serve as

scaling factors, and do not change the essence of the problemin the separated case). Fixing the

power variables{pi}i∈M, on the other hand, results in a relatively similar optimization problem,

which although involving an implicit equation for eachxi, is also straightforward to solve. The

iterative algorithm will then alternate between the two solutions, fixing one set of variables based

on the results of the previous iteration. A pseudo code of thealgorithm follows.

ITERATIVE-WATER-FILLING (e, l,w, I)

1 x← x0 : such thatx0
i > 0 ∀i,

∑

i x
0
i = 1

2 repeat

3 λ1 ← SOLVE

(

∑

i lixi

[

ωi

λ1li
− 1

ei

]+

= I

)

4 pi ← xi

[

ωi

λ1li
− 1

ei

]+

∀i

5 λ2,x← SOLVE

6
(

∑

i xi = 1, ωi log
(

1 + piei
xi

)

− pieiωi

xi+piei
+ λ2 = 0

)

7 until CONVERGE

8 return {x,p}

When evaluating Algorithm ITERATIVE-WATER-FILLING , the two key aspects are complexity

and convergence. First, consider the number of operations in each iteration. The first step, as

mentioned, is a basic water-filling procedure. The value ofλ1 can be calculated by first sorting

the MSs according to their value ofli
ωiei

, then including MSs in ascending order until the “water

level” 1
λ1

satisfies the noise rise constraint. This is done inO(M logM). As for the second step,

the solution is more involved, since it cannot be solved explicitly. However, as the following

proposition states, the solution is monotonic inλ2, with upper and lower boundson the value

of the optimalλ2, hence can be solved efficiently by alogarithmic timebinary search.

Proposition 3. For eachi ∈M, let x̃i be the solutions to

ωi log

(

1 +
piei
xi

)

−
pieiωi

xi + piei
+ λ2 = 0 (15)

Then, for alli ∈M, everyλ2 ≤ 0 and anyωi ≥ 0, pi ≥ 0 and ei ≥ 0, we have:
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1) x̃i ≥ 0 and
∑

i∈M x̃i is monotonically increasing inλ2.

2) The value ofλ2 in (15) such that
∑

i x̃i = 1 satisfiesλmin
2 ≤ λ2 ≤ λmax

2 , where

λmin
2 = min

i∈M

{

ωi

(

Mpiei
1 +Mpiei

− log (1 +Mpiei)

)}

λmax
2 = max

i∈M

{

ωi

(

piei
1 + piei

− log (1 + piei)

)}

Thus, when solving the bandwidth iteration in Algorithm ITERATIVE-WATER-FILLING , simply

computeλmin
2 andλmax

2 , and apply a binary search for the value ofλ2 such that|
∑

i xi−1| ≤ ǫ.

The computational cost isO(M log(1/ǫ)) assuming (15) is solved forxi in O(1) for fixed λ2.

Proof: To prove item 1) we proceed as follows.

Set piei
xi

= α and consider the functionf(α) = log(1 + α) − α
1+α

. It is easy to verify that

f(0) = 0 and thatf(α) is non-negative and monotonically increasing for anyα ≥ 0. Thus, for

any λ2

ωi
< 0, the equationf(α) = −λ2

ωi
will have a unique solution at someα = piei

xi
> 0. Hence,

x̃i ≥ 0. Moreover, for fixedpi, ei, ωi, the smallerλ2 is, the larger is the solution tof(α) = −λ2

ωi
,

that is, the smaller̃xi, for all i, and hence the smaller is
∑

i x̃i.

To prove item 2) we note the following.

Since
∑

i x̃i is monotonically increasing inλ2, the value ofλ2 such that
∑

i x̃i = 1 is clearly

upper bounded by the value ofλ2 for which the “weakest” MS, the MS which requires the

largestλ2 in order to achievẽxi = 1, indeed gets it (since in this case all other MSs will have

x̃i′ > 1 and
∑

i x̃i will clearly surpass1). Thus,λ2 is at mostmaxi∈M {λ2 s.t. x̃i = 1}, which

equals to

max
i∈M

{

ωi

(

piei
1 + piei

− log (1 + piei)

)}

.

On the other hand, the value ofλ2 such that
∑

i x̃i = 1 is clearly lower bounded by the value ofλ2

for which the “strongest” MS, the MS which requires the minimal λ2 in order to havẽxi = 1/M ,

indeed gets it (since in this case all other MSs will havex̃i′ < 1/M and thus
∑

i x̃i will be

strictly smaller than1). As a result, the optimalλ2 is at leastmini∈M {λ2 s.t. x̃i = 1/M},

which equals to

min
i∈M

{

ωi

(

Mpiei
1 +Mpiei

− log (1 +Mpiei)

)}

.
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Finally, we mention two important results on the convergence of Algorithm ITERATIVE-

WATER-FILLING . As mentioned, the algorithm iteratively solves two optimization problems, each

one involving half of the parameters to be optimized (eitherpowers or bandwidth allocations).

This is an alternating optimization procedure. While this procedure can fail for some utility

functions (e.g.,x2−3xy+y2 when alternating between the optimization ony and the optimization

onx), it is important to note that in the specific case of our jointpower and bandwidth scheduling

with noise-rise constraint, it is bound to converge.

Corollary 1. Assume AlgorithmITERATIVE-WATER-FILLING is used to solve (12). Then the

power assignmentsp and channel allocationsx converge to the global optimum of (12).

Proof: We first show that the negative utility function

−
∑

i∈M

ωixi log

(

1 +
piei
xi

)

satisfies an existence and uniqueness constraint [26, Section 2]. That is, fixing any2M − 1

variables and optimizing on the remaining variable, the resulting problem has a unique (global)

minimizer in the range. This is easily seen from the Hessian matrix calculated in the proof of

Proposition 2, as the negative utility function is convex ineach of the variables.

We now mention that the transform(p,x)t = T[(p,x)t−1] defined by one iteration of

Algorithm ITERATIVE-WATER-FILLING has no fixed points (for whichT [v] = v) besides the

global optimum of (12). This is, again, since the negative utility function is convex. The corollary

will now follow by applying [26, Theorem 2].

Note that the result in [26, Theorem 2] implies that as long asthe power and bandwidth

allocationsp,x are not in the range of thefixed pointsof T [p,x] (an iteration of the algorithm),

the negative utility function is strictly decreasing in each iteration. Moreover, the result in

Corollary 1 can be made even stronger if the negative utilityfunction is strictly convexin

the range. Consider, for example, the two MS case. While the function

−ω1x1 log

(

1 +
p1e1
x1

)

− ω2x2 log

(

1 +
p2e2
x2

)

is not strictly convex for allp1, p2, x1, x2 (the Hessian matrix is not of full rank and hence

not positive definite),it is strictly convexunder the constraintsx1 + x2 = 1 and l1p1 + l2p2 =
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I (for positive xi and pi). In this case, by [26, Theorem 3], the alternating optimization in

Algorithm ITERATIVE-WATER-FILLING convergesq-linearly to the global optimum, from any

starting point(p1, p2, x1, x2)
0 in the range. That is, each iteration of the algorithm decreases the

distance to the global optimum by a constant multiplicativefactor q ∈ [0, 1). In other words,

||(p,x)t − (p∗,x∗)|| ≤ q||(p,x)t−1 − (p∗,x∗)||.

The algorithm performance, as well as interesting insightson the structure of the utility

function we use, are easily visible in the following two-users example.

Example1. Consider the following two-users example. Setx1 = x = 1−x2 andp1 = p = I−l2p2
l1

.

To fix the constants, setI = 4, l1 = 4 and l2 = 1, so p2 = 4 − 4p and hence bothx andp are

in the range[0, 1]. Of course, this reduces the generality of the problem, yet as it turns out, still

results in non-trivial solutions. The optimization problem is thus to find the pair(x, p) which

maximize

w1x log
(

1 +
e1p

x

)

+ w2(1− x) log

(

1 +
e2(4− 4p)

1− x

)

The results for the weightsw1 = 1.1, w2 = 9.4, e1 = 16.25 and e2 = 0.1 are given in Figure

1. Note that the constant were chosen to best illustrate a non-tirivial maximum point and the

convergence to it. The maximum is achieved at(x, p) = (0.667419, 0.315038). This maximum

point reflects the balance between the higher interference user 1 creates and its lower weight

yet much better channel conditions. This is the reason user 1receives a significant bandwidth

allocation. The three dashed lines represent three runs of the iterative algorithm, from three

different starting points. 10 iterations suffice to converge. Moreover, it is clear that a given

variable may increase at one iteration, and decrease at the next. That is, the algorithm “corrects”

the bandwidth variables according to the resulting powers,and vice versa.

V. CONSTRAINED NOISE RISE DENSITY

In this section, we consider a second noise rise approach, where thenoise rise densityis

constrained. That is, instead of noise rise budget over the whole frequency band, the noise rise

per resource unit is constrained. We will see that the constraint noise rise approach renders the

scheduling and power allocation problems separate, facilitating a very efficient implementation.

Moreover, in the separate problems, there is no direct dependence on the Shannon capacity

expression and its mathematical properties (e.g., convexity). In fact, the constraint noise rise den-
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Fig. 1. A two-users example. A graphical representation of the sum of the wighted capacities as a function of both the bandwidth
allocated,(x, (1−x)) and the powers distributed,(p1 = p, I−l1p

l2
). The constants areI = 4, l1 = 4l2 = 4, w1 = 1.1, w2 = 9.4,

e1 = 16.25 and e2 = 0.1. On top, the three dashed lines give the results of the iterative algorithm for three different starting
points.

sity approach will be applicable under anyRate-Adaptationmechanism, regardless of the actual

function connecting the power used to the rate achieved. Forexample, consider a complicated,

real-life scenario where various aspects such as modulations, re-transmissions and error control

mechanisms affect thede-factoachieved transmission rate. In this case, the Shannon capacity

may be far from capturing the actual rates, however, it is possible to devise a function, even

if mathematically intractable, that connects the power or bandwidth used to the achieved rate.

The approach described herein, will be able to use any such rate-adaptation in the optimization

process. Finally, we also mention that this approach is alsosuitable for the contiguous resource

allocation scheme (i.e., without any sub-band partitioning and permutations) and the localized

transmission scheme of the LTE SC-FDMA uplink allocation. Both schemes are beneficial for

supporting frequency-selective scheduling.

Formally, the constraint on the noise rise density results from normalizing the allocated power

by the allocated bandwidth, for each MSi. That is,li ·
pi
xi
≤ I, for all i ∈M. First, re-writing as

lipi ≤ Ixi and summing both sides over alli ∈ M, it is clear a resource and power allocation

{x,p} that complies with the noise rise density constraint willnot exceed the noise rise constraint
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over the whole frequency band. Namely, the noise rise density approach only adds constraints

to the original problem discussed in Section IV. The scheduling problem with constrained noise

rise density is hence as follows.

maximize
x,p

∑

i∈M

ωi(t)xi log

(

1 +
piei
xi

)

subject to: xi, pi ≥ 0, ∀i ∈M
∑

i∈M

xi ≤ 1

li ·
pi
xi

≤ I, ∀i : xi > 0

(16)

Now, consider the expressionωi(t) log
(

1 + piei
xi

)

. Since for eachi, pi
xi
≤ I

li
, it is clear that a user

which maximizedωi(t) log
(

1 + Iei
li

)

should be allocated theentire bandwidth. The following

pseudo code summarizes our solution to the resource allocation problem in this case.

RESOURCE-ALLOCATION (l,w, I)

1 x← 0,p← 0

2 for i ∈M

3 do ri ← RATE-ADAPTATION( I
li
)

4 i∗ ← argmax
i∈M
{ωi · ri}, xi∗ ← 1, pi∗ ←

I
li∗

5 return {x,p}

Algorithm RESOURCE-ALLOCATION is made possible since our assumption on bounded noise

rise density allows the computation of the uplink transmission power density regardless of

the schedule. The transmission power density is sufficient for the rate adaptation. Clearly, in

practice, a dynamic rate adaptation mechanism would betterestimate the achievable rate and

facilitate better utilization of the multi-MS diversity resulting in a higher throughput. Algorithm

RESOURCE-ALLOCATION is significantly easier to implement, and, as will be made clear in the

next section, results in throughput and fairness which do not fall much short than the optimal

algorithm.
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VI. SIMULATION RESULTS

In this section, we present the results of thorough simulations carried out to test the per-

formance and behavior of the discussed algorithms, and compare them to existing allocation

techniques. First, we include the simulation results of a direct, Shannon-capacity based approach

to performance evaluation, where the total throughput measured is simply the capacity of a

Gaussian, band limited channel, with the scheduled bandwidth and power, and subject to the noise

and interference created by neighboring cells. This simulation clearly illustrates the benefits of

the suggested algorithms. Then, to better emulate practical systems, and to assess the algorithm

performance under such constraints, we give the results of athorough simulation, including

modulation, coding, packet looses, re-transmissions, andseveral other practical issues which,

while complex to evaluate analytically, can be included in asimulation and give a practical view

of the results in this paper.

A. Numerical Results - Shannon Capacity

In this sub-section, we give the numerical results for the algorithms in Section IV-A and

Section V, and compare them to a fixed power scheme. Our main figure of merit is thetotal

throughput in the system, summed over all frames and all cells. However,to stress out the

benefits of the noise-rise based schemes, the standard deviation of the interference seen at the

cells as well as the actual power used are also given. Moreover, a noise rise density approach

with power constraintsis also simulated.

The deployment included 72 hexagon-shaped cells (base stations), with 722 MSs (MS stations).

The MS locations were drawn uniformly at random in space, with the restriction of a minimum

of 2 MSs per cell. Path losses (in dB) were calculated according to the COST-Hata model [27,

Capter 4, equation 4.4.3], specifically:

PL =46.3 + 33.9 log10(f)− 13.82 log10(hB)− ahm

+ (44.9− 6.55 log10(hb)) log10(d) + cm

where f = 2000MHz was the transmission frequency,hB = 50 the BS antenna effective

height,ahm the MS antenna height correction factor andcm was taken as0 to model a medium

size cite. The simulation included 80 frames, with topologyand path gains fixed throughout.
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The algorithm used to solve the optimal, noise-rise constraint problem (10) was Algorithm

ITERATIVE-WATER-FILLING (termed Noise Rise in the Figures). For the noise-rise density

problem (Section V), Algorithm RESOURCE-ALLOCATION was used (termed Noise Rise Den-

sity). Moreover, a version of Algorithm RESOURCE-ALLOCATION which accounts for acon-

stant max-power constraintis also given. That is, we consider the useri∗ which maximizes

ωi(t) log
(

1 + Iei
li

)

and letPmax be the power headroom. IfPmax ≥
I
li∗

, we allocate the entire

bandwidth toi∗. Otherwise, we setx∗
i = Pmaxli∗

I
, and allocate the remaining bandwidth to the

second best user, and so on. If all users reach their power constraint before all bandwidth is

allocated, the algorithm distributes the remaining bandwidth proportionally. Note, however, that

this does notnecessarily result in the optimal solution under these constraints.

In the fixed power scheme we compare with, again, only a singleMS per cell is scheduled.

However, in this scheme, the allocated power is fixed at the same constantP for all MSs, and only

the MS which under such an allocation will have the maximal normalized rateωi log
(

1 + Pei
xi

)

is scheduled. Of course, for a fair comparison, the fixed power P is set such that the mean

interference caused by all schemes is the same.

The weightsωi were initialized to a constant value, and were updated aftereach frame

according to [19],

ωi(t) = 1/Ti(t),

and

Ti(t) = Ti(t− 1) + (1− β) · Bi(t− 1)

with β = 0.9 andBi(t− 1) being the number of bits delivered to MSi at sub-framet− 1 (0 if

MS i was not scheduled at framet− 1).

In all four schemes, the actual throughputs after each time slot were calculated according to

the SINR measured at the receivers with correspondence to the actual MSs scheduled at this time

slot (Shannon capacity for band-limited Gaussian channel). This is tosimulate the exact scenario

for which our analytic claims apply. Note, however, that this is fundamentally different from the

all-encompassing simulation described in the next sub-section, where specific modulations and

packet loss rates are taken into account.

The results are given in Figures 2 and 3. In Figure 2(a), the total throughput, over all cells and
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frames is given. The benefit of both noise-rise schemes over the fixed power scheme is clear for

all noise-rise values (equivalently, all SNR values). The benefit of the optimal algorithm over

the sub-optimal is also clear, as it indeed usually schedules more than one MS per cell. Note

though, that it is possible to construct topologies in whichthe benefit is small.

A key advantage in the noise-rise schemes is that the interference seen at the neighboring cells

is concentrated around the fixed noise-rise valueI, allowing them to plan modulation and coding

accordingly. Clearly, when the variance of the actual interference observed at the receivers is

high, it is harder to choose the appropriate modulation and coding, forcing the senders to either

aim at lower modulation and coding schemes or suffer high packet loss. This variance is given

in Figure 2(b). While the average interference is constrained to the same value in all schemes,

the two noise-rise schemes (the optimal and the sub-optimalalgorithms) exhibit significantly

lower standard deviation. That is, the interference seen under these schemes is centered around

the average value, allowing better rate planning by the BSs.

To address the lack of maximum power constraint (headroom) in the optimal (Noise Rise)

scheme, the four sub-figures in Figure 3 depict the histograms of the actual powers allocated to

the MSs. It is clear that a substantial fraction of the MSs is allocated powersbelow or around

that allocated by the fixed power scheme, and even the small fraction with high powersdoes

not require a consequential increase in power. Thus, although the optimal scheme is not head

room constrained, its actual power usage is moderate.

B. An IMT-Advanced Simulation

In this section we illustrate the advantages of the noise rise approach via an extensive system

simulation, which includes various practical aspects suchas finite number of resource units,

a more realistic channel model which includes log-normal shadowing model, modulation and

coding selection, packet losses, HARQ (Hybrid ARQ) and retransmissions. That is, the system

simulation includes more practical aspects that we did not analyze, and did not account for in

the numerical results. However these aspects are evident inpractical systems and should not be

discarded.

To this end, we developed a Matlab simulator that complies with the guidelines for eval-

uation of radio interface technologies for IMT-Advanced [9]. Specifically, we simulate a two

tier hexagonal deployment with 19 sites, each containing three cells (sectors) operating in a
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Fig. 2. (a) Average throughput per cell per frame. (b) Standard deviation of the interference.
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Fig. 3. Histograms of the allocated powers in the optimal algorithm (only powers above 0.1 are included). The dashed red line
represents the power allocated by the fixed power scheme.
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frequency reuse 1. Each cell takes its scheduling decisionsindependently. MSs are located

uniformly across the deployment with10 MSs in each cell. Statistics are collected from all

cells, facilitated by a wrap around geometry such that all cells suffer from interference from two

tiers neighboring cells. Following the IMT-Advanced guidelines, we implemented the WINNER

II [28] stochastic channel modeling. The modeling approachis based on the geometry of the

network layout. The large-scale parameters such as path loss and shadow fading are generated

according to the geometric positions of the BS and the MS. Then the statistical channel behavior

is defined by distribution functions of delay and angular profiles. We consider the urban macro-

cell scenario, where typically MSs are located outdoors at street level and BSs are fixed clearly

above surrounding building heights. Accordingly, the log-normal shadow fading is assumed with

4dB standard deviation forLoS (Line of Sight)MSs (which are chosen probabilistically as a

function of the distance) and6dB for NLoS (Non-LoS)MSs [9]. The assumed inter-site distance

is 500m. We assume a single user MIMO, with two receive antennas at the BS and one transmit

antenna at the MS. The MS and the BS antennas gain are0 and17dBi, respectively. The assumed

noise figure at the MS and at the BS are7 and5dB, respectively.

We consider the IEEE 802.16m uplink frame structure (Time Domain Duplexing - TDDmode).

The assumed total bandwidth is10MHz, occupied by48 resource units. The simulation runs sub-

frame by sub-frame, performing the scheduling at the beginning of each sub-frame. We ran the

simulation over1000 sub-frames for3 drops. Theexponential-effective SINR Mapping(EESM)

approach [29] is used to map the system level SINR onto the link level curves to determine the

resulting block error rate. Upon block errors, a synchronized retransmission is scheduled with

the highest priority after5 sub-frames. Upon reception of retransmission the receiverperforms

chase combining. The maximal number of retransmissions is4.

We assume a full-queue model where all MSs have backlogged traffic. The weightsωi were

initialized to a constant value, and were updated after eachframe according to

ωi(t) = 1/Ti(t),

and

Ti(t) = Ti(t− 1) + (1− β) · Bi(t− 1)

with various values of decay factorβ.
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The proposed noise rise schemes are compared with two traditional power control mechanisms,

namely, (i) maximal transmission power, and (ii) target received SINR. For the first approach, an

MS transmits at maximal level regardless of channel conditions, and the link adaptation process

assigns the best modulation and coding scheme that maximizes the station throughput given its

channel condition. The second SINR based power control approach aims at obtaining a required

SINR level at the receiver assuming a fixed noise plus interference scenario. Here, the maximal

transmission power and the target SINR for these schemes areset such that the average transmit

power is identical to that of the noise rise based schemes.

First, in Figure 4, we compare the ingress noise rise level atthe BSs with the four power

control schemes. One can see that both the constrained noiserise scheme based on Algorithm

ITERATIVE-WATER-FILLING (termed N.R.) and the constrained noise rise density schemebased

on Algorithm RESOURCE-ALLOCATION (termed N.R. density) obtain a relatively narrow his-

togram around the target noise rise (of 4 db). Alternatively, the maximal transmission power

scheme (termed MaxP) and the target received SINR based scheme (termed SINR) result in a

much wider histogram (especially the max power scheme). Such wide histograms corresponds

to an unpredictably highly variant uplink interference. Note that the max power scheme involves

a much larger noise rise, since it allocates more users in a frame, each transmitting at it maximal

power over a narrower band.

To compare the performance of the four schemes we adopt two commonly used indicators,

namely, the cell and the cell edge MS spectral efficiency (in bits/Sec/Hz). The cell edge MS

spectral efficiency is defined as the 5th percentile point of the CDF (cumulative distribution

function) of MS spectral efficiency.

Figure 5 depicts the uplink cell spectral efficiency as well as the cell edge MS spectral

efficiency for various values of the proportional fair decayfactorβ. Indeed, the greedy approach

of transmitting at maximal power obtains the highest throughput. However, it is at the expense

of starvation of the cell edge MSs (Figure 5(b)). Alternatively, our noise rise schemes provide

a better tradeoff between throughput and fairness. For example, the noise rise approach (N.R.

in the figure) obtains cell spectral efficiency lower by 40% from the cell spectral efficiency

with the maximal power approach, yet it is 440% higher than the spectral efficiency with the

SINR based approach. Additionally, cell edge MSs with the noise rise approach gain 71% more

throughput than with the maximal power scheme and only 35% less than the more fair SINR
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Fig. 4. Histograms of the ingress Noise Rise in dB with the various power control schemes.

based approach. The schemes’ fairness is further illustrated in Figure 6 that depicts the CDF

of the MSs spectral efficiency and a zoom in on cell edge users (Figure 6(b)). Here, it is clear

that the SINR based approach provides the best fairness, where all MSs get similar throughput.

Clearly, fairness comes at the expense of total system spectral efficiency. On the other hand,

the maximal power approach sacrifices about 25% of the MSs by allocating them unacceptably

low throughput (which in practice would result in high blocking probability). Again, the noise

rise approach provides a good tradeoff between cell throughput and fairness. Note that, even

though we assumed 1 transmit antenna at the MS and 2 receive antennas at the BS, instead of

2×4, respectively, the obtained spectral efficiency is only slightly lower than the IMT-Advanced

requirements [30] (e.g., cell spectral efficiency of1̃ bit/Sec/Hz instead of 1.4 bit/Sec/Hz).

It is interesting to see from Figure 5 that at times the constrained noise rise density algorithm
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obtains better throughput than the noise rise scheme (e.g.,for β = 0.6). This is due to the

difference between the simulated IMT advanced EESM channelmodel and the Gaussian Channel

model, which is fundamental to the noise rise approach. Alternatively, the N.R. density approach

decouples the scheduling and power control schemes, allowing a link adaptation that does not

assume the Gaussian Channel model (see Section V).
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Fig. 5. Uplink cell and cell edge MS spectral efficiency for various values of the proportional fair decay factorβ.
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Fig. 6. The CDF of the MSs’ spectral efficiency, comparing thefairness of the various power control schemes.

Finally, we examine the performance of the noise rise approach with various values of noise

rise target. Throughout this paper we assume that the transmission power is constrained by

the target noise rise. However, this might not be the case if we increase the noise rise target.

Accordingly, to examine high values of noise rise target, weincorporate an additional constraint
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Fig. 7. Uplink cell and cell edge MS spectral efficiency for various values of noise rise target.

on the MSs’ transmission power. Here, we consider only the noise rise density scheme, where

it is easier to incorporate such a constraint.

Following the IMT advanced requirement, we set the MS maximal uplink transmit power to

24dBm. Figure 7 depicts the cell throughput as well as the cell edgeMS throughput for various

values of noise rise target. As expected, cell throughput increases with the increase in noise rise.

However, as soon as MSs at the cell edge are approaching theirmaximal power limitations, their

throughput decreases. Clearly, at high values of noise risetarget, power is constrained by the

MS maximal transmission power and the power control operates as the maximal power scheme.

Finally, note that Figure 7 emphasizes the tradeoff in determining the noise rise constrainta-

priori . On the one-hand, choosing a high noise-rise constraint provides high overall throughput.

This, however, comes at the expense of the throughput attained by the cell edge users. On the

other hand, selecting a low noise-rise budget will, in general, provide a high cell edge user’s

throughput, now at the expense of the overall attained throughput. Of course, choosing a too low

noise-rise constraint is detrimental both to the aggregatethroughput as well as to the cell edge,

since the noise plus interference experienced by the cell edge MSs is dominated by the noise

(which remains at fixed level) yet the noise-rise budget is too low for the cell-edge MSs to attain

high throughput even at low interference. For example, in the results depicted in Figure 7(b),

edge user throughput is maximized at a noise target of18dB.

Accordingly, if the network manager is more concerned aboutaggregate throughput and less

about fairness high noise rise constraint should be preferred. If on the other hand fairness is
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important lower noise-rise constraint should be selected.Obviously intermediate values which

balance between aggregate throughput and cell-edge user throughput are also possible.

VII. CONCLUSION

In this paper, we considered a joint scheduling and power allocation problem. Specifically, to

mitigate inter-cell interference, we suggested a novel approach, which considers the interference

caused by MSs in a BS to neighboring BSs as a resource to be allocated, similar to bandwidth or

power. The essence of this approach is as follows. Each MS, based on its channel gains, creates

different interference to neighboring cells when transmitting. A BS, while allocating power and

bandwidth to its subscribers, does so in a way such that the total aggregated interference its MSs

generate does not pass a certain value - its noise rise budget.

We rigorously formulated the problem as a convex optimization problem with linear constraints

and suggested an efficient iterative algorithm for its solution, based on known and new water-

filling based solutions to its separate problems. We then devised a modified algorithm, which

optimizes power and bandwidth allocations assuming the noise rise is constrained for each

sub-channel (a portion of the bandwidth allocated to a single MS). This algorithm is highly

efficient, attaining higher throughput to cell-edge MSs than other known techniques, while

maintaining high overall throughput, approximating the performance of the optimal algorithm.

These performance guarantees were also depicted in two extensive simulations, one based on

analytical expressions and one based on a practical system built based on the IMT-Advanced

specification.

Potential applications of the suggested algorithms include, but are not limited to, uplink

scheduling in IEEE 802.16e/m, 3GPP LTE, and more.
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