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for Wireless Peer Discovery
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Abstract—In wireless peer-to-peer networks that serve vari-
ous proximity-based applications, peer discovery is the key to
identifying other peers with which a peer can communicate
and an understanding of its performance is fundamental to the
design of an efficient discovery operation. This paper analyzes the
performance of wireless peer discovery through comprehensively
considering the wireless channel, spatial distribution ofpeers,
and discovery operation parameters. The average numbers of
successfully discovered peers are expressed in closed forms for
two widely used channel models, i.e., the interference limited
Nakagami-m fading model and the Rayleigh fading model with
nonzero noise, when peers are spatially distributed according to a
homogeneous Poisson point process. These insightful expressions
lead to the design principles for the key operation parameters
including the transmission probability, required amount of wire-
less resources, level of modulation and coding scheme (MCS), and
transmit power. Furthermore, the impact of shadowing on the
spatial performance and suggested design principles is evaluated
using mathematical analysis and simulations.

Index Terms—Peer discovery, neighbor discovery, stochastic
geometry, D2D networks, random access protocol.

I. I NTRODUCTION

Recently, it is considered that wireless peer-to-peer com-
munications will enable novel and significant opportunities
such as proximal social networking, network offloading, and
public safety [1]. Accordingly both industrial and academic
communities have begun to increasingly investigate the po-
tential new services and technical challenges [2], [3]. For
wireless peer networking, each peer should first be able to
identify other peers with which it can communicate before
transmitting and receiving data. This operation is referred
to as peer discovery, which is the most basic process for
establishing connections and building topology information in
various wireless networks including device-to-device (D2D)
networks and sensor networks. However, the performance of
peer discovery is significantly affected by the randomness of
the wireless channel as well as peer location. The primary
focus of this paper is to quantify the implications of the
wireless channel and spatial distribution of peers on wireless
peer discovery and to derive design principles from the results.

Even though peer discovery is fundamental to the operation
of wireless networks, wireless resources for this process are
a control overhead that does not contribute to increasing data
capacity. In this regard, peer discovery should be designed

T. Kwon is with the Electronics and Telecommunications Research Institute
(ETRI), Daejeon, 305-700, South Korea (e-mail: tskwon@etri.re.kr).

J.-W. Choi is with Department of Information & Communication Engineer-
ing, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu,
771-873, South Korea (e-mail: jwchoi@dgist.ac.kr).

to find as many peers as possible using a small amount of
wireless resources, in order to minimize the overhead. In
such a design, wireless resources for peer discovery should
be spatially shared among peers, and this spatial reuse results
in performance degradation due to interference signals. Inthis
sense, understanding the effect of the interference signals from
spatially distributed peers is the key to designing efficient
peer discovery schemes. Recent studies have attempted to
statistically model a wireless network topology using the
mathematical tool of stochastic geometry [4]–[6]: this model
facilitates the derivation of the spatial probability distribution
of the signal to interference and noise ratio (SINR). This paper
investigates wireless peer discovery based on this stochastic
geometry theory.

A. Related Work

Several studies have suggested aggressive schemes where
each peer can transmit its unique signal and simultaneously
receive multiple signatures from other peers for rapid and
collision-free peer discovery, e.g., [7], [8], but a simplerandom
access protocol is still regarded as the basis of wireless peer
discovery [9]–[16] because the lack of a priori information
about peers in dynamic wireless networks may only provide
the uncoordinated sharing of peer discovery resources among
peers.

The primary reason for performance degradation in a ran-
dom access protocol is packet collisions due to the simultane-
ous transmission of peers; thus, several studies have investi-
gated the quantification and improvement of the peer discovery
performance based on the packet collision model [9]–[11].
However, this collision model oversimplifies wireless receiving
operations. In fact, the success or failure of packet reception is
primarily determined by the physical layer metrics, e.g., SINR,
rather than whether or not packets simply collide. In addition,
the requirement of this received SINR depends on the physical
transceiving scheme, such as the receiver structure and level
of modulation and coding scheme (MCS). Based on this, there
have been attempts to understand the effect of physical layer
characteristics including the receiver structure and wireless
channel [12], [13]. In [12], a joint iterative decoding method
for multiuser detection was applied to peer discovery but its
system performance improvement was only evaluated using
simulation. The work of [13] analyzed the performance of
multipacket reception based on the conventional packet col-
lision model. These approaches remains insufficient to reveal
the implications of the randomness of wireless channels and
peer locations.

http://arxiv.org/abs/1403.4342v2
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There have also been recent studies that analyze the spa-
tial performance by statistically modeling peer location and
wireless channel [14]–[16]. In [14], the received power of
the signals from randomly located peers was modeled in a
probabilistic manner and the multipacket reception capability
was assumed. However, the performance was only expressed in
a form with as many cumbersome integrations as the number
of peers; therefore, this result could not explicitly present the
design implications of wireless peer discovery. In contrast, the
works of [15], [16] attempted to mathematically analyze the
peer discovery performance with interference considerations
using a stochastic geometry framework [4]–[6]. The work of
[15] compared the packet collision and SINR models when
peers were distributed according to a homogeneous Poisson
point process (PPP), and it expressed the average number of
discovered peers in a closed form under the Rayleigh fading
channel when the noise power can be ignored. A similar result
was also presented in [16]. The results under this specific
channel model, i.e., the Rayleigh fading with zero noise
power, provide a basis for the analysis under channel models
that belong to the exponential family, e.g. the Nakagami-
m fading channel [17]. However, the explicit derivation of
the performance under more general channel models, such as
incorporating the Nakagami-m fading channel, nonzero back-
ground noise power, and shadowing, also has the significant
merit because it enables the clarification of the relationship
between wireless channels and discovery operation parame-
ters, which leads to the design principles for the key operation
parameters including the transmission probability for a half
duplex operation, received SINR requirement, and transmit
power under various channel environments. This extension was
not considered in [15] and [16].

B. Contributions and Organization

This paper investigates wireless peer discovery with respect
to the mean number of successfully discovered peers, which is
denoted byE{S}, by comprehensively considering the wire-
less properties as well as the discovery operation properties.
The main contributions are highlighted into the following three
aspects.

1) Deriving the Average Number of Successfully Discovered
Peers: The closed forms forE{S} are derived for two widely
used channel models: (i) the interference limited Nakagami-m
fading model and (ii) the Rayleigh fading model with nonzero
noise power. These elegant expressions comprehensively quan-
tify the effect of the wireless channels, spatial peer distribution,
and operation parameters. In particular, these results clarify the
impact of the Nakagami-m fading channel and noise power,
unlike prior studies [15], [16] that have only derived the closed
form expression ofE{S} under the Rayleigh fading channel
with zero noise power. For example, the mathematical analysis
reveals thatE{S} is independent of the Nakagami-m fading
parameter (i.e.,m) under an interference limited environment
where the aggregate interference overwhelms the noise power.

2) Suggesting Design Principles for Discovery Operation
Parameters: The design of optimal or suboptimal discovery
operation parameters is investigated in terms of maximizing

E{S} under the two channel models mentioned above. An
important difference between the two models is the noise;
it is demonstrated that this difference may result in signif-
icantly different design principles for the parameters. For
example, regarding the transmission probability for a half
duplex operation that is denoted byρ, E{S} increases asρ
decreases under an interference limited environment, whereas
it becomes a unimodal function ofρ when the noise power
cannot be ignored. The insightful results derived in this paper
are summarized in Table I.

3) Evaluating Performance under Various Channel Models:
The analytical results for the two channel models without
shadowing are extended to those under channel models that
incorporate general shadowing through applying the displace-
ment theorem, similar to the work presented in [18]. This
extension reveals that the performance under the interference-
limited scenario is invariant to the shadowing distribution;
however, for a nonzero noise power, the shadowing tends
to reduce the impact of the noise power. In contrast, the
analytical results do not embrace wireless channel models that
incorporate all of the general path loss exponent, Nakagami-
m fading, nonzero noise power, and shadowing. In order
to fill this void, simulations are used to demonstrate that
the performances under such general channel models are
consistent with those derived analytically under the specific
channel models.

The remainder of this paper is organized as follows. Sec-
tion II describes the system model for a multichannel random
hello protocol and presents the spatial performance under
a general wireless channel model in terms of the average
number of successfully discovered peers. Sections III and
IV analyze the spatial performance of the peer discovery
protocol and suggest design principles for discovering as many
peers as possible, under the interference limited Nakagami-m
fading channel and the Rayleigh fading channel with nonzero
noise, respectively. Section V extends the results derivedin
the previous two sections into those for wireless channel
models that incorporate arbitrary shadowing. Then, Section VI
discusses numerical results, and Section VII concludes the
paper.

II. M ULTICHANNEL RANDOM HELLO PROTOCOL FOR

WIRELESSPEER DISCOVERY

A. System Model

This paper considers the multichannel random hello pro-
tocol for wireless peer discovery illustrated in Fig. 1 when
peers or nodes1 are randomly distributed in a two-dimensional
space. The model assumes resource orthogonality, i.e., signals
transmitted over different resources do not interfere witheach
other. The premise for this orthogonality is global synchro-
nization [19]. If nodes are not precisely time synchronized,
the interference that results from time mismatches may signifi-
cantly degrade the performance. However, in general, the time
synchronization in distributed wireless networks is a resource
and energy intensive task. External signals from the existing

1In this paper, both the terms are used synonymously.
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Fig. 1. Multichannel random hello protocol for wireless peer discovery.

infrastructure, e.g. nearby cellular base stations, may render
this difficult task simpler [19], [20]; such signals are exploited
as timing reference signals for rough synchronization, andthen
the remaining time offsets are further corrected through addi-
tional synchronization procedures among the nodes in order
that the residual timing errors can be readily accommodatedin
the signal level, e.g., using cyclic prefix (CP) in OFDMA sys-
tems. Accordingly, this paper assumes that all nodes are time
synchronized and does not consider performance degradation
due to time mismatches. The model also assumes that all nodes
operate in a half duplex manner. For this half duplex operation,
a node decides whether it transmits or receives a hello packet
identifying a node every time slot in a probabilistic manner,
andρ denotes the probability that a node transmits in a time
slot, i.e., thetransmission probability.

One time slot consists ofM resource blocks (RBs) in
a frequency or time domain, and one RB is used for a
hello packet transmission. For peer discovery, nodes in the
transmitting mode broadcast their hello packet using one RB
randomly chosen amongM RBs while nodes in the receiving
mode try to detect the packets simultaneously over allM RBs
in a time slot. Letξ > 0 denote the minimum received SINR
required for the successful reception of a packet. If a node in
the receiving mode receives a hello packet with SINR above
ξ, then it means that this node successfully discovers the node
that transmits the packet. Note that the value ofξ determines
the MCS level at which a hello packet is transmitted.

The model assumes that the nodes are spatially distributed
according to a homogeneous PPP with node densityλ, which
is denoted byΦ. In order to investigate the node average
performance, the performance of a reference receiving node
is observed and such a node is referred to asa typical node.
A typical node is assumed to be located at the origin and
search potential target nodei in a time slot. If nodei is
transmitting in the same time slot, the signal transmitted
by node i becomes the desired signal of a typical node.
Assume that nodei transmits a hello packet using themth
RB in the time slot. Under these assumptions, all signals
sent over themth RB by nodes in the transmitting mode,
other than nodei, become interference. Note that a typical
node is interested in hello packets from all other nodes; thus,
target nodei indicates an arbitrary node rather than a specific
node. Therefore, according to Slivnyak’s theorem [21], nodes
except a typical node and the target nodei still constitute a
homogeneous PPP with the same density asλ. These nodes

A typical node

A target node
(Location, Fading power gain, Tx RB #)

= (Xi, hi, m)

P|Xi|
-ahi

(Xj, gj, m)

P|Xj|
-agj

(Location, Fading power gain)

= (Xl, gl)
(Xk, gk, n)

Node transmitting

on the mth RB

Node transmitting

on an RB other than mth RB

Node receiving overM RBs

Desired signal

Interfering signal

Fig. 2. Spatial model for performance analysis of wireless peer discovery.

are potential interferers. LetΦq denote a homogeneous PPP
with densityλq that results from the independent thinning of
homogeneous PPPΦ with retention probabilityq. In a given
time slot, each node is transmitting with probabilityρ and it
uses the same RB as that of nodei with probability 1/M .
Thus, the spatial distribution of the interfering nodes canbe
modeled as the thinning of an original PPP with a retention
probability ρ/M , and it is expressed as a homogeneous PPP
with densityλρ/M , i.e., Φρ/M . In fact, each node inΦρ/M

becomes both a potential target node and a interferer of a
typical node.Xj denotes the location of nodej and |Xj |
represents the distance from the origin toXj . Assume that all
nodes have the same transmit powerp. The standard power
loss propagation model with the path loss exponent ofα (> 2)
is supposed. Lethi and gj denote the fading power gains2

that the desired signal from nodei and the interfering signal
from nodej undergo, respectively. It is assumed that{hi}
and{gj} are independently and identically distributed (i.i.d.),
respectively. Fig. 2 explains the spatial model consideredin
this paper.

Eventually, whenΞ(Xi) denotes the received SINR at a
typical node for the hello packet transmitted by a target node
located onXi,

Ξ(Xi)=
|Xi|−αhi

∑

j∈Φρ/M
|Xj |−αgj + σ2

, (1)

whereσ2 , σ̃2

p andσ̃2 denotes the noise power. Herein,1
σ2 =

p
σ̃2 can be understood as the average received signal to noise
ratio (SNR) at a unit distance, i.e., when|Xi| = 1.

B. Spatial Performance Metric

In this paper, wireless peer discovery aims to find as many
nodes as possible, i.e., to maximize the average number of
successfully discovered nodes. The successful peer discovery

2They may denote the channel power gain including the shadowing as well
as the Nakagami-m or Rayleigh fading, depending on the wireless channel
model.
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TABLE I
THE PROPERTY OF THE AVERAGE NUMBER OF SUCCESSFULLY DISCOVERED NODES, E{S}3.

Interference limited case (σ2
= 0) Nonzero noise power case (σ2 > 0)

Path loss exponent,α Increasing withα Increasing withα†

Nakagami-m fading parameter,m Independent ofm Insignificant†

Node density,λ Independent ofλ Increasing withλ, but saturated
Number of RBs,M (for a fixedξ) Linearly increasing withM Increasing withM , but saturated

SINR threshold,ξ Unimodal function ofξ Maybe, unimodal function ofξ†

Transmission probability,ρ Increasing asρ decreases Unimodal function ofρ
Transmit power,p Independent ofp Increasing withp, but saturated

Standard deviation of lognormal shadowing,χ Independent ofχ Increasing withχ, but saturated

requires the fulfillment of the following three conditions:(i) a
typical node is in the receiving mode; (ii) a target node is in
the transmitting mode; and (iii) a hello packet that the target
node transmits should be received with an SINR aboveξ at
a typical node. The status of nodej is represented byZj,
i.e., Zj = 0 if node j is in the receiving mode andZj =
1 otherwise. LetP (X |Z0 = 0) denote the probability that
a typical node successfully discovers a target node located
on X when a typical node is in the receiving mode. Then,
P (X |Z0 = 0) is given by

P (X |Z0 = 0) = ρPr {Ξ(X) > ξ} . (2)

This success probability depends on the wireless channels
and spatial distribution of the nodes, thusP (X |Z0 = 0) is
expressed as a function of wireless channel parameters and
node densityλ as well as discovery operation parameters
includingM , ξ, ρ, andp.

This paper considers wireless channel models that embrace
shadowing as well as Nakagami-m fading. That is, the fading
power gain is given by the product of the gains that result from
the shadowing and Nakagami-m fading. The Nakagami-m
fading model does not only generalize or approximate various
useful fading channels such as the Rayleigh and Rician fading
channels, but it also allows a closed form ofE{S} in some
specific cases, e.g., whenσ2 = 0, whereE{S} denotes the
average number of nodes that a typical node successfully dis-
covers overM RBs. This is derived in the following sections.
In addition, the results yielded in this Nakagami-m fading
model can be readily extended to those for wireless channel
models that incorporate shadowing as long as the shadowing of
links is i.i.d. [18], [22]. Therefore, the mathematical analysis
in Sections III and IV concentrates on the Nakagami-m fading
and Rayleigh fading without shadowing. Then, the results will
be extended to those for more general wireless channel models
that incorporate shadowing.

When the Nakagami-m fading model is only considered,
the fading power gainh follows the Gamma distribution and
its complementary cumulative distribution function (ccdf) is
given as follows:

Pr{h > x} = exp(−mx)

m−1
∑

k=0

mk

k!
xk, (3)

where m is the Nakagami-m fading parameter. Under this
Nakagami-m fading channel model, the following lemma is a
start toward deriving a simple form ofE{S}.

Lemma 2.1: When the desired and interfering signals un-
dergo the Nakagami-m fading with ms and mi, which are
positive integers, the average number of nodes that a typical
node successfully discovers is given as follows:

E{S} = 2πλρ(1 − ρ)

ms−1
∑

k=0

(−msξ)
k

k!

∫ ∞

0

rkα+1·

dk exp
(

−λρ
M πζ

2
α∆i(mi, α)− ζσ2

)

dζk

∣

∣

∣

∣

∣

∣

ζ=msξrα

dr, (4)

where ∆i(mi, α) , m
− 2

α

i

Γ(1− 2
α )Γ(mi+

2
α )

Γ(mi)
and Γ(x) ,

∫∞
0 tx−1 exp(−t)dt denotes the Gamma function.

Proof: See Appendix A.
Lemma 2.1 requires the integrations of higher order derivative
terms, and it remains difficult to express the result in a closed
form. However, it is noteworthy thatE{S} in (4) can be
expressed in more elegant forms by imposing environmental
constraints. Therefore, this paper focuses more on two specific
but widely used channel models: (i) the Nakagami-m fading
with σ2 = 0 and α > 2, and (ii) the Rayleigh fading with
σ2 > 0 andα = 4. The results for these models do not only
quantify the effect of wireless channels but also offer useful
design principles for the crucial operation parameters ofM , ξ,
ρ, andp. The following two sections discuss these two channel
models, and Table I summarizes the main results derived in
this paper.

III. SPATIAL ANALYSIS AND DESIGN PRINCIPLES FOR

INTERFERENCEL IMITED CHANNELS

This section investigates the interference limited case, which
is modeled asσ2 = 0 in Lemma 2.1. The results remain
general in terms of the Nakagami-m fading parameter and
path loss exponent (α > 2). Under this wireless environment,
the design principles for wireless peer discovery are suggested
by deriving the values ofM , ξ, andρ for maximizingE{S}.

A. Spatial Performance

Whenσ2 = 0, from Lemma 2.1, the following results are
obtained.

3The superscript† denotes that the observation was from simulation results.
All the others are mathematically demonstrated. Regardingthe Nakagami-m
fading parameter,ms = mi = m is assumed.
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Proposition 3.1: When the desired and interference signals
undergo the Nakagami-m fading withms andmi, respectively,
andσ2 = 0, E{S} is given by

E{S} =
∆s (ms, α)

∆i (mi, α)

M(1− ρ)

ξ
2
α

, (5)

where∆s(ms, α) , m
− 2

α
s

Γ(ms+
2
α )

Γ(1+ 2
α )Γ(ms)

. In particular, ifms =

mi, then

E{S} =
sin(2π/α)

2π/α

M(1− ρ)

ξ
2
α

, (6)

which is independent of the Nakagami-m fading parameter.
Proof: By calculating (4) forσ2 = 0, (5) and (6) can be

obtained. For more details, see Appendix B.
Because a typical node attempts to discoverany node rather

than a specific node, it is sensible to assume that the wireless
fading channel statistics for the desired and interfering signals
are the same, i.e.,ms = mi. In this regard, it is quite
interesting thatE{S} in (6) does not depend on the Nakagami-
m fading parameter,ms or mi. This result can be interpreted
as the fading effects for the desired and interfering signals
being counterbalanced in terms ofE{S}. Furthermore, it is
noteworthy thatE{S} in (5) is independent of node density
λ. When noise is neglected, the node density only affects
the geometric size of the wireless networks and this node
density does not change the ratio of distances of the target
node and interfering nodes from a typical node. That is, the
increases or decreases in the desired and interfering signal
powers according to the node density cancel each other out in
terms ofE{S}, which is similar to the fading parameter. In
summary, Proposition 3.1 signifies that the fading parameter
and node density can be considered as unimportant when
σ2 = 0 andms = mi. Now, the focus is moved to the path
loss exponentα. Note thatsin(x)x is a monotonically decreasing
function of 0 < x < π. Thus,E{S} in (6) increases withα
whenms = mi. The number of nodes further than the target
node from a typical node is always significantly more than the
closer ones when considering nodes distributed in an infinite
two-dimensional space. Therefore, the aggregate interference
decays more quickly than the power of the desired signal as
α increases, and this results inE{S} increasing withα.

B. Design of the Discovery Operation Parameters

In (5), E{S} is determined by both the wireless channel
parameters, e.g.,ms, mi, andα, and the discovery operation
parameters, e.g.,M , ξ, andρ. This subsection elaborates on
the design of the three discovery operation parameters. The
design aims to maximizeE{S} in (5). It is trivial to derive the
optimal value ofρ for maximizingE{S}, which is denoted by
ρ∗, i.e.,ρ∗ , argmax0<ρ<1 E{S}. ρ∗ always approaches zero
regardless ofM andξ. Therefore, the design ofM andξ can
be separated from that ofρ, whenσ2 = 0. The meaning ofρ∗

will be discussed in more detail at the end of this subsection.
When ξ is given,E{S} in (5) increases linearly withM .

That is, regarding maximizingE{S} in (5), for a fixedξ, M
can be designed regardless of the wireless channel parameters
and ρ. However, the design ofM is highly correlated with

F
re
q
u
en
cy

· One time slot consists ofM RBs over

a total of B REs, i.e., B = MN.

· A hello packet is transmitted using one

RB, which consists of N REs.

Resource element (RE)

Resource block (RB)

Time slot[One time slot]

[One RB]

Fig. 3. Resource structure for a hello packet transmission (this figure only
shows a time slot consisting of multiple RBs in a frequency domain but it can
also be divided into RBs in a time domain, similar to the ones of a frequency
domain).

that of ξ. As mentioned in Section II-A, the value ofξ
determines the MCS level, i.e., the data rate, available for
a hello packet transmission. When the total amount of peer
discovery resources are fixed, the data rate decided byξ affects
how many RBs the total resources can be divided into, thus
M andξ should be jointly designed.

The joint design begins with quantifying the relationship
betweenM and ξ. Typically, the data rate for a finite-length
packet is always below the Shannon capacity and a hello
packet also conveys small size information for identifying
a node, e.g., with tens of information bits. The SNR gap
approximation provides a useful method for representing the
SNR or data rate loss with respect to the Shannon capacity
[23], [24]. Accordingly, the data rate is modeled as this SNR
gap approximation, i.e,τ = log2(1 + ξ

δ ) bps/Hz whereδ is
the SNR gap and positive. It is noteworthy that asξ increases,
the data rate of a hello packet transmission increases whilethe
success probability given by (2) decreases. In order to quantify
this tradeoff, first, the resource structure for the multichannel
random hello protocol introduced in Fig. 1 is revisited. Fig. 3
provides a more detailed illustration of the time slot and RB
that have been defined in Fig. 1. The resource element (RE)
is defined as the basic unit of a wireless resource, and it is
assumed that one time slot consists a total ofB REs and a
hello packet has a fixed length ofL bits. In order to convert
the data rate unit into a more convenient one, considerτ̃ = tτ
bits/RE for a positive constantt. Then, the number of REs for
a hello packet transmission is given byN = L

τ̃ . The size of
one RB depends oñτ or τ , and the number of available RBs
per time slot is given by4

M=
B

N
=

B

L/tτ
=

tB

L
log2(1 +

ξ

δ
) = β log(1 +

ξ

δ
), (7)

where β , tB
L log 2 is a constant. Hence,E{S} in (5) is

expressed as follows:

E{S} =

(

∆s (ms, α)

∆i (mi, α)
(1 − ρ)β

)

log(1 + ξ
δ )

ξ
2
α

. (8)

This E{S} can be maximized overξ > 0 by finding the
optimal solution to maximizefξ(x) , x− 2

α log(1 + x
δ ).

4In practice, the parameters such asB, N , M , andL are positive integers,
but this paper relaxes the integer constraints for analytical convenience. That
is, this paper allows that they are positive real numbers.
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That is, ξ∗ = x∗ where ξ∗ , argmaxξ>0 E{S} and x∗ =
argmaxx>0 fξ(x).

Proposition 3.2: Functionfξ(x) on the domain of{x|x >
0} is a unimodal function and has the maximum value at the
unique solution ofuξ(x) = 0 for x > 0 where uξ(x) ,
α
2
x
δ −

(

1 + x
δ

)

log(1 + x
δ ). Moreover, the optimal solution,

i.e., x∗, increases withα for a fixedδ.
Proof: See Appendix C.

The value of ξ∗ determined in Proposition 3.2 offers the
optimal data rate and number of RBs for the broadcast of a
hello packet, i.e.,τ∗ = log2(1+

ξ∗

δ ) andM∗ = β log2(1+
ξ∗

δ ).
In Proposition 3.2,ξ∗, δ, andα are interestingly related. Let
ũξ(y) ,

α
2 y−(1 + y) log (1 + y). Then, note that̃uξ(

ξ∗

δ ) = 0.
This implies thatξ

∗

δ is only determined byα. That is, if δ is
scaled down by a factor ofs, ξ∗ also decreases by the same
factor, whenα is given.

Now, the focus returns to the optimalρ. As mentioned
before, the optimalρ can be decided regardless of the other
parameters such as the wireless channel parameters,M , andξ.
It is interesting thatE{S} given by (5) increases linearly asρ
decreases, and it implies thatρ∗ → 0. That is, by forcingρ to
be extremely low, the network functions almost without packet
collision as if each node transmits its hello packet through
contention-free access. In this case, the maximum value of
E{S} is upper bounded by and approaches∆s(ms,α)

∆i(mi,α)
M

ξ
2
α

. The

assumption of zero noise power causes a typical node to
ideally discover even far-off nodes. However, this is unreal-
istic when considering that each wireless link has a limited
communication coverage due toσ2 > 0. In Section IV, the
effect of a nonzeroσ2 will be considered.

IV. SPATIAL ANALYSIS AND DESIGN PRINCIPLES

CONSIDERING A NONZERONOISE POWER

The nonzero noise power limits the communication range
due to the finite SNR, and this limitation may result in
different design principles to those of the interference limited
scenario presented in Section III. This section investigates the
performance of wireless peer discovery when the effect of the
noise cannot be ignored, and derives useful design principles
by approximating the effect of the nonzero noise power.

For mathematical tractability, the results in this sectionas-
sume the specific values of the Nakagami-m fading parameter
and path loss exponent, i.e.,ms = mi = 1 andα = 4; these
assumptions will be relaxed again in Section VI, where the
simulation results reveal that the design principles suggested
in this section still works well even without these assumptions.

A. Spatial Performance

The results forσ2 = 0 derived in Section III clearly reveal
the inherent effect of the wireless channels and operation
parameters; however, whether or not it is likely that the
nonzero noise power changes their effects should be inves-
tigated. Fortunately, even whenσ2 > 0, if ms = mi = 1 and
α = 4, E{S} in (4) can be expressed in a simple form.

Proposition 4.1: When all links experience Rayleigh fad-
ing, σ2 > 0, andα = 4, E{S} is given by

E{S}= λπ
3
2 ρ(1− ρ)

2
√

ξσ2
exp

(

(

λπ2ρ

4Mσ

)2
)

erfc

(

λπ2ρ

4Mσ

)

, (9)

whereerfc(x) = 2√
π

∫∞
x

exp
(

−t2
)

dt is the complementary
error function.

Proof: By substitutingms = mi = 1 into (4) and apply-
ing the integration formula of

∫∞
0 exp

(

−(ax+ bx2)
)

dx =
√
π

2
√
b
exp

(

a2

4b

)

erfc
(

a
2
√
b

)

for a ≥ 0 andb > 0, (9) is derived.

It is interesting thatE{S} in (9) depends on node density
λ, unlike (5) for σ2 = 0. A finite transmit power limits the
communication range; thus, a typical node cannot detect the
signals of nodes outside this link coverage even when the
aggregate interference power is low. Therefore, the number
of nodes that exist within the link coverage affects the spatial
performance of wireless peer discovery. It is worth noting that
the coverage can be extended by increasing the transmit power,
i.e., p or p

σ̃2 = 1
σ2 . Accordingly, the design issue ofp arises,

and this will be addressed at the end of the next subsection in
detail.

B. Design of the Discovery Operation Parameters

In (9), the discovery operation parameters ofM , ξ, ρ, andp
(or 1

σ2 ) are closely related to each other. Their joint design is
optimal for maximizingE{S}, but it is intractable. Therefore,
this subsection elaborates on the impact of an individual
parameter onE{S}, and the joint optimization is left to a
future work.

Similar to the case ofσ2 = 0, when ξ is fixed, it is clear
that E{S} in (9) increases withM because the aggregate
interference decreases asM increases. However, the difference
with the result forσ2 = 0 is that E{S} is a saturation

function of M , i.e., limM→∞ E{S} = λπ
3
2 ρ(1−ρ)

2
√

ξσ2
because

lim
x→0

exp(x) = 1 and lim
x→0

erfc(x) = 1. That is, because the

interference decreases asM increases but the link coverage
remains limited due toσ2 > 0, E{S} is eventually saturated.

It is difficult to derive the optimal value ofξ for σ2 > 0
because it should be designed jointly withM . For this reason,
this paper does not mathematically derive the optimalξ for
maximizing E{S} when σ2 > 0; however, the numerical
results in Section VI demonstrate that it is likely thatE{S}
remains a unimodal function ofξ even whenσ2 > 0. The
analytical optimization ofξ for σ2 > 0 remains as future
work.

Moreover, E{S} is quite sensitive toρ. It is not easy
to deriveρ∗ directly from (9) in order to maximizeE{S}.
However, the bounds ofE{S} can be given in the form of
a fractional function or linear function ofρ from the bounds
of erfc(x), i.e., 1√

π
2τ

1+2τ2 exp(−τ2) < erfc(τ) < 1√
π

exp(−τ2)
τ

for τ > 0, as follows:

2

π

M(1− ρ)√
ξ

κρ2

1 + κρ2
< E{S} <

2

π

M(1− ρ)√
ξ

, (10)
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whereκ , λ2π4

8M2σ2 . Note that the upper bound in (10) is equal
to (6) whenα = 4. This implies thatE{S} for σ2 > 0 is
upper bounded by that forσ2 = 0. In addition, for a given
ρ > 0, the lower bound in (10) becomes increasingly tight for
a largeκ, and it approaches the upper bound or that of (6)
for α = 4 as σ2 → 0. Therefore, it can be understood that
κρ2

1+κρ2 of the lower bound in (10) simply and approximately
models the performance degradation that results from the noise
power, even if not exactly accurate. Unlike case ofσ2 = 0, it
is expected thatρ∗ no longer approaches zero. A suboptimalρ,
i.e., ρ̂, can be obtained in order to maximize the lower bound
in (10) rather thanρ∗ for maximizing E{S}. Let fρ(x) ,
x2(1−x)
1+κx2 and x̂ , argmax0<x<1 fρ(x), then ρ̂ = x̂.

Proposition 4.2: Functionfρ(x) on the domain of{x|0 <
x < 1} is a unimodal function and has a maximum value
at the unique solution ofuρ(x) = 0 for 0 < x < 1, where
uρ(x) = −κx3 − 3x+ 2.

Proof: The first order derivative offρ(x) with respect to
x is given by

dfρ(x)

dx
=

x

(1 + κx2)2
uρ(x). (11)

For 0 < x < 1, because x
(1+κx2)2 > 0, the sign of dfρ(x)dx is

only determined byuρ(x). Note thatuρ(0) = 2, uρ(1) = −κ−
1 < 0, and duρ(x)

dx = −3κx2 − 3 < 0. That is, becauseuρ(x)
is monotonically decreasing,uρ(x) > 0 for 0 < x < x̂ while
uρ(x) < 0 for x̂ < x < 1. Also, uρ(x̂) = 0. Therefore,fρ(x)
is monotonically increasing for0 < x ≤ x̂ and monotonically
decreasing for̂x ≤ x < 1, andx̂ becomes the optimal solution
to maximizefρ(x) on the interval of0 < x < 1.
Interestingly, thisρ̂ is closely related to the environmental
factors includingλ, σ2, andM , because it depends onκ, and
this design ofρ differs significantly from that forσ2 = 0 in
Section III-B.

Until now, the design of the three parameters, i.e.,M , ξ,
andρ, was addressed for a givenσ2 = σ̃2

p . As another design
method, it can be considered thatp is set to such a large value
that the aggregate interference dominates the noise power.This
work suggests a design method for a transmit power that can
suppress the effect of the noise power and be kept as small
as possible, similar to [25]. The key is that, in (10), the lower
bound is forced to approach the upper bound by designingp

that makesκρ2 ≫ 1. From κρ2 = λ2π4ρ2

8M2σ2 = c ≫ 1 for a

certain large value ofc, p can be set tôp , 8c
π4

(

λρ
M

)−2

σ̃2.
It is worth noting that p̂ is a decreasing function of the
interferer density, i.e.,λρM . That is, in this design, the noise
power is dominated by the aggregate interference power.E{S}
using this p̂ approaches that forσ2 = 0, which eventually
facilitates the application of the design principles forM , ξ,
andρ addressed in Section III-B.

V. THE IMPACT OF SHADOWING ON WIRELESSPEER

DISCOVERY

This section discusses the impact of the shadowing on the
spatial performance of wireless peer discovery and extendsthe
design principles derived in previous sections to the ones for
wireless channel models that incorporate arbitrary shadowing.

When considering the link from nodej to a typical node
under shadowing and Nakagami-m fading modeled byϑj

and h̃j , respectively, the received power can be written using

ph̃jϑj |Xj |−α = ph̃j|ϑ− 1
α

j Xj |−α. In this statement,ϑ
− 1

α

j Xj

can be interpreted as randomly and independently displacing
nodes ofΦ to a new location according to their shadowing
[18]. This paper assumes that{ϑj} are i.i.d. With a slight
misuse of notation,ϑ denotes a random variable represent-
ing the shadowing component of the links. From Lemma 1
in [18], which follows from the displacement theorem [26,
Theorem 1.3.9], ifE{ϑ 2

α } < ∞, the i.i.d. shadowing effect is
equivalent to the transformation of original PPPΦ with density
λ into new homogeneous PPPΦ(ϑ) with densityλ(ϑ), which
is given by

λ(ϑ) , λE{ϑ 2
α }. (12)

This concept enables the investigation of the shadowing
effect through only analyzing the effect ofλ on the perfor-
mance. This results in the following interpretation under an
interference-limited scenario, i.e., whenσ2 = 0.

Remark 5.1: When σ2 = 0, the average number of suc-
cessfully discovered nodes, i.e.,E{S}, is invariant to the
shadowing distribution.

Proof: E{S} given in (5) is independent ofλ. Therefore,
the shadowing effect described by (12) does not affect the
performance.
Remark 5.1 indicates that the design principles forM , ρ, and
ξ described in Section III do not depend on the shadowing
distribution, whenσ2 = 0. In contrast, when the noise power
cannot be neglected, the shadowing impact on the performance
is revealed from the following results.

Remark 5.2: When all links experience the Rayleigh fading,
σ2 > 0, andα = 4, E{S} increases withE{ϑ 2

α }. In addition,
asE{ϑ 2

α } increases,E{S} approaches that of the interference
limited case, i.e.,2π

M(1−ρ)√
ξ

, which is an upper bound ofE{S}
for σ2 > 0 .

Proof: The increase inE{S} with E{ϑ 2
α } can be demon-

strated through proving that∂E{S}
∂λ > 0, whereE{S} is given

in (9).

∂E{S}
∂λ

= c
(

1 + 2d2λ2
)

exp
(

d2λ2
)

erfc (dλ) − 2cd√
π
λ

(a)
> c

(

1 + 2d2λ2
) 1√

π

2dλ

1 + 2d2λ2
− 2cd√

π
λ = 0, (13)

where c ,
π

3
2 ρ(1−ρ)

2
√

ξσ2
, d ,

π2ρ
4Mσ , and (a) follows from

erfc(τ) > 1√
π

2τ
1+2τ2 exp(−τ2). As λ increases, the lower

bound ofE{S} in (10) approaches the upper bound in (10),
which isE{S} for σ2 = 0; thus,E{S} approaches2π

M(1−ρ)√
ξ

asE{ϑ 2
α } increases.

When E{ϑ 2
α } > 1, effective densityλ(ϑ) in (12) is larger

than original densityλ, and this results in reducing the
effect of the nonzero noise power due to the increase in
the effective node density. That is, shadowing may cause the
operation of wireless peer discovery to be closer to that of
an interference-limited scenario. By replacingλ with λ(ϑ),
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Fig. 4. E{S} vs. M when σ2
= 0 (ξ = 0dB, ρ = 0.5; lines: analysis

results, symbols: simulation results).

the design principles in Section IV-B also work well under
shadowing.

Recall that Remarks 5.1 and 5.2 are applicable to an
arbitrary distribution of shadowing componentϑ. However, the
shadowing component is most commonly modeled as lognor-
mal, i.e.,θ such thatθ , 10

ϑ
10 can be represented as a normal

random variable with a zero mean and standard deviationχ.

In this case,E{ϑ 2
α } = exp

(

1
2

(

log 10
5

χ
α

)2
)

. That is,E{ϑ 2
α }

increases withχ, and E{ϑ 2
α } > 1 becauseχ > 0. From

Remark 5.2, this signifies thatE{S} increases withχ and the
lognormal shadowing always leads toE{S} larger than that
without shadowing when the effect of the noise power cannot
be ignored. Recall that Remark 5.2 assumes a specific channel
model, i.e., the Rayleigh fading andα = 4. In the next section,
simulation results demonstrate that this property remainsunder
other channel models, i.e., the Nakagami-m fading and general
α.

VI. N UMERICAL RESULTS

This section evaluates and discusses the spatial performance
of a multichannel random hello protocol based on the results
derived in Sections III and IV. As mentioned in Section II-A,
p
σ̃2 = 1

σ2 is the average received SNR when a target node
is at a unit distance from a typical node, i.e.,|Xi| = 1 in
(1); hereafter,snr signifies the average received SNR at the
unit distance. It is assumed that nodes are spatially distributed
according to a homogeneous PPP. Node densityλ is measured
as the average number of nodes within a unit area and is set to
4, if not stated otherwise. For this value, the average distance
between nodes is1/(2

√
λ) = 0.25 [26].

Fig. 4 presents the effects of the number of RBsM , wireless
fading channel parameterized bym, and path loss exponentα
on E{S} under the Nakagami-m fading channel models with
ms = mi = m, whenσ2 = 0. As already expected,E{S}
increases withM andα, and it does not depend on the value
of the fading parameterm. This figure also depicts that the
analysis results coincide precisely with the simulation results.
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simulation results.).
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Fig. 6. E{S} vs. ξ under the Rayleigh fading environment (ρ = 0.5; closed
symbols representξ∗ derived in Proposition 3.2).

The result in Proposition 3.1 only provides the result for
integerm while Fig. 4 demonstrates thatE{S} also remains
independent ofm with a non-integer value.

In order to observe the effect of the noise power, the finite
snr is considered in Fig. 5. This figure reveals clearly that
E{S} tends to be saturated rather than continuously increasing
asM increases whensnr is low, i.e.5dB. For example, when
α = 4, σ2 = −5dB, andm = 1, E{S} eventually approaches
λπ

3
2 ρ(1−ρ)

2
√

ξσ2
= 4.3503 when M is 1000 and ρ is 0.5. The

simulation results in Fig. 5 also demonstrate the effect ofm
and α with values other thanm = 1 and α = 4 that are
assumed in Section IV. In this figure, it is observed that the
effect ofm remains insignificant andE{S} increases withα,
which is similar to the interference limited case.

Fig. 6 presents the performance gains that the design ofξ
suggested in Section III-B enables. In order to determine the
value of ξ, β defined as tB

L log 2 in Section III-B should be
chosen appropriately. When considering the uplink resource
structure of the 3GPP LTE system [27], [28] and assuming
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Fig. 7. E{S} vs.ρ under the Rayleigh fading environment (α = 4, ξ = 0dB;
open symbolled solid lines: exact values ofE{S}, dashed lines: lower bound
of E{S} in (10), closed symbols:̂ρ derived in Proposition 4.2).

that L = 70 bits [16], β ranges from approximately10 to
160 depending on the available bandwidth, and therefore the
evaluation assumes thatβ = 10. These results demonstrate
thatE{S} for σ2 = 0 is maximized at the value ofξ derived
in Proposition 3.2, which increases withα for a given δ.
This figure also depicts thatξ∗ increases with the SNR gap
under a fixedα. As stated in Section III-B, it should be noted
that, whenσ2 = 0 and α = 4, ξ∗’s for δ = 6 dB and
δ = 3 dB differ precisely by the difference ofδ values, i.e.,
3 dB. In contrast, it is observed thatξ required in order to
maximizeE{S} for a finite snr is somewhat smaller than
ξ∗ derived in Proposition 3.2. Even thoughξ∗ derived in
Proposition 3.2 does not provide a bad performance, it might
not be satisfactory to apply thisξ∗ when the SNR is not high.
However, as suggested in Section IV-B, if the transmit power
can be appropriately increased, it is expected that thisξ∗ can
work sufficiently well.

Fig. 7 demonstrates how the transmission probability, i.e.,
ρ, affectsE{S} and how well the suboptimal design ofρ
proposed in this paper functions under the Rayleigh fading
environment (ms = mi = 1). It is observed that the optimal
ρ for maximizing E{S}, i.e., ρ∗, increases withσ2. This
increases the likelihood of packets with a high received SNR
by allowing more nodes to transmit rather than only focusing
on reducing interference. Whenσ2 is low, E{S} is very
sensitive toρ on the interval of0 < ρ < ρ∗; thus, the
selection of ρ has a profound effect on the performance.
This observation stresses the importance of considering the
noise power effect in the design ofρ. The results in Fig. 7
also demonstrate that̂ρ obtained in Proposition 4.2 tracks
ρ∗ very well even when the lower bound ofE{S} in (10)
becomes increasingly loosed as the impact of the noise power
increases, e.g., for a low SNR or largeM . That is,ρ̂ achieves a
fairly good balance between the chance of packet transmission
and reduction of interference. Fig. 7 also illustrates thatρ∗

approaches0.5 for a largeM . In fact, ρ∗ = 0.5 maximizes
limM→∞ E{S}. At a largeM , ρ̂ tends to be more than0.5.
This value provides a lower performance than that of a trivial

0 5 10 15 20 25
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Average received SNR at a unit distance, 1/σ2 (dB)

A
ve

ra
ge

 n
um

be
r 

of
 s

uc
ce

ss
fu

lly
 d

is
co

ve
re

d 
no

de
s,

 E
{S

}

 

 

E{S} → 2.0372 as σ2 → 0 @ M=4

E{S} → 1.5279 as σ2 → 0 @ M=3

λ=0.3−2, M=4

λ=0.4−2, M=4

λ=0.5−2, M=4

λ=0.3−2, M=3

λ=0.4−2, M=3

λ=0.5−2, M=3

Fig. 8. E{S} vs. snr under the Rayleigh environment (α = 4, ξ = 0dB,
ρ = 0.2; open-symbolled solid lines: exact values ofE{S}, dashed & dashdot
lines: lower & upper bounds ofE{S} in (10), closed symbols:snr designed
for meetingκρ2 = 100).

design ofρ = 0.5 and wastes the node energy due to more
transmissions. From this, a design method may be considered
whereρ is set tomin{ρ̂, 0.5}. The results also present that a
value ofρ ranging from0.1 to 0.3 works moderately well over
varioussnr values. Accordingly, in what follows,ρ = 0.2 will
be used for performance evaluations if not stated otherwise.

Fig. 8 elaborates on the approximation of the noise power
impact based on the lower bound in (10), and it validates
the design of the transmit power suggested in Section IV-B.
It is observed that the approximation becomes more and
more precise asκ = λ2π4

8M2σ2 increases. This is because the
noise power is overwhelmed by the aggregate interference that
increases withλ/M andsnr. In this figure, the solid symbols
denote the performance of the transmit power design suggested
in Section IV-B, whenc = κρ2 = 100, and a transmit power is
expressed as the average received SNR at a unit distance in the
abscissa. The results demonstrate that this design gives a good
transmit power that can be maintained as small as possible
while forcing it into an interference limited environment.

Fig. 9 presents the effect of the lognormal shadowing on
E{S}, and the value ofχ on the abscissa denotes the standard
deviation of the shadowing in dB scale, e.g.,χ = 0 indicates
no shadowing. These results verify the discussion presented
in Section V by demonstrating the coincidence of the analysis
and simulation results under the interference limited (i.e.,
σ2 = 0 and generalα) and specific nonzero noise (i.e.,σ2 > 0,
α = 4, andm = 1) channels while presenting the simulation
results under analytically intractable channels (e.g.,σ2 > 0
and α 6= 4). As elaborated in Section V, the performance
is invariant toχ when σ2 = 0 while it increases withχ
when σ2 > 0. In particular, whenσ2 > 0, the lognormal
shadowing equivalently increases the node density by a factor

of exp

(

1
2

(

log 10
5

χ
α

)2
)

. In this regard, the shadowing has

more significant impact on the performance for a smallα,
and this phenomenon is observed in Fig. 9.

Fig. 10 presents the effect of shadowing on the design of the
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Fig. 9. The effect of the wireless channels onE{S} when considering the
lognormal shadowing (M = 4, ξ = 0dB, ρ = 0.2; note that, in the cases of
‘No noise’ and the case of ‘α = 4, snr= 5dB, m = 1’, lines and symbols
denote the analysis and simulation results, respectively.In the other cases,
symbolled lines only represent the simulation results).

operation parameters. The two subfigures extend the resultsin
Figs. 6 and 7 into the ones that incorporate the lognormal
shadowing. The lognormal shadowing tends to dilute the
impact of the noise power; thus, it is observed thatξ andρ for
maximizingE{S} become closer and closer to those of the
interference limited case, asχ increases. In addition, Fig. 10(b)
demonstrates that the maximum value ofE{S} at χ = 12
increases by up to18% whensnr= 10dB while increasing
by only 8% whensnr= 20dB, compared with the case with
not shadowing. This observation implies that the impact of
shadowing reduces, asσ2 decreases orsnr increases.

VII. C ONCLUSIONS

This paper investigated the performance of a multichannel
random hello protocol for wireless peer discovery in terms
of the average number of successfully discovered peers, when
the peers are spatially distributed according to a homogeneous
Poisson point process. The performance depends on the wire-
less channel characteristics, such as the path loss, noise power,
fading, and shadowing, as well as the discovery operation
characteristics, such as the number of resource blocks, modula-
tion and coding scheme, transmission probability, and transmit
power. The relationship among these characteristics was ex-
pressed or approximated as a closed form, and it was demon-
strated that the wireless channel model significantly affects
the design of the discovery operation parameters. Accordingly,
incorrect models or assumptions might result in poor designs,
e.g., it was observed that an immoderate zero noise assumption
for a low SNR might lead a poor design of the transmission
probability that degrades the performance. The results in this
paper can be used as a basis for the design of wireless peer
discovery, even though this paper only considered a limited
scenario including a simple random access and homogeneous
PPP. For future study, it would be interesting to extend this
work by considering more sophisticated resource management
schemes, e.g., interference aware resource allocation.

APPENDIX A
PROOF OFLEMMA 2.1

E{S}(a)= ME







(1− ρ)
∑

Xi∈Φ1/M

P (Xi|Z0 = 0)







(b)
= M

(

(1− ρ)
λ

M

∫

X∈R2

P (X |Z0 = 0)dX

)

(c)
= 2πλρ(1− ρ)

∫ ∞

0

Pr
{

h > ξrα(I + σ2)
}

rdr, (14)

where (a) follows from the fact that a typical node simultane-
ously listens to target nodes overM RBs, (b) follows from the
Campbell theorem and the stationarity of a homogeneous PPP
[21], and (c) follows from (1), (2), and the change of variable
|X | → r. Here,R2 denotes the two-dimensional Euclidean
space. When the fading power gains of the desired and
interfering signals have the ccdfs with fading parametersms

andmi described by (3), respectively,Pr
{

h > ξrα(I + σ2)
}

can be derived similarly to equations (20), (21), and (24) in
[25], as follows:

Pr
{

h > ξrα(I + σ2)
}

=

ms−1
∑

k=0

mk
s

k!
(−ξrα)k·

dkLI(ζ) exp
(

−ζσ2
)

dζk

∣

∣

∣

∣

∣

ζ=msξrα

, (15)

where LI(ζ) = exp
(

−λρ
M πζ

2
α∆i(mi, α)

)

. Eventually, by
plugging (15) into (14), (4) is obtained.

APPENDIX B
PROOF OFPROPOSITION3.1

By using the formula of ∂k

∂zk exp(f(z)) =

exp(f(z))
∑k

l=0
1
l!

∑l
j=0(−1)j

(

l
j

)

f(z)j ∂kf(z)l−j

∂zk similar
to equation (25) in [25], the higher order derivative terms in
(4) are given by

dk exp
(

−λρ
M φ(ζ, α)

)

dζk
= exp

(

−λρ

M
πζ

2
α∆i(mi, α)

)

·
k
∑

l=0

1

l!

l
∑

j=0

(−1)l+j

(

l

j

)(

λρ

M
π∆i(mi, α)

)l

·
(

2

α
(l − j)

)

(k)

ζ
2
α l−k, (16)

where(x)(k) , x(x−1) · · · (x−k+1) denotes the Pochham-
mer symbol. Thus, through the integration similar to equation
(26) in [25], (4) is calculated as follows.

E{S} =
∆̃s(ms, α)

∆i(mi, α)

M(1− ρ)

ξ
2
α

, (17)

where ∆̃s(ms, α) denotes m
− 2

α
s
∑ms−1

k=0
1
k!

∑k
l=0

∑l
j=0

(−1)k+l+j
(

l
j

) (

2
α (l − j)

)

(k)
.
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Fig. 10. The impact of lognormal shadowing on operation parameter design (M = 4, m = 1; (a) closed symbols:ξ∗ derived in Proposition 3.2; (b) closed
symbols:ρ̂ derived in Proposition 4.2, dashed lines: lower bound ofE{S} in (10)).

Interestingly, a more elegant form of̃∆s(ms, α) can be
found. That is, it is shown that̃∆s(ms, α) = ∆s(ms, α), as
follows:

∆̃s(ms, α)

(a)
= m

− 2
α

s

ms−1
∑

k=0

1

k!

k
∑

n=0

(−1)k+n

(

2

α
n

)

(k)

k
∑

l=n

(

l

n

)

(b)
= m

− 2
α

s

ms−1
∑

k=0

1

k!

k
∑

n=0

(−1)k+n

(

k + 1

n+ 1

)(

2

α
n

)

(k)

(c)
= m

− 2
α

s

ms−1
∑

k=0

1

k!

t−1
∑

s=0

(−1)s
(

t

s

)(

2

α
(t− s)− 2

α

)

(k)

= m
− 2

α
s

ms−1
∑

k=0

1

k!

((

t
∑

s=0

(−1)s
(

t

s

)(

2

α
(t− s)− 2

α

)

(k)

)

−
(

(−1)k+1

(

− 2

α

)

(k)

))

(d)
= m

− 2
α

s

ms−1
∑

k=0

1

k!

Γ
(

2
α + k

)

Γ
(

2
α

)

= m
− 2

α
s

1

Γ
(

2
α

)

ms−1
∑

k=0

Γ
(

k + 2
α

)

Γ (k + 1)

(e)
= m

− 2
α

s
1

Γ
(

2
α

)

Γ
(

ms +
2
α

)

2
αΓ (ms)

(f)
= m

− 2
α

s
Γ
(

ms +
2
α

)

Γ
(

1 + 2
α

)

Γ (ms)
, (18)

where (a) follows from the introduction of new variable
n , l − j,

(

l
j

)

=
(

l
l−j

)

, and the change of the order of

summations, (b) follows from
∑k

l=n

(

l
n

)

=
(

k+1
n+1

)

, (c) follows
from

(

k+1
n+1

)

=
(

k+1
k−n

)

and the introduction of new variables

t , k + 1 and s , k − n, (d) follows from the formula
of
∑t

s=0(−1)s
(

t
s

)

((t− s)x+ y)(k) = 0 for any complex
numbersx andy whent > k, (e) follows from the formula of
∑m−1

k=0
Γ(k−β)
Γ(k+1) = −Γ(m−β)

βΓ(m) for any real numberβ [29], and
(f) follows from Γ(1 + z) = zΓ(z).

Furthermore, ifms = mi = m, from the definition of
∆s(ms, α) and∆i(mi, α),

∆s(m,α)

∆i(m,α)
=

1

Γ
(

1− 2
α

)

Γ
(

1 + 2
α

) =
sin(2π/α)

2π/α
. (19)

APPENDIX C
PROOF OFPROPOSITION3.2

The first order derivative offξ(x) with respect tox is given
by

dfξ(x)

dx
=

2

α
x− 2

α−1
(

1 +
x

δ

)−1

uξ(x). (20)

Becausex > 0, 2
αx

− 2
α−1

(

1 + x
δ

)−1
in (20) is always positive,

thus the sign ofdfξ(x)dx is only determined by that ofuξ(x).
Consider the derivative ofuξ(x) given by

duξ(x)

dx
=

1

δ

((α

2
− 1
)

− log
(

1 +
x

δ

))

. (21)

From the assumption ofα > 2 in Section II-A, if 0 <

x < δ
(

exp
(

α
2 − 1

)

− 1
)

, duξ(x)
dx > 0, i.e., uξ(x) is in-

creasing. Accordingly, as long aslimx→0+ uξ(x) > 0,
uξ(x) > 0 for 0 < x < δ

(

exp
(

α
2 − 1

)

− 1
)

. Note that
limx→0+

α
2

x
δ

(1+ x
δ ) log(1+

x
δ )

= limx→0+
α
2

1+log(1+ x
δ )

= α
2 > 1 by

the L’Hôpital’s rule. Thus,limx→0+ uξ(x) > 0. By contrast,
for x ≥ δ

(

exp
(

α
2 − 1

)

− 1
)

, duξ(x)
dx ≤ 0, i.e., uξ(x) is

decreasing and eventually becomes negative asx increases.
Therefore, on the interval ofx > 0, uξ(x) crosses zero once
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from positive to negative. That is, equationuξ(x) = 0 has the
unique solution on the interval ofx > 0, which is equal tox∗.
From these results,fξ(x) is increasing for0 < x < x∗ while
decreasing forx ≥ x∗. Thus,fξ(x) is maximized atx = x∗.

The increase inx∗ with α follows from the monotonic
increase ofvξ(x) ,

(

1 + δ
x

)

log(1 + x
δ ), becausex∗ is equal

to the solution ofvξ(x) = α
2 . This can be shown as follows:

The derivative ofvξ(x) is given by dvξ(x)
dx = 1

x2 ṽξ(x), where
ṽξ(x) ,

(

x− δ log(1 + x
δ )
)

. Note thatlimx→0+ ṽξ(x) = 0

and ṽξ(x) is increasing withx > 0 becausedṽξ(x)
dx =

1 − (1 + x
δ )

−1 > 0 when x > 0. Therefore, dvξ(x)dx > 0
for x > 0, and the solution ofvξ(x) = α

2 , i.e., x∗, increases
with α.
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