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Game-theoretic Understanding of Price Dynamics
In Mobile Communication Services

Seung Min Yu and Seong-Lyun Kim

Abstract—In the mobile communication services, users wish Regulation
to subscribe to high quality service with a low price level, Regulator >
which leads to competition between mobile network operat@

(MNOs). The MNOs compete with each other by service prices 77777 O H

1 “« H 1 1
after deciding the extent of investment to improve quality i @5 i i "3’% i
of service (QoS). Unfortunately, the theoretic background Cournot 1 2 Y %, | Bertrand
of price dynamics are not known to us, and as a result, competition i & b © | competition
effective network planning and regulative actions are hardto Lo ! I T

make in the competitive market. To explain this competition Demand
more detail, we formulate and solve an optimization problem —
applying the two-stage Cournot and Bertrand competition T)

model. Consequently, we derive a price dynamics that the
MNOs increase and decrease their service prices periodidg)
which completely explains the subsidy dynamics in the real Fig. 1. The interaction among MNOs, users, and the regulator
world. Moving forward, to avoid this instability and ineffi-
ciency, we suggest a simple regulation rule which leads to
a Pareto-optimal equilibrium point. Moreover, we suggest perspective, solely maximizing profit by MNOs should
regulator’s optimal actions corresponding to user welfareand o 5\ qided if it is at the cost of sacrificing user welfare
the regulator’s revenue. L

significantly.
_ Index Terms—Network economics, game theory, competi-  For making efficient regulations, we firstly investigate
tion, price dynamics, regulation, mobile communications. characteristics of the competitive mobile communication

services. An important question for MNOs is how much of

I. INTRODUCTION the network capacity should be provisioned and how high
A. Conflict of Interests among Mobile Network Operatordh® Service price should be. Price competition between two
Users, and the Regulator operators was previously studied by Walrand [1], where

the network capacity was assumed to be given. Here, we

In mobllg communication services, there is InteraCtIOQnalyze how each MNO determines the optimal investment
amongmobile network operators (MNQs)isers andthe on the network and the service price as a response to

_regulator (Elgur_e[l). Eac:: MNOl_makfes an mvestrr;ent e strategy of its competitor. For this purpose, we apply
its network to improve the quality of service (QoS) an ournot and Bertrand competition models$ [2]-[5].

sets a service price to maximize its profit. The users deci 8n the Cournot model. MNOs compete with each other
which MNO is more appropriate to subscribe to the networﬁsﬂ ’

. dering th . ; d1th S. Final ciding the extent of investment on their networks. On the
service considering the service price and the QoS. Finallyy o hanq 'in the Bertrand model, MNOs engage in price

the regulator aims to maximize the y\_/elfare of_all user%‘ompetition to attract more subscribers for a given network
Therefore, there should be some equilibrium points for t %pacity We combine the Cournot and Bertrand models
i - AN ) %8 that the network capacity is determined in the Cournot
and users. Theo'.‘e“c‘f"”y' finding such equilibrium pone_.ts [‘pﬁhase and afterwards the service price is determined in
not easy. The situation becomes even more complica Bertrand phase. The Cournot and Bertrand models are

when there are multiple MNOs competing with each OtheIhterlinked and we achieve joint optimization of the netlwor

hl\_/larllxirr!izri]ngb prof;;t_ s (tjhs phrim_ary C?\F‘Chem."f lMNlos'giapacity and service price. Our main viewpoint of this joint
which mignt be achieved by having a high price level angiization is in investigating the dynamics of competiti

lO.W mvestme_nt_on the_netyv_ork. On the other hf'md’ USYdtween MNOs and also in finding an optimal role of the
wish to maximize their utility by consuming high Qosregulator

with a low service price. The QoS is directly related to

the network investment from MNOs. Therefore, there is Price C " d Subsidizati

a conflict of interests among these players and the rdfe Pricé Competition and Subsidization

of the regulator is very important. From the regulatory The dynamics of price competition among network

operators was studied in some previous wotks [[6]-[10].
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35% equilibrium point of price levels, which is Pareto-optimal
30% —g
e |l W Y C. Related Work
20% L8 \_ x /r"" aE In [13], the author shows that service price and QoS
o | ‘N ¥ \ s are inter-related in communications networks, and suggest
= o - i Paris metro pricing (PMP) for Internet. PMP is a kind of
’ price discrimination over different QoS levels; the higher
s QoS, the higher price. In that paper, the author finds that the
0% service price and QoS will converge to an equilibrium point
PO S S Sl S S SO Sl S 2 o . . .
I R A A after a number of interactions. PMP is further extended

by Walrand [1], who formulates an Internet pricing model
Fig. 2. Quarterly marketing expenses as percentage of shthe major under price and QoS constraints. In that work, the author
MNOs (SKT, KT and LGU+) in South Korea. investigates how much PMP improves the operator’s profit
compared to a single optimal service price. The author
also analyzes price competition between two homogeneous
network operators’ billing systems are very similar in th@etwork operators, the network capacities of which are
same country or state and the price dynamics does not seg@d. In [6], we show the dynamics of price competition
to occur. (price war) using the Walrand model 1], and suggest a

For discussing the reality of the price dynamics, le®gulation for price level convergence.
us consider the monthly charging structure in the mobile The price war in communication service is observed in
communication service. In most countries, many MNOR]-[10]. Particularly, in [7] and[[8], if one operator lows
give asubsidyto attract new subscribers (potential users afs price to increase revenue or to monopolize the entire
their competitors’ subscribers) [11]. The subsidy is affer market, then the other operators will also lower their price
as part of a contract that includes a stipulated time periad. match the price leader. The price down competition will
Therefore, we should consider the subsidy amount fgecur repeatedly among all operators, eventually damaging
examining the price competition among MNOs. every operator with a revenue decrease.

To show that there can be a kind of price dynamics by Competition among network operators occurs not only
subsidization in the real world, we plot quarterly markgtinby price differentiation. The capacity of the network is
expenses as percentage of sales of the major MNOs (Skihother important variable. This is because users wilcsele
KT and LGU+) in South Korea as an example (Figlre 2x network operator based on decision criteria including
Note that the investigated marketing expenses are mosilyt only service price but also QoS level, and the QoS
used for subsidization. In the figure, the MNOs increass directly related to the network capacity. Therefore,heac
and decrease their marketing expenses repeatedly, ap@érator jointly optimizes the service price and network
this can be interpreted as the service price dynamics bapacity. All of the previous work mentioned above focuses
subsidization. Then, why do the MNOs use subsidizatianly on price competition, assuming the network capacity
as an indirect method for increasing or decreasing thédrgiven as an external value. In_[14], the authors consider
service prices? The MNOs cannot increase the servicempetition among multiple network operators with single-
prices easily due to regulations. On the other hand, there af two-service classes. In that work, service prices arelfixe
few regulations on subsidization and people are relativednd price competition does not occur. To attract more users,
generous about change of the subsidy amount becausthét operators decide only the network capacity.
is believed that subsidization is a means of lowering the Suppliers of a homogeneous good/service compete with
cost of new subscriber’s entry to the mobile communeach other by deciding their amount of output. This is called
cation services [12]. Therefore, the MNOs compete witBournot competition (quantity competitior) [4]. Geneyall
each other by adjusting their subsidy amounts, making ttlee market price decreases as the total amount of output
price dynamics in the real world. Unfortunately, theoretithcreases. On the other hand, Bertrand competition refers
backgrounds of price dynamics are not known to us, and tsprice competition where the suppliers compete with each
a result, effective network planning and regulative adiorother by controlling the product pricg]l[5]. In the Bertrand
are hard to make in the competitive market. competition model, consumers buy all of a particular prod-

In this paper, we analyze the price dynamics betweertt from the supplier with the lowest price.

MNOs using the two stage competition model, where the We analyze mobile communications markets using
MNOs increase and decrease their service prices perio@purnot and Bertrand competition models |[15]}[18]. In

cally without an equilibrium point. This kind of price dy-[15]-[17], we suggest spectrum policies and subsidization
namics is not desirable to any player due to the instabilitychemes for improving user welfare in mobile communi-
For example, it is unfair that users’ payments for the mobileations. In [18], we investigate the effect of allocation of

communication service are different in different startddn asymmetric-valued spectrum blocks on mobile communi-
of the subscription even though they are served by the sanaions markets. However, our previous works focus on
MNO. Based on our analysis, to avoid such instabilitgpectrum allocation and have not dealt with price dynamics
we suggest a simple regulation rule that guarantees ianmobile communications.



D. Main Contribution of This Paper p2, the first and the second MNO’s price for the service.

Using the two stage modél[19], we will show that MNOs_Th_ese seryice p_rices_include the sgbsidy amounts (i.e., the
sequentially decrease their service prices (i.e., inereab- iNitial service price minus the subsidy amount). Therefore
sidies) as in[[7] and]8], but one MNO suddenly increasd8® MNOs can control the service prices by adjusting the
its price when the competitor’s price is lower than a certaiftPSidy amounts even if there are some regulations that
threshold. Therefore, the price levels increase and dsereBrohibit the initial price level changes. Without loss of
periodically without an equilibrium point. We call thisice  9enerality, we assumg, and p, are normalized values
war with long jumpswhich is not desirable to any player.0Ver the intervall0, 1]. Each MNO can provide only one

The main contributions and results of this paper afdice to all users at a given time. The QoS of a network
summarized below. depends on the congestion level of the network. We denote

« Description of price dynamicsin the real world, the QoS of each MNO's network iy andg,, respectively.

MNOs tend to compete with each other changin I'thOUt Iosl_s 0(; genE{[rr]all’gy,t the V?Iuis qlfl anld 2 ?reo
their service prices by subsidization (see Figlire so normalized over the intervl, 1]. A value closer to

Using a two-stage Cournot and Bertrand competitio enotes a hlgher_ congestion level (Iowgr QoS). .
model with network congestion, we mathematically Each user decides whether to subscribe to the communi-

analyze the competition between MNOs. Based (ﬁ@tion service or not by selecting its_ serving MNO. Some
a game-theoretic approach, we show that there exisRers prefer high QoS (low congestion) even though they
price (subsidy) dynamics in the mobile communicatiod2ve t0 pay more. On the other hand, some other users
service, which well explains the subsidy dynamics iill @ccept a low QoS if the service price is low, as was
Figurel2. also noted by Par!s metro pricing [13]. _V_V|II|ngness-t0-pay
« Regulation for price convergenc&o avoid instability and the QoS required by users are positively correlated. To

and inefficiency, we propose a simple regulation thé‘?Odel user behavior, we dgfine theer typeas in [1] g_nd
limits the number of price level changes. We show that4l- The user typev is a variable ovefo, 1] that quantifies

the regulation guarantees an equilibrium point of pric® usersl W||I|Ingnes_s-':jo;)payhAt tEE shame ?me, it ql:am'f'
levels that is Pareto-optimal. We also introduce mofd® QoS level required by the useilhe valuea is close

realistic regulations that bring the same effect of th{o 1 when the user is willing to pay a high price for high
price regulation. QoS. At the other extremex(— 0), the user prefers low

« Regulation under a two-stage Cournot and Bertan@°S with a low price. Since it is difficult to figure out the
model Using the two-stage model, we calculate aHser type value of each user, we assume that it is a random

equilibrium point of the network capacity and the’2riable (e.g., uniform distribution ifo, 1]).

service price. From the result, we suggest a regulator'sConsider a user with user type value For the user to
optimal action (exacting taxes) corresponding to us&pbscribe to the communication service offered by MNO

welfare or the regulator's revenue. This is an extensidiPth the price and QoS levels should be satisfied. In other
of our previous work[[5] to the two-stage model. ~ Words,a > p; anda < ¢;, where we regard the first and

The rest of this paper is organized as follows. In thseecond inequalities as thrice condition(PC) andQoS

next section, we describe our system model. Section ﬁ?ndmon (QC), respectlveIB. The PC is commonly used

L . n microeconomics[[20], but it is not sufficient to model
presents our optimization problem in two-stage duopo(}/ . -
" . . - ommunication service, where some users whose PCs are
competition. In Section IV, we derive a solution to the

. . . satisfied may not use the service because the QoS is lower
optimization problem in the Bertrand stage and explain ho : . .

o : -than expected due to congestion. If multiple MNOs satisfy
two operators’ prices vary. We suggest a simple regulati

n o . X
that drives the price levels to converge on an equilibriu%ﬂom conditions, then the user will select the MNO offering

point. In Section V, we combine the Bertrand model witrt1 € lowest price.

the Cournot model. Using a backward induction method, eXVe l;]s_eha I!nearlyhdecreasm_g QOfS mo_del as ilf‘ [1]zfr]d
solve the optimization problem in the Cournot stage a & 1, which mirrors the perception of service quality J21];

find an equilibrium point. From the results, we describe dy do
characteristics of the communications service market and q=1- *M g2 =1- T’ (1)
introduce the role of the regulator. Finally, Section VI

concludes the paper. 1The user typex has a dual role as willingness-to-pay and QoS require-
ment. This seems to be open to dispute because those twadacdsnot
Il. SYSTEM MODEL merged into one-dimensional parameter space. In this papeever, we
assume that each user’s willingness-to-pay and QoS reqgeireare highly
Consider a service area covered by two competitiverrelated and can be modeled as a one-dimensional parafoetthe

MNOs. There areM users for the mobile communication™athematical tractability. .
The characteristics of users’ MNO selection are based oaghemp-

serw_ce. Nonnegative valués andks, re_SpeCt'V_ely’ denOtef tion that each user wants a specific service (or applicatieqiring some
the first and the second MNO’s capacity, which determingget QoS level. Then, each user’s utility function becemstep function

the quality of service (QOS) of the networks. MNOs detefith a step at QoS level. In other words, if a QoS level is highen o,
then the utility from the service is equal to Otherwise, the utility is zero.

mine the Optimakl andk; values in the Cournot .stage. InTherefore, a user with user typesubscribes to MNQ@'s communication
the Bertrand stage, MNOs compete by controllpngand service only if botha > p; anda < ¢; are satisfied.



| <Perfectly Sigmented mTket> | Cournot stage: Determine 4, and &,
L

— A R
o= p, %= d o =p o™ =, l

<Non-segmented market>

1 : | |
| : | |
0 ¥ A \ !

_ min

ot =p, n o =" =g, o' =g Fig. 4. Two-stage Cournot and Bertrand competition betwaenMINOs.

Bertrand stage: Determine p, and p,

Fig. 3. User type intervals of the users subscribing each dNervice.

only on its own capacity, but also on its competitor’s. The

whered, and d, denote the number of users aCCessinrevenuefunctlon is determined by the result of the Bertrand

the first and the second MNO, respectively. We define theage'h d o ith h oth
reference capacity, which makes the QoS level equal 1o/ the Bertrand stage, MNOs compete with each other

zero when all users access one of the MN®s.and k- by (;]on'golling their pric|e_|s fortr:\e gi\_/en pa?agity dhetermljan id
are normalized values by the reference capacity. In otH_?ﬁt eh' %urn_ot s_tagle_. lere t E p(;me mdclu es_t € su |_5| Y-
words, if k1 =1 (ky = 1) anddy = M (dy = M), then S W71 EHICE ITPTES W SUDSICY: ANt (oW price Impies
the QoS level isg; = 0 (g2 = 0). The user demand is Igh subsidy. =ac . ca,m change .'tS price repeatg y
. after observing a competitor’s. Thus, this price compatiti
expressed as follows: S .
o o can be modeled as an infinite sequential gameEtWe exclude

_ o _ @2 the case of pricing equal to that of the competitdihen,
di = M/a fle)da, dy =M /ag,in fla)da, (2) we formulate the optimization problem of MN®in the
Bertrand stage, which is divided into two cases: Using

min max min max ini A A ) |
where o™, ap®*, a3™ and a3 denote the minimum giher 4 higher or lower price than the competitor's.
and the maximum values @f among the users accessing

the first and the second MNO, respectivefya) denotesa  * USing a lower price §; < p;):
probability density function oé.. Equation[(2) is a demand

min
1

function derived from integration of the willingness-tayp 02;‘)?2(1 pid;
distribution. _—

Figure[3 illustrates a perfectly segmented market and st 4, = M/ i T £ (o) dor
non-segmented market. Assumge > p». In the perfectly pi

segmented markep{ > ¢»), the values ob*™ and o' ) _
are determined by PC, and®®* anda** are determined In this case, the number of users for MN@ independent

by QC. On the other hand, in the non-segmented duop(ﬂilthe Competitor’§ .price, which is just like the monopoly
market p; < g2), oi" is determined by, This is led by the low pricing MNO. Thus, the upper and lower

because if there are users whose PC and QC are satisﬁ'%n@f of the integral in the corrllsi}lraint are replaced by
by both MNOB, then the users whose user types are withi = % = 1 — di/kiM and o™ = p; as in Figure
[p1, g2] will access the second MNO with the lower prices™

D2.  Using a higher price #; > p;):
I11. M OBILE NETWORK OPERATOR S OPTIMIZATION Lnag pid;
PROBLEM O=pist .
1——%
Figure[4 explair_15 our Mo-stage modgl. IQ the Cqurnot st 4, — M/ Ty M £ (@) da
stage, MNOs decide their capacity considering the invest- max{pi,p%}

ment cost. Each MNO cannot change its network capacity

in the short-term after observing a competitor's network this case, the competitor affects the number of users of
investment. Thus, this capacity competition can be mo#NO i. If the competitor guarantees PC and QC of a user,
eled as a simultaneous game. Hereafter,ileenote the then the user will access the competitor network. Noting
decision maker index anfldenote the competitor’s. Then,that o;"** is determined by the QC, the upper limit of the
we formulate the optimization problem of MN®Oin the integral is given by*®* = ¢; = 1—d;/k;M. On the other
Cournot stage as follows: hand,a™ is determined bymax {p;,¢;} as explained in

Figurel[3.
max [ (kis ky) = (ki) 3)

R, C . ; “4In [14], the authors assume that all MNOS’ service prices thee
where f;* (-) and f~ (-) denote revenue and cost funcnongame due to MNO competition. Thus, price dynamics does notiroc

of MNO i. Note that the MNO’s revenue depends NQtach MNO in our model, on the other hand, has no reason to match

its competitor's service price because it can profit more dweling its
3For the users ingy, g2], both PC and QC are satisfied by both MNOs service price a little, which will eventually lead to a pridgnamics.



IV. BERTRAND STAGE: PRICE (SUBSIDY) We calculated; from Equation[(B) as follows:

COMPETITION
& — mi ki (1 —pi)]w kid; 9

A common method for analyzing a multi-stage game is e U T k| ©)
the backward induction method. This method is used to firﬂ‘ the obiective function is:
the equilibrium that represents a Nash equilibrium in eve en, the objective function 1s:
stage (or subgame) of the original game. We start with the — kip; (1 —pi)M kipid;
Bertrand stage. The capacitiesandk; are assumed to be piti= ki+1 (ki 4+ 1) kj
given, and will be optimized in the next section describing [ Kips (1= ;) kipi (1= p;)
the Cournot stage. Hereafter, we assume that the user type —mln{ ‘ T ‘ M}(.lO)

- v . : ki+1 (ki +1) (k; + 1)
« is uniformly distributed. This assumption was also used o )
in [1] and [14]. We will show how the price dynamicsThe second equality in Equatidn {10) holds by Equaiion (6).
the last of this section. side is a quadratic function whose maximum ipat 1/2,
and the right side is a linear function whose slopg;id —
p;)M/((k; + 1)(k; + 1)). Therefore, ifp; < (1 —k;)/2,
then the optimal solution ip? = 1/2, which is the apex
We derive the optimal price of MNQ®, which is sum- of the quadratic function. Otherwise, the optimal solution

A. Price War with Long Jumps

marized in the following lemmas: is p? = (k; + p;)/(k; + 1), which is the intersection of
o the quadratic and linear functions. |
Lemma 1 In the case that the MNQO's pricg; is lower
than its competitor’s pricey;, the optimal solutiorp? is: From Lemmas 1 and 2, we derive the MNO's best
1 . 1 response function (optimal strategy) in the duopoly com-
pF = { 2 it p; > 7, (4) petition.
pj—e ifp<3

wherez is a minimum unit of price level changes and veriemma 3: Given the competitor's pricg;, the MNO’s best
small positive value. response functiop; is

o Case 1(k; < 1):
Proof: Under the assumption that is uniformly dis-

. . . . ; —kj
tributed, we get the following equation from the constraint 3 _'f pj1> 3 0ro0 %pj <= p)
of the optimization problem for the lower price case: p; =qPj —¢€ if e <Pj <3 (11)
kitei g 12k . « 2
1- 37 d. T TSP s
di = M/p. fla)da =M (1 kM _pi) S « Case 2(k; > 1):
We calculated; and the objective functiorp;d; from z if p; >3
Equation [[5) as follows: pr={pi—c if 5 <pi<3. 12
kit+pi 1
ki (1 —p; kipi (1 — p; M Ifoépé—
g = R =pi) g R0 =P (6) xS R
ki +1 ki +1

The objective function is a quadratic function whose ma2roof: Using the results of Lemmas 1 and 2, we calculate
imum is atp; = 1/2. Therefore, ifp; > 1/2, then the the optimal values for the higher and lower price cases as

optimal solution will bep” = 1/2. Otherwise, the optimal follows:

solution will bep; = p; —e. | Lyt _ T M if p; >3
. o biai = ki(ijs)(lfijrs)M ~ kipj(lfpj)M if o, < L1’
Lemma 2 In the case that the MNO's pricg; is higher EiF1 TR Pj =3
than its competitor’s pricey;, the optimal solutiorp! is:
k; ; 1—ky
M if p; > J
kj+p; 1-k; HH _ ) 4(ki+1) 7= 2
H _ kjj+1j if pj > =+ (7) pidi’ = {ki(kj+pj)(1—Pj)M if p, < 12k
p'L - 1 . ) 17k;j . (ki+1)(kj+1)2 pg P}
5 if pj < —5

Above all, we consider Case k;(< 1). In this case, we
calculate the best response function of MN@s follows:

o If p; > 1/2: To compare the optimal values of
the higher and lower price cases, we calculate the

Proof: Under the assumption that is uniformly dis-
tributed, we get the following equation from the constraint
of the optimization problem for the higher price case:

following:
- i kM ki (kj 4+ pj) (1 —p;) M
i = M[ 7 f(a)da prdi = pildjl = o - iy ) (1= ;)
max{pi,l—TJM} ( i+ 1) (kl + 1) (k7 + 1)
d; d; ki (ki +2p; — 1> M
= M 1-— L i 1-—- J . 8 = .
( T M max{p’ ij}> ®) 4 (ki + 1) (k; + 1)



This value is positive because we consider the duopoly least one of the following equations:

market (i.e.,k; andk; are positive) and assumsg > pNE—pNE _ o — p)NE _ o (13)
1/2. Therefore, the best response functionpjs = / I
L= k; + NE ki-f—pNE—E
pi =1/2. pNE_i TP J GV
o If (1 —Fk;)/2 < p; < 1/2: To compare the optimal - ki +1 kitl
values of the higher and lower price cases, we calculate Obviously, Equation[(13) has a contradiction. From
the following: Equation [T#), we find thailY ® is pN* = 1 —¢/k; ~
L omom 1, which contradicts the assumption théYE <1/2.
pi'd; — ;i d; o If (1—Fkj)/2<pNF <1/(k; +2), thenp¥ should
_ kipi A —p))M ki (k;j +p;) (1 —p;)M be pNE = (k; + pN¥F)/(k; + 1). Then,pNF should
ki+1 (ki +1) (kj + 1)2 satisfy at least one of the following equations:
kik; (k; +2) (1 —p;) M 1 1
_ kiky (K +2) ( pJQ) <pj B > . pNE=z, (15)
(ki + 1) (k; + 1) j+2 2
k; 4+ pNE
o NE_,NE _ . _ 19 75  _ 16
All values excepp; —1/(k; +2) are positive because p; =D, e=— i1 © (16)
we consider the duopoly market (i.é; and k; are ’ by +pE
positive) and assumgl — k;)/2 < p; < 1/2. pNE:ki+p£VE _ ki + Jkﬁjl an
Therefore, ifp; > 1/(k; + 2), then the best response J B+ 1 i + 1

function is p; = pl' = p; — . Otherwise, the best
response function ig; = p = (k; +p;)/(k; +1).

o If0<p; < (1—k;)/2: To compare the optimal values
of the higher and lower price cases, we calculate the

Based on the assumption thaf'® < 1/(k; + 2),
Equation [I5) means that = 0 andp,'” = p'¥ =
1/2. This has a contradiction becaugg® = 1/2
and p)'” = 1/2 are not the best response to each

following: other. Using Equation[{16), we calculate tha”
DHGH gl — kM kipy (1 —p)M is piV¥ =1l-¢ ]—Vg/kj ~ 1,_ which cqntradicts _the

i G T A (k4 1) B+ 1 assumption thap;'* < 1/(k; + 2). Using Equation

kM (1 (7)., we calculate thap¥” is %NE = 1, which

y—— (Z —-p; (1 —pj)) : contradicts the assumption thalf * < 1/(k; + 2).

_ _ N . o 1f0<pNF < (1-k;)/2, thenp'” should bep)¥ ¥ =

This value is positive under the assumpti®r p; < 1/2. This means thatY £ should bep)Z = 1/2—¢ ~

(1 — k;)/2. Therefore, the best response function is 1/2, which contradicts the assumption th@ylt]E <

pi=pff =1/2. (1—kj)/2.
Noting that the intervals[0,(1 — k;)/2) and [(1 — Therefore, we conclude that there is no pure Nash equilib-

k;)/2,1/(k; 4 2)] in Case 1 are merged into an intervatium point in Case 1. The only difference between Case 1
0,1/(k; +2)] in Case 2, we can derive the MNO'’s besknd Case 2k, > 1) is that the intervalg0, (1 — k;)/2)
response function in Case 2 similarly. B and[(1 - k;)/2,1/(k; +2)] in Case 1 are merged in the
) ) _interval [0,1/(k; + 2)] in Case 2. Therefore, we can use
Using Lemma 3, we describe two MNOs dynamicgmilar proof for Case 2 and conclude that there is no pure
below. Nash equilibrium point in Case 2. [ ]

Proposition 1 In the duopoly competition of two MNOs,  Figure [5 shows the MNOs' best response functions.
there is no pure Nash e(ﬁj/ilibrium, and price levels increasfy the figure, we assume the symmetric capacity &
and decrease periodicalty. ko = k). We see how each MNO sequentially decreases

_ o its price to a little lower level than its competitor when
Proof: Suppose for a contradiction that a pure Nash equj;e competitor's price is withii1/(k + 2), 1/2]. This is a

. : NE NBE\ o , .
librium point (p; P ) exists. We first consider Case lyjce war [7], [8]. After that, if the competitor's price is
(k; <1) as follows: less than or equal tb/(k+2), then one MNO will increase
o If pVE > 1/2, thenpV¥ should bep) ¥ = 1/2. Then, its price to(k +1)/(k +2). This is along jump Then, the
p}'" should bep}” = 1/2 — ¢, which contradicts the competitor sets its price tb/2. This situation is repeated
assumption thaijE > 1/2. periodically and there is no equilibrium point. We call this
o If 1/(k; +2) < pNE < 1/2, thenpNF should be Price war with long jumpsWe plot Figure[b to illustrate
pNE = pNE —¢ <J1/2_ Then,pN* should satisfy at the process of the price war with long jumps. In the real
world, this kind of price dynamics tends to occur by change
SEven though there is no Nash equilibrium in pure stratedhese can of the subsidy amount (see Figlire 2).

be a Nash equilibrium in mixed strategies. This means tt@MNOs can .
randomize their service prices. However, in the sequegtiaie that each B. Regulatlon for Convergence

MNO can change its price after observing a competitor's bt response . . . . .
function-based strategy will be used rather than the ransivategy. This The price war with long jumps is not desirable because of

is the reason that we focus on the price dynamics. instability and inefficiency. We suggest a simple regulatio
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that leads to an equilibrium point of price levels, which iStrategy 1(p;(t — 1) > 1/2):
Pareto-optimal. More details are contained in Lemma 4 and

Proposition 2. . 1 . ki+3  2ki+1

pit)=5 = P = = = 50, 1 1)
Lﬁmma 4 A rkegulztlon _thatl I|m||ts the number of price ‘llt'at:/('el P () = kipp (8) (L —pi(t) o ki (2k; +1)
changes makes the price levels converge to an equilibriu o Tt ) e+ 17

point (pf’, p¥’) as follows:
Strategy 2(1/(k; +2) < pi(t — 1) < 1/2):

= e if k< 2k 1
E B\ _ ks 2k;+1 ; _ ) =pi(t—-1)— t—1) ==,
(i 05) = | (mr v52) OF (2(kj+1)’%) it ki =2k;, Pi)=plt =1 —e = pi(t=1) =3
) ki > 2k ey 2 K1) (L=pj®) ,, _ _ ki(l+2e)
¢ (kz + 1) (kj + 1) 4 (kz + 1) (kj + 1) '
where the last opportunity for a price level change is given
to MNO ;. Strategy 3((1 — k;)/2 < pi(t — 1) < 1/(k; +2)):

ki pit—1) .

Proof: When we use the regulation, two MNOs dynamics  p(t) = pit—-1)= ,
is modeled as a finite sequential game and we can calculate *ki t1 . ki +2

the equilibrium point using the backward induction method. . (4) — kipi () L —pf@t) 0 ki

We first consider Case k{ < 1). Lett denote the last stage ' ki 41 (ki +2)

of the price level change. Then, MN&Qwill choose the best

strategy at thet — 1) stage (i.e., its last choice stage) inotrategy 4(0 < p;(t —1) < (1 — k;)/2):
order to maximize its revenue. To calculate the best styateg 1— &

for MNO 4, we divide the strategy set of MNOinto four  pi(¢) = 3 = pit—1)= 5 L g,
disjoint subsets. Let; (¢ — 1) andpj(t) denote the optimal )

strategy of MNO; at thet —1 stage and the optimal strategy ,  k;pr(t) (1 — p(t)) ki (1 = (ki +¢) )
of MNO j at the last stage in each subset. Using Lemma ;i (/) = B+ 1 M = 4(ki +1)

we calculatep? (¢t —1) in each subset. Then, from Equations

(©) and [1D), we calculate the revenue of MN®@; (¢) as From these equations, we prove that some strategies are
follows: strictly dominated as follows:

M.



o Strategy 2 is strictly dominated by Strategy 1:

Fi (2k; + 1) 5 M — ki (14 2¢) M *or ’ regulation izf I
4 (ki + 1) (kj + 1) 4 (ki +1) (kj +1) osl B )
_4(ki+1)(kj+1)(kj—Ji—l_2€>M>O' :
o Strategy 4 is strictly dominated by Strategy 3: §
ks ki (1 - (’f+€)2) } !
(lci+2)2M_ 4(k; +1)
< k; B k; (1 — kf) o2r
(ki +2)° 4 (ki +1) oLr
_ kz3 (kl + 3) M > 0. % 10 20 30 40 ] 50 60 70 81) 90 100
4 (k; + 2)2 Number of price level changes

'_rh_erefo_re, the MNQ never chooses Strategies 2 and 4. TBg. 7. Price level changes of both MNOs (uniform user typsega
finish this proof, we compare Strategies 1 and 3 as follows:

k; (2k; +1) M k; I R
4k + 1) (k; +1)2 (ks +2)2 Lgr_nma 5 indicates that the MNOs’ prices should be
sufficiently separated (i.e., perfectly segmented market)
= i (ki +2 (ki + 1) ;) (ki — 2143')]\/[. for Pareto-optimality. The equilibrium point under our
4 (ki + 1) (ki +2)° (k; +1)° suggested regulation (Lemma 4) satisfies the conditions

If k; < 2k;, then MNOi will set its price tol/(k; +2) and in Lemma 5. Therefore, the equilibrium point is Pareto-

MNO ;j will set its price to(k; + 1)/(k; + 2). Therefore, optimal. This finding is summarized below.

in this case, the equilibrium point ig;”, p;°) = (1/(k: + Proposition 2. A regulation that limits the number of

ﬁl)a’ri(ﬁlfn—F 1(2i/n (tk:s—? 2,_23)' I}_Lll;eXV'(S(Z’kl_f]_{: 1>) /2(1;,-(,kt.hin1§f)1elt/eg)u " price level changes makes the price levels converge to an
pon Pi Py ) = Jo VN ’ . _equilibrium point that is Pareto-optimal.
Note that, ifk; = 2k;, then both equilibriums are possible.

The only difference between Case 1 and Case 2 is that LH,:?e price war with long jumps occurs due to the MNOS'

gtervalls 0, (1 - kﬂg/?) ar;]d [ - k-jim}ﬂl/(gj + 22 " short-sighted way of thinking. However, the MNOs cannot
ase 1 are merged into the intervaJ1/(k; + 2)] in Case use a myopic strategy under Proposition 2.
2. Therefore, we can use a similar proof for Case 2 an . . . .
We can find similar regulations of Proposition 2. In

cC(;r;Iulde that the equilibrium in Case 2 is same to that South Korea, the market-dominating enterprise (SKT) can-

not change its service price without government permission

To verify the efficiency of the regulation, we need td NiS iS similar to giving the other MNOs (KT and LGU+)
check the Pareto-optimality of the equilibrium point. A€ last opportunity for a price level change. The price

sufficient condition for Pareto-optimality is given in therggullation also can be impI(_am_ented by restricting_sybsi-
following lemma: dization. In other words, notifying MNOs that subsidiza-

tion will be banned after a certain time is equal to the

Lemma 5: Let subscriptsl and 4 denote MNOs whose regulation that limits the number of price level changes.
prices are lower and higher than that of their competitof-0r instance, Korea Communications Commission (KCC)

respectively. Ip; < 1/2,p, > 1/2andp, > (ki+p,)/(k,+ @actually prohibited subsidization by MNOs from 2003 to
1), then(p, pr) and (p, p;) are Pareto-optimal. 2008. This kind of subsidy regulation also can be observed

in Finland [22]. Another way that brings the same effect of
Proof: If p; < 1/2, then MNO! can increase its revenuesuch price regulation is to regulate the time interval betwe
by increasing its price toward/2. However, it always price level changes. If MNOs cannot change their service
makes MNO h’s revenue decrease. |f; = 1/2, then price or subsidy levels for a long time, then they will use
MNO [ cannot increase its revenue. Therefore, MNO far-sighted strategies, which leads to the equilibriunmpoi
cannot increase its revenue without decreasing the reverig@scribed in Lemma 4.
of MNO h. Likewise, MNO h cannot increase its revenue To verify our analysis, we conduct simulations, which
without decreasing the revenue of MNMecause the only show the price level changes of both MNOs. In the sim-
method to increase the revenue of MMON the perfectly ulations, the minimum unit of price level changes and
segmented conditiorpf, > (k;+p;)/(k;+1)) is to decrease each MNO’s network capacity are set to= 0.01 and
p; andpy, simultaneously. Therefore, the point that satisfiels = k; = 1. Also, we set each MNO’s initial price
the conditions in Lemma 5 is Pareto-optimal. B to 0.01 and apply the price regulation that limits the
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Fig. 8. Price level changes of both MNOs in non-uniform ugpetcases: (aYf1(«). (b) f2(«). (c) f3(w).

number of price level changes 8. Figure[T illustrates revenue equations (Equatioqs$ (6) and (10)), we calculate th
the results, where both MNOs initially decrease their @iceevenue functiory® (k;, k;) at the equilibrium price of the
repeatedly but one MNO suddenly increases its price whBertrand stage (Lemma 4). We use the linearly increasing
the competitor’s price is lower than some threshold (i.ecpst function as in[[20]. That isf" (k;) = yvMk;, where
price war with long jumps). After the price regulation, they is the unit cost per capacity. Then, we can rewrite the
prices converge on an equilibrium point, which coincidesptimization problem (Equatioiil(3)) of the Cournot stage,

with our analysis. which is divided into two cases.
« Case 1(k; < 2k;):
C. Non-uniform User Type Case Mk,
So far, we assume that user typeof (@) is uniformly e 7(10 27 — yME;, (18)
distributed. We will now see how the price dynamics B ’
. S M(k;i+1) K
changes with more general distributionscoby means of max 5 — yYME;. (19)
simulations. For this, we adopt three additional distiitrs k20 (k;+2)7 ki +1
of « in [23] as follows: . Case 2(k; > 2k;):
file) =2 =2a, M (2k; +1) K
B max (2h; + 2) — — Mk, (20)
fa(a) =2a, g0 A(k;+ 1) kit 1
4o ifo<a<i M ks
po={4,, 19505k TRCH
4—da, ifF<a<l max A1 Mk (21)

Using these distributions, we can reflect network scenariosTO solve these
consisting of high population of users having low, high an
middle user type, respectively.

Figure[8 shows the results, where price war with longemma 6: Consider the following optimization problem:
jumps occurs like the uniform user type case. Moreover,
in the non-uniform user type cases, the prices always max ba — ez, (22)
converge on an equilibrium point after the price regulation x>0 T +a

The equilibrium price tends to be biased towards the hi%erea, b and ¢ are positive. Then, the optimal solution
density of user type. :

¥ IS

optimization problems, we need some
H1athematical knowledge given in the lemmas below.

V. COURNOT STAGE: CAPACITY COMPETITION x _ ab
2" =max<0,4/— —a,. (23)
In this section, we combine the result of the Bertrand ¢

stage with that of the Cournot stage. That is, using the

results of Section IV, we rewrite the optimization problem . o
(Equation [(B)) of the Cournot stage and solve it. The malffroof: We calculate the first and second order derivatives
motivation of this section is to completely understand tH@f the objective function as follows:

competitive actions of each MNO, and thus to derive the /
. bx ab
optimal response of the regulator. —cr | =——5 g (24)
r+a (z+a)
1
A. Characteristics of Communications Service Duopoly < br_ _ cx) = M. (25)
Market r+a (x+a)

Without loss of generality, we assume that the last oppdFhe problem is a convex optimization problem because the
tunity for a price level change is given to MNOUsing the second order derivative is always negative in the feasible
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set. Therefore, using the first order condition, we caleulaErom this result, we find the equilibrium of the original

the optimal solution as follows: two-stage game as follows:
b . . . . . .
2" = max 0, o _ b (26) Proposition 3. Under the r_egulatmn_that limits the price
c level changes by MNOs, if the unit cost per capaejty

satisfies the following inequality,

Lemma 7: Consider the following optimization problem: F (v \/ ,/ 277 \/— — ,/ -

_br cx, (27) (35)

max
220 (2 +a)’ E LE E E
then there is an equilibrium point;”, k;*, p;*, p;’):
wherea, b and ¢ are positive. Then, the optimal solution
r*is ( i » Pg 7pj

Jfab a2b2 (e kE+1 ] kE +1
x—max O—a—i- R Vs 2703 v (sz4‘2)2’7 kP42 kF 42

272 F(y)—1 1 1

3 a b = —_ — —

\/ = 2703} (28) (F (7) -2, F ) L] F(7)> :
(36)

Proof: We calculate the first and second order derivatives yhich is Pareto-optimal.

of the objective function as follows: Proof: In Case 2(k; > 2k}), to be an equilibrium point,

b ’_ b +ab ) 9 the optimal solution should satisfy the following equation
(z +a)? (z +a)® ’ 2k% +1
" kz* =max < 0, - J — -
b 2bx — 4ab 4 (k¥ +1
<7w2_cx> _ 2o —dab (30) (ks +1)"
(@ +a) (v+a)" k2 4 2k + 1
The objective function is partially concave because the < max ¢ 0, 74 (k:* " 1)2 -
second order derivative is positive when> 2a. However, J v
from the first order derivative, we know that the objective 0 1 1L 37
function decreases asincreases whenr > a. Therefore, = max 4~y - (37)

we only consider) < z < a as the feasible set, andwhlch contradicts the assumptién > 2k because:; and

the optimization problem becomes a convex optimizauolgk
* are non-zero. Therefore, there is no equmbrlum point
problem in the set. Then, using the first order condition and

in
the root formula of the third order equation, we calculate

. < —_ .
the optimal solution:*, In Case 1(k; < 2kj), to be an equilibrium point, the

optimal solution should satisfy the following equation:

Using Lemmas 6 and 7, we calculate the MNOs’ optimal E* 41
solutionsk; andk’ as follows: 2k5 — ki = 12y (ki +2) =20
« Case 1(k; < 2k;): ! v
kX +1
N Sy ) (38)
k} —max 0,—2+ ¢ 27 (kf +2)"v
K The left and right hand side equations of the last inequality
are positive. Thus, we compare the squares of them as
~ 277 B1) follows:
2
ki +1 ki +1 N
k;‘ =max< 0, 74_2 —1;. (32) 2 PPNV (ki + 2)2
(ki +2)"v (kf +2)"y
o Case 2(k; > 2k;): _ART 4 (R 2)"y
2k; +1 (ki +2)
k;_max{o, ﬁ‘l}’ (33) AR+ 4 (B +2) (2R +2)
ks 17y (k; +2)"y

k;—maX{O,,/i—l.} (34) :w>0
| ¥ (ky +2)°
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Fig. 9. (a) Feasibility functionF'(v). (b) Equilibrium capacities”” and k]E (c) Equilibrium pricesp’ andpf.

Note that the second equality holds because we usi
equation(k} +2)3y = —k}+2 from the first order conditior
of the optimization problem. From the above calculatio
we conclude that it} > 0 (i.e., F'(y) > 2), then there
would be an equilibrium. Using these results and Lem 0.05
4, we can calculate the equilibrium as in Propositiorli3.

0.07

0.06

0.04

We call F'(v) of (38) thefeasibility functionbecause we
can discriminate between feasible and infeasible mar
using this functioff If the unit costy is expensive and doe
not satisfy Equatior(35), then the market will be infeassi 0.02
(i.e., market failure) andk” and kJE are negative values

User welfare
o
[

Note the equilibrium point is a function &f® in Equation 0.01

(38). This means MN@ hasmarket poweeven though the

regulator gives the last opportunity for changing the pr 8os o 0.05 01 015
level to MNO j. Yi

Figure[9-(a) shows the feasibility function, where the unit
cost v should be less thaf.25 to avoid market failure. Fig. 10. User welfare as a function of (y. = 0.1). The value is
We plot the equilibrium point in Proposition 3 varying®Vided by M.
~ € [0,0.25]. Figured ®-(b) and]9-(c) show the result. We

observe thap;” is always higher tharp;”, and MNO j them. So far, we assume that the unit cost per capacity

always invests more than MN@ This means the usersi a given parameter. However, we can diviganto

with high user type (i.e., high QoS requirement and higﬁ given p ' X e
. and~; (i.e., v = v. + 7). The valuey. denotes the fixed

willingness-to-pay) are targeted by MN@ On the other ost, andh, denotes the taxy > 0) or subsidy §; < 0)

hand, MNOi can make a profit by making a relatively smal o ’ lot uster welfare as axfunition f ;:1 Fli ﬁretiﬂ) I'n

investment because its target users have low user types. b no 9 '

: . o . the figure, we sety. = 0.1. The figure shows that user

interesting observation is that the price gap between bo . .

. o welfare decreases ag increases. Even though this result
MNOs decreases as the unit cost per capacity increases ~ ° .
in Figure[d-(c). This is because the high cost makes bo|ﬁ1pred|ctable, the regulator can use it to forecast resdlts

MNOs reduce their investment levels and concentrate g%actlng taxes or giving subsidies.

lucrative targets (i.e., the users whose user types are n.ea'?rom the regulatory perspective, another |rr?portant thing
0.5). IS to secure finances. We plot the regulator's revenue as

a function of v, in Figure[I1. Intuitively, the regulator

runs a deficit when it gives subsidies (i.e;, < 0) to

B. Role of the Regulator improve user welfare. Therefore, the regulator shouldtestri
The regulator’s key concern is to improve user welfar@ balance between securing finances and improving user

[15], [16]. User welfare means the sum of all users’ utititie welfare. Figurd Il also shows that very high taxes lead to

If a user with user typed purchases MNGi's network the revenue loss. This is because the burden of high taxes

service, its net utility will bed—p;. On the other hand, if the makes MNOs cut their investments. If the regulator’s goal

user consumes neither of MNOs’ network services, then #t0 maximize its revenue, thep should be set t0.065.

utility will be zero. The regulator can achieve its purpose

by exactingtaxesfrom the MNQOs or givingsubsidiesto VI. CONCLUSIONS

6By a feasible market, we mean there is at least one operashingi MNOS t?nd to Compete_Wit.h ea_Ch other Changing their
to exist for the market. service prices by subsidization in the real world (see
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