
Uplink Linear Receivers for Multi-cell Multiuser
MIMO with Pilot Contamination: Large System

Analysis
Narayanan Krishnan, Roy D. Yates, Narayan B. Mandayam

WINLAB; Rutgers, The State University of New Jersey
E-mail: narayank, ryates, narayan @winlab.rutgers.edu

Abstract—Base stations with a large number of transmit
antennas have the potential to serve a large number of users
at high rates. However, the receiver processing in the uplink
relies on channel estimates which are known to suffer from
pilot interference. In this work, making use of the similarity
of the uplink received signal in CDMA with that of a multi-cell
multi-antenna system, we perform a large system analysis when
the receiver employs an MMSE filter with a pilot contaminated
estimate. We assume a Rayleigh fading channel with different
received powers from users. We find the asymptotic Signal
to Interference plus Noise Ratio (SINR) as the number of
antennas and number of users per base station grow large while
maintaining a fixed ratio. Through the SINR expression we
explore the scenario where the number of users being served
are comparable to the number of antennas at the base station.
The SINR explicitly captures the effect of pilot contamination and
is found to be the same as that employing a matched filter with
a pilot contaminated estimate. We also find the exact expression
for the interference suppression obtained using an MMSE filter
which is an important factor when there are significant number
of users in the system as compared to the number of antennas. In
a typical set up, in terms of the five percentile SINR, the MMSE
filter is shown to provide significant gains over matched filtering
and is within 5 dB of MMSE filter with perfect channel estimate.
Simulation results for achievable rates are close to large system
limits for even a 10-antenna base station with 3 or more users
per cell.

I. INTRODUCTION

Cellular systems with large number of base station antennas
have been found to be advantageous in mitigating the fading
effects of the channel [3] while increasing system capacity. It
is shown in [3] that in an infinite antenna regime, and in a
bandwidth of 20 MHz, a time division duplexing system has
the potential to serve 40 single antenna users with an average
throughput of 17 Mbps per user. However, any advantages
offered by multiple antennas at the base station can be utilized
only by gaining the channel knowledge between the base
station and all the users. This requires training data to be
sent from the users. In a typical system the time-frequency
resources are divided into Physical Resource Blocks (PRBs)
of coherence-time coherence-bandwidth product. For each
user, it is necessary and sufficient to estimate the channel in
every PRB. Thus, some resources (time slots or equivalently
frequency channels) are used for channel estimation and the
rest are used for transmission in uplink or downlink. However,
in [2], it has been shown that the number of pilot symbols

required is proportional to the total number of users in the
system. Hence, as the system scales with the number of
users, the dedicated training symbols may take up a significant
portion of the PRB. As this is undesirable, only a part of the
coherence time is utilized to learn the channel. In this case, the
pilot sequences in different cells overlap over time-frequency
resources and, as a consequence, the channel estimates are
corrupted. This pilot interference is found to be a limiting
factor as we increase the number of antennas [5].

It is shown in [3] that in the limit of large number of
antennas, the SINR using a matched filter receiver is limited
by interference power due to pilot contamination. While the
result assumes a regime with finite number of users, we can
also envision a regime where the number of users may be
comparable to the number of antennas such as a system with
50 antenna base stations serving 50 users simultaneously. In
this work, we do a large system analysis of uplink multi-cell,
multi-antenna system when the receiver employs an MMSE
filter to decode the received signal. We investigate the SINR
in a regime where the number of users per cell is comparable
to the number of antennas at the base station. The MMSE filter
which is designed to maximize the SINR is evaluated when we
have a pilot corrupted channel estimate. We let the number of
antennas and the number of users per base station grow large
simultaneously while maintaining a fixed users/antennas ratio
α and observe the SINR for the above two cases as a function
of α. To do so we make use of the similarity of the uplink
received signal in a MIMO system to that of the received
signal in a CDMA system [11].

Much of the research in large MIMO systems with Rayleigh
channel can be borrowed from the considerable literature for
CDMA systems. The channel vector with i.i.d entries for the
large MIMO system is analogous to the signature sequence in
a CDMA system so that antennas contribute to the processing
gain. For example, the uplink analysis of an asymptotic regime
[11] with both users and signature sequences tending to infinity
translates directly to results in a large MIMO system when
signatures are replaced by antennas. In both systems it is
observed that the asymptotic analysis is a good approximation
for practical number of antennas (signatures) and users. While
in a CDMA system we assume that the signature sequences
are known, there are practical limitations in learning a mobile
radio multi-antenna channel (antenna signatures) in a multi-
cellular system, as shown in [3]. In this work we explore this
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limitation when users simultaneously estimate the channel and
the estimates are subject to pilot contamination. We focus our
results in the regime α > 0.1 as opposed to recent works such
as [3], [8], [14], [16] which are found to be approximately in
the regime of 0 ≤ α < 0.1. Further, we compare the results
of the asymptotic SINR expression so obtained with that of
the performance of the matched filter.

A. Related Work

A similar large system analysis in the context of a Network-
MIMO architecture was presented in [20]. The authors con-
cluded that high spectral efficiencies can be realized even with
50 antennas in their architecture, paralleling the existing liter-
ature results in CDMA systems. In [16], the results obtained
suggest to scale the transmission power by the square root
of the number of base station antennas, as opposed to scaling
by the number of antennas. This assumes that the transmission
power during training and data are same. In general we take the
approach in [1] where the transmission power can be different
for the training and data symbols during a coherence time.
Joint channel estimation and multi-user detection was consid-
ered in [25] for a single cell multi-user MIMO DS-CDMA
systems. For fixed number of transmit antennas per user and
receive antennas per base station, the authors employ replica
method for CDMA large system analysis in order to obtain
lower bounds on achievable rate for different feedback based
receiver strategies. Mathematically, our model can be viewed
as an extension of the linear receiver scheme considered in
their model to a multi-cell scenario.

In the MU-MIMO literature the asymptotic SINR is also
called the “deterministic equivalent” of the SINR. Recent
work in [10] finds the deterministic equivalent of SINR with
distributed sets of correlated antennas in the uplink. Authors in
[14], have done a considerable work in providing the determin-
istic equivalent for beamforming/maximum ratio combining
and regularized zero forcing/MMSE in the downlink/uplink
with a generalized channel model taking into account the
effect of pilot contaminated channel estimate. They find the
number of antennas required to match a fixed percentage of the
rate of an infinite antenna regime. Also, the number of extra
of antennas required for the matched filter to equal the rate
obtained out of the MMSE filter is shown, implicitly showing
the interference suppression capability of MMSE filter. We
derive in our work the exact amount by which the MMSE
filter suppresses the interference for a Rayleigh fading channel
and provide some fresh engineering insights in the regime
with α > 0.1. Additionally, we derive those results under a
stochastic rather than an deterministic received power model
as presented in [14, section 4]. A summary of the results is
given in section I-B.

There have been significant attempts to mitigate pilot con-
tamination in the recent works in “Massive MIMO” systems
which are, however, specific to the case when antennas far
exceed the number of users served i.e. α < 0.1. In [8],
time shifted pilot schemes were introduced to reduce pilot
contamination. There, simultaneous transmission of pilots was
avoided by scheduling only a subset of base stations to

transmit uplink pilots. Simultaneously, other base stations
transmit in the downlink to their users and it is shown that
the interference created by these downlink transmission can be
cancelled with a large number of antennas at the base station
estimating the channel. Pilot contamination is now restricted
to base stations in a group that simultaneously transmit uplink
pilots. However, this requires that the number of antennas far
exceed the number of users. In their recent work, authors in
[18], [19] show that pilot contamination can be avoided using
subspace based channel estimation techniques. They show that
the eigenvalues corresponding to the other-cell interference
subspace can be separated from the in-cell users in a regime
where α is below a threshold. Their analyses assume an
ideal power controlled situation with strict user scheduling
and antennas far exceeding the number of users. By contrast,
we examine the operating regime in which 0.1 < α and
determine the effect of pilot contamination on interference and
interference suppression capability of MMSE receiver. Also,
even with power control, pilot contamination is prevalent when
linear MMSE channel estimation is employed.

B. Contributions of our Work

We develop a large system asymptotic expression for the
SINR in a Rayleigh fading environment when using an
matched filter and MMSE filter with a pilot contaminated
channel estimate for a arbitrary user in the system. The
SINR expression is dependent on the number of users and
the number of antennas only through their ratio α. If P̃signal,
P̃contam, P̃inter(c) and σ2 represent the signal power, inter-
ference power due to pilot contaminated estimate, the filter
dependent interference power for a linear filter c and the
noise variance respectively, we show that the expression for
asymptotic SINR for both matched filter and MMSE filter can
be generalized to,

SINR(c) =
P̃signal

σ2 + P̃contam +α P̃inter(c)
. (1)

If ĉMF and ĉMMSE denote the matched filter and the MMSE
filter with a pilot contaminated estimate, then the following
result summarizes our contribution:

• From the expression for SINR it is derived that the total
interference is the sum of two terms. The first term
given by P̃contam is due to employing pilot contaminated
channel estimate and the second is the filter dependent
interference term α P̃inter(c) due to comparable K and
M . Also, the the filter dependent term contributes to
interference only when α 6= 0.

• We show that P̃inter(ĉ
MF) − P̃inter(ĉ

MMSE) = C(α) ≥ 0,
where C(α) is called the interference suppression term.
We find a closed form expression for C(α) showing the
interference suppression capability of the MMSE filter
when α > 0.

• It is derived that P̃contam(ĉMF) = P̃contam(ĉMMSE) =
P̃contam. The contribution of the pilot contaminated chan-
nel estimate to the pilot interference given by P̃contam is
same for both matched filter and MMSE filter.
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• Although the filter ĉMMSE depends on the pilot contami-
nated channel estimate of all the K users in a cell to its
base station, the P̃contam is independent of K or M or α
for all values of α > 0 and therefore is the same as what
was found at α = 0.

As per the authors’ knowledge, these contributions have not
been reported yet in the literature.

We validate the theoretical results with simulations. We
show that even a system with 50 base station antennas each
serving some number of users sufficiently qualifies for the term
large system as the users’ SINRs are close to the asymptotic
limit. Simulation results for achievable rates are close to theory
for even a 10-antenna base station with 3 or more users per
cell. The following summarizes the key contributions through
simulation:
• The theoretical results are derived assuming that the same

set of in-cell orthogonal training signals are repeated
across the cells. However, we also show through simu-
lations that in the case of independently generated but
non-orthogonal training signals(with orthogonal in-cell
training), the resulting SINR performance is close to the
asymptotic limit.

• In an example seven cell set up, the MMSE filter performs
the best in the absence of pilot contamination. We also
show an intermediate regime where the MMSE filter with
pilot contamination obtains around 7 dB gain over the
matched filter with a pilot contaminated estimate.

• In terms of the five percentile SINR, the MMSE re-
ceiver is shown to provide significant gains over matched
filtering. Also in most of the operating points α, the
performance of the MMSE receiver with pilot estimate
is within 5 dB of the MMSE filter with perfect estimate.

• We also show that the achievable rates are within a
1 bit/symbol of the MMSE filter with perfect estimate
when the number of users are comparable to the number
of antennas.

II. SYSTEM MODEL

We consider a system similar to that in [3] with B non-
cooperating base stations and K users per base station. We
assume that all KB users in the system are allocated the
same time-frequency resource by a scheduler. Also, each base
station is equipped with M antennas. The channel vector
representing the small scale fading between user k in cell
j and the antennas in base station l is given by a M × 1

vector h(l)
jk . The entries of h(l)

jk are assumed to be independent
zero mean i.i.d Gaussian random variables with variance 1/M
corresponding to the scaling of transmit power by the number
of receiver antennas at the base station. This corresponds to an
ideal and favourable propagation medium with rich scattering.
A large scale fading coefficient, which represents the power
attenuation due to distance and effects of shadowing between
base station l and kth user in jth cell is given by β

(l)
jk . We

assume that β(l)
jk < 1 as we do not expect the received power

to be greater than what is transmitted. This is constant across
the antennas of the cell l. Accordingly, overall channel vector
is given by

√
β

(l)
jkh

(l)
jk .

A. Uplink Transmission

We assume that all users’ transmission are perfectly syn-
chronized. Also, while a user’s transmission is intended for
its own base station, other base stations also hear the trans-
mission. Defining qjk as the symbol transmitted by user k in
cell j, w(l) as the M×1 noise vector with zero mean circularly
symmetric Gaussian entries such that E[w(l)w(l)H ] = σ2I, the
received signal at base station l is given by,

y(l) =

B∑
j=1

K∑
k=1

√
β

(l)
jkh

(l)
jk qjk + w(l). (2)

Here, the Signal to Noise Ratio (SNR) of the received signal
per receive dimension is given by 1/σ2M . In order to utilize
the advantages offered by multiple antennas, the base station
has to have an estimate of the channel to all users prior to
detection of uplink signals. In a system employing an OFDM
physical layer with time-frequency resources, we can divide
the resources into physical resource blocks (PRBs) contained
in the coherence-time coherence-bandwidth product. Although
the channel vector h(l)

jk of each user has to be relearned by the
base station at the start of PRB, once learnt for a subcarrier
it remains the same for all subcarriers within that PRB. Let
the number of coherent symbols be given by Tc and coherent
subcarriers be Nc. We define a Resource Element(RE) to be a
subcarrier at a symbol time. Therefore, if we fix the number
of resource elements used for estimation to be T such that
T ≤ TcNc, a total of T user’s channel can be learnt. This
observation was noted in [3]. We would like to point out that
it is relevant here as the number of users that can be supported
depends on total available coherent resource elements NcTc.
Depending on its value the number of users per cell K that
could be supported can be comparable to M . We define the
load on the system as α = K/M throughout this paper. For
example, in a single cell set up even in very conservative
scenarios of short coherence time with Tc = 7 symbols and
frequency selective channel with Nc = 14, around 49 users
per cell can be supported at α = 0.5 if half the resources
are used for channel estimation. This is also illustrated in
figure 1. Therefore, it is worthwhile to investigate not only
the M � K scenario but also the case when M and K large
and comparable.

B. Limitations in gaining Channel Knowledge

During each coherence time, users in a cell spend some pilot
symbol times in each PRB for channel estimation at the base
station and then data transmission ensues until the end of the
block. At base station l, the number of channel vectors h

(l)
jk

that needs to be learnt is equal to the number of users in the
system which is KB. In order to accomplish that, the number
of pilots required must at least be KB symbol times in order
for the pilot sequences to be orthogonal across the users in the
system. However, such a system will not be scalable as there
exists some large B for which the product KB will occupy
all the coherent resource elements. In the example illustrated
in figure 1 a 7 cell system with 14 users per cell would end up
using all the coherent resource elements if orthogonal channel
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training is provided for all the users in the system. This is
clearly undesirable as pilot training is consuming a significant
part of PRB.

In one of the approaches taken in [3], the base station is
concerned with only knowing the channel to its own K users
and spends only K resource elements for channel estimation
instead of KB. Every base station similarly spends K resource
elements for channel estimation for its K users. The pilot
signals are processed and an MMSE based channel estimate
of the channel is formed. MMSE channel estimation is the
commonly employed in multiuser MIMO systems [1], [4],
[15]. Let Ψjk ∈ CK×1 denote the training sequence of user k
in cell j of duration K symbols. Also assume that the in-cell
training sequences are orthogonal i.e ΨH

jkΨjn = 0 if k 6= n
and 1 otherwise. We assume that the training sequences across
the cells are independently generated and hence in general
ΨH
jkΨin 6= 0 if i 6= j and for all k and n. We assume a constant

average transmit SNR per symbol during a coherence time. If
ρd is the transmit SNR of data symbol and ρavg the average
transmit SNR per symbol then with K resource elements for
channel estimation we have,

ρavg =
ρpK + ρd(TcNc −K)

TcNc
. (3)

If the transmit power of data symbols is scaled by the number
of antennas then ρd = 1/σ2M . Therefore, ρd → 0 for
large M and ρp ≈ ρavgTcNc/K. Therefore, in the constant
average transmit SNR per symbol model the pilot transmission
is not scaled by M which is the number of antennas at
the base station. With N ∈ CM×K denoting the additive
complex Gaussian noise matrix with i.i.d entries with variance
1/M , and ρp denoting the SNR during pilot transmission, the
received signal at base station l across the K training resources
is given by,

Y(l) =

B∑
j=1

K∑
k=1

√
β

(l)
jkh

(l)
jkΨH

jk +
N(l)

√
ρp
. (4)

Since the transmission power of pilot symbols are not scaled
by the number of antennas we assume that noise variance 1/M
for the entries of the N(l). This is required because we have
defined the entries of h

(l)
jk to be complex i.i.d with variance

1/M .
Without loss of generality we assume that the receiving base

station is indexed l = 1 throughout this paper. Consequently,
to simplify the exposition we drop the superscript (.)(l) from
terms in equation (4) and denote Y(1) , Y, N(1) , N,
β

(1)
jk , βjk, h(1)

jk , hjk. Hence, βjk and hjk represent the
large scale fading and the small scale channel vector between
the user k in cell j to cell 1. Also in equation (2), if l = 1
then y(1) , y and w(1) , w. The MMSE channel estimate
for user k in the first cell is then given by,

ĥ1k = Y

 I

ρp
+

B∑
j=1

K∑
k=1

βjkΨjkΨH
jk

−1

Ψ1k

√
β1k. (5)

Here, ĥ1k

(
, ĥ

(1)
1k

)
is the channel estimate of the user k

in cell 1 to the base station 1. Although it is not common

in practice, we assume as in [3]–[5] that the in-cell pilots
are repeated across the cells, in order to get some analytic
insight; this implies that Ψjk = Ψik for all k. The MMSE
channel estimate [23] with pilot contamination when the in-
cell orthogonal pilots [4] are repeated across the cells is given
by,

ĥ1k =

√
β1k

β(k) + 1
ρp

 B∑
j=1

√
βjkhjk +

NΨ1k√
ρp

 (6)

where, β(k) =
∑B
j=1 βjk and if h1k = ĥ1k + h̃1k, then h̃1k

is zero mean with covariance

E
[
h̃1kh̃

H
1k

]
=

1

M

(∑B
j=2 βjk + 1/ρp

β(k) + 1/ρp

)
I.

This estimate is used to design linear detectors to filter the
received signal. Later we show that even with actual training
given by equation (5) the SINRs are very close to when in-cell
pilots are reused across the cells. In a power controlled system
with β1k = 1, for all k = 1, . . .K, if the target average SNR
is ρavg = 20 dB, then in the example in figure 1, the SNR of
pilot transmission is given by ρp ≈ ρavgTc = 28 dB. As the
above example shows, even with a very conservative coherence
time Tc, the SNR of pilot transmission is high enough such
that

∑B
j=2 βjk � 1/ρp unless all the other cell received

powers of interferers contributing to pilot contamination are
approximately 28 dB below the in-cell user. As we will see in
simulations, having other-cell received powers 30 dB below
in-cell corresponds to a situation in which pilot contamination
is insignificant. In general since ρp ≈ ρavgTcNc/K, we
can always design a system based on fixing a percentage
of resource elements in a PRB for training such that noise
in the channel estimate is not the significant contributor.
Therefore, assuming we have high enough pilot power, we
ignore the additive noise affecting the channel estimation in
order to focus our results on the pilot contamination problem.
Therefore, with ρp →∞ the channel estimate is given by,

ĥ1k =

√
β1k

β(k)

B∑
j=1

√
βjkhjk. (7)

C. Linear Receivers

We assume that the received signal is projected onto a linear
filter c

(l)
lk ∈ CM×1 for the kth user in the lth cell. Since

the SINR analysis is identical for all users in the system we
focus only on user k = 1 in base station indexed l = 1.
We also drop the superscript (.)(1) for notational convenience.
Consequently, if coherent detection is employed then c = ĥ11.
Alternatively, using the channel estimates for all users of the
first cell, the MMSE filter for user 1 in the cell 1 is defined
as arg minc E

[
|q11 − cHy|2|ĥ1k∀k

]
. Defining

z =
B∑
j=2

K∑
k=1

√
βjkhjkqjk, (8)
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RE 

Fig. 1. The PRB is composed of 98 orthogonal Resource Elements(RE) and
12 RE for training. The first user in the first base station transmits pilots ψ11

in the first RE and remain silent for the rest of training duration. Similarly,
other users in the first cell transmit pilots during the RE allocated for its
training. If orthogonal pilots are allocated for all the users in the system,
a typical 7 cell system 14 users per cell would consume all the coherent
RE without any time for data transmission. In our model we let the training
symbols of other cell users ψjk for all j and k simultaneously during ψ1k

leading to pilot contamination problem.

which represents the other cell interference and h1k = ĥ1k +
h̃1k the received signal can be rewritten as,

y =

K∑
k=1

√
β1kĥ1kq1k +

K∑
k=1

√
β1k,h̃1kq1k + z + w (9)

where, h̃1k is the result of pilot contamination. The MMSE
filter is then given by the expression,

ĉ =
(
E[yyH |ĥ1k∀k]

)−1

E[yq∗11|ĥ1k∀k]

= S−1
√
β11ĥ11, (10)

where,

S =

(
K∑
k=2

β1kĥ1kĥ
H
1k + (θ1 + θ2 + σ2)I

)
, (11)

and,

θ1I = E
[
zzH

]
=

B∑
j=2

[
1

M

K∑
k=1

βjk

]
I, (12)

θ2I =

K∑
k=1

β1kE[h̃1kh̃
H
1k]

=

B∑
j=2

[
1

M

K∑
k=1

βjk

(
β1k

β(k)

)]
I. (13)

As seen from the expression for the filter in equation (10), the
lack of channel knowledge of other-cell users and only a partial
channel knowledge of in-cell users shows up as effective
noise terms θ1 and θ2 respectively. In order to obtain the
expression we also use the properties of the MMSE estimate

that E
[
ĥh̃H

]
= 0. In an ideal situation, the channel estimation

incurs no error and ĥ1k = h1k for all k, then

c* =

(
K∑
k=1

β1kh1kh
H
1k + (θ1 + σ2)I

)−1√
β11h11 (14)

This is an optimistic scenario which will serve as a benchmark
for the performance of the MMSE filter with pilot contamina-
tion.

III. MMSE FILTER WITH PILOT CONTAMINATED
ESTIMATE

After processing the received signal using the linear filter
c, let Psignal, Pnoise(c), Pcontam(c), Pinter(c) denote the signal
power, noise power, pilot interference power and interference
power respectively as a function of the filter c. It follows that,

Psignal(c) = β11c
Hh11h

H
11c (15)

Pnoise(c) = σ2cHc (16)

Pcontam(c) = cH

 B∑
j=2

βj1hj1h
H
j1

 c (17)

Pinter(c) = cH

 B∑
j=1

K∑
k=2

βjkhjkh
H
jk

 c (18)

The received SINR is then given by the expression,

SINR =
Psignal(c)

Pnoise(c) + Pcontam(c) + Pinter(c)
(19)

The motivation to define Pcontam(c) as in equation (17) is
because the user 1 of other cells is sending pilots in the same
resource element as the user 1 of the first base station. Hence
user 1 for j = 2, . . . B contribute to the interference in a
different way as compared to the rest of the users in the system.
This interference contribution is termed as pilot interference
and is due to pilot contaminated channel estimate being used
to design linear filters. As per the definition the Pcontam(c) is
dependent on the linear filter c and could be different for ĥ11

and ĉ.
Define βj as the random variable representing the large

scale fading gain from an arbitrary user in the jth cell.
Therefore, βjk can be interpreted as the realization of βj for
the user k and let β =

∑B
i=1 βi. Next, we state the main

theorem of the paper which gives the expression of SINR for
a large system when an MMSE filter with a pilot contaminated
estimate is used to decode the received signal.

Theorem 1. As M,K → ∞, with K/M = α, the SINR at
the output of filter ĉ given in equation (10) converges almost
surely to

ŜINR =

β11

1+(
∑B

j=2 βj1)/β11

σ2 +
(
∑B

j=2 β
2
j1)/β11

1+(
∑B

j=2 βj1)/β11
+ α(E[β]− C(α))

(20)

where, the constants C(α), η1, η2 are given by

C(α) = E


(

β2
1

β

)2

η1

1 +
β2

1

β η1

+
η2

η1
E

 β2
1

β

(∑B
j=2

β2
j

β

)
1 +

β2
1

β η1


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+
η2

η1
E

 β2
1

β

(∑B
j=2

β2
j

β

)
(

1 +
β2

1

β η1

)2

 , (21)

η1 =

σ2 + αE[β]− αE


(

β2
1

β

)2

η1

1 +
β2
1

β η1



−1

, (22)

η2 =

η−2
1 − αE


 β2

1

β

1 +
β2

1

β η1

2


−1

. (23)

Proof: Proof given in Appendix B.
We will see in a large system that Theorem 1 characterizes

the effect of pilot interference power and interference aver-
aging. Specifically, in order to put Theorem 1 into proper
perspective we state two propositions which are the results
for SINR of a large system with MMSE filter employing a
perfect estimate and a matched filter with pilot contaminated
estimate respectively.

Proposition 2. As M,K →∞, with K/M = α, the SINR at
the output of filter c* given in equation (14) converges almost
surely to

SINR* = β11η1 =
β11

σ2 + α
∑N
j=2 E[βj ] + αE

[
β1

1+β1 η
∗
1

] (24)

where, η∗1 =
(
σ2 + α

∑B
j=2 E[βj ] + αE

[
β1

1+β1 η
∗
1

])−1

.

Proof: We state the proposition without proof as it is
straightforward to obtain it from the large system analysis
techniques used for CDMA systems in [11], [13].

SINR* is the SINR with MMSE filtering with a perfect
channel estimate to its own users. This is best case scenario
as compared to the MMSE with a channel estimate. We do
not expect the SINR of MMSE filter with estimate to exceed
this SINR*.

Proposition 3. As M,K →∞, with K/M = α, the SINR at
the output of filter c = ĥ11 converges almost surely to

SINR =

β11

1+(
∑B

j=2 βj1)/β11

σ2 +

[
(
∑B

j=2 β
2
j1)/β11

1+(
∑B

j=2 βj1)/β11
+ αE[β]

] . (25)

Proof: Proof given in Appendix C.
It is interesting to see that the expression for SINR converges

to a similar expression to the result in matched filtering ŜINR.
If P̃signal = β2

11/
∑B
j=1 βj1, P̃contam =

∑B
j=2 β

2
j1/
∑B
j=1 βj1

and

P̃inter(c) =

{
E[β], c = ĥ11

E[β]− C(α), c = ĉ
(26)

then we can define the expression for the asymptotic SINR
with matched filtering and MMSE filtering with pilot contam-
inated channel estimate as,

SINR(c) =
P̃signal

σ2 + P̃contam +α P̃inter(c)
. (27)

Here, P̃signal is the effective signal power, P̃contam is termed
as the pilot interference power and is the consequence of
employing pilot contaminated channel estimate. In the same
lines as in [11], the filter dependent term P̃inter(c) is called
the interference averaging term and is relevant when α 6= 0.
Although, M →∞ implying that the channel between the user
1 is asymptotically orthogonal to channel between any other
users in the system, because K → ∞ with K/M = α, the
contribution to sum interference from all the users is non-zero
and is given by α P̃inter(c) for a linear filter c. If ν1 =

(
β11

β(1)

)2

,
then the following equations shows the relationships between
the P̃signal and P̃contam to that of definitions in equation (15)
and (17):

Psignal(ĥ11)
√
ν1

=
Psignal(ĉ)

P̃signal η2
1

= P̃signal (28)

Pcontam(ĥ11)
√
ν1

=
Pcontam(ĉ)

P̃signal η2
1

= P̃contam (29)

It is seen that for both the filters ĥ11 and ĉ, their respective sig-
nal powers given by Psignal(ĥ11) and Psignal(ĉ) are just scaled
versions of P̃signal. Similarly, Pcontam(ĥ11) and Pcontam(ĉ) are
the scaled versions of P̃contam. The following can be concluded
for both matched filter as well as MMSE filter with a pilot
contaminated estimate:
• The contribution of the pilot contaminated channel esti-

mate to interference is given by P̃contam is same for both
matched filter and MMSE filter.

• The contribution of pilot interference is independent of
α and is equal to P̃contam for all values of α.

As trivial as the above comments may seem it is not obvious
for the filter ĉ from the definition of filter dependent pilot
interference power Pcontam in equation (17). This is because
the matrix S in filter ĉ is dependent upon the channel of
all the users in the system through the pilot contaminated
channel estimate ĥ1k for all k = 1, . . . ,K. However as we
see in the appendix B, the contribution of the matrix S can be
summed up into the constant η1 for a large system. Further,
the following relations can also be obtained on the interference
averaging term P̃inter(c) when c = ĥ11 and c = ĉ:

Pnoise(ĉ) + Pinter(ĉ)

P̃signal η2
1

= σ2 + α P̃inter(ĉ), (30)

Pnoise(ĥ11) + Pinter(ĥ11)
√
ν1

= σ2 + α P̃inter(ĥ11). (31)

We have shown that P̃inter(ĥ11) − P̃inter(ĉ) = C(α) ≥ 0
implying that interference suppression of amount C(α) can be
always achieved. The amount of interference suppression C(α)
is of course depended on α through equation (21).

The SINR expression in the limit of infinite antennas but
finite number of users per cell are obtained when we put α = 0
in equations (20) and (25) or in (27). This corresponds to a
similar expression as for downlink SINR in [5, Equation 16].
Since the SNR of the uplink received signal in equation (2)
is given by SNR = 1/σ2, it is seen that the SINR expression
so obtained is limited by the pilot interference powers at high
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SNRs and we obtain [3, Equation 13]. This need not necessar-
ily be achieved by transmitting at high power per symbol or
equivalently by having σ2 → 0. Had the transmission power
of data symbols be not scaled by the number of antennas, the
SNR of the received signal would be linearly increasing in M
and when α = 0 we again obtain [3, Equation 13].

The deterministic equivalent for SINR in Rayleigh fading
for MMSE filter and the corresponding expression C(α) rep-
resenting the interference suppression power are our main
contribution of this paper. The terms E[β] and C(α) can be
computed offline for a system with the knowledge of large
scale fading distribution. It can also be estimated without the
knowledge of the large scale fading distribution from user
realizations over time. Depending on the value of E[β]−C(α)
and the operating point α a decision can be made whether to
use an MMSE filter or an matched filter. As we will see in
the next section, the interference suppression obtained with
an MMSE filter is necessary in increasing the outage SINR
and achievable rate of the system, when there are considerable
number of users as represented by the ratio α > 0.1. This is as
opposed to the regime in which antennas far outnumber users.
In this operating point α ≈ 0, and then MMSE filter itself may
not be necessary as pilot signals are the main contributor to
interference. This regime with α ≈ 0 has been well explored
in recent studies in [3], [8], [14], [16]. As mentioned earlier
most of our focus for performance analysis is on the regime
α > 0.1 although the results are perfectly valid for any α ≥ 0.
Across the users in the system the SINR is a random variable
by virtue of different received powers of both the signal and
the interferers contributing to pilot contamination. Also, the
pilot interference power is random by virtue of the choice of
the interferers contributing to pilot contamination.

IV. PERFORMANCE ANALYSIS

For the numerical evaluation, we consider hexagonal cells
with users uniformly distributed in each of the cells, as shown
in Fig. 2. We consider a scenario where 6 closest cells are
interfering with the center cell. We assume β1k = 1 so that
received powers from all the users within a cell are unity. We
consider a high SNR of 20 dB and the received powers from
all the users in other cells are assumed to take a constant
value of βjk = 0.001, or 0.01, or 0.1 for j 6= 1. These
represent the contribution of other cell interference for three
different idealized scenarios. The interference from other cells
is strong as βjk is close to 1. We consider the SINR for the
user one in the center cell. Figs. 3, 4 plot the asymptotic SINR
of the MMSE with a pilot corrupted estimate given by ŜINR
for the case of different received powers. Although in theory
the effect for small scale fading vanishes only with infinite
number of antennas it is seen in Fig. 4 that even for a 50-
antenna base station the actual SINR realizations obtained
through simulations are very near to the asymptotic limit.
We also plot SINR and SINR* as baseline for performance
comparisons. In Fig. 3, it is seen that SINR* is already affected
by other cell interference due βjk = 0.1 for j 6= 1. Hence, the
ŜINR is not expected to perform better than that and there is
further 4 dB loss due to pilot contamination. However, in the

v 

v 

v 

v 

v 

v 

v 

Fig. 2. In the favourable case, the sum of the received powers of interferers
contributing to pilot contamination are very less as compared to that of the
desired user. User 1 in the center cell represents such a scenario. The SINR
with a pilot corrupted estimate is then comparable to that of perfect estimate.
On the other hand for user 2 in the center cell, the pilot interferers received
powers are comparable to that of the desired user and represents the worst
case scenarios.

other extreme case when the other cell βjk’s are close to zero,
the channel estimate is already better and the ŜINR performs
close to SINR*. Useful gains employing an MMSE filter with
pilot contaminated channel estimate can be obtained when the
other cell βjk’s are neither close to zero or close to unity. In
this example when the βjk = 0.01 for j 6= 1, around 7 dB
gains are possible in comparison with matched filter with pilot
estimate when operating at α = 0.5 as seen from fig. 4. While
there is a loss of 3 dB with respect to the perfect MMSE due
nature of channel estimate, the reader is reminded that this is a
worse case loss. The curves closes in as we decrease α which
represents the M � K scenario and also when α increases
as in that case the limitation is now the averaged interference
term.

In fig. 5 we plot the achievable sum rate for users in the
first cell with each users SNR being 20 dB. We assume large
enough coherence time so that the training time need not be
taken into account. This is because our focus is on the sum
rate achievable with variation in α. However, if necessary the
sum rate can be easily adjusted based on training overhead
when coherence time is a significant factor. We fix the number
of antennas and calculate the sum rate with varying α as
αM log2(1 + ŜINR). The three curves corresponds to the
received powers of all users from other cells being either
βjk = 0.001, or 0.01, or 0.1 for j 6= 1 assuming unit received
power from the in-cell users. Sum rates of over 20 bits/symbol
are achieved for users when the other cell received powers
are below 10 dB of the in-cell received powers. Also, the
simulation with 50-antenna base station is seen to match the
theoretical rates predicted for this set up. The interference
limited system has the flexibility to serve a large number of
users at low SINR or a few number of users at a high SINR
depending on the operating point α. The plot suggest a optimal
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Fig. 3. The plot shows the asymptotic SINR of the first user in the first
cell when MMSE filter with pilot contaminated estimate is used to decode
the received signal along with the baseline comparison criterion of MMSE
with a perfect estimate and matched filter with a pilot contaminated estimate
for an idealized seven cell set up. It is seen that when the other cell received
power is just 10 dB lower than that in cell users the MMSE filter with pilot
contaminated estimate performs close to its corresponding matched filter. This
is because the limitation is now the other cell interference which MMSE filter
is not designed to suppress. Hence, we do not expect the MMSE filter with
pilot estimate to be useful when βj > 0.1
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Fig. 4. The plot shows the asymptotic SINR of the first user in the first cell
when MMSE filter with pilot contaminated estimate is used to decode along
with the baseline comparison criterion of MMSE with a perfect estimate and
matched filter with a pilot contaminated estimate for an idealized seven cell
set up. In this case when the other cell received powers is 20 dB lower than
that of in-cell received powers significant gains are obtained as compared to
a matched filter with pilot contaminated estimate

operating point α for which the sum rate is maximum. For
example when βj = 0.01 and α = 0.8 gives a sum rate of
around 88 bits/symbol. Larger α causes the ŜINR to be lower
so that the α term outside the log2 is ineffective to increase
sum rate while a lower α implies that less users are served and
hence lesser sum rate. When the other-cell received powers are
large, the curve flattens and the sum rate is constant for most
of the operating points α.
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Fig. 5. The plot shows the sum rate of the users in first cell for different
operating points of α corresponding to a SNR of 20 dB. The three curves
correspond to three different received powers from other cell users. The
markers correspond to simulation with 50-antenna base stations and match
the theoretical predictions.

In fig. 6, we plot the difference of achievable rate per user
between MMSE filter with a perfect estimate and MMSE filter
with a pilot estimate for different values of other cell interfer-
ence power. We do not take into account the training overhead
for comparison assuming we obtain the perfect estimate with
the same training time. We limit ourselves to βj < 0.1 since
ŜINR is already close to SINR otherwise. Also in βj > 0.1
regime, there is significant other cell interference which both
the perfect estimate based and the pilot based MMSE filter
are not designed to suppress, thereby affecting the achievable
rates. We plot five different curves corresponding to system
operating points α. As seen earlier the total interference with
filter ĉ is given by P̃contam +α P̃inter(ĉ) and with c* the in-
terference power is given by α

(∑B
j=2 E[βj ] + E

[
β1

1+β1 η
∗
1

])
.

When α is small then the significant loss of rate with ĉ is
due to P̃contam as the filter dependent interference power for
both filters in negligible. On the hand, when α is large α P̃inter

dominates the P̃contam and since both the filter are affected by
Pinter(c) the rate difference is small. Although when α = 1
there is only a 0.4 bits/symbol difference the sum rate will be
affected differently. For example in a 50-antenna base station
with 50 users at βj = 0.1 this could mean that sum rate with
pilot contaminated MMSE filter is 20 bits/symbol lower than
that perfect MMSE filter. On the other hand when α = 0.2,
the sum rate difference is 12 bits/symbol.

A. Effect of Pilot Contamination

Through a couple of typical possible realizations of user
positions, we explain the effect of pilot interference in ŜINR,
SINR and compare it with that of the SINR with a perfect
estimate. For illustration, in Fig. 2 consider only distance based
pathloss in large scale fading although the result holds when
shadowing is also present. This is applicable to both matched
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Fig. 6. The plot shows the loss of rate due to pilot contamination when an
MMSE filter with pilot contaminated estimate is used to decode the received
signal as compared to perfect estimate MMSE filter. The different curves
correspond to different values of α from 0.2 to 1. It is seen that smaller
the α the MMSE filter with pilot contaminated estimate performs worse than
the ideal MMSE filter. However, the sum rate for users per base station is
different.

filter and MMSE filter. Consider the first scenario when∑B
j=2 βj1

β11
� 1⇒

∑B
j=2 β

2
j1

β11
� 1 (32)

This corresponds to the fact that sum of received powers of the
interferers are much less that that of desired user power. Under
these conditions the SINR of the received signal in equation
(25) is,

SINR ≈ β11

σ2 + α(E[β]− I)

where, I = 0 if matched filter is employed or I = C(α) if
MMSE filter ĉ is employed. As we will see in the next section,
typically scenarios show that the interference suppression
power C(α) is almost same as what could have been with
a filter c*. Hence the SINR of the filter with the corrupt
channel estimate is as good as the SINR with a perfect channel
estimate. In Fig. 2, the situation of user 1 in the center
cell represents the favourable scenario with the interferers
contributing to the pilot contaminated channel estimate are
far such that the condition (32) is satisfied. On the other hand
if gains of all the interferers are comparable to that of the
desired users, i.e., ∑B

j=2 βj1

β11
≈ B − 1 (33)

then pilot interference contributes negatively to the SINR
in addition to interference averaging. This is represented by
realization of user 2 of the center cell in Fig. 2. Therefore, we
can conclude that, as compared to the linear filter with perfect
estimate, the filter with a pilot estimate has higher probability
that it is less than a given SINR.
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Fig. 7. The plot shows the five percentile SINR of the first user in the first
cell for a seven cell set up in a non-idealized scenario. The received powers
from users can be different depending on their positions and shadowing and
hence the received SINR is random. The theoretical curves are matched with
simulation. The details are described in section IV-B.

B. Five Percentile SINR

In the earlier section we showed that pilot contamination
has the effect of reducing the outage SINR. In order to get
more intuition under practical scenarios of large scale fading
gains, we consider the seven cell model with cell radius is
R = 1 km, and assume a COST231 model for propagation
loss between the base station and the users. The noise power
is assumed to be −174 dBm and user transmit power of
23 dBm. We plot the five percentile of the SINR in Fig. 7 for
the perfect MMSE filtering given by SINR* and MMSE filter
with pilot contamination given by ŜINR, for varying values
of α. To that extend, we compute the interference terms E[β]
and C(α) offline by averaging over a sufficient number of
user positions. Also, η1 and η2 can be computed offline for
different values of α as they are constant for the system and
dependent on the large scale fading characteristics. Notice that
ŜINR is devoid of the small scale fading parameters. Also, for
SINR* we compute the terms, η∗1 and the average interference
E[β] − E

[
β2

1 η
∗
1

1+β1 η
∗
1

]
. It is found that E[β] − C = 38 dB and

E[β] − E
[

β2
1 η

∗
1

1+β1 η
∗
1

]
= 36 dB. This shows that in terms of

the interference suppression the performance of both filters c*

and ĉ are almost same. In order to compare the theoretical
expression we also plot the five percentile SINR which is
generated using simulations. These involves computing the
SINRs for various small scale fading channel realizations
along with large scale fading. For the simulation we use
50 antenna base stations each serving a different number of
users corresponding to different α. The channel estimate is
based on same in-cell orthogonal training sequences being
repeated across the cells. Further, we also compare the five
percentile SINR obtained out of actual channel estimation. In
order for that we assume different independently generated in-
cell orthogonal training sequences which are non-orthogonal
across the cells. We perform an MMSE estimation of the



10

α
M = 50 M = 10

Rper Rpilot Rper Rpilot

0.1 6.0 4.7
0.2 5.0 4.0
0.3 4.3 3.4 4.4 3.6
0.4 3.8 3.0 4.0 3.2
0.5 3.4 2.7 3.6 2.9
0.6 3.1 2.5 3.3 2.7
0.7 2.8 2.3 3.0 2.4
0.8 2.64 2.1 2.7 2.2
0.9 2.4 1.9 2.4 2.0
1.0 2.2 1.9 2.3 2.0

TABLE I
THE TABLE SHOWS THE ACHIEVABLE RATE (BITS/SYMBOL) WITH MMSE

FILTERING FOR A 50 AND 10-ANTENNA BASE STATION SERVING
DIFFERENT NUMBER OF USERS. Rper CORRESPONDS TO RATE WITH A

PERFECT ESTIMATE AND Rpilot CORRESPONDS TO THE PILOT
CONTAMINATED FILTER.

channel and generate MMSE filter using the actual channel
estimate given by equation (5).

It is seen through Fig. 7, that ŜINR in equation (20) matches
the five percentile SINR obtained through simulation and is
typically less by about 0.3 dB of the theoretical expression.
This is true for both in-cell pilot sequences being repeated
across the cells as well as different and independent pilot train-
ing sequences across the cells. This also implies that the even
a 50 antenna base station is large enough for the theoretical
predictions to be effective in addition to being independent
of the effect of small scale fading in the resulting SINR. As
we increase the number of antennas the theoretical expression
exactly matches the SINR obtained through simulation. Also,
the MMSE filter with pilot contamination performs just 5 dB
below the MMSE filter with perfect channel estimate and
this gap is unambiguously a result of the pilot contaminated
channel estimate. Also it is seen that even at α = 1, which
implies a heavily loaded system the five percentile ŜINR is
−9 dB which is well within the sensitivity of base station
receivers.

Table I shows the achievable rates per symbol for a user
in the central cell using MMSE based detection with perfect
estimate and pilot contaminated estimate. The achievable rate
is given by R = E[log(1 + ŜINR)] which here is calculated
by averaging the instantaneous rate over 2 × 103 realizations
of user positions for user 1. This is the same for all users in
the central cell. Both theory and simulations based on 50 base
stations antennas serving different number of users agree to
the numbers shown in the table. It is seen that the difference
between them is approximately 1 bit/symbol for small α >
0.1 and closes in when it increases. However, for α � 1,
the difference between the rates increases as effect of pilot
interference will never let the SINR approach SNR.

Further, Table I, also shows the simulated results for the
achievable rate for a 10-antenna base station with 3 to 10
users. It is seen that even for a 10 antenna base station, the
simulated results agree closely to the earlier results obtained
from theory in Table I. This highlights the usefulness of the
large system analysis in providing accurate predictions for
achievable rates for not necessarily large number of antennas

but also contemporary MIMO systems. However, we would
like to point out that with more number of antennas we can
serve more users at the same rate given below.

V. CONCLUSION

In this work we found the expression for SINR for a large
system when a MMSE filter with a pilot contaminated estimate
is employed to decode the received signal. We validated the
expression through simulations and showed that a 50-antenna
base station serving different number of users is sufficient
enough to employ our large system results. We characterized
the effect of pilot contamination in that it has the effect
of reducing the five percentile SINRs as compared to the
MMSE with perfect estimate for all values of α. We also
found an explicit expression for the interference suppression
power due to MMSE filter and compared it with that of
matched filter. We showed that five percentile SINR of the
MMSE with a pilot contaminated estimate is within 5 dB of
MMSE filter with a perfect estimate. We also found that the
results with actual channel estimation match the theoretical
results. In this work we have assumed that the training time
allocated to users is K symbols. In future work, we wish to
study the training overhead for different values of training
time and users depending on the coherence time. We believe
this can be done through a large system analysis of training
time versus the number of users per cell. It would also
be interesting to see if the considerable work done by the
authors in [14], in getting a generalized expression for the
deterministic equivalent of the SINR can be further simplified
into intuitive expressions for other channel models. This will
be of help in realizing engineering conclusions tailored for
different channels models like distributed antennas, correlated
antennas, distributed sets of correlated antennas [10] to name a
few. Also, recent work has proposed that pilot contamination
as an artefact of linear channel estimation techniques [18].
While they have provided a theoretical understanding in an
ideal situation, practical solutions applicable to a regime with
large number of users are still to be found. Algorithms from
multi-user detection for CDMA systems are a useful tool when
we have enough coherence time [21]. We are currently looking
into such adaptive algorithms that could be implemented for
short coherence time scenarios.

APPENDIX A
RESULTS FROM LITERATURE

In this section we briefly describe the necessary results from
literature to derive the asymptotic SINR expressions. These
results were used previously in the context of CDMA systems
in [11]–[13].

Lemma 4. [13, Lemma 1] If S is a deterministic M ×M
matrix with uniformly bounded spectral radius for all M . Let
q = 1√

M

[
q1 q2 . . . qM

]T
where qi’s are i.i.d complex

random variables with zero mean, unit variance and finite
eight moment. Let r be a similar vector independent of q.
Then,

qHSq → 1

M
trace{S}, (34)
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qHSr → 0 (35)

almost surely as M →∞.

Results in linear MMSE filters for large dimensions have
been obtained using Stieltjes transform result on symmet-
ric matrices in [11]–[13]. For completeness and clarity of
understanding of MMSE for multi-user MIMO with pilot
contamination we first define the Stieltjes transform of a
random variable and state the result without proof here.

Definition 5. [24, Section 2.2.1] Let a real valued random
variable be given by the distribution G. Then, the Stieltjes
transform m(z) with complex argument z and positive imag-
inary part is defined as

m(z) =

∫
1

λ− z
dG(λ). (36)

Theorem 6. [13, Theorem 6] Let X ∈ CM×K be a matrix
with independent and identically distributed complex entries
each with variance 1/M . Also, let T ∈ CK×K be a random
hermitian non-negative definite matrix independent of X such
that the empirical distribution of its eigenvalues converges to a
fixed distribution F as M →∞. Then as K →∞ and M →
∞ with K/M = α, almost surely the empirical distribution of
eigenvalues of XTXH converges to a non-random distribution
function G whose Stieltjes transform m(z) satisfies,

m(z) =
1

−z + α
∫

p
1+pm(z)dF (p)

, (37)

for z complex with positive imaginary part.

Next we state a corollary from [12] which is also a conse-
quence of Stieltjes transform result in Theorem 6.

Corollary 7. Where Theorem 6 is applicable,

αE

[
p d
dzm(z)

(1 + pm(z))2

]
=

∫
λ

(λ− z)2
dG(λ) (38)

Proof:

αE

[
p d
dzm(z)

(1 + pm(z))2

]
(a)
= −α d

dz
E
[
1− pm(z)

1 + pm(z)

]
,

=
d

dz
αE
[

pm(z)

1 + pm(z)

]
,

(b)
=

d

dz
(1 + zm(z)),

=
d

dz

∫
λ

λ− z
dG(λ), (39)

where (a) is due to dominated convergence theorem and (b)
is due to equation (37).

APPENDIX B
PROOF OF THEOREM 1

Let the overall channel matrix representing the system
be defined as, H =

[
H1 H2 . . . HK

]
, where, Hi =[

h1i h2i . . . hBi
]
. Also define the large scale fading

coefficient vector to be ai =
[√
β1i

√
β2i . . .

√
βBi
]T

,
and ei ∈ CB×1 as a unit vector with 1 in the ith position

for i ∈ {1, 2, . . . , B}. With the above definitions the channel
estimate ĥ1k =

√
β1k

β(k) Hkak and ĉ = β11

β(1)S
−1H1a1. Also, if

νk =
(
β1k

β(k)

)2

, then the signal power, noise power, and pilot
interference power, are respectively given by,

Psignal(ĉ) = β11ν1

∣∣aH1 HH
1 S−1H1e1

∣∣2 (40)

Pnoise(ĉ) = ν1σ
2aH1 HH

1 (S−1)2H1a1, (41)

Pcontam(ĉ) = ν1

B∑
j=2

βj1
∣∣aH1 HH

1 S−1H1ej
∣∣2 . (42)

For further analysis let us define,

Z = S−1

 B∑
j=1

K∑
k=2

βjkhjkh
H
jk

S−1 (43)

then the interference power is given by

Pinter(ĉ) = ν1a
H
1 HH

1 ZH1a1 (44)

Define a real block diagonal matrix D1 ∈ R(K−1)B×(K−1)B

and S1 ∈ CM×(K−1)B as

D1 = diag
{
ν2a2a

H
2 , ν3a3a

H
3 , . . . , νKaKaHK

}
, (45)

S1 =
[
H2 . . . HK

]
. (46)

Then the matrix S can be rewritten as,

S =

K∑
k=2

νkHkaka
H
k HH

k + (θ1 + θ2 + σ2)I

= S1D1S
H
1 + (θ1 + θ2 + σ2)I. (47)

For the matrix D1 there are (K−1)(B−1) eigenvalues which
are equal to zero and K−1 non-zero values given by β2

1k

β(k) , for
all k ∈ {2, . . . ,K}. Also, define βj as the random variable
representing the large scale fading gain from an arbitrary
user in the jth cell. Therefore, βjk can be interpreted as the
realization of βj for the kth user. Therefore, Theorem 6 takes
the form

m(z) =

(
−z + αE

[
β2

1 /β

1 + β2
1m(z)/β

])−1

(48)

where, the expectation is now over the joint distribution of the
βjs and β.

Also, notice that the spectral radius of S is bounded
by (θ1 + θ2 + σ2)−1. Therefore, with β =

∑B
j=1 βj ,

θ̄1 = α
∑B
j=2 E

[
βj
]
, θ̄2 = α

∑B
j=2 E

[
βj

(
β1

β

)]
and using

Lemma 4 we can conclude that,

HH
1 S−1H1 → 1

M
trace{S−1}I = η1I, (49)

HH
1 (S−1)2H1 → 1

M
trace{S−2}I = η2I (50)

almost surely as M →∞ where, if G is the non-random lim-
iting distribution of the eigenvalues λ of the matrix S1D1S

H
1 ,

then

η1 =

∫
1

λ+ θ̄1 + θ̄2 + σ2
dG(λ) and (51)

η2 =

∫
1

(λ+ θ̄1 + θ̄2 + σ2)2
dG(λ). (52)
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trace {Z} = trace


B∑
j=1

K∑
k=2

βjkS
−1Hkeje

H
j HH

k S−1

 (55)

(a)
=

B∑
j=1

K∑
k=2

βjke
H
j HH

k

(
S−1

)2
Hkej (56)

(b)
=

B∑
j=1

K∑
k=2

βjke
H
j HH

k S−2
k

(
I− 2

νkHkaka
H
k HH

k S−1
k

1 + ν2
ka

H
k HH

k S−1
k Hkak

+

ν2
kHkaka

H
k HH

k S−1
k Hkaka

H
k HH

k S−1
k

(1 + ν2
ka

H
k HH

k S−1
k Hkak)2

)
Hkej (57)

=

B∑
j=1

(
K∑
k=2

βjke
H
j HH

k S−2
k Hkej − 2

K∑
k=2

βjk
νke

H
j HH

k S−2
k Hkaka

H
k HH

k S−1
k Hkej

1 + νkaHk HH
k S−1

k Hkak
+

K∑
k=2

βjk
ν2
ke
H
j HH

k S−2
k Hkaka

H
k HH

k S−1
k Hkaka

H
k HH

k S−1
k Hkej

(1 + νkaHk HH
k S−1

k Hkak)2

)
(58)

trace{Z}
M

a.s.−→ α

B∑
j=1

E

βj
η2 − 2

(
β1

β

)2

βj η1η2

1 + η1
β2

1

β

+

(
β1

β

)4

βj β η2η
2
1(

1 + η1
β2

1

β

)2




= α

B∑
j=2

E
[
βj
]
η2 + α

B∑
j=1

E
[
βj

β1

β

]
η2 − αE


(

β1

β

)2∑B
j=1 βj η1η2

1 + η1
β2

1

β

− αE

(

β1

β

)2∑B
j=1 βj η1η2(

1 + η1
β2

1

β

)2


= (θ̄1 + θ̄2)η2 + αE

 β2
1

β η2(
1 +

β2
1

β η1

)2

− αE
 β2

1

β

(∑B
j=2

β2
j

β

)
η1η2

1 +
β2

1

β η1

− αE
 β2

1

β

(∑B
j=2

β2
j

β

)
η1η2(

1 +
β2

1

β η1

)2

 (62)

=

∫ ∞
0

λ+ θ̄1 + θ̄2

(λ+ θ̄1 + θ̄2 + σ2)2
dG(λ)− αE

 β2
1

β

(∑B
j=2

β2
j

β

)
η1η2

1 +
β2

1

β η1

− αE
 β2

1

β

(∑B
j=2

β2
j

β

)
η1η2(

1 +
β2

1

β η1

)2

 . (63)

From equations (51), (52) and using the definition
of Stieltjes transform [24] we can find that η1 =
lim−z→θ̄2+θ̄2+σ2 m(z), and since m(z) is complex analytic
η2 = lim−z→θ̄2+θ̄2+σ2

d
dzm(z). The values of η1 and η2

can then also be obtained from solving equation (48) and its
derivative. The equations are given by,

η1 =

σ2 + αE[β]− αE


(

β2
1

β

)2

η1

1 +
β2

1

β η1



−1

, (53)

η2 =

η−2
1 − αE


 β2

1

β

1 +
β2

1

β η1

2


−1

. (54)

Similarly, to evaluate the expression for interference Pinter,
trace {Z} can be expanded as in equation (58), where, in step
(a) we use trace{qqH} = qHq and if

Sk =
∑
k 6=1,k

νkHkaka
H
k HH

k + (θ1 + θ2 + σ2)I (59)

then in step (b) use matrix inversion lemma as,

S−1 = S−1
k

(
I−

νkHkaka
H
k HH

k S−1
k

1 + νkaHk HH
k S−1

k Hkak

)
. (60)

Notice that using Lemma 4, the terms HH
k S−1

k Hk
a.s.−→ η1I

and HH
k S−2

k Hk
a.s.−→ η2I and it appears repeatedly in equa-

tion (58). Therefore, in the limit of infinite number of antennas,
and for a given α, using Lemma 4 we have

HH
1 ZH1

a.s.−→ trace{Z}
M

I (61)

and trace{Z}/M in turn converges to the expression in

equation (63). In equation (62) the third term E

 β2
1

β η2(
1+

β2
1

β η1

)2


is equal to

∫∞
0

λ
(λ+θ̄1+θ̄2+σ2)2

dG(λ). This follows from corol-
lary 7.

Using equations (49), (50), (63) in expressions
(40), (41), (42) and (44) the SINR given in equation (19)
converges almost surely to ŜINR as in expression (20).
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APPENDIX C
PROOF OF PROPOSITION 3

With ν1 =
(
β11

β(1)

)2

, using the matched filter given by

c =
√
β11

β(1) H1a1, the signal power, noise power, pilot interfer-

ence power is given by Psignal = ν1

∣∣a1H
H
1 H1e1

∣∣2, Pnoise =
ν1
β11

σ2aH1 HH
1 H1a1, Pcontam = ν1

β11

∑B
j=1 βj1

∣∣aH1 HH
1 H1ej

∣∣2.
Since, HHH

a.s.−→ I as M → ∞, we have, Psignal
a.s.−→ ν1β11,

Pnoise
a.s.−→ ν1

β11
β(1)σ2, Pcontam

a.s.−→ ν1
β11

∑B
j=2 β

2
j1. Using

Lemma 4 in the interference term we have,

Pinter =
ν1

β11
aH1 HH

1

 B∑
j=1

K∑
k=2

βjkhkh
H
k

H1a1,

a.s.−→ ν1

β11
aH1

 1

M
trace


B∑
j=1

K∑
k=2

βjkhkh
H
k

 I

a1,

=
ν1

β11
α

B∑
j=1

βj1
1

K

 B∑
j=1

K∑
k=2

βjkh
H
k hk

 ,

=
ν1

β11
α

B∑
j=1

βj1

 B∑
j=1

E[βj ]

 . (64)

Rearranging the terms in equation (19) we get the expression
for SINR.
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