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Abstract

Consider the problem of joint uplink scheduling and powégscaltion. Being inherent to almost any
wireless system, this resource allocation problem hasvetextensive attention. Yet, most common
techniques either adopt classical power control, in whiakbihe stations are received with the same
Signal-to-Interference-plus-Noise Ratio, or use ceiziedl schemes, in which base stations coordinate
their allocations.

In this work, we suggest a novel scheduling approach in whadh base station, besides allocating
the time and frequency according to given constraints, mlanoages its uplink power budget such that
the aggregate interference, “Noise Rise”, caused by itsagiders at the neighboring cells is bounded.
Our suggested scheme is distributed, requiring neitherdoaation nor message exchange.

We rigorously define the allocation problem under noise c@estraints, give the optimal solution
and derive an efficient iterative algorithm to achieve it. ien discuss a relaxed problem, where the
noise rise is constrained separately for each sub-chanmebkource unit. While sub-optimal, this view
renders the scheduling and power allocation problems atpayielding an even simpler and more
efficient solution, while the essence of the scheme is kejat.extensive simulations, we show that
the suggested approach increases overall performanceticalty, with the same level of fairness and

power consumption.

I. INTRODUCTION

The desire to provide integrated broadband services whalatainingQuality of ServicdQo9

guarantees growing interest in scheduled access techlniggeel in multiple-access protocols
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for future broadband radio systems. Such schedule-baséditgies are utilized to ensure that
a transmission, whenever made, is not hindered by any othasrhission and is therefore
successful. AccordinglyDrthogonal Frequency-Division Multiple Acce§®FDMA) has been
widely adopted as the core technology for various broadbaimédless data systems, includ-
ing the next generation cellular systems, 3GRihg Term EvolutionLTE), [1], and IEEE
802.16e/m (WIMAX), [2], [3]. In these systems, thmse station(BS allocates (schedules)
distinct frequency-time chunks among the activebile stations(MS) within its cell, both
for their downstream (BS to MS) and for their uplink (MS to B8affic. In addition to
the frequency-time allocation, the BS also determines thiénki transmission power of the
preselected (scheduled) MS, a.kuglink power-contral

Common power-control approaches to the uplink resouraecation problem are either to
assign transmission power to the MSs such that all are redeat the BS with the same
Signal to Interference-plus-Noise Rat{8INR [4], [5], or to allow MSs to transmit at their
maximal available powef [6]. Both of these techniques of@mhe MS/cell throughput (intra-
cell throughput), neglecting the interference injectede@hboring cells (inter-cell interference).

Note that in the more common modes of operations today, gimgés achieved via either time
or frequency domain division. Thus, the uplink and downlirdknsmissions are separated, and
when considering, e.g., uplink inter-cell interferenceg das to consider only the interference
caused at a given BS by transmitting users in the surrouncilg, and not the transmissions
of other BSs close by.

Since OFDMA systems are sensitive to inter-cell interfeegrithe interference from neighbor-
ing cells can dramatically decrease the SINR received @ 8)éence reduce the MS throughput.
Moreover, without knowing in advance the interference a BSxpected to experience in a
transmission, an MS is unable to fine-tune its modulation @rding scheme to the expected
SINR at the receiving BS. Accordingly, power control playslecisive role in providing the
desired SINR, not only by controlling the MS received sigs@ength at its intended BS, but
also by controlling the interference caused to neighbocklts. This double role is challenging,
as on the one hand as far as intra-cell throughput is condeamreMS in the proximity of the
BS is expected to have high quality link, hence high througheven when transmitting in low
power, while a distant MS needs to transmit at much highergpdovattain the same throughput,

and on the other hand as far as inter-cell interference isaroed, MSs near a BS can transmit



at high power since they are not in the proximity of other selvhile distant MSs which can
be in the proximity of other cells should not transmit at hjgbwer as they can interfere with
other (neighboring) BSs.

In order to limit the interference to neighboring cells, 3&IRas approved the usefefactional
Power Control(FPC) [7]. According to this approach, MSs with higher path-logich are
expected to be far from their BS, should operate at a lowerRStBiquirement so that they
will generate less interference to neighboring cells. Nioaless, according to this approach,
in order to maintain some notion of fairness, most of the weses should be allocated to
far-away MSs which will transmit in lower modulation schesn&imilarly, the IEEE 802.16m
power control scheme deducts a fraction of the downlinkaigo-interference ratio (SIR) from
the transmission power. By that, it reduces the interfexecgused by cell-edge MSs. The
3GPP LTE standard suggests a different approach for congpatter-cell interference termed
Inter-cell Interference CoordinatiofICIC) (e.g., [8]). ICIC provides tools for dynamic inter-
cell-interference coordination of the scheduling in néigting cells such that cell-edge MSs
in different cells are preferably scheduled in complemsnfaarts of the spectrum. However,
ICIC requires coordination between neighboring cellshbatterms of exchanging information
regarding subscribers at one cell and their interfereneel len other neighboring cells, as well
as coordination in the resource allocation, which furth@emnplicates the scheduling process.

In this work, we introduce a different approach, which colstthe inter-cell interference, yet
does not require any cross deployment communication ordagation. In our approach, the
aggregate uplink inter-cell interference that all MSs inedl are allowed to induce is bounded.
This limited egress interference budget, termed Noise,Rss&eated as an additional limited
resource which is allocated to MSs by the BS in conjunctidin wie ordinary resources (time and
frequency), according to some fairness criterion and cblacondition. We show that controlling
the interference generated by each cell also controls theage interference level sensed by each
BS and provides a more predictable uplink SINR, which alléeveer interference margins and
more efficient rate selection. Hence, it obtains higher ciypand better coverage. In particular,
our contributions are as follows.

First, we introduce the Noise Rise concept which bounds fgremate uplink interference
that all MSs in a cell are allowed to interfere with all the reunding cells. We suggest means

for a BS to estimate the normalized interference of eachsoMiEs, and show that by limiting



the egress interference the ingress interference is diafti@ We show that by utilizing the
Noise Rise concept we can solve the joint scheduling protidletween all BSs in the network
distributively, by each BS independently from even neighimpBSs.

Second, we formalize the scheduling problem under the néseconstraint as a convex
constrained optimization problem, and provide an efficiegriative algorithm that is proved to
solve it optimally. Moreover, we suggest a second settingwhich instead of bounding the
average noise rise over all channels, allowing some subrgig to contribute more noise rise
at the expense of further limiting the noise rise on others,b@und the noise rise on each
sub-channel to the exact same value. The latter setting/allbe decoupling of the scheduling
algorithm from the power control and thus facilitates anresenpler algorithm.

Third, we thoroughly evaluate the noise rise concept viaxdensive set of simulations, using
both an all-inclusive simulator as defined by IMT-AdvancBil nd numerical results for the
exact expressions we analyze utilizing the Shannon-cgpaeised approach. Our numerical
results clearly depict that the suggested approach dreatigtincreases the overall throughput
achieved in each cell compared to the traditional approadhle maintaining fairness. The
results obtained by the IMT-Advanced simulator include arengealistic setup which takes
into account modulation, coding and several other prdctispects, and show that even though
MSs in the proximity of the BS (hence can take advantage eistratting in high power and
high modulation rates), lose throughput due to the noiseaostraint, MSs further away from
the BS, and in particular those closer to the cell edge, geamdltically due to the noise rise

constraint.

[I. NOISERISE

In this paper we study the joint uplink scheduling and powentml problem for wireless
cellular networks. We consider a multi-cell network cormsprg 5 Base Stations (BSs) each
serving a set of Mobile Stations (MSs). We denote by, the set of MSs served by BS
The BS deployment is assumed to be fully symmetric, i.e., ssiae that the BSs form a two
dimensional lattice e.g., hexagonal grid. We assume tramntimber of MSs {1;) and their
distribution over each cell isi.d.

Interference is one of the key factors impacting the pertoroe of wireless networks. It can

be partitioned into external interference, which is cauBgdhe coexistence of other wireless



networks that operate on the same frequency bands and toahteterference, which is caused
by other transmissions within the same network. In celluketworks, internal interference can
be further partitioned into intra-cell interference, whi®@lates to other transmissions within the
same cell, and inter-cell interference, which relates terference from neighboring cells. Tradi-
tional cellular communications such as CDMA networks suffem Intra-cell interference due
to the pseudo orthogonality of the CDMA codes used withinla &eich intra-cell interference
is resolved in OFDMA systems due to the orthogonality charestics of the subcarriers in
these systems. Nonetheless, OFDMA technology does noider@ny solution to the inter-cell
interference. Particularly, the received SINR on one &=highly dependent on neighboring cell
transmissions, i.e., the received SINR on a specific resaumi (here we denote by resource unit
the smallest time-frequency resource allocation used éovndink/uplink transmission) highly
depends on the scheduled MSs on the same resource unit andigeeciated transmission
powers in the neighborhood cells. Consequently, when ealtlperforms its own power control
and scheduling independent of its neighboring cells (nordioation between the cells), the
interference profile seen in uplink transmission becomgslpidynamic, i.e., the interference
level at a BS can vary considerably; such variability is veéegrimental to the transmission rate
and coding scheme selection. Accordingly, in order to na&ntow packet drop ratio (PDR)
despite this variability, a high interference margin shiobé accounted for while selecting the
transmission rate and coding scheme. That is, transmittigmore robust rate (lower rate) to
maintain reliability at worse cases of the interferencdeuat

Clearly, this inter-cell interference effect reduces €dliplink spectral efficiency, resulting in
poor resource utilization and performance. In order to candm-channel interference (CCl),
several studies addressed the problem both for setups iohwhisingle antenna is utilized
and for the case in which multiple antennas are utilized.h@ tontext of Single Antenna
Interference Cancelation (SAIC) for which most attentioaswdrawn toward GSM networks,
the most prominent classes of algorithms suggested aré geimodulation and interference
cancelation, e.gl [10]=[12]. In the context of Multiple Aniha Interference Cancelation (MAIC)
most attention was drawn to intra-cell downlink Multi-Useultiple-input multiple-output (MU-
MIMO) wireless systems, and was aimed at suppressing thehaonel interference (CCl), by
designing multi-user transmit beamforming (or precodiuggtors or matrices which optimize
the signal-to-leakage ratio (SLNR), e.d.,[[18]2[16]. Ndiewever, that the above setting, as well



as the resulting optimization problems, are different fritr@ ones we consider in this paper.

In addition to the inter-cell interference effect on cellpaaity, inter-cell interference can
be also vital for cell coverage, i.e., if noise plus inteefere is not constrained, due to the
maximal power transmission of an MS, certain MSs (typicallfthe cell edge) will not be able
to maintain a reasonable communication capacity. ThesewllSse blocked and removed from
the coverage area, resulting in reduced cell coverage.

The key concept we wish to consider in this paper isupknk noise-rise

Definition 1. Uplink noise riseis defined as the total uplink received noise plus interfezen
power over the background noise power. Formally, Mgt denote the background noise level

and / denote the total interference at the BS (receiver). Thesm,nthise risey is defined by

_ No+I
7= "Ny

In the following subsection we present the constrainedenoge approach, which provides a
fully distributed mechanism (without cross deployment rcdimation and synchronization) that
dramatically reduces the variability of the noise rise (daenter-cell interference) allowing

more aggressive rate selection (taking a much smaller mgsemargin).

A. Constrained noise rise approach

The constrained noise rise approach aims at allowing thedsdér to operate in fixed Noise
plus Interference conditions and facilitating a more aggjke rate selection. Specifically, we
aim at bounding the egress interference and show that itl@smds the noise rise seen by
uplink transmission at all cells. Formally, I1& denote the set of all BSs in the network, and
M(k), k € B denote the set of backlogged MSs at BSDenote by, (k*) the ingress

interference level per resource unit at BSreceiver,

Z Z Ligy ie* - Picr) (1)

keB\k* i(k)e M(k)
where L, ;- denotes the channel gain between M$) of BS & and BSk* and p;« is
the transmission power of M&k). Note that in order to compute the aggregate interference
experienced by BS* one has to sum the interference induced to BSby each and every

transmission by any MS in any cell in the network other thas MSs in cellk*. Accordingly,



the first summation in[{1) is over all BSs besides BSitself, and the second summation is
over all scheduled MSs (transmitters) in each such cell.

On the other hand, the egress interference by the MSs ofkéelvhich is the aggregate
interference induced by each transmitting MS on é&lbn all BSs other than B&™ itself, is

given by:

Ieg(k*) = Z Z L; (k*),k * Pi(k*) (2)

i(k*)eM(k*) keB\k*
where the first sum is over all MSs in BiS, and the second sum is the aggregate interference
induced by each such transmission on all BSs other thaio which the transmitter belongs.
We assume a fully homogeneous deployment which implies (ipdhe topology seen by
each BS (i.e., the number of neighboring BSs and their looaisi.i.d (ii) the backlogged MS
distribution in different cells is alsoi.d, given that all BSs deploy the same scheduling strategy
(e.g., power control and link adaptation mechanisms). Nud both assumptions relate to the
distribution and do not require identical spreading of MSthiw each cell. We now show that
in such a deployment, if the average egress interferencgeddoy the MSs in each cell to the
surrounding BSs is the same for all cells, then the averageess interference experienced by
each BS due to its neighboring cells is fixed and equal to tbeeafentioned average egress
interference. That is,

E[]m(k*)] =E Z Z L k* * Di(k)

keB\kz* i(k)eM(k)

= Z E Z Ly i~ Dicr)

keB\k* | i(k)eM(k)

Z E Z Loy & * Digk)

keB\k* | i(k*)eM(k*)

B

=E Z Z L; (k*),k * Di(k*)
i(k*)EM(k*) keB\E*
= E[leg(K7)], 3)

where A relies on the homogeneity assumptions above, that is,adsté averaging the



interference induced by MS transmissions from delbn BS k£*, we average the interference
induced by MS transmissions from céit on BS k.
Let [,y denote the normalized interference (interference per pmiter) that MS: of BS &

uplink transmission injects to its neighboring cells, tisat

liky = Z Ligy -

k'eB\k
When the BS identity (index) is clear from the context, wel wihit it and simply denote it by
l;. The aggregate interference caused by all MSs of icell.,(k*) , can be written as
LgB) = D lige) - Pigee.
i(k*)eM(k*)
As previously shown, in order to control the average ingnetssference and keep its variability
low it is sufficient to bound the egress interference causeedrh cell uplink transmission.
Accordingly, the noise rise constraint on the scheduler @mder control allocation we offer to
impose is:

Z Ligeey = Pirey < 1 4)
i(k*)EM(k*)

where! is the pre-defined, fixed, noise rise constraint.

We note that[(4) implies that the scheduler should considésenrise as a resource to be
allocated to transmitting MSs in the same manner as resamitg Accordingly, each BS has a
noise rise budgef which it can distribute between the scheduled MSs and wiheet to each
MS’s egress interferenck. For example, if the egress interference of a given MS is ,hilgé
scheduler could reduce its transmission power and inciitsagbocated bandwidth. Alternatively,
the scheduler could allocate a large portion of its noise Iogdget on this MS and co-allocate
it with another MS that consumes less noise-rise such tlanhdhise rise budget is kept.

In the following we provide the means for a BS to estimate tbemalized interference.

B. Normalized interference via downlink SINR

To comply with [4), each BS% € B should have information on the normalized interference
liwy of its MSs. Typically, a BS cannot directly measure this Gioeit. By coordinating

between pilot transmissions of different MSs across thevord, each MS’s normalized in-



terference can be measured by the surrounding cells andtedptw the BS (e.g., via Inter
Cell Interference Coordination). This, however, requice®rdination among the BSs. Such
coordination is supported by the 4G technologies. Altevest, in the case that the network
operates on Time Domain Duplexing (TDD) mode, in which uplamd downlink transmissions
are separated in time domain each utilizing the entire gpectn its turn, a BS may estimate
the normalized interference from its MSs’ downlink chansglte reports without the need for
inter-cell communication or coordination.

The downlink SIR (signal-to-interference ratio) measubbgdan MS is given by

Lk* i(k*)PDL
SIRIE, = ’ (5)
Y Ly PP
kEB\k*

where PP% is the BS downlink transmission power. With the channel peaity [17], i.e.,

Lk’,i - Li,k” we have

Li k*) k*
SIRPL = — ). 6
keB\k*
Therefore,
[ — Z L. _ Ly e 7)
2 i(k*),k — S[RDL
keB\k* i(k*)

Finally, we note that in an interference-limited scenavithen the interference isonsiderably
greater than the background noise (which is typically the case), oméd use the measured
downlink SINR instead of the downlink SIR (required in edoat(7)), neglecting effect of the

background noise on the measurement.

[Il. SYSTEM MODEL

As shown in Sectiorill, by limiting the egress interferen@sed byeach cell'suplink
transmission, independently between cells, we corgaah cell'singress interference and keep
its variability low. Accordingly, we focus on a single cedind consider the problem of resource
allocation for the uplink of an OFDMA cell, where a s&t = {1, ..., M} of backlogged MSs
transmits to the same BS.

Time is divided into equal length time slots (sub-framesoading to the IEEE 802.16m
terminology). According to OFDMA, each time slot is dividésto a setNV' = {1,..., N} of
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basic (time-frequency) logical allocation units termedource units We distinguish between
logical resource units and physical resource units. Spadifj as widely used in WIMAX, we
assume that each logical resource unit is mapped to the saephg/sical resource unit that has
undergone partitioning and permutations. The permutatfmeads the (logical) resource units’
sub-carriers across the whole frequency band. Alternigitifar the LTE Single Carrier Frequency
Division Multiple Access (SC-FDMA) we assume the distrdditransmissions, where the users
occupy different sets of subcarriers. Accordingly, forledS i the channel quality of all logical
resource units are assumed toilhel. Let us denote by;(¢) the fraction of the frequency band
allocated to MS at time slott, such thaty ., z;(t) < 1. Even though as previously explained
the frequency band is divided to a fixed number of channetsuthout the analytical part of
this paper, we assume that the frequency band is infinitefgidle, i.e., we allowz;(¢) to take
any value between zero and orie< z;(t) < 1). Note that typically, the number of resource
units in a frequency band is large (e.g., in IEEE 802.16m,832 resource units for a 10MHz
and 20MHz bands, respectively). Obviously, the roundingreis a function of the number of
MSs allocated at each time slot, i.e., if only few users ateedaled in a time-slot then the
error is expected to be small as only a small subset of theuresainits are rounded, and if
the number of users scheduled in a time slot is high the esr@xpected to be high. In the
simulation part of the paper we examine our results over bathcontinuous and the quantized
allocation setup, and show that since typically the numbbersers scheduled in each time slot is
low, the rounding errors arising from changing continuowesgjfiency allocations into quantized
ones does not affect the results dramatically.

The capacity of a band-limited Gaussian channel (consideriher interfering signals as noise
[18, Chapter 15]) iV log(1 + L),

power in Watts andV, + [ is the noise plus interference spectral density in Wattsifaw,

whereWW is the bandwidth in HzP is the received

denote the total bandwidth available 8. Accordingly, the bandwidth allocated to MSis

W = Bux;(t). Further denote by;(¢) the power allocated to M% at time ¢ and by L;(¢) the
path gain between M&and its BS (i.e.,P = p;L;(t)). Note, the scheduler is assumed to have
knowledge of the channel gain, comprising the long term rpatars of the link between the
BS and the MS, such as path loss and shadowing factor, as sviieashort-term time-varying

spatial fading.
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Thus, the capacity of M$ at timet, denotedr;(¢), can be written as

pi(t)Li(t) )
(No +1(t)) Bay(t) )

r;i(t) = Bz;(t) log <1 +

Note that based on Sectidn I, keeping a fixed noise-rise, (ixeed egress interference) by
each cell ensures that the Noise plus Interference has sawddince. Hence, the Noise plus
Interference is assumed fixed over time. Next, for M8&t time ¢, let us denote by;(¢) the

normalizedreceived SINR, that iss;(1) = 75 Hence,

ri(t) = Bay(t) log (1 + %) . ®)

Note that a similar formulation was also used in [6, Sectibp) When the single-cellresource
allocation problem was discussed (disregarding intdria&rference).

Typically, p;(t) is constrained by the maximum power a user can transmit,p.@) < P;.
Nonetheless, throughout the theoretical part of this pamewill assume an interference limited
scenario, that is, the maximal power a user can transmit iwithigher than the maximal power
limit resulting from the noise-rise constraint, even if iasvthe only transmitter, i.efy; > ﬁ
where, [;(t) is the normalized interference of MSat time slott¢. In other words, the desire
not to inflict high interference on the neighboring cells he tactual power limit. We assume
that /;(¢) is estimated by the BS according {d (7), i.6(¥) = #}fg(t) where the downlink
Signal-to-Interference I RPL(t)) is available to the BS (scheduler) via ti@hannel Quality
Indicator (CQI). In the simulation part of the paper we will also examine shenario in which
the max-power constraint can be lower than the one which éstdihe noise-rise constraint.

Throughout this paper we only consider the uplink allocatod resources (fraction of the
frequency band and power) to the backlogged MSs. We assuatethtd scheduler objective
is to maximize a weighted sum throughput. Accordingly, a beginning of each time slot,
the scheduler seeks to maximize a (time-varying) weighted sf the MS rates. We adopt the
gradient-based scheduling framewdrk|[19]-{23]. Spedlficthe scheduler solves the following

optimization

max Z w; (£)r:(t) 9)
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wherew;(t) > 0 is a time-varying QoS weight assigned to théh MS at timet.

We concentrate on weights that depend on the average thyatgttained by each MS up to
the ¢-th slot, and capture some fairness notation. For examplé) = %@ whereT;(t) is the
average throughput of MSat timet, which captures proportional fairness [19], [22], [23].

Note that [[D) must be re-solved at each scheduling instagt, (€ach sub-frame) due to of
changes in both the resource unit state and the weightseGuoestly, for the ease of presentation,

in the following we omit the time index

[V. OPTIMAL JOINT UPLINK SCHEDULING AND POWER CONTROL

In this section, we consider the optimal solution to the gahproblem of joint scheduling
and power control. We formalize the optimization probleimamacterize the optimal solution and
give an efficient iterative algorithm to achieve it.

The problem at hand is as follows. At the beginning of eacletsiot, the BS schedules a
subset of backlogged MSs to available resource units arignssgransmission power to each
scheduled MS. The BS aims at maximizing the achievable rdiiéevproviding MSs with a
fair share of resources according to a predefined fairnesscnad maintaining a bounded
interference with neighboring cells.

In conjunction with the scheduler and the power control,ta emlaptation mechanism adjusts
the transmission rate according to the allocated powearyleghe resulting throughput in a time
slot (sub-frame) for a given scheduled MS is derived fromdHhecated resource units and the
allocated power. In other words, the scheduling and powecaion are coupled, in devising
the allocated throughput, and should be performed joiittye power control scheme optimizes
the tradeoff between allocated rate and contribution tooverall Noise Rise. Typically, MSs
far from the BS are required to transmit at high power in otdemaintain a reasonable rate.
However, these MSs are closer to neighboring cells, heno&ilbate more to the noise rise in
those cells. Nonetheless, cell edge MSs are required tertridmt low power in order to bound
the interference with neighboring cells.

To state the optimization problem formally, at the begignai each time slot the scheduling
and power control scheme selects a feasible resource aret pdiacation tupldx, p) (through-

out, we use bold symbols to denote vectors) that compliels thié noise rise constraints and
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maximizes a time-varying weight assigned to each MS, i.e.,

maximize{ Z wj - n(ﬂfnpi)}

P ieM
wherer;(z;, p;) is the rate related to the resource and power allocatiorn.an€d0 is the time-
varying weight assigned to theth MS at the beginning of the time slot. These weights are the
gradient of an increasing concave utility function of eacls.Making the rate as;(z;,p;) =
Bz, log <1 + px—e> (equation[(B)), we can formulate the joint power control aobeduling with
noise rise constraint optimization problem: for each tinog, §ind the channel allocated to each
MS, denoted byr = {x1,z5,..., 25}, @s well as the power assigned to each MS, denoted by
p = {p1,p2,-..,pm}, Such that the total weighted throughput is maximized. That

maximize E Bw;x; log (1 + piei)
x,p ]
ieM

(2

subject to z;,p; > 0, Vi € M,
Z X S ]-7

1eM

Zlipi <.

1eM

(10)

Proposition 1. Optimization problem[{10) is convex with linear constraint

Proof: Consider the negative utility function

_ Z w;x; log (1 + piei) (12)
Z;

ieM

We first show that this function is convex. To this end, coesid single summand

(2

The Hessian matrix, restricted to the variablesand p; is given by

of  _of 2 P
81’? Oxipi o Wi ei 22? T
of  of (T4 %222, | e
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Note that,

2 .
%2 _% Qi Di ?
< a1 Qo ) ¢ = |l 1— — Qo
—% 1 Qi Li
Hence, for all(ay, ..., asyr) € R?M, the Hessian matrix of (11) (x, p), satisfies

2 2
T _ wi€; Di
(Oéh e 7042M)H(337P)<0417 cee OézM) = ‘EEM (1?;_1@2)2% <a2i_1$_i - Oézz) >0

[

When solving [(ID) for the optimat and p, for fixed B the values ofw;}icn @and{e; }ic s
are fixed non-negative reals. Hence, for ease of notatiom fthis point on, we omitB and
focus on the optimization o} ., w;z; log <1 + %) for any {w; }iem and {e; }ienq, Subject
to the constraints. However, note thatdoes depend on the givah and while computing the
cell capacity under the resulting schedule one should plylby the sameB.

From Propositior 11, it is clear that the optimal solution daam found numerically using
standard optimization techniques. For example, it can kbmedothrough a similar method to
that used in[[B],[[24]. Yet, this direct approach might behpbitively complex and unfeasible
for practical implementation in commercial BSs. Accordin@ simpler solution is called for.
To this end, we give an efficient iterative algorithm, whictes theanalytical solutions to two
related sub-problems, to solve the above problem. Moreaxeeshow that the iterative algorithm

converges to the global optimum.

A. An Analytic Solution to the Joint Scheduling and Power t&xbriProblem

Herein, we show that the optimal solution can be viewed as itwertwined water-filling-
like problems, facilitating a highly efficient solution whichlges the complete optimization
problem by fixing a subset of the variables each time (eitlosvgrs or bandwidth) and solving
the resulting water-filling problem. We show that this iter@ procedure is bound to converge,
and, moreover, give analytical bounds on the possible sabfighe slack variables in each of
the separate water filling problems, enabling us to convergeeir solutions using ast binary

search
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The optimization problem we discuss is as follows.

.. €5
maximize )~ w;z;log (1 4 b ’)
P ieM Li

subject to x;,p; > 0, Vi € M,
(12)

inzl,

1eM

Zlipi:I~

1eEM
Denotemax{z, 0} by [z]". We first consider the analytical solution to this problemog®si-
tion[2 below gives a set of equations satisfied by the optiraabiwidth and power allocations.

Proposition 2. Consider the joint power and bandwidth optimization problén (I2). The

optimal power and bandwidth allocation§p; };ca, and {z} };cmq, respectively, satisfy

*[M‘ET o= (13)

wherez;, A, and )\, are the solution to the following set of equations:

p;‘kei) _ P;eiw; F A =0
i’i £i+p;-kei '

w; 117"
Lix; |— ——| =1,
ZZ.: B L\lli 61}

wi log(1 +

and

fo =1.

Proof: In the proof of Propositionll we show the convexity of the optiation problem.

The proposition will now follow from a straightforward ajigation of the KKT conditions[[25,

Section 5.5.3]. Namely, we write

L (p7 €T, )\17 )\27 {,Ui}ieMa {[LZ}ZEM)

ieM 1eM 1eM 1eEM 1eM
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and the proposition follows by requiring L = 0 and that for alli € M we havei;p; = 0,

Remarkl. A key result of the Noise Rise concept is that users with a lhighre less likely
to receive high power, as they may consume a significant sifatee noise rise budget. These
users can either be compensated by a larger bandwidth, casithey are superior in terms of
channel statistics and weights, indeed receive the signifisortion of the noise rise budget. Of
course, the resulting bandwidth and power allocation isrection of all the parameters in the
problem, and must be solved using the optimality equatitmave or the iterative algorithm we
suggest below. Yet, to rectify the dependence of the poweig;d, fix the bandwidth parameters
{z;} and assumev; = 1 for all .. The resulting equation fagy; is

<I+Zi"’%i 1)
pi=T | ————|.

lz €

The first summand in the parenthesis can be viewed asv#tter level It is thus clear that in
this case, a largef; results in a lower water level, hence a lowgr However, note that the

actual result depends an, and this value is part of the optimization problem as well.

While Propositionl P2 gives necessary and sufficient conastitor power allocationg and
bandwidth allocations: to be optimal, its direct computation is cumbersome, as tha&ons
for both types of variables are intertwined. However, in tiext sub-section, we show that
the problem in[(IR) can be solved optimally by a highly effitigerative algorithm, which,
unlike standard iterative optimization procedures, doesjointly optimize over all variables,
but rather utilizes the fact that when separating the poweiables from the bandwidth ones,

each optimization problem has a relatively easy watengHike analytical solution.

B. An Iterative Algorithm

The important observation is as follows. Fixing the bandiwiariables{x; };c v, the resulting

optimization problem is

maximize Z w;x; log (1 + piei)

P ieM i
subject to: p; > 0, Vi € M (14)

Zlipi =1

1eEM
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The solution to this problem is the well-knowmater filling, e.g., [25, Example 5.2]. Hence,
it is easily solvable (note that the weightsr; and the noise rise constraintsonly serve as
scaling factors, and do not change the essence of the probléma separated cageFixing the
power variableqp;};c.(, On the other hand, results in a relatively similar optirticza problem,
which although involving an implicit equation for eaah is also straightforward to solve. The
iterative algorithm will then alternate between the twausions, fixing one set of variables based
on the results of the previous iteration. A pseudo code ofatgerithm follows.

ITERATIVE-WATER-FILLING (e, l,w, I)
1 @<« x°: suchthatz) > 0Vi, > 2) =1

i =

2 repeat
+

3 A1 ¢ SOLVE (zi Lo [ - 2] = I)

. + .
4 Di < T; [/\“;’gi — ei} Vi
5 A2, & < SOLVE
6 (szlzl,wllog<1+p;_?>_Jf:_e—;f(;+)\2:0>
7 until CONVERGE
8 return {x,p}

When evaluating AlgorithmTERATIVE-WATER-FILLING, the two key aspects are complexity
and convergence. First, consider the number of operatioreach iteration. The first step, as
mentioned, is a basic water-filling procedure. The valuéotan be calculated by first sorting
the MSs according to their value 9% then including MSs in ascending order until the “water
level” A—ll satisfies the noise rise constraint. This is don@&{d/ log M). As for the second step,
the solution is more involved, since it cannot be solved iekpl. However, as the following
proposition states, the solution is monotonicAiyy with upper and lower bounden the value

of the optimal\;, hence can be solved efficiently byl@arithmic timebinary search.

Proposition 3. For eachi € M, let z; be the solutions to

T; T + pi€;

w; log (1 + p"ei) S =0 (15)

Then, for all: € M, every\; < 0 and anyw; > 0,p; > 0 ande; > 0, we have:



18

1) z;, > 0 and ZieM Z; 1S monotonically increasing in.,.
2) The value of\, in (IB) such that) ", z; = 1 satisfies\5"" < X\, < \J"**, where

Ayt = min {Wz‘ (m —log (1 + Mpiei)) }

Ay = max {wi ( Difi log (1 +p,-ei)) }

ieEM 1+ Di€;

Thus, when solving the bandwidth iteration in AlgorithmERATIVE-WATER-FILLING, simply
compute\y™ and \;***, and apply a binary search for the valuedefsuch thaf >, z; — 1| <e.
The computational cost i©(M log(1/¢)) assuming[(1l5) is solved far; in O(1) for fixed \s.

Proof: To prove item 1) we proceed as follows.

Set 2% = o and consider the functioff(er) = log(1 + ) — . It is easy to verify that
f(0) = 0 and thatf(«) is non-negative and monotonically increasing for any 0. Thus, for
anyj)—j < 0, the equationf(«) = —j}—i will have a unique solution at some= ”m—e > 0. Hence,
Z; > 0. Moreover, for fixedp;, e;, w;, the smaller), is, the larger is the solution tH(«) = —§
that is, the smalleg;, for all 7, and hence the smaller [s, z;.

To prove item 2) we note the following.

Since) . ; is monotonically increasing in,, the value of\, such that) . z; = 1 is clearly
upper bounded by the value of for which the “weakest” MS, the MS which requires the
largest \, in order to achiever; = 1, indeed gets it (since in this case all other MSs will have

zy > 1and) . z; will clearly surpasd). Thus, )\, is at mostmax;ca {X2  S.t. Z; = 1}, which

bi€;
i — log (1 + pie; .
?é%‘({w <1+pi6i o8 ( +p€))}

On the other hand, the value df such thab , z; = 1 is clearly lower bounded by the value bf

equals to

for which the “strongest” MS, the MS which requires the mialm, in order to haver; = 1/M,
indeed gets it (since in this case all other MSs will have< 1/M and thus)_, ; will be
strictly smaller thanl). As a result, the optimal, is at leastmin;cas {\2 sS.t. 7, =1/M},

which equals to
Mpl-ei
in{w [ ————— —log (1+ Mpe;) | ¢
52}3{”’(1+Mpiei og (1+ p”e’))}
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Finally, we mention two important results on the convergewn¢ Algorithm ITERATIVE-
WATER-FILLING . As mentioned, the algorithm iteratively solves two op#iation problems, each
one involving half of the parameters to be optimized (eithewers or bandwidth allocations).
This is an alternating optimization procedure. While thiegedure can fail for some utility
functions (e.g.z%—3xy+y? when alternating between the optimizationpand the optimization
onz), itis important to note that in the specific case of our jgpotver and bandwidth scheduling

with noise-rise constraint, it is bound to converge.

Corollary 1. Assume Algorithm TERATIVE-WATER-FILLING is used to solve[{12). Then the

power assignments and channel allocationg converge to the global optimum &f(12).

Proof: We first show that the negative utility function

_ Z w;x; log (1 + piei)
Z;

ieM

satisfies an existence and uniqueness constraint [26,08€2}i That is, fixing any2M — 1
variables and optimizing on the remaining variable, theilltes) problem has a unique (global)
minimizer in the range. This is easily seen from the Hessiatrimcalculated in the proof of
Propositio 2, as the negative utility function is convexearch of the variables.

We now mention that the transforrtp,x); = T[(p,x):_1] defined by one iteration of
Algorithm ITERATIVE-WATER-FILLING has no fixed points (for whicl'[v] = v) besides the
global optimum of[(IR). This is, again, since the negativityftunction is convex. The corollary
will now follow by applying [26, Theorem 2]. [ |

Note that the result in_[26, Theorem 2] implies that as longthes power and bandwidth
allocationsp, x are not in the range of thiixed pointsof 7'[p, x| (an iteration of the algorithm),
the negative utility function is strictly decreasing in Raiteration. Moreover, the result in
Corollary[1 can be made even stronger if the negative utflityction is strictly convexin
the range. Consider, for example, the two MS case. While uhetion

—wq 1 log <1 + Zﬁ) — WXy log (1 + @>
T )

is not strictly convex for allp;, ps, x1, x5 (the Hessian matrix is not of full rank and hence

not positive definite)jt is strictly convexunder the constraints; + z, = 1 andlyp; + lops =
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I (for positive z; and p;). In this case, by[[26, Theorem 3], the alternating optirtiga in
Algorithm ITERATIVE-WATER-FILLING converges;-linearly to the global optimum, from any
starting point(p, p2, 71, 22)° in the range. That is, each iteration of the algorithm deseeahe
distance to the global optimum by a constant multiplicafaetor ¢ € [0, 1). In other words,
(P, x)e — (p7, x")|| < qfl(p, X)¢—1 — (P™, x7)||.

The algorithm performance, as well as interesting insigiisthe structure of the utility

function we use, are easily visible in the following two-tsexample.

Examplel. Consider the following two-users example. $et=x = 1 —x, andp; = p = I‘ll—fm
To fix the constants, sdt=4, I; = 4 andl, = 1, sop, = 4 — 4p and hence botlr andp are
in the rang€l0, 1]. Of course, this reduces the generality of the problem, gét turns out, still
results in non-trivial solutions. The optimization proflgs thus to find the paifz, p) which
maximize

1—=

4 -4
wyz log <1 + %) + wy(1 — z)log (1 + u)

The results for the weights; = 1.1, wy, = 9.4, ¢; = 16.25 andey = 0.1 are given in Figure
. Note that the constant were chosen to best illustrate atineial maximum point and the
convergence to it. The maximum is achievedatp) = (0.667419, 0.315038). This maximum
point reflects the balance between the higher interferesee 1 creates and its lower weight
yet much better channel conditions. This is the reason ugecdives a significant bandwidth
allocation. The three dashed lines represent three runieoitérative algorithm, from three
different starting points. 10 iterations suffice to coneerdfloreover, it is clear that a given
variable may increase at one iteration, and decrease aettteThat is, the algorithm “corrects”

the bandwidth variables according to the resulting powansl, vice versa.

V. CONSTRAINED NOISE RISE DENSITY

In this section, we consider a second noise rise approachrewtmenoise rise densitys
constrained. That is, instead of noise rise budget over th@enfrequency band, the noise rise
per resource unit is constrained. We will see that the caimgtnoise rise approach renders the
scheduling and power allocation problems separate, f@wilg a very efficient implementation.
Moreover, in the separate problems, there is no direct dige® on the Shannon capacity

expression and its mathematical properties (e.g., cotwelk fact, the constraint noise rise den-
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Fig. 1. A two-users example. A graphical representatiomefdum of the wighted capacities as a function of both the Wt
allocated,(z, (1—)) and the powers distributedp: = p, £552). The constants are= 4, i = 4lz = 4, w1 = 1.1, w2 = 9.4,
e1 = 16.25 ande2 = 0.1. On top, the three dashed lines give the results of the iteratgorithm for three different starting

points.

sity approach will be applicable under aRate-Adaptatioomechanism, regardless of the actual
function connecting the power used to the rate achievedekample, consider a complicated,
real-life scenario where various aspects such as modngtre-transmissions and error control
mechanisms affect thde-factoachieved transmission rate. In this case, the Shannon itapac
may be far from capturing the actual rates, however, it issipbs to devise a function, even
if mathematically intractable, that connects the power andwidth used to the achieved rate.
The approach described herein, will be able to use any suekadaptation in the optimization
process. Finally, we also mention that this approach is sistable for the contiguous resource
allocation scheme (i.e., without any sub-band partitignamd permutations) and the localized
transmission scheme of the LTE SC-FDMA uplink allocatiomttiBschemes are beneficial for
supporting frequency-selective scheduling.

Formally, the constraint on the noise rise density resutthfnormalizing the allocated power
by the allocated bandwidth, for each MSThat is,/; - fc’— < I, for all i € M. First, re-writing as
lip; < Iz; and summing both sides over ale M, it is clear a resource and power allocation

{zx, p} that complies with the noise rise density constraint niit exceed the noise rise constraint
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over the whole frequency banNamely, the noise rise density approach only adds congdrai
to the original problem discussed in Section 1V. The schiedybroblem with constrained noise
rise density is hence as follows.
- pbi€;
maximize Z w;(t)z; log <1 + )
P ieEM t
subject to: z;,p; >0, Vi € M
TS
1eM

X

(2

(16)

Now, consider the expression(¢) log (1 + ’;—e) Since for each, £+ < li it is clear that a user
which maximizedw;(t) log <1 + Ili) should be allocated thentire bandwidth The following
pseudo code summarizes our solution to the resource aflagatoblem in this case.
RESOURCEALLOCATION (I, w, I)
1 2+ 0,p<0
for i e M
do r; <~ RATE-ADAPTATION(})

* < argmax{w; - i}, T 1, pp o L
ieM i

a A W DN

return {x,p}

Algorithm RESOURCEALLOCATION is made possible since our assumption on bounded noise
rise density allows the computation of the uplink transmission power sitgnregardless of
the schedule. The transmission power density is sufficienttfe rate adaptation. Clearly, in
practice, a dynamic rate adaptation mechanism would bettemate the achievable rate and
facilitate better utilization of the multi-MS diversity salting in a higher throughput. Algorithm
RESOURCEALLOCATION is significantly easier to implement, and, as will be madarcie the
next section, results in throughput and fairness which dofab much short than the optimal

algorithm.
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VI. SIMULATION RESULTS

In this section, we present the results of thorough simuhaticarried out to test the per-
formance and behavior of the discussed algorithms, and amnihem to existing allocation
techniques. First, we include the simulation results ofraalj Shannon-capacity based approach
to performance evaluation, where the total throughput oreasis simply the capacity of a
Gaussian, band limited channel, with the scheduled bantbwitd power, and subject to the noise
and interference created by neighboring cells. This sitrareclearly illustrates the benefits of
the suggested algorithms. Then, to better emulate prasyséems, and to assess the algorithm
performance under such constraints, we give the results thioeough simulation, including
modulation, coding, packet looses, re-transmissions, saveral other practical issues which,
while complex to evaluate analytically, can be included simaulation and give a practical view
of the results in this paper.

A. Numerical Results - Shannon Capacity

In this sub-section, we give the numerical results for thgoathms in Sectior IV-A and
SectionlY, and compare them to a fixed power scheme. Our mairefigf merit is thetotal
throughputin the system, summed over all frames and all cells. Howeweestress out the
benefits of the noise-rise based schemes, the standardidewé the interference seen at the
cells as well as the actual power used are also given. Moreawveoise rise density approach
with power constraintss also simulated.

The deployment included 72 hexagon-shaped cells (baserstptwith 722 MSs (MS stations).
The MS locations were drawn uniformly at random in spacehwhe restriction of a minimum
of 2 MSs per cell. Path losses (in dB) were calculated acangrth the COST-Hata model [27,
Capter 4, equation 4.4.3], specifically:

PL =46.3+ 33.9log,,(f) — 13.821ogyy(hp) — ahmn,
+ (44.9 — 6.551og,(hp)) logyo(d) + cm

where f = 2000M H =z was the transmission frequendyy = 50 the BS antenna effective
height,ah,, the MS antenna height correction factor andwas taken a$ to model a medium

size cite. The simulation included 80 frames, with topolagy path gains fixed throughout.
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The algorithm used to solve the optimal, noise-rise coimdtiaroblem [10) was Algorithm
ITERATIVE-WATER-FILLING (termed Noise Rise in the Figures). For the noise-rise thensi
problem (Section V), Algorithm RSOURCEALLOCATION was used (termed Noise Rise Den-
sity). Moreover, a version of Algorithm BSOURCEALLOCATION which accounts for aon-
stant max-power constrairis also given. That is, we consider the ugérwhich maximizes
w;(t) log (1 + Ili) and letP,,,. be the power headroom. I,,,, > li we allocate the entire
bandwidth to:*. Otherwise, we set! = % and allocate the remaining bandwidth to the
second best user, and so on. If all users reach their powestraomt before all bandwidth is
allocated, the algorithm distributes the remaining bawdwproportionally. Note, however, that
this does notnecessarily result in the optimal solution under these tcaimss.

In the fixed power scheme we compare with, again, only a siktileper cell is scheduled.
However, in this scheme, the allocated power is fixed at theesaonstanP for all MSs, and only
the MS which under such an allocation will have the maximahmadized ratev; log <1 + ’;—8>
is scheduled. Of course, for a fair comparison, the fixed poivds set such that the mean
interference caused by all schemes is the same.

The weightsw; were initialized to a constant value, and were updated ateh frame

according to[[19],
wi(t) = 1/T5(t),

and
T(t) = Ti(t — 1) + (1 B) - Bi(t — 1)

with 5 = 0.9 and B;(t — 1) being the number of bits delivered to MSt sub-frame — 1 (O if
MS ¢ was not scheduled at frante- 1).

In all four schemes, the actual throughputs after each tiotewsere calculated according to
the SINR measured at the receivers with correspondence tactinal MSs scheduled at this time
slot (Shannon capacity for band-limited Gaussian chanfl} is tosimulate the exact scenario
for which our analytic claims applyNote, however, that this is fundamentally different frame t
all-encompassing simulation described in the next subeseowvhere specific modulations and
packet loss rates are taken into account.

The results are given in Figurek 2 did 3. In Fiddre 2(a), ttad toroughput, over all cells and
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frames is given. The benefit of both noise-rise schemes beefixed power scheme is clear for
all noise-rise values (equivalently, all SNR values). Tleadfit of the optimal algorithm over
the sub-optimal is also clear, as it indeed usually schedulere than one MS per celNote
though, that it is possible to construct topologies in whtich benefit is small.

A key advantage in the noise-rise schemes is that the inéeide seen at the neighboring cells
is concentrated around the fixed noise-rise vdluallowing them to plan modulation and coding
accordingly. Clearly, when the variance of the actual fietence observed at the receivers is
high, it is harder to choose the appropriate modulation amting, forcing the senders to either
aim at lower modulation and coding schemes or suffer higlkgtaloss. This variance is given
in Figure[2(b). While the average interference is consg@ito the same value in all schemes,
the two noise-rise schemes (the optimal and the sub-optatgalrithms) exhibit significantly
lower standard deviation. That is, the interference seealeuthese schemes is centered around
the average value, allowing better rate planning by the BSs.

To address the lack of maximum power constraint (headrooniheé optimal (Noise Rise)
scheme, the four sub-figures in Figlile 3 depict the histograithe actual powers allocated to
the MSs. It is clear that a substantial fraction of the MSslliscated powerdelow or around
that allocated by the fixed power scheme, and even the snaalidn with high powersloes
not require a consequential increase in pow&hus, although the optimal scheme is not head

room constrained, its actual power usage is moderate.

B. An IMT-Advanced Simulation

In this section we illustrate the advantages of the noiseajgroach via an extensive system
simulation, which includes various practical aspects sasHfinite number of resource units,
a more realistic channel model which includes log-normaldsiwving model, modulation and
coding selection, packet losses, HARQ (Hybrid ARQ) andaregmissions. That is, the system
simulation includes more practical aspects that we did natyae, and did not account for in
the numerical results. However these aspects are evidgmaatical systems and should not be
discarded.

To this end, we developed a Matlab simulator that complieth whe guidelines for eval-
uation of radio interface technologies for IMT-Advancéd. [Specifically, we simulate a two

tier hexagonal deployment with 19 sites, each containimgetitells (sectors) operating in a
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frequency reuse 1. Each cell takes its scheduling decisiotspendently. MSs are located
uniformly across the deployment witt) MSs in each cell. Statistics are collected from all
cells, facilitated by a wrap around geometry such that dl siffer from interference from two
tiers neighboring cells. Following the IMT-Advanced guides, we implemented the WINNER
Il [28] stochastic channel modeling. The modeling approecbased on the geometry of the
network layout. The large-scale parameters such as pashalod shadow fading are generated
according to the geometric positions of the BS and the MSnThe statistical channel behavior
is defined by distribution functions of delay and angularfipgs. We consider the urban macro-
cell scenario, where typically MSs are located outdoordraes level and BSs are fixed clearly
above surrounding building heights. Accordingly, the lomal shadow fading is assumed with
4dB standard deviation foLoS (Line of SightMSs (which are chosen probabilistically as a
function of the distance) angtiB for NLoS (Non-LoSMSs [9]. The assumed inter-site distance
is 500m. We assume a single user MIMO, with two receive antennaseaB& and one transmit
antenna at the MS. The MS and the BS antennas gaihand 17d Bi, respectively. The assumed
noise figure at the MS and at the BS darand5dB, respectively.

We consider the IEEE 802.16m uplink frame structtrieng Domain Duplexing - TDEnode).
The assumed total bandwidthli8) H z, occupied byi8 resource units. The simulation runs sub-
frame by sub-frame, performing the scheduling at the begigof each sub-frame. We ran the
simulation over1000 sub-frames foB drops. Theexponential-effective SINR MappitEESM
approach([29] is used to map the system level SINR onto theldwvel curves to determine the
resulting block error rate. Upon block errors, a synchredizetransmission is scheduled with
the highest priority aftef sub-frames. Upon reception of retransmission the recgegiorms
chase combining. The maximal number of retransmissiods is

We assume a full-queue model where all MSs have backloggéitirThe weightsy; were

initialized to a constant value, and were updated after é@che according to

wi(t) = 1/T;(t),

and
Ti(t) = Ti(t — 1) + (1 = ) - Bt — 1)

with various values of decay factor.
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The proposed noise rise schemes are compared with twadraaipower control mechanisms,
namely, (i) maximal transmission power, and (ii) targetereed SINR. For the first approach, an
MS transmits at maximal level regardless of channel comati and the link adaptation process
assigns the best modulation and coding scheme that masrtheestation throughput given its
channel condition. The second SINR based power controloagpraims at obtaining a required
SINR level at the receiver assuming a fixed noise plus intemfge scenario. Here, the maximal
transmission power and the target SINR for these schemesetgeich that the average transmit
power is identical to that of the noise rise based schemes.

First, in Figure[#4, we compare the ingress noise rise levehatBSs with the four power
control schemes. One can see that both the constrained msesscheme based on Algorithm
ITERATIVE-WATER-FILLING (termed N.R.) and the constrained noise rise density schased
on Algorithm RESOURCEALLOCATION (termed N.R. density) obtain a relatively narrow his-
togram around the target noise rise (of 4 db). Alternativélg maximal transmission power
scheme (termed MaxP) and the target received SINR basethscfiermed SINR) result in a
much wider histogram (especially the max power scheme)h Sude histograms corresponds
to an unpredictably highly variant uplink interference.t®lthat the max power scheme involves
a much larger noise rise, since it allocates more users iamaefy each transmitting at it maximal
power over a narrower band.

To compare the performance of the four schemes we adopt twonomly used indicators,
namely, the cell and the cell edge MS spectral efficiency (is/®ec/Hz). The cell edge MS
spectral efficiency is defined as the 5th percentile pointhefGDF (cumulative distribution
function) of MS spectral efficiency.

Figure[% depicts the uplink cell spectral efficiency as wallthe cell edge MS spectral
efficiency for various values of the proportional fair dedagtor 5. Indeed, the greedy approach
of transmitting at maximal power obtains the highest thigug. However, it is at the expense
of starvation of the cell edge MSs (Figyre 5(b)). Alternalyy our noise rise schemes provide
a better tradeoff between throughput and fairness. For pkarthe noise rise approach (N.R.
in the figure) obtains cell spectral efficiency lower by 40%nfr the cell spectral efficiency
with the maximal power approach, yet it is 440% higher tham $pectral efficiency with the
SINR based approach. Additionally, cell edge MSs with thiseoise approach gain 71% more

throughput than with the maximal power scheme and only 358% than the more fair SINR
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Fig. 4. Histograms of the ingress Noise Rise in dB with theows power control schemes.

based approach. The schemes’ fairness is further illestrat Figure[ 6 that depicts the CDF
of the MSs spectral efficiency and a zoom in on cell edge uségaie[6(b)). Here, it is clear

that the SINR based approach provides the best fairnessevalleMSs get similar throughput.

Clearly, fairness comes at the expense of total system rgpetficiency. On the other hand,
the maximal power approach sacrifices about 25% of the MSdlbgating them unacceptably
low throughput (which in practice would result in high blaog probability). Again, the noise

rise approach provides a good tradeoff between cell thnouighnd fairness. Note that, even
though we assumed 1 transmit antenna at the MS and 2 recdmenas at the BS, instead of
2 x 4, respectively, the obtained spectral efficiency is onlghgly lower than the IMT-Advanced

requirements [30] (e.g., cell spectral efficiencyiobit/Sec/Hz instead of 1.4 bit/Sec/Hz).

It is interesting to see from Figukeé 5 that at times the camséd noise rise density algorithm
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obtains better throughput than the noise rise scheme ey = 0.6). This is due to the

difference between the simulated IMT advanced EESM chamoelel and the Gaussian Channel
model, which is fundamental to the noise rise approach radtievely, the N.R. density approach
decouples the scheduling and power control schemes, alipwilink adaptation that does not

assume the Gaussian Channel model (see Sdction V).

Fig. 5.
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Fig. 6. The CDF of the MSs’ spectral efficiency, comparing fd@ieness of the various power control schemes.

Finally, we examine the performance of the noise rise amprodgth various values of noise
rise target. Throughout this paper we assume that the tiasgm power is constrained by
the target noise rise. However, this might not be the caseeifirerease the noise rise target.

Accordingly, to examine high values of noise rise target,img®rporate an additional constraint
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Fig. 7. Uplink cell and cell edge MS spectral efficiency forigas values of noise rise target.

on the MSs’ transmission power. Here, we consider only theenose density scheme, where
it is easier to incorporate such a constraint.

Following the IMT advanced requirement, we set the MS makinpdink transmit power to
24dBm. Figure[T depicts the cell throughput as well as the cell éd§ethroughput for various
values of noise rise target. As expected, cell throughpereases with the increase in noise rise.
However, as soon as MSs at the cell edge are approachingrbgimal power limitations, their
throughput decreases. Clearly, at high values of noisetaigget, power is constrained by the
MS maximal transmission power and the power control opsrasethe maximal power scheme.

Finally, note that Figurél7 emphasizes the tradeoff in deiteing the noise rise constraiat
priori. On the one-hand, choosing a high noise-rise constrainiges high overall throughput.
This, however, comes at the expense of the throughput attdiy the cell edge users. On the
other hand, selecting a low noise-rise budget will, in gahegsrovide a high cell edge user’s
throughput, now at the expense of the overall attained tirput. Of course, choosing a too low
noise-rise constraint is detrimental both to the aggretiatmughput as well as to the cell edge,
since the noise plus interference experienced by the cgkt &diSs is dominated by the noise
(which remains at fixed level) yet the noise-rise budget dsltov for the cell-edge MSs to attain
high throughput even at low interference. For example, & résults depicted in Figuid 7(b),
edge user throughput is maximized at a noise targataf3.

Accordingly, if the network manager is more concerned alamgregate throughput and less

about fairness high noise rise constraint should be pesferf on the other hand fairness is
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important lower noise-rise constraint should be selec@uliously intermediate values which

balance between aggregate throughput and cell-edge useigtiput are also possible.

VIlI. CONCLUSION

In this paper, we considered a joint scheduling and powecation problem. Specifically, to
mitigate inter-cell interference, we suggested a novet@gugh, which considers the interference
caused by MSs in a BS to neighboring BSs as a resource to lmatath similar to bandwidth or
power. The essence of this approach is as follows. Each Msgdban its channel gains, creates
different interference to neighboring cells when transmgt A BS, while allocating power and
bandwidth to its subscribers, does so in a way such that takaggregated interference its MSs
generate does not pass a certain value - its noise rise budget

We rigorously formulated the problem as a convex optimaragiroblem with linear constraints
and suggested an efficient iterative algorithm for its sotytbased on known and new water-
filling based solutions to its separate problems. We thensddva modified algorithm, which
optimizes power and bandwidth allocations assuming theenaoise is constrained for each
sub-channel (a portion of the bandwidth allocated to a sirlgB5). This algorithm is highly
efficient, attaining higher throughput to cell-edge MSsnthather known techniques, while
maintaining high overall throughput, approximating thefpenance of the optimal algorithm.
These performance guarantees were also depicted in twasastesimulations, one based on
analytical expressions and one based on a practical systédimbbsed on the IMT-Advanced
specification.

Potential applications of the suggested algorithms irgluaut are not limited to, uplink
scheduling in IEEE 802.16e/m, 3GPP LTE, and more.
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