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Abstract—Compressive sampling (CS) based multiple sym- are contrary to the UWB objectives that call for simple
bol differential detectors are proposed for impulse-radioultra-  receiver processing units with moderate energy consumptio
wideband signaling, using the principles of generalized kelihood Therefore, efficient techniques are needed in order to oveec

ratio tests. The CS based detectors correspond to two commisn th . di ¢ d facilitat ve deol t of
cation scenarios. One, where the signaling is fully synchrozed €S€ IMpediments and laciiitate a pervasive deployment o

at the receiver and the other, where there exists a symbol UWB-based networks.
level synchronization only. With the help of CS, the samplig Background and Prior Works. A number of viable yet sub-

rates are reduced much below the Nyquist rate to save on the gptimal receivers based on noncoherent detection have been
high power consumed by the analog-to-digital converters. 56564 in the literature for efficient energy capture hil

stark contrast to the usual compressive sampling practicesthe - . . .
proposed detectors work on the compressed samples directly avoiding channel estimation [7]. In the transmitted refier

thereby avoiding a complicated reconstruction step and resting ~ (TR) scheme [8], [10], an extra information-free reference
in a reduction of the implementation complexity. To resolve pulse is used as a channel template by the correlator totdetec

the detection of multiple symbols, compressed sphere decad the information data, thereby causing wastage of tranedhitt
are proposed as well, for both communication scenarios, whh power and a decrease in data rate. These drawbacks can

can further help to reduce the system complexity. Differenil . - . . .
detection directly on the compressed symbols is generallyamed ~ °€ avoided by adopting differential detection (DD) [9], J10

by the requirement of an identical measurement process fonery ~ Differentially encoding the information symbols allows em
received symbol. Our proposed detectors are valid for scemms ploying the signal received within the previous symbol i

whgre the measurement process is the same as well as where igs a channel template for detection, thus enabling potgntia
is different for each received symbol. low-complexity and energy-efficient receivers. Howevée t
Index Terms—Compressive sampling (CS), multiple symbol template waveform in both TR and DD schemes is nei-
differential detection (MSDD), sphere decoding (SD), ulte- ther noise-free nor interference-free, which contributes
wideband impulse radio (UWB-IR). substantial performance degradation. This prompted tiee us
of enhanced DD methods in the form of multiple symbol
differential detection (MSDD) [11], [12]. Instead of colaigng
|. INTRODUCTION only the consecutive symbol-long received waveforms, akblo
Promising the prospects of high data rates, fine tinw differentially encoded symbols is detected jointly,esffig
resolution, multipath immunity and coexistence with legadmproved performance over both severe multipath fading and
services via frequency overlay, ultra-wideband (UWB) iispu  interference-limited scenarios. Still, accurate pulselléming
radios (IRs) are deemed as strong candidates for short raifermation has to be acquired, which in view of the low-
connectivity, location-aware wireless sensor networkblaw- power and ultra-short transmitted pulses, again requires a
rate communications with ranging capability [1], [2]. Owin considerable computational effort; see e.g. [13]-[15]néte
to the ultra-large bandwidth, each transmitted pulse esrat a variant of the MSDD scheme has recently been proposed in
the receiver scattered over hundreds of separable paths 6] to reduce the timing restrictions, by limiting the ting
possible severe pulse distortion [3], [4]. Under these hharaccuracy from pulse or frame level to symbol level only, whil
propagation conditions, the rich diversity of UWB channelsaintaining a competitive performance.
can be exploited by employing detection strategies basedDespite the considerable advantages offered by the symbol
on Rake receivers, which however, require a large numbevel synchronization (SLS) MSDD, the delay components
of correlator-based fingers combined with accurate chanmefuired by the correlation units (on the order of tens oneve
estimation, thus resulting in an intensive computationadl hundreds of nanoseconds) lead to hardware implementation
and a high power consumption [5], [6]. Such requiremenissues. Indeed, the long and accurate delay lines are hard to
realize in the analog domain, and a digital implementation
This work is supported in part by NWO-STW under the VICI par 5504 on Nyquist rate (NR) sampling can heavily stress the
(project 10382).

Part of this work was presented at the IEEE Internationalf@ence on receiver analog-to-digital converter (ADC), thereby dags
Ultra-Wideband (ICUWB), September 2012. a high power consumption [17]. In order to facilitate the



ADC implementation, some attractive novel theories canfbe log-likelihood metric (GLLM) is maximized not only over
effective help on reducing the sampling frequency below thke information symbols but also over the unknown channel
cornerstone NR threshold, e.g., those based on samplihg attemplate. GLRT also helps alleviate the restrictions of the
rate of innovation (SRI) [18], [19] or compressive samplingheasurement matrices to be the same for all symbols.

(CS) [20], [21]. Capitalizing on suitable properties of th&ontributions. The main features of our approach are detailed
signal, like the sparsity exhibited in the time domain by thas follows.

UWB signals [3], [4], the key idea is to extract a reduced set 1) The proposed MSDD-like schemes are derived by avoid-

of compressed samples from the analog received signal, or in
other words, converting it into the compressed domain tijinou

a few measurements taken in the analog domain; see e.g., [22]
[23]. Then, a reconstruction step from the compressed ssmpl
may follow by applying one of the algorithms proposed in
[19]-[21], [24]-[26]. Alternatively, the reconstructiostep is
skipped and the receiver processing is based on the coredress 2)
samples directly.

The SRI technique is applied in [27], [28] to UWB receivers
that work at sub-NR sampling but also require channel esti-
mation (CE). On the other side, the CS framework supports
a large variety of sampling kernels, e.g., random sampling,3
and hence allows for a higher flexibility [20], [21]. Praetic
applications of CS to the UWB scenario can be found in [29]-
[33], mostly again for coherent receivers, thereby reqgiri
CE. Apart from the overhead involved in the transmission of
extra information such as pilot or training symbols in these
works, one inevitably has to suffer from the complexity load 4)
required by the reconstruction of the channel template.

A simpler yet performance competitive implementation,
consists of combining the CS framework with noncoherent
detection, as illustrated in [34]-[36]. In [34], noncohete
receivers for differentially encoded UWB signals are desit
exploiting the CS techniques. Besides introducing a joint
reconstruction and detection scheme, a direct compresBed D )
(DC-DD) is also presented, which skips the reconstruction
step, hence reducing the complexity. Building upon the DC-
DD, the work in [35] merges the concepts of CS and decision
feedback DD (DF-DD) [37]. A power-efficient and low-
complexity receiver is enabled, named as CS based (sorted)
DF-DD or csDF-DD in short, however it has to be emphasized
that: i) its robustness to timing offsets is restricted to only
fraction of the symbol interval and) the measurement matrix
is required to be the same for all the symbols within ea
block.

Rationale of the Proposed Approach. The above facts indicate
that CS-based noncoherent detection can lead to promisY
receiver schemes. Hence, the search for an effective

to reduce complexity while preserving performance, full
motivates the current paper to make a further contributio
The basic idea we pursue, in part traced back to [36], i
threefold: i) instead of considering the DC-DD of a single
information symbol as in [34], we cast the concept of MsDr
into the CS framework, thus formalizing the CS-based MSD
(CMSDD) scheme at sub-NR samplinig)y in order to relax
the demanding prerequisite of sub-pulse level accuracy H
the timing synchronization, we develop a modified version (%r
the CMSDD which requires SLS only, in the sequel referre
to as SLS-CMSDDjii) aimed at skipping CE, we resort to
the generalized likelihood ratio test (GLRT) principle [38

ing the reconstruction step, i.e., they work directly on
the compressed signal samples. The result is that the
sampling rate as well as the implementation complexity
related to the evaluation of the correlation coefficients
needed by the objective function, are both kept at afford-
able levels, in accordance with the UWB requirements.
Unlike the CS-based noncoherent receivers illustrated
so far, the measurement process can be either the same
or different from symbol to symbol, thus offering an
additional degree of freedom that can help the receiver
better adapt to various scenarios.

) As briefly touched above, resorting to the SLS concept,

the robustness to timing errors of the proposed CS-based
schemes is brought from pulse or frame level to symbol
level. This feature relaxes the performance of the timing
synchronizer, so further lowering the overall receiver
complexity.

A particular effort is put on cutting back the complexity
required to optimize the objective function over each
data block for both the ideally-synchronized CMSDD
and the SLS-CMSDD, which grows exponentially in the
block sizé. To this end, a modified sphere decoding
(SD) algorithm is derived enabling the joint detection
of blocks of tens of symbols at polynomial complexity.
Comprehensive numerical simulation results obtained
over realistic UWB scenarios corroborate our analytical
findings and demonstrate that the proposed noncoher-
ent detectors can deliver efficient performance-versus-
complexity trade-offs, and are capable of jointly relaxing
the stringent requirements of both the high sampling rate
and the accurate timing synchronization.

6rganization. The rest of the paper is organized as follows.
ection Il describes the signal model. After reviewing the
SDD scheme with ideal timing synchronization, Section Ill
introduces the CS-based version. Section IV extends the SLS
iant of the MSDD to the CS framework, and Section V
Is with a modified scheme of SD. The simulation results
e illustrated in Section VI, and finally, in Section VII sem
oncluding remarks are drawn.
Notations. Matrices are in upper case bold while column
vectors are in lower case bol

], is theith entry of the

ector a, Iy is the identity matrix of sizeNV x N, 1yxn
the M x N matrix with all components one),;« N is

e M x N matrix with all components zerd;)” denotes

ﬁmspose(j*l denotes inversey stands for the Kronecker

oduct, = describes the convolution, digg gives a block

agonal matrix having the arguments along its main diagona

IWe recall from [12] that the block size plays a role in detevimg the
performance improvements against the DD scheme, in the sleaisthe longer

line with [12] and [16], according to which the generalizethe block the better performance.



a is the estimate ofa, || denotes the floor function= where z(t) is the block level received signal andt) is
defines an entity, the/, norm of a vectora is denoted the zero-mean additive white Gaussian noise component with
as|lal|, = (Zf’:’ol [a];|?)'/?, and E-} denotes statistical variances?.

expectation.

Il. SIGNAL MODEL I1l. MSDD WITH EXACT TIMING SYNCHRONIZATION

For the UWB-IR signal model, each symbol is representedIn this section, we consider the MSDD scheme when exact
by N; frames with one pulseg(t) per frame. The symbol, timing information is available at the receiver, or equérgly,
frame and pulse intervals are designatedlasT; andT,, when the timing offset is = 0, and accordingly o = 7. As
respectively, satisfying’s = N;T¢, T, < T. Denoting the a first step, we revisit the MSDD scheme presented in [12] for

symbol level waveforras NR sampled UWB signals and derive it in an algebraic form
Ny—1 (which is needed to build mathematical foundations for the

s(t) 2 Z q(t — 5T}), (1) compressed version), and denote it for simplicity as NMSDD.

s Then, we propose the MSDD based on the CS framework,

the transmitted signal corresponding to a block @f+ 1 referred to as CMSDD.

consecutive symbols can be written as
A. Nyquist-Rate MSDD

Q
u(t) = ;bks(t — kT5) @ Denoting with1/7 = N/T} the Nyquist sampling rate, the

) . NR received signal (6) can be expressed as
where b, € {£1} are the transmitted symbols, which are

differentially encoded according to the rule r= [l o Jg]T (7)
b = bg—1a 3
. k - k-1 k. . . ©) wherer), A [rch)T,I'/(gl)T,"' 7I.}SCfol)T]T, with
with a, € {£1} representing the information-bearing sym- _
bols. Without loss of generality, we considgr= 1 as initial r](g) 2 [r(kTs + §T¢),r(kTs + Ty + T),
reference symbol. oo (KT + jTy + NT—=T)7  (8)

The multipath channel is assumed to be time-invariant
within an interval of length(@ + 1)T%, which is required to collecting the N NR samples of thejth frame for thekth

transmit (2). The delay spread is smaller thBp such that symbol. Similarly, we can defing, x; and X;ﬁ based on
the overall channel fits within a single frame and henceint%(t), andv, v, and v,(j) based onw(t). From (6), we can
symbol interference (ISI) is avoided. Under the assumptiQRen obtain that

that the channel impulse response (CIR) Hagaths, the

received pulse is given by ry=Xp+ Vi, 0<k<Q, 9)
L—1 A . . .
h(t) 2 Z eq(t — m0) * hip(t), @) wherex;, = b.(1n,x1 ® h) is the signal part of, with
0 h = [1(0), h(T), -~ . W(NT = T)]" (10)

where hyp(t) is the low-pass filter at the receiver with

bandwidthWW, 7, o 27, —7,0<(¢<L-1,is the relative made up of the NR samples of the received pulse waveform
delay of thefth path with respect to the timing offset= 7, (4). Note thatvy is a zero-mean Gaussian distributed noise
of the first path due to signal propagation, is the actual vector with covariance matriC, = E{vyv}} = o2Iyn,.
delay of thefth path at the receiver and, is the respective Exploiting (7) and (9), the joint model for the block ¢f + 1

path gain. The symbol level received waveform can thus sgmbols can now be written as

expressed as

Ny—1 I‘:(b®INNf)(1Nf><1 ®@h) + v, (12)
t) = h(t — jTy), 5
9(t) jz_:o (= 5T7) ®) whereb = [bg, by, - - - ,bgo]T denotes the transmitted symbols.
. ) . Hence, after defining the vector of the information symbals a
and correspondingly, after exploiting (2) and (4)-(5), the 2 ™ I
received signak(t) is given by a=lai, a2, - ,ag]", the NMSDD scheme can be stated as
o follows.
r(t) =Y brg(t — kTs — 7) +o(t), (6) Proposition 1: NMSDD. The GLRT NMSDD mixed-integer
k=0 optimization problem (OP) is
2z(t)
aNMSPD) — 4r0 max {max A(r|a, h)} , (12)
20ur focus is on a single-user point-to-point link, so for glitity of a h

presentation, the time hopping (TH) code is not employed¢hSn extension .

is easy to be included. However, frame averaging may not beilple in this where the GLLM is

case. Our model can also be extended to the multi-user scdnmarit would A T T

necessitate a compressed user template to identify a spesi. A(rla,h) = 2N/t (b®Iy)h — (@ +1)N/h*h,  (13)



with # = 78,77, - - ,t5]" and Proposition 2: CMSDD. The GLRT CMSDD integer OP is
Nj—1 a(CMSPD) — aremax {A(yla)}, (20)
I 2 5 Z rl/) (14 2
f where the objective function is
. . Q Q
which represents thé&/ x 1 vector collecting the samples of _ 7 T
the average frame for thith symbol. Alyla) =D > bibeyi 297 v, (21)
Proof. Under the joint NR sampled model (11), the GLLM h=01£=0
can be written as with N1
Ao, T Yk é (22)
A(rla,h) =2r" (b® Iyn,)(In,x1 @ h)

—[(b@Iyn,)(In;x1 @ W) [(b @ Inn, ) (1n;x1 © h)]
= 2rT(b @ Inn;)(In;x1 ® h)
—(Q+1)(1n,x1 ®h)"(1n,x1 ®h),

which can be further simplified into (13). Sinde is a
function ofa as described in (3), (12) can be solved into twi
steps according to the GLRT principle. First, the GLLM (13
is maximized oveh by setting the corresponding gradient to
zero, and then, it is optimized over |

2)

B. Compressive Sampling MSDD

For the CMSDD, we assume that each received frame vector
rgj) given by (8) is compressed using thé x N frame level
fat measurement matri®,, (i.e., M < N), such thaﬁ)kéf =
I, . .
YI(q]) A q,krgcj)’

0<j<Nj-L (16)

Note that the compression ratjo = —, with 0 < p < 1,

identifies how much one can economize the sampling rate,
and accordingly, the computational load of the data detecto

Upon defining yy, = [y,(co)T,y,(cl)T,m ,yg(CNf_l)T]T’ the

compressed received signal within théh symbol can then
be expressed by th®/ N, x 1 vector

yi = (In, ® )1y

=N, @ Pr)xp + &, 0<k<Q, (17)

where &, 2 (INf ® ®)v is the noise component with
covariance matrixCe = E{£,£.} = 2Ly, It should be 4
noted that the measurement process in (16) is performed in
the compressed analog domain; see [22]-[23] for detailsiabo
possible analog implementations.

Now from (17), we can express the joint compressed model
for the @ + 1 symbols as

y=YboIyn,)(An,x1 @h)+ & (18)

Wherey é [y317Y{a' o 7y ]T and£ - [60761 [ 7€£]T
are the compressed/{ < N) (Q+1)M Ny x 1 measurement
and noise vectors, respectively, and

5)

T = diag{In, ® o,In, ® @1, -, Iy, ® ®o}  (19)

is the(Q +1)M Ny x (Q +1)NNy block level measurement
matrix, such thatl ¥’ = I(g+1)mn,- Hence, the CMSDD
can be formulated as follows.

Zyk
Jj=

being theM x 1 vector collecting the samples of the average
compressed frame for thigh symbol.
(15) Proof. See Appendix A.

A number of remarks about the CMSDD can now be
ighlighted.
1) If the frame level measurement matricds, are all

orthogonal to each other, i.e®,®7 = 0pry s, VE, £
with 0 < k,¢ < @, thenA(y|a) does not depend oa,
and accordingly the detector does not exist.

If the frame level measurement matricés are all the
same for each symbol, i.eRy = &, = --- = P, then
taking into account (3)A(yl|a) turns into
Q k—1k—t
Alyla) =D > [ lalieeviye,  (23)
k=1 ¢=0 i=1

whereas in the case they differ from symbol to symbol,
A(yla) has the general form

k—1k—¢

Z Z H z+ZYk ‘I’kq’z ye-

k=1 ¢=0 i=1

Alyla) = (24)

3) By virtue of the CS framework, the CMSDD relies on

the evaluation of the average frame in (22), which is

performed for each symbol in the compressed domain.
This is less demanding than the implementation of (14)
based on the NR sampling. As an additional strength, the
detection process of the CMSDD avoids a reconstruction
step, which further helps in keeping the complexity at

an affordable level.

) Concerning the performance limits of the CMSDD, if

the frame level measurement matrices are orthogonal to
each other, then the CMSDD does not work, whereas
better performance is expected if they are the same for
each symbol. However, for applications where choos-
ing identical measurement matrices is not feasible, the
CMSDD can still offer compressed detection.

The performance-versus-complexity trade-off enabled
by the CMSDD is expected to be governed by the
compression ratiq: as well. Indeed, the higher the

the lower the performance loss, till the performance
approaches that of the NMSDD as— 1. This can be
established mathematically by noting that whenr- 1

(i.e., M = N) then ®l'®, = Iy (which is a general
property of orthogonal matrices). Thus,

Vi 2@y = (Brry,) @, D] (®)1)) = 111y



t
90(t) | | | | |
ro = 0g1 + bogo |r1 = bog1 + b1go | T2 = bi1g1 + bago | r3 = bogy + 08y
=T+ t Fig. 2. SLS model in the noiseless case wih= 2, Ny = 1 and timing
offset 7.
— Ts— . . o
A. Nyquist-rate MSDD with Symbol Level Synchronization
g1(t) Denoting,N, = |7/T] ande = (71— N, T), withe € [0,T),
the NR sampled symbol level versions @f(t) and g, (t) are
_ | given by
t

20 = [OJJCZTxlvg(_E)vg(T - 5)7
- g(NNGT = N, T - T - )", (27)
Fig. 1. Partitioning ofg(¢) into go(¢) andgi (¢) for Ny = 1, in the presence
of a timing offsetr. ’ ' ! g1 = [g(NN;T — N,T —¢),g(NN;T — N, T +T —¢),
L g(NNGT =T —¢), O(TNNf—NT)xl]T- (28)

and the CMSDD in (24) reduces to the NMSDD. Thus, the NR sampled version of thigh received symbol
waveform can be represented by tNeVy x 1 vector

V. MSDD WITH SYMBOL LEVEL SYNCHRONIZATION re = bigo +bp-181 + Vi, 0<k<Q+1,  (29)

where without loss of generality we assumg = b1 = 0.

In Section Ill, we assumed ideal timing synchronizationy, e\ of (29), the joint SLS NR sampled model for the block
This assumption means that the receiver can recover anQJr 2 symbols can be put into the form

accurate estimate of the timing offset at the pulse level. In

this section, we will relax this computationally demanding r = (bg ® Inn,)go + (b1 ® Inn;)g1 +V, (30)
constraint: first, we re-describe in algebraic form the MSDD R R
scheme with synchronization at symbol level as proposedWhere bo = [bo,b1, -+ ,bg,bo+1]" and by =
[16] using NR sampling, denoted as the SLS-NMSDD in shofp—1bo. b1, - ,bg]" are the (Q + 2) x 1 extended
Then, we extend the above CMSDD approach to symbol leviifferential symbol vectors, while = [vf,x7, .- x5 |7
synchronization, thus formulating the SLS-CMSDD schemandv = [v{,v],--- vl ,]7. Fig. 2 sketches out the SLS

A coarse symbol level synchronization is thought to be avaihodel for a simple noiseless example with one frame per
able, so that the timing offsetis less than a symbol duration,symbol (V; = 1). Due to the presence of the residual timing
i.e., 7 € [0,T;). Furthermore, the observation window isoffset = € [0,75), in order to detect) = 2 transmitted
increased toQ) + 1 symbols in order to accommodate thesymbols,Q + 2 = 4 symbol intervals have to be collected,
residual (unknown) timing offset. or equivalently, the sample vectorg, r1,ro, r3. Hence, the

The key idea of the MSDD with SLS is to partition theSLS-NMSDD scheme can be formulated according to the
received symbol waveform(t) given by (5) into the two parts following proposition.

go(t) and g (t), such that N
Proposition 3: SLS-NMSDD. The GLRT SLS-NMSDD

mixed-integer OP is
“(t) = {O(t— ) . {O’;)V 29
g T T,ls a(SLS=NMSDD) _ 40 max {max Asrs(r|a, go,g1)} , (31)
s [ot+To—7) telo,r) a e
()= {O tenT,)’ (26) where the GLLM is

o : : Asrs(F = 2i7 [(by ® 1 b @1
as depicted in Fig. 1, for a single frame per symbol, N&:,= sts(rla, go, 1) = 2r [(TO Qi n;)8o + (b1 @ T, e
1. Itis apparent from (25) and (26) thai(¢) andg; (t) depend —2gy (bg b1 @ Inn,)g
uponr and are orthogonal to each other. — [gd (b{bo @ Inn,)g0 + &1 (b{ b1 ® Inn,)g1] . (32)



the cost function (38) to be optimized takes the following
Proof. From the joint SLS NR sampled model (30), the GLLM simpler form

can be expressed as Q ke1k—t
o _ . T T
Asts(Ela, go,g1) = 287 [(bo @ Inw, )go + (b1 ® Ty, )g1] Bors(Fla) = ; vt l[a]”f eye +Yiayen).
T e
- [(bo ® Iy Jgo + (b1 © INNf)gl] whereas in the case they differ from symbol to(;?r)nbol
x [(bo ® Inw,)go + (b1 @ Inw, )], (33) its general form is

which after some algebra gives (32). | Q k—1k—t
Asis(vla) = > > [[lalive [vi An, @ 2197 )y
k=1 ¢=0 i=1
B. Compressive Sampling MSDD with Symbol Level Synchro- + Vi1 (I @ @1 @iy y)yesa] . (40)
nization 3) Similar to the CMSDD, the SLS-CMSDD shows the
Bearing in mind the CMSDD and SLS-NMSDD schemes ~ advantage of enabling data detection while skipping
discussed in Section I1I-B and Section IV-A, respectivégy, the reconstruction step, and its performance is basically
us now combine the CS and SLS frameworks. Exploiting (17)  dictated by the choice on both the measurement matrices
and (29), the compressed waveform received within ktre and the compression ratjo
symbol interval reads 4) In view of relaxing the demanding constraints not only
on the sampling rate but also on the timing synchroniza-
Yi = (In, @®p) [brgo+br—181]+&,, 0<k < Q+1. (34) tion accuracy, it is expected that SLS-CMSDD offers
, o more competitive performance-versus-complexity trade-
Accordingly, the joint compressed model for te-2 symbols offs when compared to both the CMSDD and the SLS-

takes the form NMSDD, which require either a higher timing accuracy

v =W [(bo ® Ty, )go + (b1 ® Tyn, g1 + é (35) or a higher sampling rate, respectively.

o A - A
where y = [y0T7y1T,...,yg+1]T and £ = V. COMPRESSEDSPHEREDECODER

(¢l et ,égH]T are the extended® + 2)MN; x 1 Despite the major advantages of CMSDD and SLS-CMSDD
compressed measurement and noise vectors, respectivdly, & noncoherent differential detectors working directlysai-
c A NR sampled signals, it can be argued from the Propositions 2
¥ = diag{Iy, ® ®o, Iy, @ @1, - . In; @ @11} (36) and 4 that maximizing the objective functions (24) and (40)
is the (Q + 2)MN; x (Q + 2)NN; extended block level over z;:ll tr?e poshs_:)b_le realiiz_;\tions_ alfinvolvles an exhaus'Five
measurement matrix, such thitb? — To2ar, . THUS, search that exhibits combinatorial complexity. Accordyng

. ! . such a route turns to be quite unfeasible even for short block
based on the joint model (35), the MSDD version adOptmsqzesQ In order to gain?:\ manageable OP we resort to the
both SLS and CS can be stated as follows. )

SD.
Proposition 4: SLS-CMSDD. The GLRT SLS-CMSDD inte- Basics on SD. SD is an effective iterative decoding algorithm
ger OP is originally proposed to efficiently solve the shortest vecto

problem (SVP) in a lattice [39]-[44], i.e.,
5 (SLS—CMSDD) _ A . 37
a arg;nax{ SLS(Y|a)}7 ( ) é(SVP) _ argmin{HUs||2}7 (41)
seZN*1

where the cost function is expressed as . .
P whereU is the M x N full-rank generator matrix, whereas

PR the lattice is defined as the set 8f x 1 vectors£(U) =
Asis(yla) =D ) bibely (In, @ @1 ®])ye {Us|s € ZVN*1}. In the SD, only those lattice points are
k=0 £=0 searched iteratively that lie within a sphere of ragicentered

+yii1(In, ® @1 @) 1)yes1]- (38)  atOu«1, i.€., only the subset af € ZV*! satisfying the con-
dition ||Us||2 < p. Iteration after iterationp is progressively
made smaller and smaller, so that the search space is greatly
reduced compared with a naive method based on exhaustive
search. As a result, the SVP, which is NP hard as shown
Some remarks about the SLS-CMSDD scheme are nowjifi[42], can be iteratively solved at low-degree polynomial
order. complexity (cubic or higher) in the lengtlV of the optimal
1) When the frame level measurement matri®gsare all vector to be searched for.
orthogonal to each other, i.e®,®7 = 0y s, VK, ¢ The SD algorithm was proposed for MSDD in [45], for
with 0 < k, ¢ < @, the detector again does not exist. frequency-flat Rayleigh fading channels to improve the per-
2) When the frame level measurement matrices are tftsmance over DF-DD [46], and successively, was extended
same for all the symbols, i.e®y = ®; =--- = &g, to UWB detection in the MSDD scheme proposed in [12]. In

Proof. See Appendix B.



the sequel, we will illustrate how to apply the SD framework
to the CMSDD and SLS-CMSDD proposed in Section 111-B
and Section IV-B, respectively, leading thus to the conadpt

Pseudo-Code for CSD

CS-based SD, or CSD for short. :EEI‘:IIZ?’;L fogkafo)l 39 Dﬁ . _k_z LDC*DD)
CS based SD. To make our problem SD-compatible, let us  grepeat p Y
reformulate the objective functions in (24) and (40) in asyea Candidate set fofa(™];:
to-evaluate form. In the case of the CMSDD, the maximum Al = (a0, € {21} (y)al™) < pm)}
value of the objective function amounts to Choose a tentative estimate [@™)]; from .4{")
Q k-1 Candidate set fofa(™], given [a(™)];:
_ T ol ASY = {[a™)]y € {£1}|Z2(v]as") < p™M}
Amax(yla) = kz éz V5 2Py yel, (42) Choose a tentative estimate [@f(™)], from A{™
=1¢=0
and subtracting (24) from (42) yields an equivalent obyecti c did a1 given [4() S
function (to be minimized) . (In?ti Sef(,(j)fa la glve![a }Al<%')..<’[a<n)]Q71'
0 Ao’ ={a'"]q e {£1}Eq(ylag”’) <p <})
Choose a tentative estimate [8{™)] from A}
Y|a Z Z |Yk ‘I)k‘l)g yel Aopt — a(m) N
=1 =0 o P D) — Eg (y]a(™) = E(ylaopt)
[1 - sign{y;, @+ 87 y:} H al;+e], (43) setn =n+1
e Until 4™ =9
Output: aspt
where, depending upon the sign EI [a];+¢ , each term inside TABLE |
the square brackets takes a value{m 2}. Similarly, in the _
case of SLS-CMSDD, an equivalent objective function can ts€pends only om; = [[a]y, [a]s, - - ,[a],;]” and givena;_1,
defined as a; depends only orjal;; iii) in light of featuresi) andii),
Q ko1 (47) defines a sphere in th@-dimensional lattice of the
@ [42]. Therefore, (46)-(48) combined with
Asrs(yla yI(Iy, ® .87 )y, vectorsa € {£1}¢ [ ,
l2) ; ;' ! ‘ remarksi)-iii) fully comply with the SD framework, and

as a consequence our OP is amenable to be solved. It is
worth mentioning that the above formulation of our objeetiv
function is not the same as the conventional SD since it
is a nonlinear function oh. Nonetheless, the possibility of
+yk+1(INf ® ‘PHI‘I’L’H )yet1} H ali+e]. (44) estimating an element af based on the previously estimated
=1 elements in a sequential manner, makes it solvable as an SD
For the ease of notation, let us now define problem.
y1®, 87y, CMSDD Impl_emenf[ation of _CSD. Concerning the implementgtion of
Zoy 24y (Iy. © B, 8T )y, + the iterative z?\l_gonthm, at the_gener_mh ASD iteration, a
Gl = Yk BNy & FRTe )Y necessary condition for any tentative estimat&™ to lie inside
Yir1 (AN, @ ®r1 @7, )yes1, SLS—CMSDD e sphere of radiug™ > 0 is given by

Yt (In, @ ®ri1 @/, )yel

X [1 — sign{yg(INf ® i’ki’g)}’g
k—2¢

(45)
Hence, the OP related to the CMSDD or SLS-CMSDD results = (ylé§n)) <pm 1<j<Q. (50)
in the general form Based on condition (50), the CSD can be computationally
a,pt = argmin {Z(yla)}, (46) arranged according to the pseudo-code outlined in Tab. I. We
a note that the CSD algorithm is initialized by the solution
where aPC—PDb optained by applying the low-complexity DC-DD
Q k-1 : - ) e :
_ A scheme proposed in [34], which also gives the initial radius
E(yla) = Z ekl Zekl, (47) p©) by evaluating (47). The iterations go on with a smaller
_ =1 =0 and smaller sphere as search space, with the Can(%’a)te
with h—t found at the previous iterations lying on its surface. When a
Ner = |1 —sign{Ze s} H [a)ite (48) a given iteration, for a certaii, condition (50) is satisfied
=1 for both values ofa ">]J i.e.,{£+1}, a random value is taken

andZ, ;. given by (45). From (46)-(48), the following remarkgrom the candidate se& ™, and if none of the values satisfies
can be obtained) the objective function (47) consists of the(50),j is decreased by and[ (W));_1 is tried with the other
sum of the non-negative coefficientg, x|, weighted by the value from the candidate set. Eventually, the algorithnpsto
unknownsn, i, € {0, 2}- i) the partial objective when the candidate seztg”) results to be empty, i.e., all the
e conditions on the candidate sets have been checked without
A . reducing the sphere radius, thus meaning that the objective
(vlaj) = Z neklZexls 1< <@, (49) has safely reached its minimum value. It is worth mentioning

)_.

k=1 £=0



that the set of coefficientg, ;, can be precomputed before thébehavior is basically due to the multi-symbol structure of
iterations, or even can be hard-quantized to two levelstlamd both the algorithms, which advantageously exploit the align
unknownsry ; take non-negative integer-values so checkingprrelation not only between adjacent symbols as the DD
the @ conditions at each iteration in Tab. | requires only realoes, but also between many other symbols up to the block
or integer format additions combined with logical operasip size apart. Further, in spite of the 2 dB loss suffered by the
thus contributing in keeping the complexity at affordalgledls CMSDD against the NMSDD in case of SMM, the former

in solving the OP (46)-(48). presents the advantage of halving the sampling rate, thus
reducing the computational load required to detect each dat
VI. SIMULATION RESULTS burst. It is further to be remarked that changing the setup

from SMM to DMM, i.e., passing from Fig. 3 to Fig. 4,
YBuses the performance of CMSDD to deteriorate by 3 dB.
It can be imagined that the limiting case of this scenario
will be in line with the first remark made both in Section
[1I-B and Section I1V-B, explaining that frame level orthaga

In this section, the proposed sub-NR MSDD schemes
tested through numerical simulations over realistic rpatin
environments. In particular, the bit error rate (BER) metsi
quantified as a function of either the mean-bit-energydiser

spectral-density ratio defined & /No = Ny||h|[3/o7 or the oo ement matrices can make the detector independent of
compression rati, for _dn‘ferent values of the block siz@ the differential symbols, and thus ineffective. Note that f
and fr‘?‘”?e numbeN, W'th. ideal pulse level or coarse Symbolthe sake of comparison, we also plot in Fig. 3 the results
level timing synchronization. of using sorted block-wise DF-DD (sbDF-DD) [37] and its
compressed version CS based DF-DD (csDF-DD) [35] (both
A. Smulation Setup in dotted lines). The results point out that the proposed CSD
The transmitted signal consists of a number of bursgsed detector has a slight edge over the csDF-DD. Although,
includingQ consecutive differentially encoded binary symbol80th require ideal timing recovery, the latter is furthenited
according to rule 3. In each symbol interval, the frame langt® the SMM scenario. On the other side, as quantified in
is chosen to bd’; = 50 ns, whereas the transmitted pulse pepection VI-C, the SLS-CMSDD is the only scheme that can
frame () is selected as the second derivative of a Gaussignsiderably relax the timing accuracy, thereby enablingdg
shape with width7, = 1ns. The slow-fading channel ispe_rformance—ver_su_s—complexny trade-off solutions. Ideer,
assumed to be time-invariant within each burst, but rangionif i$ worth mentioning that our proposed schemes, CMSDD
varying from burst to burst according to the IEEE 802.15.31d SLS-CMSDD are not restricted to be used only with CSD

CM1 model [4], whose maximum delay spreacisns. The 2asan alternative to exhaustive search, but other strategig,
bandwidth of the receive low-pass filter is taken & = DF can also be opted. Figs. 5 and 6 show the BER versus the

92 GHz, and consequently, the NR isGHz., i.e, N = 200 compression rat_icpa at £, /Ny = 10dB, for b_oth the NMSDD
samples per frame. Therefore, assuming a compression r&fd CMSDD, with@ = 1,10, 15, and adopting the SMM and
of u means that onlyM = uN samples are employedDMM options, respect_lvely. As gxp_ected, increasing the
by the detection algorithm. Further, we consider frame lleveMSDD performance improves till it approaches that of the
measurement matriceB;, 0 < k < Q. We initially generate NMSDD wheny = 1.

them as having zero-mean equi-distributed Gaussian sntrie

and later orthonormalize the rows. Two different options ag-  BER with Coarse Symbol Level Timing Synchronization
considered for compressing each symbol within the burst:

i) same measurement matrix (SMM), i.éB, = ®j 1, Concerning the SLS-based detectors, we cha¥gse= 10
0 < k < Q — 1; i) different measurement matrix (DMM)’frames per symbol since in this configuration the timing eiffs
i.e: @k; ®,1,0<k<Q-—1. is acquired with a coarse accuracy at symbol level, and thus,

the value ofN; is expected to affect performance (as will be
) _ o shown in a while). Figs. 7 and 8 quantify the BER in case
B. BER with Ideal Timing Synchronization the SMM and DMM options are adopted, respectively, with
Figs. 3 and 4 depict the BER metric versus thg/N, each figure referring to both SLS-NMSDD and SLS-CMSDD
ratio for the SMM and DMM options, respectively, for theschemes, with block size® = 1,10,15, and compression
compression ratiqu = 0.5, and block sizesp = 1,10,15. ratio x = 0.5. Given that the timing offset of each received
The number of frames per symbol is set A4 = 1 since burstis uniformly distributed over the symbol interval tmne-
for ideal timing synchronization the frame averaging in)(14ply with the condition of asynchronous access to the channel
or (22) is such that higher values are expected not to affestd in line with the assumption that timing synchronizai®n
the performance, as confirmed by Tab. Il. For both figuregerformed at symbol level only, the BER curves are averaged
increasingQ gives reasonably better performance when cormver the uniformly distributed timing offsete [0.17%, 0.97].
pared with@Q = 1, namely the conventional DD, regardlesSimilar to the NMSDD and CMSDD, it is apparent that
of choosing SMM or DMM. Indeed, at the BER d—3, the performance of the SLS detectors at both NR and CS
when moving from@ = 1 to Q = 15 both the NMSDD and sampling improves using a larger block sige whereas the
CMSDD gain around 4 dB, regardless whether we chooB&IM incurs again a loss of around 3 dB with respect to the
SMM or DMM. Given that the channel stays invariant aSMM option. It is worth emphasizing that the advantages of
least within the block interval, i.e(@Q + 1)N;T, the above the SLS-CMSDD are twofold, in the sense that it can relax



the stringent requirements on both the sampling rate and tlkich, in view of the structure of, can be rearranged as
timing accuracy at an affordable performance loss agalest t

more demanding NMSDD and CMSDD schemes. In additio®(¥/a, h) = 2y" (b @ Iyn,)(1n,x1 ©h)

similar to Figs. 5 and 6, it can be proved that @as— 1 —(1y,x1 ®@h) (b Iyy,) ' ¥(b@Iyn,)(1y,x1 @h)
the SLS-CMSDD and SLS-NMSDD meet at the same BER = 2N;57®(b® Iy)h

level. Fig. 9 shows the averaged BER for the SLS-NMSDD ! T T T

and SLS-CMSDD, with SMM( = 10 and different values ~Nh (b@Iy) @ @(b®Iy)h, (52)

of the frame number, namel&:fj» =1,5,10. It can be .argued where® = diag{®o, ®1,--- , 8o} isa(Q+1)M x (Q+1)N
that the performance improves whé¥y decreases given the . N S e

. . . : N block-diagonal matrixy = [y5,y1, - ,¥ol" » With ;. given
corresponding decrease in noise accumulation in the absegg 22)

of frame averaging. Following the GLRT principle, the first step is to maximize

In Figs. 10 and 11, we give the complexity performance Q) overn. Thus, setting the gradient with respecttoto
CSD against NR SD, for varying SNR anpgl respectively. We zero yields

define the complexity metric as 'Complexity Exponent’ which
basjcally is the tqtal number of sum o_pej\rati.ons .consumggvfqu)(b@IN)_QthT[(b@IN)Tq)Tq)(b@IN)] =07,
during a search (since there are no multiplications in ost co (53)
functions). As expected, the CSD has a comparatively highghich leads to the estimate
Complexity Exponent but decreases with increasing SNR
and/or i, thereby indicating a trade-off between performance h = Hy, (54)
and complexity.

Finally, in Fig. 12, we show a BER performance of CMSDdVhere
when using different types of samplers (i.e., measurementyy 2 [(b®IN)T(I>Tq)(b®IN)]*1 Bbely)’. (55)
matrices). Although, we use a Gaussian sub-NR sampler in
general but other samplers can also be used. Fig. 12 showsThen, after plugging (54) into (52), we obtain the cost fiorct
BER performance when the Gaussian, regular and random sub- N o -
NR samplers are used, respectively. We see that the Gaussianl (¥12) = 2N;y" ®(b @ Iy)Hy
sampler shows better performance than the regular sub-NR —N; Hy]" baIy)’®"®(b o Iy)Hy. (56)
sampler especially at lower values @f whereas the random
sub-NR sampler lags behind the other two. Considering that

—N;[Hy]" (be1Iy)"®"®(b® Iy)Hy

VII. CONCLUSIONS = -NiyTeboly) [(bely) e ebely)
x [(beIy)"®"® (b Iy)| Hy

In this paper, we haye pres_ented compressive sampling = —N;57®(b ® Iy)Hy, (57)
based multiple symbol differential detectors using the GLR
approach, both in the presence of full timing informatioafter some algebra and dropping the immaterial factor,
as well as with symbol-level synchronization only. The dg56) can be reformulated as
tectors avoid an explicit reconstruction step and operate o
the compressed samples directly. The detectors perfortrbet Iyla] =y @b eIy)S '(bely) ®"y, (58)
when the measurement matrices are the same for each squjol
within the block but have the ability to work even whenV"€"€
they are different. The detectors do not exist for the case Q@
of orthogonal measurement matrices. Combined with sphere S=bely)e’ebely)= Z ®/®, (59)
decoding, the proposed detectors offer very low complexity k=0

and power efficient detection possibilities. is a positive (semi-)definite matfixdepending only on the

measurement matriceB,, 0 < k < Q. Intensive numerical
simulations have shown that the presencé& dn (58) affects
APPENDIX the differential detection oh only in a weak way, i.e., a
specifica maximizing (58) also (approximately) maximizes
A. Proof of Proposition 2

ST THT <
From the joint compressed model (18), the GLLM given Avial =y ebeInbdely) 27y, (60)
andh can be written as Hence, after rearranging (60) according yoand ®, the
objective function of the CMSDD OP takes the form of (21),
Q(yla,h) = 2y"®(b ® Inn,)(1n,x1 ®h) which concludes the proof.

_ TgT
(b® INNf)(le x1 @ h)|" ¥ 3As detailed in [34], the positive (semi-)definite properfySocan be easily
xW¥[(b®Inn,)(In,x1 @h)], (51) shown through the eigenvalue decomposition (EVD).
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B. Proof of Proposition 4 S1 = (b1 @ Iyn,) @7 ¥ (b @ Iyn,)
From the joint compressed model (35), the GLLM giwgn Q@+1 .
go andg; for the SLS-CMSDD can be put into the form =1y, ® Z D) Py (69)
k=1

o A 5T
Qsrs(vla go,g1) = 25" ¥ [(bo ® Iyw, )go + (b1 @ INJ\:fFf)FJ From (68)-(69), it can be remarked tha): S, and S; are
— [(bo ® Inn,)g0 + (b1 ® Inn,)g1] ¥” independent of botl, andb;; ii) applying the EVD, it can

< [(by @1 g0+ (b1 @I g]. Dbepyovedthas, ands, are positive (semi-)definite matrices;
[(bo @ L, )0 + (b1 @ Ly, e i) it can be shown that the inverses 8f and S; affect
After some algebra, (61) can be rearranged as the maximization of (67) in a weak way (in terms aj.

Hence, collecting together the above results, we are ldft wi
the approximate cost function

a) é }O’T‘i’ [(bo ® INNf)(bO X INNf)T
+(b1 ® INNf)(b1 & INNf)T] \I/T}Df.
(70)

, ) similar to the approach pursued for the CMSDD, (70)
defined ie- S&an be reformulated in the equivalent form given by (38)sthu
concluding the proof.

Qsus(Vla g0, 81) = 25’T‘i’ [(bo ® INNf)gO + (b1 ® INNf)gl}
~2g1 (by @ Iyn, )T ®T ¥ (by @ Inn, g1 O
—gl (by @ Inn, )T ET ¥ (by © Inn,)go Asrs(y
—g{ (b1 @ Iyn,) ¥ ¥(by @ Inn, g1, (62)

wherey and ¥ are the extended measurement vector a'l‘—qnally
block level measurement matrix, respectively, '
tion 1V-B. It is worth observing in (62) that
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