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Game-theoretic Understanding of Price Dynamics
in Mobile Communication Services

Seung Min Yu and Seong-Lyun Kim

Abstract—In the mobile communication services, users wish
to subscribe to high quality service with a low price level,
which leads to competition between mobile network operators
(MNOs). The MNOs compete with each other by service prices
after deciding the extent of investment to improve quality
of service (QoS). Unfortunately, the theoretic backgrounds
of price dynamics are not known to us, and as a result,
effective network planning and regulative actions are hardto
make in the competitive market. To explain this competition
more detail, we formulate and solve an optimization problem
applying the two-stage Cournot and Bertrand competition
model. Consequently, we derive a price dynamics that the
MNOs increase and decrease their service prices periodically,
which completely explains the subsidy dynamics in the real
world. Moving forward, to avoid this instability and ineffi-
ciency, we suggest a simple regulation rule which leads to
a Pareto-optimal equilibrium point. Moreover, we suggest
regulator’s optimal actions corresponding to user welfareand
the regulator’s revenue.

Index Terms—Network economics, game theory, competi-
tion, price dynamics, regulation, mobile communications.

I. I NTRODUCTION

A. Conflict of Interests among Mobile Network Operators,
Users, and the Regulator

In mobile communication services, there is interaction
amongmobile network operators (MNOs), users, and the
regulator (Figure 1). Each MNO makes an investment in
its network to improve the quality of service (QoS) and
sets a service price to maximize its profit. The users decide
which MNO is more appropriate to subscribe to the network
service considering the service price and the QoS. Finally,
the regulator aims to maximize the welfare of all users.
Therefore, there should be some equilibrium points for the
service price and network investment (QoS) between MNOs
and users. Theoretically, finding such equilibrium points is
not easy. The situation becomes even more complicated
when there are multiple MNOs competing with each other.

Maximizing profit is the primary concern of MNOs,
which might be achieved by having a high price level and
low investment on the network. On the other hand, users
wish to maximize their utility by consuming high QoS
with a low service price. The QoS is directly related to
the network investment from MNOs. Therefore, there is
a conflict of interests among these players and the role
of the regulator is very important. From the regulatory
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Fig. 1. The interaction among MNOs, users, and the regulator.

perspective, solely maximizing profit by MNOs should
be avoided if it is at the cost of sacrificing user welfare
significantly.

For making efficient regulations, we firstly investigate
characteristics of the competitive mobile communication
services. An important question for MNOs is how much of
the network capacity should be provisioned and how high
the service price should be. Price competition between two
operators was previously studied by Walrand [1], where
the network capacity was assumed to be given. Here, we
analyze how each MNO determines the optimal investment
on the network and the service price as a response to
the strategy of its competitor. For this purpose, we apply
Cournot and Bertrand competition models [2]-[5].

In the Cournot model, MNOs compete with each other
deciding the extent of investment on their networks. On the
other hand, in the Bertrand model, MNOs engage in price
competition to attract more subscribers for a given network
capacity. We combine the Cournot and Bertrand models
so that the network capacity is determined in the Cournot
phase and afterwards the service price is determined in
the Bertrand phase. The Cournot and Bertrand models are
interlinked and we achieve joint optimization of the network
capacity and service price. Our main viewpoint of this joint
optimization is in investigating the dynamics of competition
between MNOs and also in finding an optimal role of the
regulator.

B. Price Competition and Subsidization

The dynamics of price competition among network
operators was studied in some previous works [6]-[10].
Particularly, in [6], we showed that there would be a price
dynamics that network operators increase and decrease
their service prices periodically. In the real world, however,
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Fig. 2. Quarterly marketing expenses as percentage of salesof the major
MNOs (SKT, KT and LGU+) in South Korea.

network operators’ billing systems are very similar in the
same country or state and the price dynamics does not seem
to occur.

For discussing the reality of the price dynamics, let
us consider the monthly charging structure in the mobile
communication service. In most countries, many MNOs
give asubsidyto attract new subscribers (potential users or
their competitors’ subscribers) [11]. The subsidy is offered
as part of a contract that includes a stipulated time period.
Therefore, we should consider the subsidy amount for
examining the price competition among MNOs.

To show that there can be a kind of price dynamics by
subsidization in the real world, we plot quarterly marketing
expenses as percentage of sales of the major MNOs (SKT,
KT and LGU+) in South Korea as an example (Figure 2).
Note that the investigated marketing expenses are mostly
used for subsidization. In the figure, the MNOs increase
and decrease their marketing expenses repeatedly, and
this can be interpreted as the service price dynamics by
subsidization. Then, why do the MNOs use subsidization
as an indirect method for increasing or decreasing their
service prices? The MNOs cannot increase the service
prices easily due to regulations. On the other hand, there are
few regulations on subsidization and people are relatively
generous about change of the subsidy amount because it
is believed that subsidization is a means of lowering the
cost of new subscriber’s entry to the mobile communi-
cation services [12]. Therefore, the MNOs compete with
each other by adjusting their subsidy amounts, making the
price dynamics in the real world. Unfortunately, theoretic
backgrounds of price dynamics are not known to us, and as
a result, effective network planning and regulative actions
are hard to make in the competitive market.

In this paper, we analyze the price dynamics between
MNOs using the two stage competition model, where the
MNOs increase and decrease their service prices periodi-
cally without an equilibrium point. This kind of price dy-
namics is not desirable to any player due to the instability.
For example, it is unfair that users’ payments for the mobile
communication service are different in different start times
of the subscription even though they are served by the same
MNO. Based on our analysis, to avoid such instability,
we suggest a simple regulation rule that guarantees an

equilibrium point of price levels, which is Pareto-optimal.

C. Related Work

In [13], the author shows that service price and QoS
are inter-related in communications networks, and suggests
Paris metro pricing (PMP) for Internet. PMP is a kind of
price discrimination over different QoS levels; the higher
QoS, the higher price. In that paper, the author finds that the
service price and QoS will converge to an equilibrium point
after a number of interactions. PMP is further extended
by Walrand [1], who formulates an Internet pricing model
under price and QoS constraints. In that work, the author
investigates how much PMP improves the operator’s profit
compared to a single optimal service price. The author
also analyzes price competition between two homogeneous
network operators, the network capacities of which are
fixed. In [6], we show the dynamics of price competition
(price war) using the Walrand model [1], and suggest a
regulation for price level convergence.

The price war in communication service is observed in
[6]-[10]. Particularly, in [7] and [8], if one operator lowers
its price to increase revenue or to monopolize the entire
market, then the other operators will also lower their price
to match the price leader. The price down competition will
occur repeatedly among all operators, eventually damaging
every operator with a revenue decrease.

Competition among network operators occurs not only
by price differentiation. The capacity of the network is
another important variable. This is because users will select
a network operator based on decision criteria including
not only service price but also QoS level, and the QoS
is directly related to the network capacity. Therefore, each
operator jointly optimizes the service price and network
capacity. All of the previous work mentioned above focuses
only on price competition, assuming the network capacity
is given as an external value. In [14], the authors consider
competition among multiple network operators with single-
or two-service classes. In that work, service prices are fixed
and price competition does not occur. To attract more users,
the operators decide only the network capacity.

Suppliers of a homogeneous good/service compete with
each other by deciding their amount of output. This is called
Cournot competition (quantity competition) [4]. Generally,
the market price decreases as the total amount of output
increases. On the other hand, Bertrand competition refers
to price competition where the suppliers compete with each
other by controlling the product price [5]. In the Bertrand
competition model, consumers buy all of a particular prod-
uct from the supplier with the lowest price.

We analyze mobile communications markets using
Cournot and Bertrand competition models [15]-[18]. In
[15]-[17], we suggest spectrum policies and subsidization
schemes for improving user welfare in mobile communi-
cations. In [18], we investigate the effect of allocation of
asymmetric-valued spectrum blocks on mobile communi-
cations markets. However, our previous works focus on
spectrum allocation and have not dealt with price dynamics
in mobile communications.
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D. Main Contribution of This Paper

Using the two stage model [19], we will show that MNOs
sequentially decrease their service prices (i.e., increase sub-
sidies) as in [7] and [8], but one MNO suddenly increases
its price when the competitor’s price is lower than a certain
threshold. Therefore, the price levels increase and decrease
periodically without an equilibrium point. We call thisprice
war with long jumps, which is not desirable to any player.

The main contributions and results of this paper are
summarized below.

• Description of price dynamics: In the real world,
MNOs tend to compete with each other changing
their service prices by subsidization (see Figure 2).
Using a two-stage Cournot and Bertrand competition
model with network congestion, we mathematically
analyze the competition between MNOs. Based on
a game-theoretic approach, we show that there exists
price (subsidy) dynamics in the mobile communication
service, which well explains the subsidy dynamics in
Figure 2.

• Regulation for price convergence: To avoid instability
and inefficiency, we propose a simple regulation that
limits the number of price level changes. We show that
the regulation guarantees an equilibrium point of price
levels that is Pareto-optimal. We also introduce more
realistic regulations that bring the same effect of the
price regulation.

• Regulation under a two-stage Cournot and Bertand
model: Using the two-stage model, we calculate an
equilibrium point of the network capacity and the
service price. From the result, we suggest a regulator’s
optimal action (exacting taxes) corresponding to user
welfare or the regulator’s revenue. This is an extension
of our previous work [6] to the two-stage model.

The rest of this paper is organized as follows. In the
next section, we describe our system model. Section III
presents our optimization problem in two-stage duopoly
competition. In Section IV, we derive a solution to the
optimization problem in the Bertrand stage and explain how
two operators’ prices vary. We suggest a simple regulation
that drives the price levels to converge on an equilibrium
point. In Section V, we combine the Bertrand model with
the Cournot model. Using a backward induction method, we
solve the optimization problem in the Cournot stage and
find an equilibrium point. From the results, we describe
characteristics of the communications service market and
introduce the role of the regulator. Finally, Section VI
concludes the paper.

II. SYSTEM MODEL

Consider a service area covered by two competitive
MNOs. There areM users for the mobile communication
service. Nonnegative valuesk1 andk2, respectively, denote
the first and the second MNO’s capacity, which determine
the quality of service (QoS) of the networks. MNOs deter-
mine the optimalk1 andk2 values in the Cournot stage. In
the Bertrand stage, MNOs compete by controllingp1 and

p2, the first and the second MNO’s price for the service.
These service prices include the subsidy amounts (i.e., the
initial service price minus the subsidy amount). Therefore,
the MNOs can control the service prices by adjusting the
subsidy amounts even if there are some regulations that
prohibit the initial price level changes. Without loss of
generality, we assumep1 and p2 are normalized values
over the interval[0, 1]. Each MNO can provide only one
price to all users at a given time. The QoS of a network
depends on the congestion level of the network. We denote
the QoS of each MNO’s network byq1 andq2, respectively.
Without loss of generality, the values ofq1 and q2 are
also normalized over the interval[0, 1]. A value closer to 0
denotes a higher congestion level (lower QoS).

Each user decides whether to subscribe to the communi-
cation service or not by selecting its serving MNO. Some
users prefer high QoS (low congestion) even though they
have to pay more. On the other hand, some other users
will accept a low QoS if the service price is low, as was
also noted by Paris metro pricing [13]. Willingness-to-pay
and the QoS required by users are positively correlated. To
model user behavior, we define theuser typeas in [1] and
[14]. The user typeα is a variable over[0, 1] that quantifies
the user’s willingness-to-pay. At the same time, it quantifies
the QoS level required by the user.1 The valueα is close
to 1 when the user is willing to pay a high price for high
QoS. At the other extreme (α −→ 0), the user prefers low
QoS with a low price. Since it is difficult to figure out the
user type value of each user, we assume that it is a random
variable (e.g., uniform distribution in[0, 1]).

Consider a user with user type valueα. For the user to
subscribe to the communication service offered by MNOi,
both the price and QoS levels should be satisfied. In other
words,α ≥ pi andα ≤ qi, where we regard the first and
second inequalities as theprice condition (PC) andQoS
condition (QC), respectively.2 The PC is commonly used
in microeconomics [20], but it is not sufficient to model
communication service, where some users whose PCs are
satisfied may not use the service because the QoS is lower
than expected due to congestion. If multiple MNOs satisfy
both conditions, then the user will select the MNO offering
the lowest price.

We use a linearly decreasing QoS model as in [1] and
[14], which mirrors the perception of service quality [21]:

q1 = 1−
d1

k1M
, q2 = 1−

d2
k2M

, (1)

1The user typeα has a dual role as willingness-to-pay and QoS require-
ment. This seems to be open to dispute because those two criteria cannot
merged into one-dimensional parameter space. In this paper, however, we
assume that each user’s willingness-to-pay and QoS requirement are highly
correlated and can be modeled as a one-dimensional parameter for the
mathematical tractability.

2The characteristics of users’ MNO selection are based on theassump-
tion that each user wants a specific service (or application)requiring some
target QoS level. Then, each user’s utility function becomes a step function
with a step at QoS level. In other words, if a QoS level is higher thanα,
then the utility from the service is equal toα. Otherwise, the utility is zero.
Therefore, a user with user typeα subscribes to MNOi’s communication
service only if bothα ≥ pi andα ≤ qi are satisfied.
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Fig. 3. User type intervals of the users subscribing each MNO’s service.

where d1 and d2 denote the number of users accessing
the first and the second MNO, respectively. We define the
reference capacity, which makes the QoS level equal to
zero when all users access one of the MNOs.k1 and k2
are normalized values by the reference capacity. In other
words, if k1 = 1 (k2 = 1) and d1 = M (d2 = M ), then
the QoS level isq1 = 0 (q2 = 0). The user demand is
expressed as follows:

d1 = M

∫ αmax

1

αmin

1

f (α) dα, d2 = M

∫ αmax

2

αmin

2

f (α) dα, (2)

whereαmin
1 , αmax

1 , αmin
2 and αmax

2 denote the minimum
and the maximum values ofα among the users accessing
the first and the second MNO, respectively.f (α) denotes a
probability density function ofα. Equation (2) is a demand
function derived from integration of the willingness-to-pay
distribution.

Figure 3 illustrates a perfectly segmented market and
non-segmented market. Assumep1 > p2. In the perfectly
segmented market (p1 ≥ q2), the values ofαmin

1 andαmin
2

are determined by PC, andαmax
1 andαmax

2 are determined
by QC. On the other hand, in the non-segmented duopoly
market (p1 < q2), αmin

1 is determined byαmax
2 . This is

because if there are users whose PC and QC are satisfied
by both MNOs3, then the users whose user types are within
[p1, q2] will access the second MNO with the lower price,
p2.

III. M OBILE NETWORK OPERATOR’ S OPTIMIZATION

PROBLEM

Figure 4 explains our two-stage model. In the Cournot
stage, MNOs decide their capacity considering the invest-
ment cost. Each MNO cannot change its network capacity
in the short-term after observing a competitor’s network
investment. Thus, this capacity competition can be mod-
eled as a simultaneous game. Hereafter, leti denote the
decision maker index andj denote the competitor’s. Then,
we formulate the optimization problem of MNOi in the
Cournot stage as follows:

max
ki≥0

fR
i (ki, kj)− fC

i (ki) , (3)

wherefR
i (·) andfC

i (·) denote revenue and cost functions
of MNO i. Note that the MNO’s revenue depends not

3For the users in [p1, q2], both PC and QC are satisfied by both MNOs.

Fig. 4. Two-stage Cournot and Bertrand competition betweentwo MNOs.

only on its own capacity, but also on its competitor’s. The
revenue function is determined by the result of the Bertrand
stage.

In the Bertrand stage, MNOs compete with each other
by controlling their prices for the given capacity determined
in the Cournot stage. Here the price includes the subsidy.
Thus high price implies low subsidy, and low price implies
high subsidy. Each MNO can change its price repeatedly
after observing a competitor’s. Thus, this price competition
can be modeled as an infinite sequential game. We exclude
the case of pricing equal to that of the competitor.4 Then,
we formulate the optimization problem of MNOi in the
Bertrand stage, which is divided into two cases: Using
either a higher or lower price than the competitor’s.

• Using a lower price (pi ≤ pj):

max
0≤pi≤1

pidi

s.t. di = M

∫ 1−
di

kiM

pi

f (α) dα.

In this case, the number of users for MNOi is independent
of the competitor’s price, which is just like the monopoly
led by the low pricing MNO. Thus, the upper and lower
limits of the integral in the constraint are replaced by
αmax
i = qi = 1 − di/kiM and αmin

i = pi as in Figure
3.

• Using a higher price (pi > pj):

max
0≤pi≤1

pidi

s.t. di = M

∫ 1−
di

kiM

max
{

pi,1−
dj

kjM

}

f (α) dα.

In this case, the competitor affects the number of users of
MNO i. If the competitor guarantees PC and QC of a user,
then the user will access the competitor network. Noting
thatαmax

i is determined by the QC, the upper limit of the
integral is given byαmax

i = qi = 1−di/kiM . On the other
hand,αmin

i is determined bymax {pi, qj} as explained in
Figure 3.

4In [14], the authors assume that all MNOs’ service prices arethe
same due to MNO competition. Thus, price dynamics does not occur.
Each MNO in our model, on the other hand, has no reason to match
its competitor’s service price because it can profit more by lowering its
service price a little, which will eventually lead to a pricedynamics.
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IV. B ERTRAND STAGE: PRICE (SUBSIDY)
COMPETITION

A common method for analyzing a multi-stage game is
the backward induction method. This method is used to find
the equilibrium that represents a Nash equilibrium in every
stage (or subgame) of the original game. We start with the
Bertrand stage. The capacitieski andkj are assumed to be
given, and will be optimized in the next section describing
the Cournot stage. Hereafter, we assume that the user type
α is uniformly distributed. This assumption was also used
in [1] and [14]. We will show how the price dynamics
changes with more general distributions of user typeα in
the last of this section.

A. Price War with Long Jumps

We derive the optimal price of MNOi, which is sum-
marized in the following lemmas:

Lemma 1: In the case that the MNO’s pricepi is lower
than its competitor’s pricepj , the optimal solutionpLi is:

pLi =

{

1
2 if pj >

1
2

pj − ε if pj ≤
1
2

, (4)

whereε is a minimum unit of price level changes and very
small positive value.

Proof: Under the assumption thatα is uniformly dis-
tributed, we get the following equation from the constraint
of the optimization problem for the lower price case:

di = M

∫ 1−
di

kiM

pi

f (α) dα = M

(

1−
di

kiM
− pi

)

. (5)

We calculatedi and the objective functionpidi from
Equation (5) as follows:

di =
ki (1− pi)

ki + 1
M, pidi =

kipi (1− pi)

ki + 1
M. (6)

The objective function is a quadratic function whose max-
imum is at pi = 1/2. Therefore, ifpj > 1/2, then the
optimal solution will bepLi = 1/2. Otherwise, the optimal
solution will bepLi = pj − ε. �

Lemma 2: In the case that the MNO’s pricepi is higher
than its competitor’s pricepj , the optimal solutionpHi is:

pHi =

{

kj+pj

kj+1 if pj ≥
1−kj

2
1
2 if pj <

1−kj

2

. (7)

Proof: Under the assumption thatα is uniformly dis-
tributed, we get the following equation from the constraint
of the optimization problem for the higher price case:

di = M

∫ 1−
di

kiM

max
{

pi,1−
dj

kjM

}

f (α) dα

= M

(

1−
di

kiM
−max

{

pi, 1−
dj

kjM

})

. (8)

We calculatedi from Equation (8) as follows:

di = min

{

ki (1− pi)

ki + 1
M,

kidj
(ki + 1) kj

}

. (9)

Then, the objective function is:

pidi=min

{

kipi (1− pi)

ki + 1
M,

kipidj
(ki + 1) kj

}

=min

{

kipi (1− pi)

ki + 1
M,

kipi (1− pj)

(ki + 1) (kj + 1)
M

}

.(10)

The second equality in Equation (10) holds by Equation (6).
In the minimum operator of the objective function, the left
side is a quadratic function whose maximum is atpi = 1/2,
and the right side is a linear function whose slope iski(1−
pj)M/((ki + 1)(kj + 1)). Therefore, ifpj < (1 − kj)/2,
then the optimal solution ispHi = 1/2, which is the apex
of the quadratic function. Otherwise, the optimal solution
is pHi = (kj + pj)/(kj + 1), which is the intersection of
the quadratic and linear functions. �

From Lemmas 1 and 2, we derive the MNO’s best
response function (optimal strategy) in the duopoly com-
petition.

Lemma 3: Given the competitor’s pricepj , the MNO’s best
response functionp∗i is

• Case 1(kj < 1):

p∗i =











1
2 if pj >

1
2 or 0 ≤ pj <

1−kj

2
pj − ε if 1

kj+2 < pj ≤
1
2

kj+pj

kj+1 if 1−kj

2 ≤ pj ≤
1

kj+2

.(11)

• Case 2(kj ≥ 1):

p∗i =











1
2 if pj >

1
2

pj − ε if 1
kj+2 < pj ≤

1
2

kj+pj

kj+1 if 0 ≤ pj ≤
1

kj+2

. (12)

Proof: Using the results of Lemmas 1 and 2, we calculate
the optimal values for the higher and lower price cases as
follows:

pLi d
L
i =

{

ki

4(ki+1)M if pj >
1
2

ki(pj−ε)(1−pj+ε)
ki+1 M ≈

kipj(1−pj)
ki+1 M if pj ≤

1
2

,

pHi dHi =

{

ki

4(ki+1)M if pj ≥
1−kj

2
ki(kj+pj)(1−pj)

(ki+1)(kj+1)2
M if pj <

1−kj

2

.

Above all, we consider Case 1 (kj < 1). In this case, we
calculate the best response function of MNOi as follows:

• If pj > 1/2: To compare the optimal values of
the higher and lower price cases, we calculate the
following:

pLi d
L
i − pHi dHi =

kiM

4 (ki + 1)
−

ki (kj + pj) (1− pj)M

(ki + 1) (kj + 1)
2

=
ki (ki + 2pj − 1)2 M

4 (ki + 1) (kj + 1)
2 .
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This value is positive because we consider the duopoly
market (i.e.,ki andkj are positive) and assumepj >
1/2. Therefore, the best response function isp∗i =
pLi = 1/2.

• If (1 − kj)/2 ≤ pj ≤ 1/2: To compare the optimal
values of the higher and lower price cases, we calculate
the following:

pLi d
L
i − pHi dHi

=
kipj (1− pj)M

ki + 1
−

ki (kj + pj) (1− pj)M

(ki + 1) (kj + 1)
2

=
kikj (kj + 2) (1− pj)M

(ki + 1) (kj + 1)
2

(

pj −
1

kj + 2

)

.

All values exceptpj −1/(kj +2) are positive because
we consider the duopoly market (i.e.,ki and kj are
positive) and assume(1 − kj)/2 ≤ pj ≤ 1/2.
Therefore, ifpj > 1/(kj + 2), then the best response
function is p∗i = pLi = pj − ε. Otherwise, the best
response function isp∗i = pHi = (kj + pj)/(kj + 1).

• If 0 ≤ pj < (1−kj)/2: To compare the optimal values
of the higher and lower price cases, we calculate the
following:

pHi dHi − pLi d
L
i =

kiM

4 (ki + 1)
−

kipj (1− pj)M

ki + 1

=
kiM

ki + 1

(

1

4
− pj (1− pj)

)

.

This value is positive under the assumption0 ≤ pj <
(1 − kj)/2. Therefore, the best response function is
p∗i = pHi = 1/2.

Noting that the intervals[0, (1 − kj)/2) and [(1 −
kj)/2, 1/(kj + 2)] in Case 1 are merged into an interval
[0, 1/(kj + 2)] in Case 2, we can derive the MNO’s best
response function in Case 2 similarly. �

Using Lemma 3, we describe two MNOs dynamics
below.

Proposition 1: In the duopoly competition of two MNOs,
there is no pure Nash equilibrium, and price levels increase
and decrease periodically.5

Proof: Suppose for a contradiction that a pure Nash equi-
librium point (pNE

i , pNE
j ) exists. We first consider Case 1

(kj < 1) as follows:

• If pNE
j > 1/2, thenpNE

i should bepNE
i = 1/2. Then,

pNE
j should bepNE

j = 1/2− ε, which contradicts the
assumption thatpNE

j > 1/2.

• If 1/(kj + 2) < pNE
j ≤ 1/2, then pNE

i should be
pNE
i = pNE

j − ε < 1/2. Then,pNE
j should satisfy at

5Even though there is no Nash equilibrium in pure strategies,there can
be a Nash equilibrium in mixed strategies. This means that the MNOs can
randomize their service prices. However, in the sequentialgame that each
MNO can change its price after observing a competitor’s, thebest response
function-based strategy will be used rather than the randomstrategy. This
is the reason that we focus on the price dynamics.

least one of the following equations:

pNE
j =pNE

i − ε = pNE
j − 2ε, (13)

pNE
j =

ki + pNE
i

ki + 1
=

ki + pNE
j − ε

ki + 1
. (14)

Obviously, Equation (13) has a contradiction. From
Equation (14), we find thatpNE

j is pNE
j = 1−ε/ki ≈

1, which contradicts the assumption thatpNE
j ≤ 1/2.

• If (1− kj)/2 ≤ pNE
j ≤ 1/(kj + 2), thenpNE

i should
be pNE

i = (kj + pNE
j )/(kj + 1). Then,pNE

j should
satisfy at least one of the following equations:

pNE
j =

1

2
, (15)

pNE
j =pNE

i − ε =
kj + pNE

j

kj + 1
− ε, (16)

pNE
j =

ki + pNE
i

ki + 1
=

ki +
kj+pNE

j

kj+1

ki + 1
. (17)

Based on the assumption thatpNE
j ≤ 1/(kj + 2),

Equation (15) means thatkj = 0 andpNE
i = pNE

j =
1/2. This has a contradiction becausepNE

i = 1/2
and pNE

j = 1/2 are not the best response to each
other. Using Equation (16), we calculate thatpNE

j

is pNE
j = 1 − ε − ε/kj ≈ 1, which contradicts the

assumption thatpNE
j ≤ 1/(kj + 2). Using Equation

(17), we calculate thatpNE
j is pNE

j = 1, which
contradicts the assumption thatpNE

j ≤ 1/(kj + 2).
• If 0 ≤ pNE

j < (1−kj)/2, thenpNE
i should bepNE

i =
1/2. This means thatpNE

j should bepNE
j = 1/2−ε ≈

1/2, which contradicts the assumption thatpNE
j <

(1− kj)/2.
Therefore, we conclude that there is no pure Nash equilib-
rium point in Case 1. The only difference between Case 1
and Case 2 (kj ≥ 1) is that the intervals[0, (1 − kj)/2)
and [(1 − kj)/2, 1/(kj + 2)] in Case 1 are merged in the
interval [0, 1/(kj + 2)] in Case 2. Therefore, we can use
similar proof for Case 2 and conclude that there is no pure
Nash equilibrium point in Case 2. �

Figure 5 shows the MNOs’ best response functions.
In the figure, we assume the symmetric capacity (k1 =
k2 = k). We see how each MNO sequentially decreases
its price to a little lower level than its competitor when
the competitor’s price is within(1/(k + 2), 1/2]. This is a
price war [7], [8]. After that, if the competitor’s price is
less than or equal to1/(k+2), then one MNO will increase
its price to(k+1)/(k+2). This is along jump. Then, the
competitor sets its price to1/2. This situation is repeated
periodically and there is no equilibrium point. We call this
price war with long jumps. We plot Figure 6 to illustrate
the process of the price war with long jumps. In the real
world, this kind of price dynamics tends to occur by change
of the subsidy amount (see Figure 2).

B. Regulation for Convergence

The price war with long jumps is not desirable because of
instability and inefficiency. We suggest a simple regulation
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Fig. 5. Best response functions of both MNOs. We assume that the MNOs’ capacities are equal (k1 = k2 = k).

Fig. 6. Price war with long jumps (k1 = k2 = k).

that leads to an equilibrium point of price levels, which is
Pareto-optimal. More details are contained in Lemma 4 and
Proposition 2.

Lemma 4: A regulation that limits the number of price level
changes makes the price levels converge to an equilibrium
point (pEi , p

E
j ) as follows:

(pEi , p
E
j ) =



















(

1
ki+2 ,

ki+1
ki+2

)

if ki < 2kj
(

1
ki+2 ,

ki+1
ki+2

)

or
(

2kj+1
2(kj+1) ,

1
2

)

if ki = 2kj
(

2kj+1
2(kj+1) ,

1
2

)

if ki > 2kj

,

where the last opportunity for a price level change is given
to MNO j.

Proof: When we use the regulation, two MNOs dynamics
is modeled as a finite sequential game and we can calculate
the equilibrium point using the backward induction method.
We first consider Case 1 (kj < 1). Let t denote the last stage
of the price level change. Then, MNOi will choose the best
strategy at the(t − 1) stage (i.e., its last choice stage) in
order to maximize its revenue. To calculate the best strategy
for MNO i, we divide the strategy set of MNOi into four
disjoint subsets. Letp∗i (t−1) andp∗j (t) denote the optimal
strategy of MNOi at thet−1 stage and the optimal strategy
of MNO j at the last stage in each subset. Using Lemma 3,
we calculatep∗i (t−1) in each subset. Then, from Equations
(6) and (10), we calculate the revenue of MNOi r∗i (t) as
follows:

Strategy 1(pi(t− 1) > 1/2):

p∗j (t) =
1

2
−→ p∗i (t− 1) =

kj +
1
2

kj + 1
=

2kj + 1

2(kj + 1)
,

r∗i (t) =
kip

∗
i (t) (1− p∗i (t))

ki + 1
M =

ki (2kj + 1)

4 (ki + 1) (kj + 1)2
M.

Strategy 2(1/(ki + 2) < pi(t− 1) ≤ 1/2):

p∗j (t) = pi(t− 1)− ε −→ p∗i (t− 1) =
1

2
,

r∗i (t) =
kip

∗
i (t− 1)

(

1− p∗j (t)
)

(ki + 1) (kj + 1)
M =

ki (1 + 2ε)

4 (ki + 1) (kj + 1)
M.

Strategy 3((1− ki)/2 ≤ pi(t− 1) ≤ 1/(ki + 2)):

p∗j (t) =
ki + pi(t− 1)

ki + 1
−→ p∗i (t− 1) =

1

ki + 2
,

r∗i (t) =
kip

∗
i (t) (1− p∗i (t))

ki + 1
M =

ki

(ki + 2)2
M.

Strategy 4(0 ≤ pi(t− 1) < (1− ki)/2):

p∗j (t) =
1

2
−→ p∗i (t− 1) =

1− ki
2

− ε,

r∗i (t) =
kip

∗
i (t) (1− p∗i (t))

ki + 1
M =

ki

(

1− (ki + ε)
2
)

4 (ki + 1)
M.

From these equations, we prove that some strategies are
strictly dominated as follows:
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• Strategy 2 is strictly dominated by Strategy 1:

ki (2kj + 1)

4 (ki + 1) (kj + 1)
2M −

ki (1 + 2ε)

4 (ki + 1) (kj + 1)
M

=
ki

4 (ki + 1) (kj + 1)

(

kj
kj + 1

− 2ε

)

M > 0.

• Strategy 4 is strictly dominated by Strategy 3:

ki

(ki + 2)2
M −

ki

(

1− (k+ε)
2
)

4 (ki + 1)
M

>
ki

(ki + 2)
2M −

ki
(

1− k2i
)

4 (ki + 1)
M

=
k3i (ki + 3)

4 (ki + 2)
2M > 0.

Therefore, the MNOi never chooses Strategies 2 and 4. To
finish this proof, we compare Strategies 1 and 3 as follows:

ki (2kj + 1)

4 (ki + 1) (kj + 1)
2M −

ki

(ki + 2)
2M

=
ki (ki + 2 (ki + 1)kj) (ki − 2kj)

4 (ki + 1) (ki + 2)
2
(kj + 1)

2 M.

If ki < 2kj , then MNOi will set its price to1/(ki+2) and
MNO j will set its price to(ki + 1)/(ki + 2). Therefore,
in this case, the equilibrium point is(pEi , p

E
j ) = (1/(ki +

2), (ki+1)/(ki+2)). Likewise, if ki > 2kj , then the equi-
librium point is (pEi , p

E
j ) = ((2kj + 1)/(2(kj + 1)), 1/2).

Note that, ifki = 2kj , then both equilibriums are possible.
The only difference between Case 1 and Case 2 is that the
intervals [0, (1 − kj)/2) and [(1 − kj)/2, 1/(kj + 2)] in
Case 1 are merged into the interval[0, 1/(kj +2)] in Case
2. Therefore, we can use a similar proof for Case 2 and
conclude that the equilibrium in Case 2 is same to that in
Case 1. �

To verify the efficiency of the regulation, we need to
check the Pareto-optimality of the equilibrium point. A
sufficient condition for Pareto-optimality is given in the
following lemma:

Lemma 5: Let subscriptsl and h denote MNOs whose
prices are lower and higher than that of their competitor,
respectively. Ifpl ≤ 1/2, ph ≥ 1/2 andph ≥ (kl+pl)/(kl+
1), then(pl, ph) and (ph, pl) are Pareto-optimal.

Proof: If pl < 1/2, then MNO l can increase its revenue
by increasing its price toward1/2. However, it always
makes MNO h’s revenue decrease. Ifpl = 1/2, then
MNO l cannot increase its revenue. Therefore, MNOl
cannot increase its revenue without decreasing the revenue
of MNO h. Likewise, MNOh cannot increase its revenue
without decreasing the revenue of MNOl because the only
method to increase the revenue of MNOh in the perfectly
segmented condition (ph ≥ (kl+pl)/(kl+1)) is to decrease
pl andph simultaneously. Therefore, the point that satisfies
the conditions in Lemma 5 is Pareto-optimal. �
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Fig. 7. Price level changes of both MNOs (uniform user type case).

Lemma 5 indicates that the MNOs’ prices should be
sufficiently separated (i.e., perfectly segmented market)
for Pareto-optimality. The equilibrium point under our
suggested regulation (Lemma 4) satisfies the conditions
in Lemma 5. Therefore, the equilibrium point is Pareto-
optimal. This finding is summarized below.

Proposition 2: A regulation that limits the number of
price level changes makes the price levels converge to an
equilibrium point that is Pareto-optimal.

The price war with long jumps occurs due to the MNOs’
short-sighted way of thinking. However, the MNOs cannot
use a myopic strategy under Proposition 2.

We can find similar regulations of Proposition 2. In
South Korea, the market-dominating enterprise (SKT) can-
not change its service price without government permission.
This is similar to giving the other MNOs (KT and LGU+)
the last opportunity for a price level change. The price
regulation also can be implemented by restricting subsi-
dization. In other words, notifying MNOs that subsidiza-
tion will be banned after a certain time is equal to the
regulation that limits the number of price level changes.
For instance, Korea Communications Commission (KCC)
actually prohibited subsidization by MNOs from 2003 to
2008. This kind of subsidy regulation also can be observed
in Finland [22]. Another way that brings the same effect of
such price regulation is to regulate the time interval between
price level changes. If MNOs cannot change their service
price or subsidy levels for a long time, then they will use
far-sighted strategies, which leads to the equilibrium point
described in Lemma 4.

To verify our analysis, we conduct simulations, which
show the price level changes of both MNOs. In the sim-
ulations, the minimum unit of price level changes and
each MNO’s network capacity are set toε = 0.01 and
ki = kj = 1. Also, we set each MNO’s initial price
to 0.01 and apply the price regulation that limits the
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Fig. 8. Price level changes of both MNOs in non-uniform user type cases: (a)f1(α). (b) f2(α). (c) f3(α).

number of price level changes to80. Figure 7 illustrates
the results, where both MNOs initially decrease their prices
repeatedly but one MNO suddenly increases its price when
the competitor’s price is lower than some threshold (i.e.,
price war with long jumps). After the price regulation, the
prices converge on an equilibrium point, which coincides
with our analysis.

C. Non-uniform User Type Case

So far, we assume that user typeα of (2) is uniformly
distributed. We will now see how the price dynamics
changes with more general distributions ofα by means of
simulations. For this, we adopt three additional distributions
of α in [23] as follows:

f1(α) = 2− 2α,

f2(α) = 2α,

f3 (α) =

{

4α, if 0 ≤ α ≤ 1
2 ,

4− 4α, if 1
2 < α ≤ 1.

Using these distributions, we can reflect network scenarios
consisting of high population of users having low, high and
middle user type, respectively.

Figure 8 shows the results, where price war with long
jumps occurs like the uniform user type case. Moreover,
in the non-uniform user type cases, the prices always
converge on an equilibrium point after the price regulation.
The equilibrium price tends to be biased towards the high
density of user type.

V. COURNOT STAGE: CAPACITY COMPETITION

In this section, we combine the result of the Bertrand
stage with that of the Cournot stage. That is, using the
results of Section IV, we rewrite the optimization problem
(Equation (3)) of the Cournot stage and solve it. The main
motivation of this section is to completely understand the
competitive actions of each MNO, and thus to derive the
optimal response of the regulator.

A. Characteristics of Communications Service Duopoly
Market

Without loss of generality, we assume that the last oppor-
tunity for a price level change is given to MNOj. Using the

revenue equations (Equations (6) and (10)), we calculate the
revenue functionfR

i (ki, kj) at the equilibrium price of the
Bertrand stage (Lemma 4). We use the linearly increasing
cost function as in [20]. That is,fC

i (ki) = γMki, where
γ is the unit cost per capacity. Then, we can rewrite the
optimization problem (Equation (3)) of the Cournot stage,
which is divided into two cases.

• Case 1(ki ≤ 2kj):

max
ki≥0

Mki

(ki + 2)
2 − γMki, (18)

max
kj≥0

M (ki + 1)

(ki + 2)
2

kj
kj + 1

− γMkj . (19)

• Case 2(ki ≥ 2kj):

max
ki≥0

M (2kj + 1)

4 (kj + 1)
2

ki
ki + 1

− γMki, (20)

max
kj≥0

M

4

kj
kj + 1

− γMkj. (21)

To solve these optimization problems, we need some
mathematical knowledge given in the lemmas below.

Lemma 6: Consider the following optimization problem:

max
x≥0

bx

x+ a
− cx, (22)

wherea, b and c are positive. Then, the optimal solution
x∗ is

x∗ = max

{

0,

√

ab

c
− a

}

. (23)

Proof: We calculate the first and second order derivatives
of the objective function as follows:

(

bx

x+ a
− cx

)′

=
ab

(x+ a)2
− c, (24)

(

bx

x+ a
− cx

)′′

=
−2ab (x+ a)

(x+ a)
4 . (25)

The problem is a convex optimization problem because the
second order derivative is always negative in the feasible
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set. Therefore, using the first order condition, we calculate
the optimal solution as follows:

x∗ = max

{

0,

√

ab

c
− a

}

. (26)

�

Lemma 7: Consider the following optimization problem:

max
x≥0

bx

(x+ a)
2 − cx, (27)

wherea, b and c are positive. Then, the optimal solution
x∗ is

x∗ = max

{

0,−a+
3

√

ab

c
+

√

a2b2

c2
+

b3

27c3

+
3

√

ab

c
−

√

a2b2

c2
+

b3

27c3

}

. (28)

Proof: We calculate the first and second order derivatives
of the objective function as follows:

(

bx

(x+ a)2
− cx

)′

=
−bx+ ab

(x+ a)3
− c, (29)

(

bx

(x+ a)
2 − cx

)′′

=
2bx− 4ab

(x+ a)
4 . (30)

The objective function is partially concave because the
second order derivative is positive whenx > 2a. However,
from the first order derivative, we know that the objective
function decreases asx increases whenx > a. Therefore,
we only consider0 ≤ x ≤ a as the feasible set, and
the optimization problem becomes a convex optimization
problem in the set. Then, using the first order condition and
the root formula of the third order equation, we calculate
the optimal solutionx∗. �

Using Lemmas 6 and 7, we calculate the MNOs’ optimal
solutionsk∗i andk∗j as follows:

• Case 1(ki ≤ 2kj):

k∗i =max

{

0,−2 +
3

√

2

γ
+

√

4

γ2
+

1

27γ3

+
3

√

2

γ
−

√

4

γ2
+

1

27γ3

}

, (31)

k∗j =max

{

0,

√

ki + 1

(ki + 2)2 γ
− 1

}

. (32)

• Case 2(ki ≥ 2kj):

k∗i =max

{

0,

√

2kj + 1

4 (kj + 1)
2
γ
− 1

}

, (33)

k∗j =max

{

0,

√

1

4γ
− 1.

}

(34)

From this result, we find the equilibrium of the original
two-stage game as follows:

Proposition 3: Under the regulation that limits the price
level changes by MNOs, if the unit cost per capacityγ
satisfies the following inequality,

F (γ) =
3

√

2

γ
+

√

4

γ2
+

1

27γ3
+

3

√

2

γ
−

√

4

γ2
+

1

27γ3
> 2,

(35)

then there is an equilibrium point(kEi , k
E
j , p

E
i , p

E
j ):

(

kEi , k
E
j , p

E
i , p

E
j

)

=

(

kEi ,

√

kEi + 1
(

kEi + 2
)2

γ
− 1,

1

kEi + 2
,
kEi + 1

kEi + 2

)

=

(

F (γ)− 2,

√

F (γ)− 1

F (γ)2 γ
− 1,

1

F (γ)
, 1−

1

F (γ)

)

,

(36)

which is Pareto-optimal.

Proof: In Case 2(k∗i ≥ 2k∗j ), to be an equilibrium point,
the optimal solution should satisfy the following equation:

k∗i =max







0,

√

√

√

√

2k∗j + 1

4
(

k∗j + 1
)2

γ
− 1







≤max







0,

√

√

√

√

k∗2j + 2k∗j + 1

4
(

k∗j + 1
)2

γ
− 1







=max

{

0,

√

1

4γ
− 1

}

= k∗j , (37)

which contradicts the assumptionk∗i ≥ 2k∗j becausek∗i and
k∗j are non-zero. Therefore, there is no equilibrium point
in Case 2.

In Case 1(k∗i ≤ 2k∗j ), to be an equilibrium point, the
optimal solution should satisfy the following equation:

2k∗j − k∗i = 2

√

k∗i + 1

(k∗i + 2)
2
γ
− (k∗i + 2) ≥ 0

⇒ 2

√

k∗i + 1

(k∗i + 2)
2
γ
≥ k∗i + 2. (38)

The left and right hand side equations of the last inequality
are positive. Thus, we compare the squares of them as
follows:

(

2

√

k∗i + 1

(k∗i + 2)2 γ

)2

− (k∗i + 2)2

=
4k∗i + 4− (k∗i + 2)

4
γ

(k∗i + 2)
2
γ

=
4k∗i + 4− (k∗i + 2) (−k∗i + 2)

(k∗i + 2)
2
γ

=
k∗i (k

∗
i + 4)

(k∗i + 2)
2
γ
≥ 0.
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Fig. 9. (a) Feasibility functionF (γ). (b) Equilibrium capacitieskE
i
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j

. (c) Equilibrium pricespE
i

andpE
j

.

Note that the second equality holds because we use an
equation(k∗i +2)3γ = −k∗i +2 from the first order condition
of the optimization problem. From the above calculations,
we conclude that ifk∗i > 0 (i.e., F (γ) > 2), then there
would be an equilibrium. Using these results and Lemma
4, we can calculate the equilibrium as in Proposition 3.�

We callF (γ) of (35) thefeasibility functionbecause we
can discriminate between feasible and infeasible markets
using this function.6 If the unit costγ is expensive and does
not satisfy Equation (35), then the market will be infeasible
(i.e., market failure) and,kEi and kEj are negative values.
Note the equilibrium point is a function ofkEi in Equation
(36). This means MNOi hasmarket powereven though the
regulator gives the last opportunity for changing the price
level to MNO j.

Figure 9-(a) shows the feasibility function, where the unit
cost γ should be less than0.25 to avoid market failure.
We plot the equilibrium point in Proposition 3 varying
γ ∈ [0, 0.25]. Figures 9-(b) and 9-(c) show the result. We
observe thatpEj is always higher thanpEi , and MNO j
always invests more than MNOi. This means the users
with high user type (i.e., high QoS requirement and high
willingness-to-pay) are targeted by MNOj. On the other
hand, MNOi can make a profit by making a relatively small
investment because its target users have low user types. An
interesting observation is that the price gap between both
MNOs decreases as the unit cost per capacity increases
in Figure 9-(c). This is because the high cost makes both
MNOs reduce their investment levels and concentrate on
lucrative targets (i.e., the users whose user types are near
0.5).

B. Role of the Regulator

The regulator’s key concern is to improve user welfare
[15], [16]. User welfare means the sum of all users’ utilities.
If a user with user typeθ purchases MNOi’s network
service, its net utility will beθ−pi. On the other hand, if the
user consumes neither of MNOs’ network services, then its
utility will be zero. The regulator can achieve its purpose
by exactingtaxesfrom the MNOs or givingsubsidiesto

6By a feasible market, we mean there is at least one operator wishing
to exist for the market.
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Fig. 10. User welfare as a function ofγt (γc = 0.1). The value is
divided byM .

them. So far, we assume that the unit cost per capacityγ
is a given parameter. However, we can divideγ into γc
andγt (i.e., γ = γc + γt). The valueγc denotes the fixed
cost, andγt denotes the tax (γt > 0) or subsidy (γt < 0).
We plot user welfare as a function ofγt in Figure 10. In
the figure, we setγc = 0.1. The figure shows that user
welfare decreases asγt increases. Even though this result
is predictable, the regulator can use it to forecast resultsof
exacting taxes or giving subsidies.

From the regulatory perspective, another important thing
is to secure finances. We plot the regulator’s revenue as
a function of γt in Figure 11. Intuitively, the regulator
runs a deficit when it gives subsidies (i.e.,γt < 0) to
improve user welfare. Therefore, the regulator should strike
a balance between securing finances and improving user
welfare. Figure 11 also shows that very high taxes lead to
the revenue loss. This is because the burden of high taxes
makes MNOs cut their investments. If the regulator’s goal
is to maximize its revenue, thenγt should be set to0.065.

VI. CONCLUSIONS

MNOs tend to compete with each other changing their
service prices by subsidization in the real world (see
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Figure 2). In this paper, to theoretically explain the price
dynamics in the mobile communication service, we used
a two-stage Cournot and Bertrand competition model that
is well understood in microeconomics. The Cournot and
Bertrand models are interlinked and we perform a joint
optimization of network capacity and service price. Based
on a game-theoretic approach, we show that there is a price
war with long jumps. This price dynamics explains the
subsidy dynamics in the real world. To avoid the instability
and inefficiency, we propose a regulation that ensures an
equilibrium point of price levels, which is Pareto-optimal.
Based on our results in the Cournot stage, we describe
characteristics of the duopoly market and suggest the
regulator’s optimal actions (exacting taxes) corresponding
to user welfare and the regulator’s revenue. Although our
analytic results are derived under some assumptions for
mathematical tractability, it will provide good intuitionfor
understanding the price dynamics and imposing regulations
in the mobile communication service.
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la Théorie des Richesses.New York: Macmillan and Co., 1995.
Translated by N. T. Bacon; originally published in 1838.

[5] J. Bertrand, “Theorie mathematique de la richesse sociale,” Journal
des Savants, pp. 499-508, 1883.

[6] S. M. Yu and S.-L. Kim, “Price war in wireless access networks: A
regulation for convergence,”Proceedings of IEEE GLOBECOM, 2011.

[7] C.-H. Chiu, T.-M. Choi, and D. Li, “Price wall or war: The pricing
strategies for retailers,” IEEE Transactions on Systems, Man and
Cybernetics, Part A: Systems and Humans, vol. 39, no. 2, pp. 331-343,
2009.

[8] Y. Tan, S. Sengupta, and K. P. Subbalakshmi, “Competitive spectrum
trading in dynamic spectrum access markets: A price war,”Proceedings
of IEEE GLOBECOM, 2010.

[9] P. Maille and B. Tuffin, “Price war with partial spectrum sharing
for competitive wireless service providers,”Proceedings of IEEE
GLOBECOM, 2009.

[10] Z. Kong, B. Tuffin, Y.-K. Kwok, and J. Wang, “Analysis of duopoly
price competition between WLAN providers,”Proceedings of IEEE
ICC, 2009.

[11] H.-J. Kim, S.-K. Byun, and M.-C. Park “Mobile handset subsidy
policy in Korea: Historical analysis and evaluation,”Telecommunica-
tions Policy, vol. 28, no. 1, pp. 23-42, 2004.

[12] H. Gruber, “An investment view of mobile telecommunications in
the European Union,”Telecommunications Policy, vol. 23, no. 7, pp.
521-538, 1999.

[13] A. Odlyzko, “Paris metro pricing for the Internet,”Proceedings of
the ACM Conference on Electronic Commerce, pp. 140-147, 1999.

[14] N. Shetty, G. Schwartz, and J. Walrand, “Internet QoS and regula-
tions,” IEEE/ACM Transactions on Networking, vol. 18, no. 6, pp.
1725-1737, 2010.

[15] S. M. Yu and S.-L. Kim, “Guaranteeing user welfare in network
service: comparison of two subsidy schemes,”ACM SIGMETRICS
Performance Evaluation Review, vol. 40, no. 2, pp. 22-25, 2012.

[16] S. M. Yu and S.-L. Kim, “Optimization of spectrum allocation
and subsidization in mobile communication services,”submitted for
publication. Available: http://arxiv.org/abs/1304.5334.

[17] S. Y. Jung, S. M. Yu, and S.-L. Kim, “Utility-optimal partial
spectrum leasing for future wireless networks,”Proceedings of IEEE
VTC (Best Paper Award), 2013.

[18] S. Y. Jung, S. M. Yu, and S.-L. Kim, “Asymmetric-valued spectrum
auction and competition in wireless broadband services,”submitted for
publication. Available: http://arxiv.org/abs/1307.7838.

[19] D. M. Kreps and J. A. Scheinkman, “Quantity precommitment and
Bertrand competition yield Cournot outcomes,”The Bell Journal of
Economics, vol. 14, no. 2, pp. 326-337, 1983.

[20] R. Phillips, Pricing and Revenue Optimization.Stanford University
Press, 2005.

[21] R. Gibbens, R. Mason, and R. Steinberg, “Internet service classes
under competition,”IEEE Journal on Selected Areas in Communica-
tions, vol. 18, no. 12, pp. 2490-2498, 2000.
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