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Abstract—We propose a four-stage hierarchical resource al-
location scheme for the downlink of a large-scale small-cel
network in the context of orthogonal frequency-division mutiple
access (OFDMA). Since interference limits the capabilitie of such
networks, resource allocation and interference managemerare
crucial. However, obtaining the globally optimum resourceallo-
cation is exponentially complex and mathematically intratable.
Here, we develop apartially decentralized algorithm to obtain
an effective solution. The three major advantages of our wdt
are: 1) as opposed to a fixed resource allocation, we considead
demand at each access point (AP) when allocating spectrum)
prevent overloaded APs, our scheme is dynamic in the sensesth

the receiver. This allows for a reduction in the transmit pow
and, in turn, improving the frequency reuse factor [7]. As
an example of this approach, heterogeneous networks have
been proposed to increase the area spectral eﬁi(ﬂeang

the overall capacity through a revised network topologye Th
idea is to introduce a multi-tier network where each tiespal
referred to as a layer, differs mainly in the density of itsess
points (APs) and the AP transmit power, hence coverage area.
The traditional macro-cellular network would be one layer i
the heterogeneous network with carefully planned deplayme

as the users move from one AP to the other, so do the allocatedthe lowest density and the highest transmit power; the small

resources, if necessary, and such considerations geneyahesult
in huge computational complexity, which brings us to the thid
advantage: 3) we tackle complexity by introducing a hierardical
scheme comprising four phases: user association, load esttion,
interference management via graph coloring, and schedulim We
provide mathematical analysis for the first three steps modég
the user and AP locations as Poisson point processes. Finalve
provide results of numerical simulations to illustrate the efficacy
of our scheme.

Index Terms—Small-cell networks, hierarchical resource allo-
cation, Poisson point processes, graph coloring

I. INTRODUCTION

cell layer, on the other hand, is characterized by essntial
random deployment, a much higher AP density and low AP
transmit power. The randomness in the AP locations in small
cells and their significantly greater number within a chosen
geographical area precludes globally optimized resoulae-p
ning. This necessitates new analysis techniques and tigwi
beyond those for the centrally planned macro-cellulardaye
this paper, we focus on resource allocation techniques ailsm
cells and propose partially-distributed hierarchical scheme
which can be applied to karge-scale network.

A. Related Work

Each new generation of wireless communication systemsThe analysis of the signal-to-noise-plus-interfereratér
promises to support a larger number of mobile users WitR|NR) in a heterogeneous network has been presented for a
higher data rates, new applications and ever-more stﬁnggmg|e_|ayer [8] and multi-layef 4]=[6] network using Bebn
quality of service (QoS) requirements [1]. In a modern conpint processes (PPP). The presented analyses are based on
munication system where the mobile user is almost alwaye statistical distribution of the SINR in the network ded
connected to the network, supporting a large number of usggsa reference user randomly located in the cell. It is shown
with various applications results in a mix of traffic demandg, [3] that in an interference-limited network, as is the eas
(bursty vs. continuous, high vs. low data rate) from thg small cells, the probability of coverage when the user is
network point of view and high battery consumption from thgssociated with a layer is independent of the AP density and
user equipment (UE) point of view. Meeting these demange transmit power. The same result is shown in a multi-layer
is getting harder largely due to the limited availability ofetwork with all the layers having the same layer associatio
transmission resources, most importantly wireless Spectr pias factor and path loss exponérit [4]—[6]. While the cogera
This makes it impossible to completely separate concurrefffalysis here is a measure of the level of the received SINR, i
transmissions in frequency, in turn, making interfererfoe ts only synonymous with a chosen QoS if the reference user is

main factor that limits the capabilities of the wirelesswatks.

guaranteed some resources. In other words, in a network with

Much of the relevant recent research focuses on the issuengfh density of users, while the users might be in coverage

interference e.g.| [2], and network analysis in an interfiee-
limited regime e.g.,[13]-:[6].

when considering the received SINR, the rate available o th
user depends on the scheduling algorithms used at each AP.

In the cellular context, an effective approach to increase several resource allocation schemes have been proposed
capacity is to reduce the distance between the transmitter &, the literature to mitigate RF interference in small cetis
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Qe context of femtocell networks. Femtocells are essintia
user-deployed, indoor, small cells. Regardless of theildeta
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the system can provide per unit bandwidth.


http://arxiv.org/abs/1408.3773v1

of the system under consideration, they can be categorizedere the total interference is constant and independergeyf
into autonomous power control [8]=[12] and adaptive speutr location in the cell.
allocation [13]-[18]. The main feature of the first group is
to adjust the AP coverage by setting the transmit power hi
enough to service its users but low enough so as not to ingerf
with the other APs on the same frequency of operation. TheWhile there are several works on resource allocation in
schemes in the second group manage interference by ensusimgll-cell networks, as the literature survey above shows,
orthogonality between interfering APs. it is hard to scale these algorithms karge-scale networks

A two-phase frequency assignment is proposefin [14], witiith multiple hundreds of nodes. Specifically, we consider
a fixed, limited number of users per femtocell. Li et al.][15lhe downlink of a large-scale network of small cells. Ingtea
viewed the user-deployed femtocells as the secondaryrsystef focusing on SINR, we attempt to provide users with their
and the femtocell resource allocation as a cognitive spectrdesired data rate as they declare to their corresponding AP.
reuse procedure. The idea is to adaptively adjust the chankgch AP transmits at its full transmit power and we focus
reuse factor according to the location of the femtocell ian frequency allocation to avoid interference. To maintain
the macrocell. Jointly optimizing power and spectrum, Kirfairness among users, we formulate the resource allocation
et al. [17] proposed a scheme to maximize the total systéhe form of a max-min normalized rate problem, maximizing
capacity in dense networks. Treating the macro-users as e minimum ratio between the achieved and the desired rates
mary users, the authors in [19] prioritize them by perforgninThis problem is, in general, NP-hard.
a hand-over to the nearby femtocell whenever the small-cellThe main contribution of this paper is an effective solution
interference is high. The graph-based approach proposeddrthis resource allocation problem with reasonable compu-
[18] maximizes the logarithmic average cell throughput t@tional complexity. We propose a hierarchical scheme by
ensure proportional fairness among femtocells each sgrvitlecomposing the problem into four steps. This scheme has
a single user. A system level simulation of an open-accesgveral advantages. As opposed to a fixed spectrum allacatio
network was carried out by Claussen et al. [8],1[10], and tr&s in [13] and[[16], it considers the AP load, in terms of the
obtained data rates at the reference users (one macrongserreumber of users and their rate requirements, when allagatin
one femto-user) were used to evaluate the system perfoemaspectrum to the APs. This adaptivity in spectrum allocation
Two main results are shown: 1) if autonomous power contrallows for resources to follow user demands, i.e., higk-rat
is used by femtocells, adding APs has little impact on thésers can be satisfied by a single AP. The proposed scheme is
macrocell throughput, and the impact is independent of thpartially-distributed in the sense that three of the foapstare
number of femtocells; 2) the total throughput significantlgarried out locally and concurrently at each AP and, at worst
increases with the increase in the number of femtocell yseirs/olve solving convex optimization problems using loaa i
especially in the uplink. Similar results were reported4fi-[ formation only. A single, graph coloring step must be exedut
[6]. When analyzing the system, it is assumed that either thea central server. In contrast to the globally optimal sofu
reference user is guaranteed some resources, e.fl, i®],2]-[equiring exponential complexity and global knowledge of
or only voice is considered, e.g., in_[16]. channel state information, our hierarchical scheme impose

A more realistic simulation-based study of small-cell ddimited complexity and requires local knowledge only.
ployment in a heterogeneous network was reported by ColettiGiven the difficulty with applying available algorithms to
et al. [20]. The results suggest either coordination amofayge-scale networks, we compare the results of our scheme
layers or orthogonal spectrum allocation to improve outagéth a network with fixed number of channels allocated to
rate. The authors of [21] propose a combination of fractioneach AP, and show how load-awareness can effectively reduce
frequency reuse (FFR) and orthogonal spectrum allocationthe outage rate. As far as possible, we provide a mathemat-
a two-tier network differentiating between commercial anigal analysis for the proposed scheme based on stochastic
home-based femtocells. geometry([26]. In particular, we use independent homogeseo

An ambitious goal in dense networks is to achieve optim&loisson point processes for AP and user locations. PPPs have
but decentralized resource allocation. The problem of mecdeen shown to capture the inherent randomness in user and
tralized power allocation was first addressed by Foschini 8P locations and yet provide tractable analyses compared to
al. [22]. They showed that there exists a fully distributethe grid-based modelsI[3]. Necessarily requiring a numiber o
algorithm which requires only local information if thereigts  simplifying assumptions, the analysis does provide reghht
a common, known, SINR at which the system performancetisick the related simulations and can, therefore, be used fo
globally optimum, and there exists a feasible but unknowsystem design.
power vector that achieves this SINR. Unfortunately, theseThe paper is structured as follows: in Secfidn I, we describ
assumptions are hard to satisfy in practice [23]. The pregosthe system model and formulate the resource allocation-prob
distributed algorithms in_[24]/ [25] maximize the total 5% lem. The proposed hierarchical algorithm is presented ot Se
capacity ignoring user rate requirements and fairness gmdion [[lllwith the outage analysis based on homogeneous PPP.
the users both within and among cells whilel[12] aims for prdrhis section also presents a complexity analysis. SeEWon |
portional fairness ignoring individual user rate requiesits. presents the simulation results in two parts: (a) comparing
To obtain a distributed solution, the authors in[24],1[25]he performance of the proposed algorithm with its assediat
simplify the network model to an “interference-ideal" netlw  analysis; (b) comparing the performance with a fixed resurc

. Our Approach and Contributions



allocation scheme. The parameters used in the simulatiens a Under this setting, the general form of the resource alloca-
based on the Long Term Evolution (LTE) standard. Sedfibn tibn problem in the downlink is given by:
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Figure[d illustrates the network under consideration. The n(l) o
model comprised< users andl APs distributed randomly P 20, Vh,n,l, 1)
in the network. The macro base station (BS) is provided an SinNS; =0 1i#j,
orthogonal frequency allocation, and our analysis comside L
only users connecting to the small cells. If the BS allogaifo U |Si| = K,
not orthogonal, it can be easily incorporated into the atgor 1=1

as another transmitting node in the network with its own rowe o7 andn® are. respectively. the channel bower gain
budget. Associated with each AP is its potential coveraga ar k,m Pr.n » Tesp Y. P 9

. . . and the transmit power from APto userk on subchannet.
which depends on the environment and the transmit power.. . :
Due to the random geographical distribution of access ppint’ IS the set Of_ USers connecte_d tq and being serwcedzby AP
the coverage area for some (if using the same time-frequen IS the required rate .by usérin b|t§ per second (bpsy.” is
resource) may overlap. In other words, some users might Ee noise poxver, ang) IS(E)he _bandwdth of e.ach_subchannel.
in a location covered by more than one AP and transmissio ge Sum’zl‘zlﬂ'#l Pionl is the cumulative interference

k,n?
from these APs would interfere. experienced by uset on subchanneh from all the access

points except the serving AP indexed byT he first constraint
O User is on the total transmit power of each AP, while the second
O AP ensures non-negative transmit powers on each subcharneel. T
: third constraint ensures that the sefs;},, are disjoint,
© ; since each user is serviced by one and only one AP. The
O final constraint ensures that all the users in the system are
" ‘ scheduled by an access point. The séis,}- |, therefore,
form a partition on the set of all users.
. . The objective of[{lL) is to find the optimal user associations,
O, {Si},, and power levels{p\" }}- , determining which user
0 should receive service from which AP on which subchannel,
o and how much power should be allocated to each subchannel.
® Being combinatorial, since it includes set selection, figdhe
B optimal solution is exponentially complex. It seems infikes
’ from another point of view as well: it requires the knowledge
of all the subchannels for all the users from all the APs at the
Fig. 1. Random distribution of APs and users in the network. central location. Getting this information to a centralveer
would impose a huge overhead. Furthermore, this informatio
s . _ needs to be updated every time the channel estimation is
The optimization problem is formulated in the context OEJen‘ormed. Essentially, a resource allocation schemedbase
OFDMA as in the LTE stanQard. There a¥ effective on global and perfect knowledge of SINR in a network of
frequency subc_hannels - physical resource bIO_CkS (PRBs)chh scale is practically infeasible. This motivates depielg
LTE - available in the system each with a bandwidttBofThe Hartially-distributed, if suboptimal, solutions.
channels between APs and users are modeled as frequency-
selective Rayleigh fading with average power determined by
distance attenuation and large scale fading statistics.gbial
is to provide each user with its requested data rate. However In response to the infeasibility of obtaining the globally
achieve overall fairness in doing so, we formulate the gwbl Optimum solution, we propose a partially-distributed rese
to maximize the minimum normalized rate, i.e., max-min ovedllocation scheme to decompose the problem into four steps:
all the users’ achieved rates normalized by their requetsital 1) Cell association: each user is associated with the AP
rates. The rate achieved on a specific channel is assumed to that offers the highest long-teraverage received power
be given by its Shannon capacity; a gap function can be added (based, e.g., on a pilot and large-scale fading);
to account for practical modulation and coding |[27]. Each2) Load estimation: the load imposed by the userssts
AP schedules its users in a manner to cancel the intra-cell mated by each AP based on its users’ data rate require-
interference. Therefore, the interference experienceal bger ments andhverage channel gains;
is due to the transmissions from all the access points, othe8) Channel allocation: specific subchannels are allocated t
than its own serving AP, that transmit on the same frequencie  APs based on coloring an interference graph;

O
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4) Scheduling: each AP schedules its own users consideraigeach AP indexed byl = 1,..., L given by:
the users’ required data rates and thigstantaneous

channel gains. nin > s
keS;
For each step, we derive the statistical distribution of the _ _ P.Hj,
important quantities as accurately as possible, whichleea t subject to:  nipBlogy {1+ nEo2 2 Ry, Vk € 5,
used in analysis of the system performance, specifically the
y y P P Y Z Py, < Piot, )

outage rate.
keS,;

P, >0,n, >0, Vke€S5).

Here, n; is the number (can be a fraction) of subchannels

A. Partially-Distributed Resource Allocation that AP [ budgets for usek € S;. As before,S; is the set
of users supported by AP P, and H;, are, respectively, the
Sep 1: Cell Association total power allocated to and thaverage channel power seen

by userk. The first constraint ensures that the access point
The cell association is based on the large scale fading onmgquests adequate resources to meet its users’ demands. The

This implies that the cell association is the same whether thbjective is to minimize the total amount of spectrum needed
system considers the uplink or the downlink. At each usdyy AP [. This is important since it affects the density of the
the received power from all the APs are measured, and tinéerference graph in the next step.
user is associated with the AP that offers the highest long-Analysis: The load of thel-th AP in terms of the required
term average received power. This ensures maximum data rateount of spectrum is a random variable given by:
on average and makes the cell association independent of the

instantaneous channel gains. This cell association isstens N, = Z n, (4)
with the downlink model for the system analysis based on PPP k=1
considered in[[B] and(15]. wherem = |S;| is itself a random variable representing the

Analysis: Considering only distance attenuation, each usergimber of users connected to APThe CDF of N, in the
serving AP is the closest access point to the user. Thet#talis general form is given by:
analysis of the connection distance is straightforwardinga .
the user’'s location as the reference point, the connection P an <mn (5)
distance isd if there is no other access point closer to the — ’
reference point. Modeling the AP locations by a homogeneou . .
Poisson point process with density, the cumulative density where By, (,,) denotes expectation with respect 4o and

FNZ (nl) = Em,{nk}

function (CDF) ofd can be written as: {ne}q, _and ng, k = 1,...,m are i.i.d random variables
representing the required spectrum of each user. A thorough
Fp(d) =P <d)=1-P(Nf(Aq) =0) mathematical analysis of the load requires the knowledge of
@ exp(—Asmd?). (2) the number of users in each AP’s coverage area, also referred
= fp(d) =2md\sexp(—Afmd?), d>0, to as Voronoi cells, and the users’ distance to the serving

AP. Due to the intractability of the problem, we derive the
CDF for a special case where (i) all the APs have the same
coverage arean average, (i) equal power is allocated to each
subchannel to estimate the load, and (iii) all the users ecinn
at a distance equal to the most probable distance from the AP.
We now state and prove the main result at this step.
Proposition: Under the assumptions stated above, the CDF
of the AP load is given by:

FNL(nl):B(nl/n*aKvp)a (6)

where B(n;/n*, K, p) is the CDF of a binomial distribution

With users having different rate demands, the objective wjth K*t”alf f"m?j a_robgblmty of suclceqsz 1/5]; evaluzted ¢
each AP is to estimate the minimum number of subchanné‘lrsgl{]” ("I IS G_”r:jeb aterhm[(] ) to be the number o
required to service its users. Each AP is aware of the reedest" cPanr]lels require ky e.a;]:L li\s:r)' h bability th
rates andinstantaneous channel gains for all the users that “rook In a network wit S F_e proba |_|ty that a
it serves. However, it does not know which subchannels4¢€" 'S " the coverage area_ofaspemflc AR/E. Slnce_ user
will be allocated, and fading is frequency selective. Thane Iocat|_ons are random and independent, the probability mass
it estimates its load using only thaverage channel gains. fuqctlpn OL.the quln;per_t?f users corl;n('actmg to an access
We emphasize that the load is defined here as the minim@Nt IS & binomial distribution given by:
frequency resources needed to meet the users’ rate demands. K\ . k—m

duency Py(m) = ( )p g, ()

where A, is the area of a circle with radiug and the user
at the centerlP(B) denotes the probability of eve®, and
Ny (Aq) is the number of APs itd,. (a) results from the null
probability of a 2-D Poisson process. Differentiatifig (d)
with respect tad gives the probability density function (PDF)
in the final equation.

Sep 2: Load Estimation

We formulate this problem as a convex optimization problem m



wherep =1/L andg =1 —p. the objective at this step is to allocate the spectrum to the
From the first constraint in[13), the minimum requiredhPs considering their load and the interference they can
number of subchannels for uskrwith equal transmit power potentially cause to other small cells. In this paper, wesasr

on each subchannel can be rewritten as: a resource allocation scheme which avoids interferenceoTo
Ry so, we ensure that two neighboring small cells do not use
e = Blog, (1 + ProtHi/No?)’ (8)  the same frequencies. Small cells are considered neiglitbors

they potentially interfere with each other, i.e., their guttal
whereH), = Lod™*, d is the distance between the AP and thgoyerage areas overlap. Unlike the previous two steps fend t
user, Ly is the path loss at the reference distangg=¢ 1m), next step), this allocation isentralized.
anda is the path loss exponent. Setting = Pio.Lo/No® Al the access points report their loaflV;}” | to the
and using#p(d) derived in [2), the CDF of the user loadcentral server. Ideally, the central server should allocat

Fy, (n) can be written as: orthogonal set of subchannels to every AP that also meets
F,.(n) =TP(ny <n) its users’ rtzquirements. GiveN total available subchannels,
Ry if N> >",_, N;, each AP is easily satisfied. Realistically,
Blog, (14 vod—) < ") however, this is h|gth_unI|ker; hen.ce, the server _mussaeu

- Ry channels across multiple APs. This can cause interference,

=P (logy(1+70d ") > nB and so the allocation must ensure that the interfering APs

( oRi/nB _ | —1/a 9) (APs with overlapping coverage areas) are assigned orttabgo
=P(d< <7) ) frequency resources. As a consequence, it may be that all APs
7o load demands cannot be satisfied. Alternatively, the got is
9Ri/nB _ 1\ /@ assign subchannels to Apsoportional to their estimated load
=1Ip <T) : while eliminating the interference among them. To do so, we
use graph coloring by the central server.
As shown in Fig[h in Section 1V, this CDF approaches a step Graph algorithms have been used as a tool for channel
function as)y increases. In other words, in a dense netwo@gsignment in multi-cellular networks, e.g., In [29]=[3vjth
of small Ce”S, the variance of the user load decreases. Tmé nodes representing either access points or users. @hang
motivates one to represent the user load in high-density AP [30] formulated the spectrum allocation in a macrodatiu
networks with a single number rather than a random variablgetwork in the form of maxC-Cut with a fixed number of

Amongst various possibilities, threost probable link distance  channels (or colors). Each node in the graph corresponds to

best predicts this number. a mobile device or user. The interference among users is
Differentiating fp (d) with respect tal and setting it to zero, denoted by weighted edges taking into account not only the
the most probable link distance is given by: distance between the users but also the anchor (serving) and
1 the neighboring base stations. The objective is to pantitio
d = | —. (10) the users intdC clusters with maximum inter-cluster weight.
2mAy This technique allows for asymmetrical channel allocation

Insertingd* in (8), the number of subchannels required b§MoNg the base stations. Authors(in|[32] proposed a two-step
each user is given by: graph coloring approach for multicell OFDMA networks in

which the users are clustered in a manner to minimize the

* = Rk . (11) total number of colors based on geographic user locations.
Blog, (1 +70(d*)~) In the second step, the subchannels are allocated based on
Using [4), the CDF of the AP load is then derived as: instantaneous channel conditions. In graph-based schemes

wherever users correspond to graph nodes ds_in [32]land [34],
— P(m < ny/n) (12) user mo_bility results ir_1 rapid changes of the interferenc_e
— Bm/n*, K, p), graph. Smce we deal with sma_\ll cel_ls in a dense network, this
computation is added to the signalling overhead due to hand-
where the last equation results from the distributionmef off and synchronization among APs making it impracticale Th
derived in [T) and the proof is complete. B authors in[[3]] differentiate between the cell centre anidl ce
For a largef, the binomial distribution is very well approx-edge hence allowing for FFR. This approach assumes large
imated by a Poisson distribution with parameter= K/L cells, an assumption that is not valid here. Finally, the-two
when n is small, and by a normal distribution whepis step spectrum allocation algorithm proposed[in [33] uses th
large [28]. In this paper, we will make use of the Poissoimstantaneous channel information in deriving femtoteiti-
approximation. ities while coloring the graph resulting in increased coemjiy
and signalling overhead.
. . _ In our approach, the nodes of the graph represent access
Step 3: Channel Allocation Among APs Using Graph Coloring points. An edge connects two nodes if they potentially fieter
After steps 1 and 2, users have been assigned to APs @aded orlarge-scale statistics. We make this choice to ensure
the APs have estimated their loads. We now come to thtieat the graph does not change rapidly with each channel
crucial step of allocating subchannels to APs. Specificallsealization. While here we use an unweighted graph, thists n

FNZ (TLZ) = IP(N[ S nl) = IP(n*m S nl)



fundamental to the proposed scheme. A weighted graph can
very well be used instead, at the cost of increased complexit
as long as the edge weights correctly reflect the intensity of
the interference between any two nodes. Since each color
corresponds to a single subchannel, to account for the AP
loads, we modify the interference graph as follows: as opgos ;
to the conventional approach, AHs represented by not one D
but [N;] nodes forming a complete subgraph](denotes

the “ceiling" function). The problem of channel assignment

among APs becomes a graph coloring problem where two
interfering nodes (nodes connected with an edge) should not R
be assigned the same color. An example of a three AP netwglrg )
with (estimated)V; = 1, No = N3 = 3 is illustrated in Fig[P. T
The corresponding interference graph is shown in [Hig. 3. AP
#1 potentially interferes with AP #2 and AP #3. So, allocasio

to AP #1 cannot be reused for AP #s 2 or 3. However, since AP
#2 does not interfere with AP #3, frequencies can be reused
across these two APs.

One solution to the coloring problem is illustrated in . 4
It is worth noting that the coloring is not unique. For exaepl
a simple index shift (a re-ordering of the association betwe
the graph and the frequency slots) is an equally valid smiuti
to the graph coloring problem. Amongst these many solutions
there is one optimal solution that best meets the demantigof t
individual APs based on the specific instantaneous realizat Fig- 3. Interference graph corresponding to Eig. 2.
of user-AP channels. However, none of this information is
available at the central sever; this lack of optimality i th
penalty for using a distributed algorithm with limited knlew
edge of CSI.

For arbitrary graphs, graph coloring is an NP-hard problem.
The optimal coloring is possible with low complexity algo-
rithms if the interference graph is sparse such that eack nod
is connected to at mosY{ nodes whereV is the total number
of available colors. Such graphs can be colored with a matifie
Breadth First Search (BFS) algorithm with complexity of
O(|V| + |E]) with |E| = O(|V]) where|E| and |V| are the
cardinality of edges and vertices respectively. We adopt tpig. 4. Graph coloring corresponding to Hig. 3. Minimum nenbf colors

heuristic (greedy) algorithm proposed by Brélaz [35]: &gV is 4, with both optimal and suboptimal coloring algorithms.
iteration, the vertex which is adjacent to the greatest rermb

of differentely-colored neighbours is colored, with a nesioc

if necessary (until colors are exhausted). A major advantag

of our proposed hierarchical scheme is that by carrying out

the graph coloring step in a distributed manner as proposgrq outage, is given by:

in [36], we achieve a fully distributed scheme.
L

Outage Analysis: While coloring an interference graph Po=1-) {Pois(N/n*,ﬂn)IP (Nf(AF) = L)} , (13)

results in a higher spatial reuse factor for a channel, @utag =1

is ingvitable if an access ppint and its interfering neigimso where I is the number of APs in the ared, — =72,
require more than the available number of subchannels. ']I?t(N AN =) = M AL and Pois(N/n*. I
p be the AP pilot power and- be its receive threshold 7(Ar) = ) = W 7)7, and Pois(N/n, 37)
determining the coverage area. Two APs separatedl-by2d is the CDF of the Poisson random variable with mean
interfere if the received power at the midpoint of the disen evaluated atV/n*.

between the two satisfigal—* > 7. Now, taking a randomly

chosen AP as the reference, we prove the following statement Proof: Let L — 1 be the total number of APs interfering
with the reference AP, i.el. APs cannot share the same

Proposition: The probability that the reference AP and itsubchannel. The CDF of the minimum required number of
neighbours will not have enough spectrum, hence leadingdobchannelsV such that our reference AP can support its




users (without interfering with its neighbours) is given by using time-divisiof.
Fy(ill) =PV <all)
—p (Zlizl N, < ﬁ|i) (14) B. Complexity Analysis
= Pois(/n*, Ln), Step 1 - cell association: Each user connects to the AP
. with the highest average received power. Finding the AP with

where we use the fact that the sumibindependent Poissonthe maximum received power requirBscomparisons at each
random variables with mean is a Poisson random variableyser. Hence, the complexity of this step is of the oré¥L.)
with meanLn. The probability of outage is then given by: for each of K users.
Sep 2 - load estimation: This is a convex optimiza-

Po =B []P(N > N)} =Ep [l - Fy()] tion problem with the complexity depending on the solution

L = = method, e.g., the interior-point method or Newton-Raphson
- Z {1 - FN(ML)} P (Nf(Af) - L) Furthermore, the number of iterations in each depends on the
L=t stopping criterion. In Newton-Raphson method, the compu-
-1 Z [Poz’s(N/n*,in)]P (Nf(A;) _ E)} : ta_ltional com_plexity mainly results from _finding the update
P direction. It is shown that the computational complexity of

(15) each iteration isO(M?3), where M is the number of users
and the proof is complete. m connectedto one AP. The details are provided in the Appendix

Unfortunately, it does not appear that this final expression Step 3 - spectrum allocation among APs: This step
can be further simplified. However, the summation is easifpnsists of two smaller steps. 1) Forming the interference
evaluated numerically. In a system withpoints of a Poisson graph: any two APs closer than a threshold distance are
process (representing APs) uniformly distributédjs bino- connected with an edge. Hence, the complexity of this step
mial with L trials and probability of success/R.)? where is of the orderO(L?). 2) Graph coloring: the complexity
R. is the radius of the macrocell under consideratiBg.() depends on the density of the graph algorithm as provided

is the CDF of a Poisson random variable and can be calculatédStep 3 of Subsection IIIJA. Since this step is carried out
using theincomplete gamma function. at the central unit, with slower changes compared to locally

solved problems, more sophisticated algorithms can be.used
Sep 4 - scheduling: The normalized rate scheduling at
Step 4: Resource Allocation Among Users this step is a modified version of the problem formulated by
. . . Rhee et al.[[37]. A special case is when equal transmit power
At the end of step 3, each AP is assigned an integerseq on all the subchannels leading to close to optimum
number of subchannels Wlthout interfering with its n_e|g|h_||tm performance when the system benefits from user-channel
The problem at each AP is now reduced to maximizing thg,esity. The proposed suboptimal subchannel allocatiiin

minimum rate of the users it services rela.mve to their restect equal transmit power has complexity 8 M * N, ), whereN,
data rate. In doing so, the AP considers ithgtantaneous CSI  iq the number of PRBs allocated to the AP.

of the subchannels it has been assigned. In this regard, it is
worth restating that the previous three steps were based on
average channel powers.

Let N; be the number of subchannels assigned tol AR In this section, we evaluate the performance of the pro-
Step 3; this is not necessarily equal to its estimated requiposed scheme and the mathematical analysis presented in
ment ;. The scheduling problem at each AP is formulatetthe previous section. The simulations are based on the LTE

IV. SIMULATION RESULTS

as: standard closely following [38]. The downlink transmissio
N, scheme for an LTE system is based on OFDMA where the

max min L Bzckm log, (1 + pkmhk;l) ayallable spectrum is divided into multiple subcarrierstea
PrnsChon K 3 Ck,n0 with a bandwidth of 15kHz. Resources are allocated to users
N, It?l blli)ckr.:, of 12 hsut;)car;ierz rr]ef(?rred hto as physic?(l I’ESOLcljrce
; ocks; hence, the bandwidth of each PRB is 180kHz and is
subject o nz::ucezsl Pin < Prot, Pin 20 used as the signal bandwidth in calculating the noise power.

The receiver noise power spectral density is set to -17484Bm/
Z Cen = 1, with an additional noise figure of 9dB at the receiver. Here,

kes we consider the maximum LTE bandwidth (20MHZ;= 50

Chn 20 V0, keS| (16) PRBs are allocated to the small-cell network. The APs are

wherecy,,, is the fraction of subchannel allocated to user distributeg W;thi” a circle of radius 100m, i.e., covering

k. hy,.n andpy,., are the channel power gain and the transmit 14 % 10° m*. Table[] lists the parameters used in all the

power to userk on subchanneh. This is a standard convexSimulations, unless otherwise specified.

optimization problem. An even simpler alternative is toides . - . .
Standards such as LTE provide the ability to reassign pays&source

power equa"y amongst thy} SUb_Channelsl”k-,n = Piot/N,  plocks every millisecond. Such flexibility is reflected hetime-sharing of
leading to a linear program in which users share the ressurée subchannels.



TABLE |

SIMULATION PARAMETERS 1 . . .
—+— Analysis - high density
| Parameters | Value 0_% o Simaion - hih deriy
Carrier frequency 2 GHz o gl mlation - low densiy
Channel bandwidth 20 MHz ‘
Carrier spacing 15 kHz o
Resource block ) 180 kHz S o
Number of PRBs availableN) 50 z 0s-
Transmit power 20dBm 3
Antenna gain 0dB é o4r
Antenna configuration 1x1 o3t
Noise Figure in UE 9dB oal
Minimum distance of user 1m from AP
Penetration loss 10dB/3dB o1 Fap
(wall/window) e s 2 25 5 a5
d 20m Number of PRBs
Region coveredR,.) Circle of radius 100m|

Fig. 5. CDF of the user load,, (-) for high (\y = 1/100m?) and low
(As = 1/1000m?) AP density. Rj, = 5Mbps.

The path loss between the access point and the user accounts
for indoor and outdoor propagation:

1

PL = 38.46 + 201og,(din) + 37.610gy(d) + L, + Ls (17) nel
where d;,, is the distance between the access point ant ol
the external wall or window and has a uniform distribution wl ;

between 1m and 5, is the penetration loss and is setto 3

10dB or 3dB (with equal probability) representing an exaétrn oo
wall and window respectivelyL ; accounts for shadowing and 5 osf e

is modeled by a log-normal random variable with standarc é oal “’;

deviation of 10dB. Finally, assuming Rayleigh fading, the I

instantaneous power of the received signal is modeled & o3f ’_,-

an exponential random variable with the mean equal to th o2t ?

average received power [39]. In the mathematical analtrsts, A .J p——

path loss exponenty, is set to 3. The multipath environment L e o

is such that the fading is effectively flat for the 12 subeasi 0 5 10 15 20 2
in one PRB but rich enough to yield an independent fade ol Numer of PRBs

each PRB. Each PRB is then allocated to a user obframe

duration of 1ms. }F{IE_BE’MEF?SF of the AP IOadFNL(-). Af = 1/(100m?), Ay, = 5\y and

A. Validating the Mathematical Analysis

First, we validate the mathematical analysis of the progoseser load approaches a step function at a higher AP density.
hierarchical algorithm. FigurEl 5 plots the CDF of the usékhis justifies the approximation ifi{lL1).
load F,, () for two cases: highX; = 1/100 or 1 AP per Figure[® plots the CDF of the load of a randomly chosen
100m? corresponding to 314 APs) and low{ = 1/1000) access point in two scenarios: (i) random AP location as in
AP density. At each run of the simulation, the APs and tHePP; (ii) fixed AP location with equal coverage area for &l th
users are randomly located in the cell according to the givé#s. In both cases, the load of the reference AP is the sum
densities with user density denoted by. Each user connectsof its users’ load. The CDF derived in_{12) slightly deviates
to the closest access point. The user load is then calculatemm the simulation results due to two main simplifying
for a randomly chosen user (as the reference) with equasumptions: 1) all APs have the same coverage area on
transmit power on all the PRBs considering only the distaneserage leading to a binomial distribution for the number of
attenuation. The result is compared to the CDF derived irsers connecting to an AP; 2) the most probable connection
@). As is clear, the analysis matches the simulation resuttistance has been assumed for all the users connecting to an
exactly. Also, as expected, the CDF is shifted to the riglitP based on the AP density in the system. In a system where
in a network with lower AP density; the reason is a largehPs are randomly located, although uniformly distributed,
connection distance and a higher load (measured in termstludy might have different coverage areas. For the purpose of
required subchannels) imposed by the user for the same dadmparison, a network with fixed AP locations is considered
rate. Crucially, the figure shows that the CDF of the indiadu with equal coverage area for all APs. In such a systenfm)



B. Performance Comparison

ng In this section, we illustrate the performance of the preplos
hierarchical scheme and compare its performance with a
fixed-allocation scheme. The globally optimal solutiorotingh
exhaustive search is impossible to obtain in a reasonahke ti
due to its exponential complexity and so is not compared to.
The fixed-allocation scheme is as follows: each AP is
assignedN ,p PRBs randomly chosen out of th¥ PRBs
available to the small-cell network. The cell associatiown a
user level scheduling is the same for both algorithms. Hence
the main differences between the fixed-allocation and the
proposed hierarchical scheme are the element of intederen
Number of PRBs management and the effect of load estimation in dynamic dis-
tribution of PRBs among APs. The purpose of such dynamic
Fig. 7. CDF of the system loaél;(-). Ay = 1/(100m?), A, = 5A; and  distribution is to improve the user’s achieved rate in theleh
Ry, = 1Mbps. system proportional to its demand. A user is considered to be
in outage when it receives less than its required data rate.

) S o o In a network with fixed spectrum allocatioN 4p affects
follows the binomial distribution. A small deviation stékists e density of the interfering AP§1[3]. We first consider the
due to the second simplifying assumption. o performance of the fixed-allocation scheme as a function of

The CDF of the system loads (-) is shown in Fig[V. 7, . the number of PRBs assigned to each AP. Figdre 9
The system load is the sum of the total number of PRBSots the number of the users in outage normalized by the
required by a randomly chosen access point (as the refgrengga| number of the users for two user densities. All the siser
and all its interfering APs derived i {L4). If the distanc@equest the same data rate of 1.5Mbps. As shown in the figure,
between two APs is no more thaw, whered is the radius the outage decreases witfu  to a point where it is saturated
of the coverage circle of one AP, the pair are assumed dQch that further increase N4 p results in higher interference
interfere with each other. A lower SNR threshold results ighq hence, outage. In this examplé, » = 18 gives the best
a larger coverage area for each AP and a denser interferegggormance for the given AP and user densities. In subsgque
graph. Note that, for any SNR threshold, this is the wors[tésting, we use a fixed value & ,» = 18. This allows for

case scenario assuming the user is in the midpoint of th&omparison of our results to thest-case scenario for the
distance between the two APs. In practice, whether two ARsed-allocation scheme.

interfere can be estimated more accurately by each AP based
on a pre-defined coalition threshold [40] and reported to

the central server (most protocols allow an access point to ! ‘ ‘ ‘ =
keep a “neighbour" list). Figurgl 8 plots the corresponding —s e
outage probability as a function of the common user demand oor ' ]
Ry, = R. Again, the analysis captures the essential behaviour
of the outage probability with a slight mismatch due to the o8r
simplifying assumptions mentioned before for tractapilit

CDF of System Load

20 40

0.7F

Outage Rate

0.6

0.9r

0.8f 05-

0.7

0‘40
0.6

Nap
0.5F

Outage Rate

Fig. 9. Outage rate as a function of the fixed number of PRBigjr@as to
each APXy = 1/(200m?), Ay = 3y and Ay = 6Ay. Ry, = 1.5Mbps.

0.4
0.31

0.2

The outage (in a log-scale) for both schemes versus the user

o [ | demand is shown in Fi§_10. As expected for both algorithms,
% ix; 15 2 25 the number of users in outage increases with the increase
User demand (Mbps) in the user demand. In both user-to-AP densitigs/Q (),

' there is an obvious gain with using the hierarchical scheme
Fig. 8. Outage rate versus user demakgl.= 1/(200m?) andAu =5A;. . the outage rate improves by up to an order of magnitude at
the lower user demands. It is worth noting that at high user
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the path loss model. Hence, the comparison here is between
the worst-case scenario of the hierarchical scheme and the
best-case scenario of the fixed-allocation. Using weighted

interference graphs and more sophisticated graph algusith

Step 3 should improve the performance at the cost of incdease

computational complexity.

A significant advantage of the proposed scheme is to shift
the available spectrum from the underloaded APs to the
overloaded APs to achieve higher level of fairness over all
the users in the network. Examining the minimum achieved
user rate in the system in Fif.J11 shows that our proposed
scheme achieves this goal. While both schemes converge to
| a constant value with the increase in the user demand, the
] —e— Fixed-Allocation /A, =3 hierarchical scheme reaches a higher value (more than twice
o oh e WS . Il the minimum rate in fixed-allocation) for both user densitie

—»— ur i . ..
. Hierarchical A\ =6 1 Any user achieved rate would fall between the minimum
o o5 I s 2 s achieved rate and the user demand (the maximum rate assigned
User Demand (Mbps) to the user represented by the dotted line). The closer toe tw
are, the higher level of fairness is achieved. In other watds
hierarchical scheme achieves a higher degree of fairness an
Fig. 10. Users at outage in both schemes versus the user deman= MOre efficient in terms of allocating resources in compariso
1/(200m?), Ay = 3y and Ay = 6Xy. Nap = 18 for the fixed-allocation. t0 the fixed resource allocation.

It is worth noting that this gain is higher in a system with a

lower user-to-AP density. The reason is that in a network wit

Outage Rate

28— g Fied-Alocaion a5 o independent user locations, the probability density fiamcof
—— Hierarchical A/ =3 the user distribution in a unit area (and hence the AP load)
+F|xedeHocat|on )\ul)\'=6 . . . .
T Lierarchical Aph =6 ‘ approaches a dampened normal distribution as opposed to a
u' 7 . . . . . . . .
211 - - - ser demand . 7 Poisson distribution with the increase in the user dengltys

effect corresponds to a smaller variance in the AP load in the
. system. The proposed scheme is most effective in systerhs wit
15f ] higher possibility of underloaded and overloaded APs exgst
- at the same time which explains the higher gain\in= 3\

compared to\, = 6Ay.

As a final comparison, Fig. 12 plots the total throughput of
the system. The higher throughput in the hierarchical sehem
is the result of higher user achieved rate as discussed above

Min User Rate (Mbps)

0.5

V. CONCLUSION

0 ‘ ‘ ‘ ‘ In this paper, we have proposed a hierarchical 4-stage
° e e b (1151 , 2 #*  resource allocation scheme for large-scale small-celors.

s e e The main advantage of the proposed scheme is decomposing a
complex non-convex optimization problem into several $enal
convex problems with smaller sets of optimization variable

Fig. 11. Average minimum user achieved rate for both schereesus the The result is a low complexity scheme effective with a large

user demand; = 1/(200m?), Ay = 3A; andA, = 6As. Nap = 18 for . - . -

the fixed-allocation. problem size; in our simulations, the resource allocatian c
be achieved across as many as 314 APs.

The rationale behind the introduced hierarchy is as follows
demands (aboveé?, = 1.5Mbps for\,/A; = 6 and above user locations combined with various user demands result in
Ry, = 2.5Mbps for\,/A; = 3) the fixed-allocation schemea non-uniform distribution of the load in the system. Access
actually has a lower outage. This is to be expected sinceein foints will experience very different load demands as shown
hierarchical scheme, any two APs that are less thameters in Fig.[6. Hence, in an efficient allocation, resources sthoul
apart are connected in the interference graph regardlesshefdynamically allocated to meet this load. Here, this lagad i
the degree of interference. This results in higher systead loapproximated at each AP by solving the related optimization
estimation and smaller number of PRBs allocateddch AP problem based on the local information, i.e., users’ demand
in the system. In the fixed-allocation scheme on the othed haiand the average channel power. To do so, the APs do not
due to the lack of any interference management, the effeetjuire any global information. Load estimation and the las
of concurrent transmissions are added exactly accordingstep of resource allocation at the APs would, in practice, be




1200

° F\xedelloc‘ation AJA =3
4 Hierarchical A /A =3
p Fixed-Allocation A /A =6 i
10001 _g Hierarchical A /A =6
v
=
= 800p
=)
2 so0f
2
<
=
=
E 400
200
0 | | | |
0 0.5 1 15 2 25
User Demand (Mbps)
Fig. 12. Total throughput of the system for both schemesugethe user

demand.A; = 1/(200m?), Ay = 3y and Ay = 6Xy. Nap = 18 for the
fixed-allocation.
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for k =1,2,...,M, whereC = Blog,e and M = |5;| are
for simplicity of presentation. Froni (20), we obtain:

pr Hiy, w1 Hy
= : (22)
PrLH P H
1 + niaéc 1 + n110'21
Combined with the power constrainzkesl P Piot,
and the rate constraints; B log, (1 + ii’;’; = Ry, k =

1,2,..., M, there are3M variables{ Py, ny, ux}2., in the
set of 3/ non-linear equations im {19)-(R1). Iterative methods
such as Newton-Raphson can be used to obtain the solution,
with the complexity mainly due to finding the update direatio
DenoteX = [Py, ..., Payna, ..oy nar, 41, - - -, poas] T @S the
variables andG = 0 as the square system of non-linear
equations. The update directioAX is found solving the
following equation:

J(X)AX = —G(X), (22)

where 7 (X) is the Jacobian matrix o&(X) evaluated aiX.
Using Gauss-Jordan method, the complexity of the algorithm
to solve for AX in each iteration is of the orde®(A73).

A special case is when equal transmit power is used on the
subchannels; in this case, estimating the load at each AP has
the complexity of the orde® (M) (due toM divisions at each

solved in parallel at each AP. Only a single step of graphP).

coloring is executed at a central server - this centralized s

ensures orthogonal allocations to APs that interfere wéithe
other.
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