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Abstract—We investigate the spectral efficiency of full-duplex
small cell wireless systems, in which a full-duplex capablebase
station (BS) is designed to send/receive data to/from multiple half-
duplex users on the same system resources. The major hurdle for
designing such systems is due to the self-interference at the BS
and co-channel interference among users. Hence, we consider
a joint beamformer design to maximize the spectral efficiency
subject to certain power constraints. The design problem is
first formulated as a rank-constrained optimization one, and the
rank relaxation method is then applied. However the relaxed
problem is still nonconvex, and thus optimal solutions are hard
to find. Herein, we propose two provably convergent algorithms
to obtain suboptimal solutions. Based on the concept of the
Frank-Wolfe algorithm, we approximate the design problem by
a determinant maximization program in each iteration of the
first algorithm. The second method is built upon the sequential
parametric convex approximation method, which allows us to
transform the relaxed problem into a semidefinite program in
each iteration. Extensive numerical experiments under small cell
setups illustrate that the full-duplex system with the proposed
algorithms can achieve a large gain over the half-duplex one.

Index Terms—Full-duplex, self-interference, transmit beam-
forming, D.C. program, semidefinite programming.

I. I NTRODUCTION

The ever growing demand of high data rates and prolifera-
tion of a number of users for wireless services have asked for
modern communications technologies that exploit finite radio
resources more efficiently. Among those, the multiple-input
multiple-output (MIMO) communications technique [1] has
gradually become a core component to many wireless com-
munications standards such as LTE [2] and WiMAX [3]. In the
physical layer of wireless communications networks, MIMO
techniques are employed in both downlink and uplink trans-
missions. Due to practical limitations on hardware designs,
downlink and uplink channels are currently designed to operate
in one dimension (i.e., either in time or frequency domain).For
example, cellular networks with time division duplex allocate
the same frequency band, but different time slots, to downlink
and uplink channels. On the other hand, cellular networks
with frequency division duplex allow downlink and uplink
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transmissions to take place in the same time slot, but over
distinct frequencies. Consequently, the radio resources have
not been maximally used in existing wireless communications
systems.

Full-duplex transmissions have recently gained significant
attention owing to the potential to further improve or even
double the capacity of conventional half-duplex systems. The
benefits of full-duplex systems are of course brought by
allowing the downlink and uplink channels to function at
the same time and frequency [4]–[19]. Though the gains of
full-duplex systems can be easily foreseen, practical imple-
mentations of such full-duplex systems pose many challenges
and a lot of technical problems still need to be solved before
we can see the first trial deployment on a system level. The
crucial barrier in implementing full-duplex systems resides
in the self-interference (SI) from the transmit antennas to
receive antennas at a wireless transceiver. More explicitly, the
radiated power of the downlink channel interferes with its own
desired received signals in the uplink channel. Clearly, the
performance of full-duplex systems depends on the capability
of self-interference cancellation at the transceiver which is
limited in practice. In the past full-duplex transmission was
thought infeasible. This is because the self-interferencepower,
if not efficiently suppressed, significantly raises the noise floor
at receive antennas, exceeding a limited dynamic range of the
analog-to-digital converter (ADC) in the receiving device[7].

In recent years, many breakthroughs in hardware design for
self-interference cancellation techniques have been reported,
e.g., in [4]–[6], [17]. Especially, these studies demonstrate the
feasibility of full-duplex transmission for short to medium
range wireless communications. Since then, several studies
focusing on full-duplex communications have been carried
out in a variety of contexts such as point to point MIMO
[8], [11], [13], MIMO relay [10], [18], [19], cognitive radio
[12], and multiuser MIMO systems [9], [14]. With the aim
of accelerating full-duplex applications in practical wireless
systems, the full-duplex radios for local access (DUPLO)
project has been funded by the European community’s seventh
framework program [16]. As a first step, the first deliverableof
the DUPLO project has identified several potential deployment
scenarios that may benefit from full-duplex communications
[15]. Among others, small cell wireless communications sys-
tems are selected as one of the important research frameworks.
In fact, small cell systems are considered to be especially
suitable for deployment of full-duplex technology due to
low transmit powers, short transmission distances and low
mobility.
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What is missing in [15] is further studies that evaluate the
actual gain of the full-duplex transmission for some reference
systems. The goal of this paper is to fill this gap. Particularly,
we consider a scenario where a full-duplex capable base
station (BS) communicates with half-duplex users in both
directions at the same time slot over the same frequency band.
It is now well known that the optimal transmit strategy for
downlink channels is achieved by dirty paper coding [20], but
it requires high complexity to implement. Thus, we adopt a
linear beamforming technique for the downlink transmission
in this paper, which has been widely used in the literature, e.g.,
in [21]–[23]. For uplink channels, the optimal nonlinear mul-
tiuser detection scheme based on minimum mean square error
and successive interference cancellation (MMSE-SIC) [24]is
chosen in this paper. For the considered full-duplex system,
the problem of beamformer design becomes more challenging
since there still exists a small, but not negligible, amountof
the self-interference between the transmit and receive antennas
at the BS even after an advanced SI cancellation technique
is applied. We note also that the SI level increases with the
transmit power for any SI cancellation technique. Moreover,
the difficulty of the design problem is increased further by the
co-channel interference (CCI) caused by the users in the uplink
channel to those in the downlink channel.1 By this very nature,
a joint design of the downlink and uplink transmissions would
offer the best solution. One of the first attempts to investigate
the potential gain of full-duplex systems has been made in our
earlier work of [9], [14]. However the CCI is not taken into
account and several system parameters were ideally assumed
therein. These practical considerations are carefully examined
in this paper.

We are concerned with the problem of joint beamformer
design to maximize the spectral efficiency (SE) under some
power constraints. To this end, the total SE maximization
(SEMax) problem is first formulated as a rank-constrained
optimization problem for which it is difficult to find globally
optimal solutions in general. The standard method of rank
relaxation is then applied to arrive at a relaxed problem,
which is still nonconvex. After solving the relaxed problem,
the randomization technique presented in [25] is employed
to find the beamformers for the original design problem. We
note that the rank relaxation technique, commonly known as
semidefinite relaxation (SDR) method under various contexts,
is widely used to solve the problem of linear precoder design
in MIMO downlink channels, e.g., in [22], [25]–[29]. Very
often, the relaxed problems in those cases are convex and
general convex program solvers can be called upon to find the
solutions. Moreover, in some special cases, the rank relaxation
is proved to be tight [21], [27], [29]. The same property
unfortunately does not carry over into our case.

To tackle the nonconvexity of the relaxed problem, we
propose two iterative local optimization algorithms. The first
proposed algorithm is a direct result of exploiting the ‘differ-
ence of convex’ (D.C) structure of the relaxed problem. To be
specific, based on the idea of the Frank-Wolfe (FW) algorithm

1Through out the paper, the co-channel interference refers to the interfer-
ence that users in the uplink cause for those in the downlink channel, not the
mutual interference among users in the downlink channel.

[30], we arrive at a determinant maximization (MAXDET)
program at each iteration. The second design approach in-
volves some transformations before invoking the frameworkof
sequential parametric convex approximation (SPCA) method
[31], which has proven to be an effective tool for numerical
solutions of nonconvex optimization problems [23], [31], [32].
In particular, we are able to approximate the relaxed problem
as a semidefinite program (SDP) at each iteration in the second
iterative algorithm. While the first design algorithm sticks
to MAXDET problem solvers, the second one offers more
flexibility in choosing optimization software and can take
advantage of many state-of-the-art SDP solvers. Additionally,
since there is no (even rough) way to estimate beforehand
which algorithm is better than the other for a given set
of channel realizations, the two iterative algorithms can be
implemented in a concurrent manner and a solution is obtained
when one of them terminates. Alternatively, we run the two
algorithms in parallel until they converge, and then select
the better solution. The numerical results on the SE and
computational complexity of the two methods are given in
Section IV.

Full-duplex transmission, if successfully implemented, is
clearly expected to improve the spectral efficiency of wire-
less communications systems. However, a quantitative answer
on the potential gains for some particular scenarios is still
missing. For this purpose, the proposed algorithms are used
to evaluate the performance of the full-duplex system of
consideration under the 3GPP LTE specifications for a small
cell system. The numerical experiments demonstrate that small
cell full-duplex transmissions are superior to the conventional
half-duplex one as long as the self-interference power is
efficiently canceled.

The rest of the paper is organized as follows. The full-
duplex system model and problem formulation are presented
in Section II. In Section III, we describe the proposed iterative
beamformer designs. The SE performance of the considered
full-duplex transmission is numerically compared to the con-
ventional half-duplex one in Section IV. Finally, the paper
concludes with future work in Section V.

Notation: We use standard notations in this paper. Namely,
bold lower and upper case letters represent vectors and ma-
trices, respectively;HH andHT are Hermitian and standard
transpose ofH, respectively;Tr(H) and |H| are the trace
and determinant ofH, respectively;H � 0 means thatH is a
positive semidefinite matrix;rank(H) is rank ofH; ∇X f(X)
is the gradient off(X); E(·) denotes the expectation operator.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a small cell full-duplex wireless communica-
tions system in which a full-duplex capable BS is designed
to communicate withKD single-antenna users in the downlink
channel andKU single-antenna users in the uplink channel at
the same time over the same frequency band, as depicted in
Fig. 1. Throughout the paper, the notationsDi and Uj refer
to the ith andjth user in the downlink and uplink channels,
respectively. The total number of antennas at the full-duplex
BS isN = NT +NR, of whichNT transmit antennas are used
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Fig. 1. A small cell full-duplex wireless communications system. The number
of transmit and receive antennas at the BS isNT andNR, respectively. Linear
beamforming is adopted for the downlink channel, while MMSE-SIC for the
uplink channel. In the figure, SI and CCI mean self-interference and co-
channel interference, respectively.

for data transmissions in the downlink channel andNR receive
antennas are dedicated to receiving data in the uplink channel.
We further assume that the channels are flat fading and channel
state information (CSI) is perfectly known at both the BS and
users.

First, in the downlink channel, letsDi be the transmitted
data symbol forDi, which is normalized toE(

∣
∣sDi

∣
∣
2
) = 1.

For linear beamforming, the data symbolsDi is multiplied by
the beamforming vectorwDi

∈ CNT×1 before transmission,
and the received signal of userDi is given by

yDi = hH
Di
wDi

sDi +

KD∑

k 6=i

hH
Di
wDk

sDk

︸ ︷︷ ︸

MUI

+

KU∑

j=1

gjisUj

︸ ︷︷ ︸

CCI

+nDi (1)

wherehDi
is the NT × 1 complex channel vector from the

BS to userDi, gji is the complex channel coefficient fromUj
to Di, sUj is the data symbol transmitted byUj in the uplink
direction, andnDi ∼ CN (0, σ2

n) is background noise assumed
to be additive white Gaussian (AWGN). In (1), the first and
second summations represent multiuser interference (MUI)in
the downlink channel and co-channel interference (CCI) from
the uplink to the downlink channels, respectively. The received
signal to interference plus noise ratio (SINR) of userDi can
be written as

γDi =

∣
∣hH

Di
wDi

∣
∣
2

σ2
n +

∑KD

k 6=i

∣
∣hH

Di
wDk

∣
∣
2
+

∑KU

j=1 qUj
∣
∣gji

∣
∣
2

=
hH
Di
QDi

hDi

σ2
n +

∑KD

k 6=i h
H
Di
QDk

hDi
+
∑KU

j=1 qUj
∣
∣gji

∣
∣
2

(2)

where E(|sUj |2) = qUj , j = 1, ...,KU, is power loading
for user Uj in the uplink direction;QDi

= wDi
wH

Di
, and

rank(QDi
) = 1. Then, spectral efficiency in the downlink

direction is given by2

RD =

KD∑

i=1

log(1 + γDi) (3a)

=

KD∑

i=1

log










σ2
n +

KD∑

k=1

hH
Di
QDk

hDi
+

KU∑

j=1

qUj
∣
∣gji

∣
∣
2

σ2
n +

KD∑

k 6=i

hH
Di
QDk

hDi
+

KU∑

j=1

qUj
∣
∣gji

∣
∣
2










. (3b)

Next, for the uplink transmission, we can express the
received signal vector at the full-duplex BS as

yU =

KU∑

j=1

hUj
sUj +

KD∑

i=1

HSIwDi
sDi

︸ ︷︷ ︸

self-interference

+nU (4)

wherehUj
∈ CNR×1 is the complex channel vector from the

BS to Uj andnU ∼ CN (0, σ2
nINR

). The matrixHSI is called
the self-interference channel from the transmit antennas to the
receive antennas at the full-duplex BS, in which the values of
its entries are determined by the capability of the advanced
SI cancellation techniques. In this case, by treating the self-
interference as background noise and applying the MMSE-SIC
decoder, we can write the received SINR ofUj as [24]

γUj = qUjh
H
Uj

(

σ2
nI+

KU∑

m>j

qUmhUm
hH
Um

+

KD∑

i=1

HSIQDi
HH

SI

)−1

hUj

(5)
where we have assumed a decoding order from1 to KU.
Consequently, the achievable SE of the uplink channel is given
by [24]

RU =

KU∑

j=1

log(1 + γUj ) (6a)

=

KU∑

j=1

log
(

1 + qUjh
H
Uj

(

σ2
nI+

KU∑

m>j

qUmhUm
hH
Um

+

KD∑

i=1

HSIQDi
HH

SI

)−1

hUj

)

(6b)

= log

∣
∣
∣σ2
nI+

KD∑

i=1

HSIQDi
HH

SI
+

KU∑

j=1

qUjhUj
hH
Uj

∣
∣
∣

∣
∣
∣σ2
nI+

KD∑

i=1

HSIQDi
HH

SI

∣
∣
∣

. (6c)

From (1) and (4), we observe that the downlink and uplink
transmissions are coupled by the CCI and self-interference.
This problem greatly impacts the performance of the system
of interest. Herein, our main purpose is to jointly design
beamformers so that the total system spectral efficiency is
maximized under the sum transmit power constraint in the
downlink channel and per-user power constraints in the uplink

2We use natural logarithm for the sake of mathematical convenience.
However, the SE is calculated with logarithm to base2 in the numerical
result section.
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one. Specifically, the total SEMax problem is formulated as a
rank-constrained optimization one as

maximize
{QDi

},{qUj }
RD +RU (7a)

subject to 0 ≤ qUj ≤ q
Uj
, ∀j = 1, . . . ,KU, (7b)

KD∑

i=1

Tr(QDi
) ≤ PBS, (7c)

QDi
� 0, ∀i = 1, . . . ,KD, (7d)

rank(QDi
) = 1, ∀i = 1, . . . ,KD (7e)

wherePBS is the maximum power at the BS andq
Uj

is the
power constraint at each user in the uplink channel. Clearly,
problem (7) is a nonconvex program, which is difficult to solve
optimally in general. We also note that a simplified problem
of (7), in which qUj and RU are omitted (i.e., the SEMax
problem for the downlink channel itself), was proved to be NP-
hard [33]. Thus, we conjecture that the NP-hardness is carried
over into our problem. Towards a tractable solution, we first
apply the relaxation method to obtain a relaxed problem of (7)
by dropping the rank-1 constraints (7e). Then, two efficient
iterative algorithms proposed to solve the resulting problem
are presented in the next section.

III. PROPOSEDBEAMFORMER DESIGNS

Note that the relaxed problem of (7) after dropping the
rank constraints is still nonconvex. Thus, computing its glob-
ally optimal solution is difficult and very computationally
expensive in general. To the best of our knowledge, finding
an optimal solution to the nonconvex problems similar to
(7) is still an open problem. In this section, we present
two reformulations of the relaxed problem, based on which
two iterative algorithms of different level of complexity are
developed.

A. Iterative MAXDET-based Algorithm

The first beamforming algorithm is built upon an observa-
tion that the SE of the system at hand is a difference of two
concave functions. Indeed, from (3b) and (6c), we can write
RD +RU = h(Q,q)− g(Q,q), where

h(Q,q) , log
∣
∣
∣σ2
nI+

KD∑

i=1

HSIQDi
HH

SI
+

KU∑

j=1

qUjhUj
hH
Uj

∣
∣
∣

+

KD∑

i=1

log
(

σ2
n +

KD∑

k=1

hH
Di
QDk

hDi
+

KU∑

j=1

qUj |gji|2
)

, (8)

g(Q,q) ,

KD∑

i=1

log
(

σ2
n +

KD∑

k 6=i

hH
Di
QDk

hDi
+

KU∑

j=1

qUj |gji|2
)

+ log
∣
∣
∣σ2
nI+

KD∑

i=1

HSIQDi
HH

SI

∣
∣
∣ (9)

andQ andq are the symbolic notations that denote the set
of design variables{QDi

} and {qUj}, respectively. It should
be noted that the functionsh(Q,q) and g(Q,q) are jointly

concave with respect toQ andq [34]. Borrowing the concept
of the FW method which considers a linear approximation
of the objective function and searches for a direction that
improves the objective, we now present the first joint design
algorithm to find Q and q. First, the relaxed problem is
reformulated as

maximize
Q,q

h(Q,q)− g(Q,q)

subject to (7b), (7c), (7d).
(10)

Since the constraints (7b)-(7d) are convex, the difficulty in
solving (10) lies in the component−g(Q,q). Suppose the
value of (Q,q) at iterationn is denoted by(Q(n),q(n)). To
increase the objective in the next iteration we replaceg(Q,q)
by its affine majorization at a neighborhood of(Q(n),q(n)).
Sinceg(Q,q) is concave and differentiable on the considered
domain{QDi

, qUj : QDi
� 0, qUj ≥ 0}, one can easily find an

affine majorization as a first order approximation as [34]

g(n)(Q,q) = g(Q(n),q(n)) +

KD∑

i=1

KD∑

k=1,k 6=i

[(
ϑ
(n)
Di

)−1
hH
Di

(
QDk

−Q
(n)
Dk

)
hDi

]

+

KD∑

i=1

KU∑

j=1

(
ϑ
(n)
Di

)−1|gji|2
(
qUj − q

(n)
Uj

)

+

KD∑

i=1

Tr
[

HH
SI

(
Θ(n)

)−1
HSI

(
QDi

−Q
(n)
Di

)]

(11)

whereϑ(n)
Di

andΘ(n) are defined as

ϑ
(n)
Di

= σ2
n +

KD∑

m 6=i

hH
Di
Q

(n)
Dm

hDi
+

KU∑

l=1

q
(n)
Ul

|gli|2, (12)

Θ(n) = σ2
nI+

KD∑

j=1

HSIQ
(n)
Dj

HH
SI
. (13)

To derive (11), we have used the fact∇X log |I+AXAH | =
AH(I +AXAH)−1A, ∇x log(1 + ax) = a(1 + ax)−1, the
inner product of two semidefinite matricesX � 0 andY � 0

is Tr(XY), and the inner product of two vector isxHy [35].
Now, we approximate problem (10) at iterationn + 1 by a
convex program given by

maximize
Q,q

h(Q,q)− g(n)(Q,q)

subject to (7b), (7c), (7d).
(14)

The objective in (14) is in fact a lower bound of the SE
of the full-duplex system. We note that problem (14) is a
MAXDET program, and hence the name of the first algorithm.
Let (Q⋆,q⋆) be the optimal value of(Q,q) in (14). Then we
update(Q(n+1),q(n+1)) := (Q⋆,q⋆). In this way, the design
variables are iteratively updated and the lower bound of the
SE increases after every iteration. Since the SE is bounded
above due to the power constraints (7b) and (7c), the iterative
procedure is guaranteed to converge. The iterative MAXDET-
based algorithm is outlined in Algorithm 1. The convergence
properties of Algorithm 1 are stated in Theorem 1.

An important point to note here is that the iterative proce-
dure in Algorithm 1 possibly returns a locally optimal solution
to a relaxed problem of (7) at convergence. Obviously, if
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Algorithm 1 Iterative MAXDET-based algorithm.
Initialization:

1: Generate initial values forQ(0)
Di

for i = 1, 2, . . . ,KD and
q
(0)
Uj

for i = 1, 2, . . . ,KU.
2: Setn := 0.

Iterative procedure:
3: repeat
4: Solve (14) and denote the optimal solutions as(Q⋆,q⋆).

5: Update:Q(n+1)
Di

:= Q⋆
Di

; andq(n+1)
Uj

:= q⋆
Uj

.
6: Setn := n+ 1.
7: until Convergence.

Finalization:
8: Perform randomization to extract a rank-1 solution if

required.

rank(Q⋆
Di
) = 1, then Q⋆

Di
is also feasible to (7) and the

beamformer forDi can be immediately recovered from the
eigenvalue decomposition ofQ⋆

Di
[34] . However, this may not

be the case since the rank-1 constraints are dropped. Thus, a
method to extract the beamformer is required if a high-rank
solution is obtained. For this purpose, we adopt the random-
ization technique presented in [25] which is mentioned in line
8 of Algorithm 1 and briefly described as follows. We first
generate a random (column) vectorvDi

whose elements are
independently and uniformly distributed on the unit circlein
the complex plane, and then calculate the eigen-decomposition
of Q⋆

Di
asQ⋆

Di
= UDi

ΣDi
UH

Di
. Next a beamformer is taken as

w̃Di
= UDi

Σ
1/2
Di
vDi

, which is feasible to the original design
problem since||w̃Di

||22 = Tr(UDi
Σ

1/2
Di
vDi

vH
Di
Σ

1/2
Di

UH
Di
) =

Tr(Q⋆
Di
) [25]. The obtained beamformer̃wDi

is then used to
compute the resulting sum rate. We repeat this process for a
number of randomization samples and pick up the one that
offers the best sum rate. Our numerical results have shown
that the high-rank solutions of{QDi

} only occur whenσ2
SI

is
sufficiently large, which is not of practical importance since
this is not the interesting case for the full-duplex systems.
When rank(QDi

) > 1, we also obverse that the largest
eigenvalue significantly dominates the remaining ones. More
explicitly, the largest eigenvalue is always10 times larger then
the second largest one, meaning thatQDi

is not far from a rank-
1 matrix. This explains the fact that the beamforming vectors
returned by the randomization method offer a performance
very close to that of the relaxed problem. Explicitly, the
extracted solutions achieve a spectral efficiency performance
always higher than95% of the upper bound given by the
relaxed problem.

Although the objective in (14) is not a linear function
with respect to the design parameters as in the original
work of [30], (14) can be equivalently transformed into the
problem of maximizing an affine function over a convex set
as max

ω,Q,q
{ω − g(n)(Q,q)|h(Q,q) ≥ ω, (7b), (7c), (7d)}. Thus,

Algorithm 1 can be considered as a variant of the FW method.
It has been reported in many studies that the type of FW
methods can efficiently exploit the hidden convexity of the
problem [32], [36], [37]. Thus, the same results as the FW-

type method can also be expected in the first proposed design
algorithm. However, solvers for MAXDET programs are quite
limited, compared to their counterparts for SDPs.3 Because
none of the general convex program solvers are perfect for
all problems, a more flexible choice of a problem solver is of
practical importance.

B. Iterative SDP-based algorithm

Motivated by the discussion above, we propose in this
subsection an iterative SDP-based algorithm to solve the
relaxed problem of (7). Specifically, based on the general
framework of the SPCA method and proper transformations,
we can iteratively approximate the relaxed problem of (7) by
an SDP in each iteration. The second approach allows us to
take advantage of a wide class of SDP solvers which are more
and more efficient due to continuing progress in semidefinite
programming. To begin with, due to the monotonicity of the
log function, we first reformulate the relaxed problem of (7)
as

maximize
{QDi

},{qUj }

∏KD

i=1(1 + γDi)
∏KU

j=1(1 + γUj )

subject to (7b), (7c), (7d)
(15)

which then can be rewritten as

maximize
{QDi

},{qUj },{tDi},{tUj }

KD∏

i=1

tDi

KU∏

j=1

tUj (16a)

subject to 1 + γDi ≥ tDi , i = 1, . . . ,KD, (16b)

1 + γUj ≥ tUj , j = 1, . . . ,KU, (16c)

tDi ≥ 1, ∀i; tUj ≥ 1, ∀j, (16d)

(7b), (7c), (7d) (16e)

by using the epigraph form of (15) [34]. Note that maximizing
a product of variables admits an SOC representation [23], [40].
Thus, we only need to deal with the nonconvex constraints in
(16b) and (16c). Let us treat the constraint (16b) first. It is
without loss of optimality to replace (16b) by following two
constraints

σ2
n +

KD∑

k=1

hH
Di
QDk

hDi
+

KU∑

j=1

qUj |gji|2 ≥ tDiβDi , (17a)

σ2
n +

KD∑

k 6=i

hH
Di
QDk

hDi
+

KU∑

j=1

qUj |gji|2 ≤ βDi (17b)

whereβDi is newly introduced variable and can be considered
as the soft interference threshold ofDi. The equivalence
between (16b) and the two inequalities in (17a) and (17b)
follows the same arguments as in [23] which can be justified
as follows. At optimum, suppose the constraint in (17b) holds
with inequality, i.e.,σ2

n+
∑KD

k 6=i h
H
Di
QDk

hDi
+
∑KU

j=1 qUj |gji|2 <
βDi . Then, we form a new pair(β̄Di , t̄Di) as β̄Di , βDi/c
and t̄Di , ctDi where c is a positive constant. Obviously,
there exists a givenc > 1 such that (17b) is still met

3The dedicated solver for the MAXDET problem in (14) is SDPT3 [38]. In
fact, CVX solves this type of problems using a succesive convex approximate
method, allowing us to choose other SDP solvers, e.g., [39].However, this
method can be slow and is still in an experimental stage.
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whenβDi is replaced byβ̄Di . Since β̄Di t̄Di = βDitDi , i.e., the
right side of (17a) remains the same, the constraint in (17a)
is still satisfied. However, sincētDi > tDi with c > 1, a
strictly higher objective of the design problem is obtained.
This contradicts with assumption that we already obtained the
optimal objective. Likewise, we can decompose (16c) into

x2
Uj
hH
Uj
X−1

Uj
hUj

≥ tUj − 1, (18a)

qUj ≥ x2
Uj

(18b)

whereXUj
, σ2

nI+
∑KU

m>j qUmhUm
hH
Um

+
∑KD

i=1 HSIQDi
HH

SI

andxUj is an auxiliary variable. The purpose of introducing
slack variablexUj will be clear shortly when we show that
it is necessary to arrive at an SDP formulation. Now, we can
equivalently transform (16) into a more tractable form as

maximize
Q,q,tD,tU,

βD,xU

KD∏

i=1

tDi

KU∏

j=1

tUj (19a)

subject to σ2
n +

KD∑

k=1

hH
Di
QDk

hDi
+

KU∑

j=1

qUj
∣
∣gji

∣
∣
2

≥ f(tDi , βDi), ∀i = 1, . . . ,KD, (19b)

σ2
n +

KD∑

k 6=i

hH
Di
QDk

hDi
+

KU∑

j=1

qUj
∣
∣gji

∣
∣
2

≤ βDi , ∀i = 1, . . . ,KD, (19c)

g(x2
Uj
,Q,q) ≥ tUj − 1, ∀j = 1, . . . ,KU, (19d)

qUj ≥ x2
Uj
, ∀j = 1, . . . ,KU, (19e)

(7b), (7c), (7d), (16d) (19f)

where f(tDi , βDi) , tDiβDi , g(x
2
Uj
,Q,q) , x2

Uj
hH
Uj
X−1

Uj
hUj

,
andQ, q, tD, tU, βD, xU are the symbolic notations that denote
the sets of optimization variables{QDi

}, {qUj}, {tDi},{tUj},
{βDi}, {xUj}, respectively.

We note that the constraints in (19c) and (19e) are linear
and SOC ones, respectively. Consequently, the barrier to
solving (19) is due to the nonconvexity in (19b) and (19d). In
what follows, we will present a low-complexity approach that
locally solves (19). Toward this end we resort to an iterative
algorithm based on SPCA. To show this, let us tackle the
nonconvex constraint (19b) first. Note thatf(tDi , βDi) is neither
a convex nor concave function oftDi andβDi . Fortunately, in
the spirit of [23], [31], we recall the following inequality

f(tDi , βDi) ≤ F (tDi , βDi , ψ
(n)
Di

) =
1

2ψ
(n)
Di

t2
Di
+
ψ
(n)
Di

2
β2
Di

(20)

which holds for everyψ(n)
Di

> 0. The right side of (20) is called
a convex upper estimate off(tDi , βDi). The approximation
shown in (20) deserves some comments. First, it is straight-
forward to note thatf(tDi , βDi) = F (tDi , βDi , ψ

(n)
Di

) when
ψ
(n)
Di

= tDi/βDi .
4 Moreover, with this selection ofψ(n)

Di
, one

can easily check that the first derivative ofF (tDi , βDi , ψ
(n)
Di

)
with respect totDi or βDi is equal to that off(tDi , βDi), i.e.,

4Since tDi ≥ 1 and βDi ≥ σ2n > 0 (from (17b)) and both of them are
bounded above (i.e.,tDi < +∞ andβDi < +∞) due to the transmit power
constraint at the BS, the value ofψ(n)

Di
is well defined.

Algorithm 2 Iterative SDP-based algorithm.
Initialization:

1: Generate initial points forψ(0)
Di

and Q
(0)
Di

for i =

1, . . . ,KD; andq(0)
Uj

andx(0)
Uj

for j = 1, . . . ,KU.
2: Setn := 0.

Iterative procedure:
3: repeat
4: Solve (24) to find optimal solutionsQ⋆

Di
, t⋆

Di
, andβ⋆

Di

for i = 1, . . . ,KD, andq⋆
Uj

, andx⋆
Uj

for j = 1, . . . ,KU.

5: Setn := n+ 1.
6: Update :ψ(n)

Di
:= t⋆

Di
/β⋆

Di
; x(n)

Uj
:= x⋆

Uj
; Q(n)

Di
:= Q⋆

Di
;

q
(n)
Uj

:= q⋆
Uj

.
7: until Convergence.

Finalization:
8: Perform randomization to extract a rank-1 solution as in

Algorithm 1.

∇F (tDi , βDi , ψ(n)
Di

) = ∇f(tDi , βDi). These two properties are
important to establish the local convergence of the second
iterative algorithm which is deferred to the Appendix.

Now we turn our attention to (19d), which is equivalent to
tUj − 1 − g(x2

Uj
,Q,q) ≤ 0. First, we note thatg(x2

Uj
,Q,q)

is jointly convex in the involved variables. As proof, consider
the epigraph ofg(x2

Uj
,Q,q) which is given by [34]

{(
α, x2

Uj
,Q,q

)
|α ≥ x2

Uj
hH
Uj
X−1

Uj
hUj

}
. (21)

By Schur complement [35], (21) is equivalent to

[
α xUjh

H
Uj

xUjhUj
XUj

]

=






α xUjh
H
Uj

xUjhUj
σ2
nI+

KU∑

m>j

qUmhUm
hH
Um

+

KD∑

i=1

HSIQDi
HH

SI




 � 0.

(22)

Since the epigraph ofg(x2
Uj
,Q,q) is representable by linear

matrix inequality which is a convex set, so isg(x2
Uj
,Q,q)

[34]. Now a convex upper bound of the term−g(x2
Uj
,Q,q)

in (19d) can be found as its first order approximation at a
neighborhood of(x(n)

Uj
,Q(n),q(n)), i.e.,

− g(x2
Uj
,Q,q) ≤ G

(

xUj ,Q,q, x
(n)
Uj
,Q(n),q(n)

)

= −
{

g(x
(n)
Uj
,Q(n),q(n))+2x

(n)
Uj

hH
Uj
(X

(n)
Uj

)−1hUj

(
xUj−x(n)Uj

)

−Tr
[(

(x
(n)
Uj

)2
(
X

(n)
Uj

)−1
hUj

hH
Uj

(
X

(n)
Uj

)−1
)(

XUj
−X

(n)
Uj

)]}

(23)

where XUj
is replaced by the affine function ofQ and

q defined below (18) and we have used the fact that
∇A aHA−1b = −A−1abHA−1 for A � 0 [35].

The mathematical discussions above imply that the convex
approximate problem at iterationn+1 of the second iterative
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design approach is the following

maximize
Q,q,tD,tU,

βD,xU

KD∏

i=1

tDi

KU∏

j=1

tUj (24a)

subject to F (tDi , βDi , ψ
(n)
Di

) ≤ σ2
n +

KD∑

k=1

hH
Di
QDk

hDi

+

KU∑

j=1

qUj
∣
∣gji

∣
∣
2
, ∀i = 1, . . . ,KD, (24b)

G
(
xUj ,Q,q, x

(n)
Uj
,Q(n),q(n)

)

≤ 1− tUj , ∀j = 1, . . . ,KU, (24c)

σ2
n +

KD∑

k 6=i

hH
Di
QDk

hDi

+

KU∑

j=1

qUj
∣
∣gji

∣
∣
2 ≤ βDi , ∀i = 1, . . . ,KD, (24d)

qUj ≥ x2
Uj
, ∀j = 1, . . . ,KU, (24e)

0 ≤ qUj ≤ q
Uj
, ∀j = 1, . . . ,KU, (24f)

KD∑

i=1

Tr(QDi
) ≤ PBS, (24g)

QDi
� 0, ∀i = 1, . . . ,KD, (24h)

tDi ≥ 1, ∀i = 1, . . . ,KD; tUj ≥ 1, ∀j = 1, . . . ,KU. (24i)

After the iterative procedure terminates, the randomization
trick may be applied to extract a rank-1 solution as in
Algorithm 1. The proposed iterative SDP-based algorithm is
summarized in Algorithm 2.

The convergence results of Algorithms 1 and 2 are stated in
the following theorem whose proof is given in the Appendix.

Theorem 1. Algorithms 1 and 2 produce a sequence of solu-
tions converging to a KKT point of(10) and (16), respectively.

As mentioned in [31], the SPCA method can start with an
infeasible initial point. However, it is desired to generate initial
values forQ(0)

Di
, q(0)

Uj
, ψ(0)

Di
andx(0)

Uj
such that Algorithm 2 is

guaranteed to be solvable in the first iteration. For this purpose,
we first randomly generateQ(0)

Di
� 0 for i = 1, . . . ,KD and

q
(0)
Uj

in the range from0 to q
Uj

for j = 1, . . . ,KU. If necessary,

Q
(0)
Di

is scaled so that the constraint (24g) is satisfied. Then,

x
(0)
Uj

is calculated asx(0)
Uj

=
√

q
(0)
Uj

andψ(0)
Di

is set tot(0)
Di
/β

(0)
Di

where t(0)
Di

and β(0)
Di

are computed from (16b) and (24d) by
setting the inequalities to equalities, respectively.

At the first look, the SDP solved at each iteration in
Algorithm 2 has more optimization variables due to some
slack variables introduced. Thus, the theoretical (worst case)
computational complexity of Algorithm 2 could possibly be
higher than that of Algorithm 1. We note that the complexity of
the two proposed methods mainly depends on the semidefinite
constraintsQDi

� 0, ∀i = 1, . . . ,KD. That is to say, the
per iteration complexity formulation used in Algorithm 2
just slightly requires higher complexity than Algorithm 1.
As aforementioned, the advantage of the second proposed
algorithm is that it allows us to make use of efficient SDP

solvers such as SEDUMI and MOSEK. Alternatively, we can
use both proposed two approaches in parallel for solving the
original problem. The solving process can be terminated if one
of the algorithms has converged. It is also possible to solve
the problem until both methods converge and choose the better
solution. More insights on the computational complexity ofthe
iterative MAXDET- and SDP- based algorithms are given in
Section IV.

In closing this section two remarks are in order. First, the
proposed algorithms are also valid for macro cell full-duplex
systems (if practically implementable). Our emphasis on small
cell setups is merely due to current practical limitations.Sec-
ond, the mathematical presentation can be slightly modifiedto
arrive at a centralized joint beamformer design for a multicell
deployment scenario. Specifically, if all the CSI can be timely
forwarded to the centralized processing unit, a joint design
is straightforward. Obviously, distributed solutions aremore
interesting from a practical perspective and will be explored
in the follow-up work.

IV. N UMERICAL RESULTS

A. Convergence and Complexity Comparison

In the first experiment we compare the complexity and
the convergence rate of Algorithms 1 and 2 proposed in
Section III for two cases, the first case for independent and
identically distributed (i.i.d) channel model and the second
case for realistic channel model generated in Section IV-B.
In the first case, each entry of the channel vectorshDi

, hUi
,

andgji follows the i.i.d zero mean and unit variance Gaussian
distribution. The noise power is taken asσ2

n = 1 and the
maximum transmit power at the BS and uplink users are set
to PBS = qUj = 20 dBW for all Uj . This setting resembles
the case where the average signal to noise ratio (SNR) at
transmitter sides is20 dB. In the second case, the specific
parameters are taken from Table II and the allowable transmit
power at the BS and the users in the uplink channel are fixed
at PBS = qUj = 10 dBm.

An accurate model for the self-interference channel plays
an important role in evaluating the SE performance of full-
duplex systems. Thus, theoretical studies and practical mea-
surements on this issue are of significant importance and call
for more research efforts. A pioneer practical experiment on
self-interference channel model has been carried out in [7].
The main conclusion of [7] is that the Rician probability
distribution with a small Rician factor should be used to
characterize the residual self-interference channel after self-
interference cancellation mechanisms. Hence, in this paper,

HSI is generated asCNNRNT

(√
σ2
SI
K

1+K H̄SI,
σ2
SI

1+K INR
⊗ INT

)

,
where ⊗ denotes the Kronecker product,K is the Rician
factor, H̄SI is a deterministic matrix, andσ2

SI
is introduced

to parameterize the capability of a certain self-interference
cancellation design.5 In this model,σ2

SI
is the ratio of the av-

erage self-interference power before and after the cancellation
process and its value is fixed at−30 dB for the first case and
−100 dB for the second case in this numerical simulation.

5Without loss of generality, we setK = 1 andH̄SI to be the matrix of all
ones for all experiments.
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Fig. 2 illustrates the convergence rate of Algorithms 1 and 2
for a given set of channel realizations generated randomly for
the two cases. Each point on the curves of Fig. 2 is obtained by
solving problems (14) and (24), respectively. The simulation
settings are included in the figure caption for ease of reference.
Generally, we have observed that Algorithm 1 requires fewer
iterations to converge than Algorithm 2. This observation is
probably attributed to the fact that Algorithm 1 exploits the
hidden convexity better since it searches for an improved
solution over the whole feasible set in each iteration. We recall
that SDPT3 is the dedicated solver for the type of problems in
(14), and thus the choice of optimization software is limited for
Algorithm 1. A recent work of [41] has reported that, among
common general SDP solvers, SDPT3 is comparatively slow.
The SDP formulation in Algorithm 2 allows for use of faster
SDP solvers such as SeDuMi or MOSEK. In return, the total
time of Algorithm 2 to find a solution may be less than that
of Algorithm 1 which is illustrated in Table I.

In Table I, we show the average run time (in seconds) of
Algorithms 1 and 2 for the two channel models mentioned
above. The stopping criterion for the two algorithms is when
the increase in the last10 iterations is less than10−5. All
convex solvers considered in Table I are set to their default
values. We observe that the per iteration solving time of Algo-
rithm 2 is much less than that of Algorithm 1. Consequently,
the total solving time of Algorithm 2 is smaller than that of
Algorithm 1, especially when used with MOSEK solver.

B. Spectral Efficiency Performance

We now evaluate the performance of the full-duplex system
for more realistic models. Particularly, we compare the achiev-
able spectral efficiency of the proposed beamformer designs
for the full-duplex system introduced in Section II with that of
a traditional half-duplex scheme having the relevant hardware
configurations. In fact, as mentioned earlier, the application
with the most potential for full-duplex technology in cellular
systems is in small cells. To quantify the potential benefit
of the full-duplex transmission considered in this paper, we
evaluate the performance of the proposed algorithms under
the 3GPP LTE specifications for small cell deployments. The
general simulation parameters are taken from [2], [42] and
listed in Table II. Without loss of generality, per-user power
constraints of users in the uplink transmission are assumed
to be equal, i.e.,q

Uj
= q. In particular, we consider two

different settings of the transmit power constraints in both
directions: (i) (PBS, q) = (26 dBm, 23 dBm) following
the LTE 3GPP pico cell standard for outdoor [2] and (ii)
(PBS, q) = (10 dBm, 10 dBm) according to the work of [7].
The number of antennas at the BS is set to6, of which 4
are used for transmitting and2 for receiving, i.e.,NT = 4 and
NR = 2, respectively. All users in both directions are randomly
dropped in a circle area of a radiusr = 100 m, centered at
the full-duplex capable BS in an outdoor small cell scenario.

The channel vector from the BS toDi is given byhDi
=√

κDih̃Di
where h̃Di

follows CN (0, I) that denotes the small
scale fading, andκDi = 10(−PLLOS/10) represents the path loss,
where PLLOS is calculated from a specific path loss model as

2 4 6 8

29

29.1

29.2

Iteration index

To
ta

l
sp

ec
tr

al
ef

fic
ie

nc
y

(b
its

/s
/H

z)

Iterative MAXDET-based Algorithm
Iterative SDP-based algorithm

(a) Convergence rate for i.i.d channel realizations withKD = KU = 4 and
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(b) Convergence rate for channel realizations taken from the channel model
in Section IV-B. In this setup,NT = 4, NR = 2, KD = 6, andKU = 4.

Fig. 2. Convergence rate of Algorithms 1 and 2 for a set of random channel
realizations.

TABLE II
SIMULATION PARAMETERS

Carrier frequency 2GHz
System bandwidth 10MHz
Thermal noise −174 dBm/Hz
Receiver noise figure (at downlink users) 9 dB
Receiver noise figure (at BS) 5 dB
Maximum transmit power at BS (PBS) 10 or 26 dBm
Maximum transmit power per user (q̄) 10 or 23 dBm
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(a) Location of users of the simula-
tion setup considered in Figs. 4 and
5
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(b) Location of users of the simu-
lation setup considered in Fig. 7

Fig. 3. Location of users for the two specific simulation settings considered
in the numerical results section.
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TABLE I
AVERAGE RUN TIME (IN SECONDS) FOR I.I .D AND REALISTIC CHANNEL MODELS FOR VARIOUS SIMULATION SETUPS. THE PROPOSED ALGORITHMS

TERMINATE IF THE GAP OF THE OBJECTIVES BETWEEN THE LAST10 ITERATIONS IS LESS THANǫ ≤ 10−5 .

NT 2 4 6 8 10 12

NR = 2
KD = 2
KU = 2

i.i.d channel model
Algorithm 1 (SDPT3) 2.61 3.74 5.61 9.46 15.14 17.92
Algorithm 2 (SeDuMi) 1.43 2.63 3.77 6.66 11.54 14.69
Algorithm 2 (MOSEK) 0.089 0.26 0.45 1.09 2.68 3.38

realistic channel model
(given in Sec. IV-B)

Algorithm 1 (SDPT3) 4.17 6.28 9.29 15.04 23.76 28.51
Algorithm 2 (SeDuMi) 2.36 4.13 6.11 10.50 17.64 22.93
Algorithm 2 (MOSEK) 0.21 0.61 1.01 2.47 5.09 6.66

KD 2 4 6 8 10 12

NT = 4
NR = 2
KU = 2

i.i.d channel model
Algorithm 1 (SDPT3) 3.74 9.64 13.01 16.27 18.76 25.32
Algorithm 2 (SeDuMi) 2.63 6.25 8.12 9.98 12.77 15.96
Algorithm 2 (MOSEK) 0.26 1.24 1.66 2.52 3.09 3.92

realistic channel model
(given in Sec. IV-B)

Algorithm 1 (SDPT3) 6.28 17.33 22.84 27.55 31.58 42.57
Algorithm 2 (SeDuMi) 4.13 10.59 14.19 17.05 22.54 27.91
Algorithm 2 (MOSEK) 0.61 2.24 2.90 4.34 5.24 7.08

shown in (25). The channel vector between the BS andUj is
generated in the same way. For large scale fading, we adopt
the path loss model presented in [2], [42]. More specifically,
downlink and uplink channels are assumed to experience the
path loss model for line of sight (LOS) communications as

PLLOS = 103.8 + 20.9 log10 d (25)

where PLLOS is in dB,d is the distance (in kilometers) between
the BS and a specific user. Similarly, the channel coefficient
from Uj to Di is modeled asgji =

√
κjig̃ji whereg̃ji follows

CN (0, 1) and κji = 10(−PLNLOS/10) denotes the large scale
fading. Since there is a high possibility of obstructions between
users deployed in an outdoor environment, we assume that the
channel fromUj to Di encounters the path loss model for non-
line-of-sight (NLOS) transmission. That is, PLNLOS (in dB) is
written as

PLNLOS = 145.4 + 37.5 log10 dCCI (26)

wheredCCI is now the distance (in kilometers) from a user
in the uplink transmission to another user in the downlink
direction. The self-interference channel model is mentioned
in Subsection IV-A.

To have a fair comparison between the full-duplex and
half-duplex systems, we made the following assumptions.
First, the BS of the half-duplex counterpart is assumed to
use all antennas in both downlink and uplink transmissions,
i.e., NT + NR. For the half-duplex case, since the downlink
and uplink transmissions are separated, and thus the SEs
of the downlink and uplink channels can be computed in-
dependently. Specifically, we use the iterative water-filling
algorithm introduced in [43] to find the optimal SE of the
uplink channel. Note that the problem of SE maximization in
the downlink direction is NP-hard which requires extremely
high computational complexity to find optimal solution [33].
Herein, we employ an efficient solution proposed in [23],
which was shown to be close optimal, to calculate the SE
of the downlink transmission. Then, the resulting SEs of the
downlink and uplink channels in the half-duplex counterpart
are divided by2 since each of them is assumed to share50%
of the temporal resource [7]. For the full-duplex case, the SEs
of the downlink and uplink channels are simply calculated by

(3) and (6), respectively, after achieving the solutions ofthe
problem in (7).

Fig. 4 depicts the SE gains in percentage of the full-duplex
system over the half-duplex one as a function ofσ2

SI
for

the scenario as shown in Fig. 3(a). A general observation
is that full-duplex transmission can significantly improvethe
spectral efficiency of the half-duplex one when the self-
interference is substantially suppressed. Specifically, as shown
in Fig. 4(c), the total SE gain of the full-duplex system is
45.6% and 55% for the cases(PBS, q) = (26 dBm, 23 dBm)
and (PBS, q) = (10 dBm, 10 dBm) at σ2

SI
= −130 dB,

respectively. However, whenσ2
SI

= −55 dB, the half-duplex
system performs better than the full-duplex one for both cases
of transmit power constraint. This observation simply means
that the self-interference cancellation mechanism shouldbe
efficient enough for the full-duplex system to compete against
the half-duplex counterpart. In addition,the simulation results
also indicate that the self-interference needs to be canceled at
least 75 dB (i.e., σ2

SI
< −75 dB) for the case(PBS, q) =

(10 dBm, 10 dBm) and at least83 dB (i.e., σ2
SI

< −83
dB) for the case(PBS, q) = (26 dBm, 23 dBm) for the full-
duplex system to attain better SE in both downlink and uplink
transmissions, compared to the half-duplex one. These require-
ments can be achieved by a recent advanced SI cancellation
technique reported in [17].

To obtain more insights into the performance of the full-
duplex system, we also study the gains of the downlink and
uplink channels separately in Figs. 4(a) and 4(b), respectively.
We can see that, while the SE of the uplink transmission of
the full-duplex system is always deteriorated asσ2

SI
increases,

that of the downlink channel decreases until a certain valueof
σ2
SI

(−100 dB and−90dB for (PBS, q) = (26 dBm, 23 dBm)
and(PBS, q) = (10 dBm, 10 dBm), respectively) and increases
after that. The degradation on the SE of the uplink channel is
obvious and due to the fact that a large value ofσ2

SI
results

in a greater amount of self-interference power being added
to the background noise. To explain different trends in the
SE of the downlink channel, we first recall that the main
goal of the proposed designs is to maximize the total SE
of the full-duplex system, i.e., jointly optimizing both uplink
and downlink transmissions. When the SI is quite small, the
joint optimization schemes slightly reduce the actual transmit
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Fig. 4. Average spectral efficiency gain (%) versus σ2
SI

(dB) for the
simulation scenario shown in Fig. 3(a).

−0.4 −0.2 0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

Total spectral efficiency gain

C
D

F

σ2
SI

= −90, (PBS, qUj ) = (26, 23)
σ2
SI

= −90, (PBS, qUj ) = (10, 10)
σ2
SI

= −80, (PBS, qUj ) = (26, 23)
σ2
SI

= −80, (PBS, qUj ) = (10, 10)

Fig. 5. CDF of total spectral efficiency gains for5000 random channel
realizations for the scenario shown in Fig. 3(a). The unit ofσ2

SI
is dB and

that ofPBS andq is dBm.

power of the downlink channel to maintain the SE of the
uplink channel. For a large value ofσ2

SI
, the self-interference is

comparable or even dominates the desired signals of the users
in the uplink channel. Hence, data detection for uplink users
becomes more erroneous, incredibly deteriorating the uplink
performance. For such a case, the total SE of the full-duplex
system is mostly determined by the downlink transmission
since the SE of the uplink channel is extremely low. Thus, it is
better to reduce the transmit power in the uplink channel and
concentrate on maximizing the SE of the downlink channel. As
a result, the SE of the uplink channel greatly declined. Specif-
ically, the SE of the uplink direction of the full-duplex system
is remarkably smaller than that of the half-duplex one as
σ2
SI

≥ −80 andσ2
SI

≥ −70 for (PBS, q) = (26 dBm, 23 dBm)
and (PBS, q) = (10 dBm, 10 dBm), respectively. It is worth
noting that a reduction in the transmit power of users in uplink
channel results in a decrease in the CCI. This explains the
increment of the SE gain in the downlink transmission asσ2

SI

is greater than a certain threshold. An interesting observation
from Fig. 4(c) is that the SE gain of the full-duplex system is
higher when the maximum transmit power is smaller. This is
due to the fact that smaller maximum transmit powers create
a smaller amount of self-interference as well as CCI.

In Fig. 5, we show cumulative distribution function (CDF)
of the total SE gain of the full-duplex for the scenario in Fig.
3(a). Obviously, for the same power setting, a smaller value
of σ2

SI
results in better SE gain. On the other hand, for the

sameσ2
SI

, a lower transmit power yields better SE gain. These
observations are consistent with the observation in Fig. 4(c).

The performance of the full-duplex is further explored in
the next numerical experiment, in which we study the CDF of
the average SE gain of the full-duplex system for a number
of random topologies. The results in Fig. 6 are plotted for
1000 topologies, where all users are uniformly distributed in
a circle area of a radiusr = 100 meters centered at the BS.
For each topology, the spectral efficiency gain is averaged over
500 random channel realizations. As can be seen in Fig. 6(c),
the total average SE of full-duplex systems are higher than



11

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
0

0.2

0.4

0.6

0.8

1

Average spectral efficiency gain

C
D

F

σ2
SI

= −90, (PBS, qUj ) = (26, 23)
σ2
SI

= −90, (PBS, qUj ) = (10, 10)
σ2
SI

= −80, (PBS, qUj ) = (26, 23)
σ2
SI

= −80, (PBS, qUj ) = (10, 10)

(a) CDF of average spectral efficiency gain of downlink channel.

−0.4 −0.2 0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

Average spectral efficiency gain

C
D

F

σ2
SI

= −90, (PBS, qUj ) = (26, 23)
σ2
SI

= −90, (PBS, qUj ) = (10, 10)
σ2
SI

= −80, (PBS, qUj ) = (26, 23)
σ2
SI

= −80, (PBS, qUj ) = (10, 10)

(b) CDF of average spectral efficiency gain of uplink channel.

−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Average spectral efficiency gain

C
D

F

σ2
SI

= −90, (PBS, qUj ) = (26, 23)
σ2
SI

= −90, (PBS, qUj ) = (10, 10)
σ2
SI

= −80, (PBS, qUj ) = (26, 23)
σ2
SI

= −80, (PBS, qUj ) = (10, 10)

(c) CDF of average spectral efficiency gain of entire system.

Fig. 6. CDF of average spectral efficiency gains for1000 random topologies.
The simulation scenario parameters areKD = KU = 2, NT = 4 andNR = 2.
The users are uniformly dropped in a circle area of a radiusr = 100 meters
centered at the BS at random. The unit ofσ2

SI
is dB and that ofPBS and q

is dBm.

that of the half-duplex one for most of the topologies. For
example, the SE gains are larger than20% and 28% for the
power settings(PBS, q) = (26 dBm, 23 dBm) and (PBS, q) =
(10 dBm, 10 dBm), respectively for a half of the simulated
topologies atσ2

SI
= −80 dB. Not surprisingly, the SE gain of

the downlink channel is rather sensitive to topologies which
determine the degree of CCI. On the other hand, positions of
users have a small impact on the SE of the uplink transmission
whenσ2

SI
= −90 dB. The reason is that the self-interference

in this case is relatively lower than the received signal strength
for most of the topologies. However, the situation dramatically
changes asσ2

SI
increases to−80 dB, where more dependency

between topology and SE gain is observed. Thus, the number
of scenarios that can yield a received signal strength higher
than the SI power is reduced for a larger value ofσ2

SI
.

Next, we study the impact of co-channel interference on the
SE of the full-duplex system. For this purpose, we fixσ2

SI
at

−100 dB, and consider a setting shown in Fig. 3(b). In this
simulation setup, we vary the distance betweenU1 and D1,
denoted bydCCI, and plot the resulting SEs of the full-duplex
system in Fig. 7. Each value ofdCCI on the x-axis of Fig.
7 corresponds to a position ofU1, while D1 is held fixed. We
observe that the spectral efficiency ofD1 increases asU1 moves
far away fromD1. Especially when the two users are close
(e.g., dCCI < 64.82 m), the performance of the full-duplex
downlink transmission can be worse than that of the half-
duplex one. The reason is straightforward since decreasing
dCCI leads to an increase in CCI which then degrades the SE
of the downlink channel. On the other hand, the location of
U1 has a small impact on the SE of the uplink transmission
for a fixed small value ofσ2

SI
. The results in Fig. 7 indicate

that the CCI is a critical factor that needs to be controlled for
successful deployment of full-duplex systems.

In the final numerical experiment we plot the CDF of the
average total SE of the full-duplex system with and without
accounting for the CCI. The problem of beamformer design
without taking CCI into account was studied in [14]. The
curves in Fig. 8 are obtained from 1000 random topologies.
For each topology, the average total SE is calculated over500
random channel realizations. It is obvious that the proposed
designs in this paper outperform the one with no CCI in [14] as
expected. For instance, the proposed designs attain 2 bits/s/Hz
of total SE higher than the scheme in [14] for approximately
60% of the simulated topologies whenKD = 3 andKU = 2. As
the total number of users is reduced, the SE becomes smaller
due to a decrease in the available multiuser diversity gain.

V. CONCLUSION AND FUTURE WORK

In this paper we have devised a beamforming scheme
for a full-duplex system, in which a full-duplex capable BS
communicates with multiple half-duplex users in the downlink
and uplink channels simultaneously. In particular, we have
considered the problem of joint SE maximization of downlink
and uplink transmissions under some power constraints. First,
the design problem is formulated as a rank constrained opti-
mization one, and then the rank relaxation technique is applied.
However, the relaxed problem is still nonconvex. To solve this
problem we have proposed two iterative algorithms, one based
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Fig. 7. Average spectral efficiency versus distance from theuplink user to
downlink one,dCCI . In this setup,σ2

SI
= −100 dB, PBS = 26 dBm and

q
Uj

= 23 dBm. The distance of the BS and users, i.e.,D1, andU1 are set at
r and 0.85r, respectively. The position ofD1 is fixed while U1 moves on a
circle with radius0.85r as shown in Fig. 3(b).
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on the concept of the FW algorithm and the other based on
the framework of SPCA method. The idea of both proposed
methods is to approximate the nonconvex problem by a convex
formulation in each iteration. While the first approach needs
to solve a sequence of MAXDET programs, the second one
relies on solving a series of SDPs. We have carried out
several numerical experiments under 3GPP LTE small cell
setups to evaluate the SE performance of the full-duplex
scheme. It has been shown that the SE of the full-duplex
system is remarkably larger than that of the half-duplex oneas
the capability of current SI cancellation schemes is efficient.
Our work has proved that the full-duplex transmission is a
promising technique to improve the SE of small cell wireless
communications systems.

The work considered in this paper also opens several possi-
bilities for future research. First, more efficient designsof self-
interference cancellation for full-duplex MIMO systems are of
critical importance. In addition to distributed algorithms for
multiple small cell setups as mentioned earlier, a mechanism
which can accurately measure the CCI at users in the downlink
channel is required. When many users are active in the
downlink and uplink channels, a CCI-aware user scheduling
scheme which can control the CCI is a good solution to the
full-duplex systems. This allows us to exploit the multiuser-
diversity gain in both directions. Furthermore, since the uplink
performance of the full-duplex system is significantly reduced,
even worse than the half-duplex one due to a large amount of
self-interference, a mechanism to control the fairness among
users needs to be proposed. For example, we can additionally
impose a rate constraint on the SE of the uplink channel.
The future research can also include an efficient algorithm to
switch between full-duplex and half-duplex systems. Sincethe
downlink and uplink channels operate at the same time, some
traditional MAC protocols, which are dedicated to current
half-duplex systems, need to be redesigned. These interesting
problems call for more comprehensive studies, and thus are
beyond the scope of this paper.
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APPENDIX

PROOF OFCONVERGENCE

In this appendix we adopt the techniques from [31] to
prove the convergence of Algorithms 1 and 2 (i.e., the iter-
ative MAXDET-based algorithm and the iterative SDP-based
algorithm, respectively) to a KKT point. Let us start with the
convergence proof of Algorithm 1. First, we note that the affine
majorization in (11) has the following two important properties
which are the key to show the convergence to a KKT point of
Algorithm 1

g(n)(Q(n),q(n)) = g(Q(n),q(n)), (27)

∇g(n)(Q(n),q(n)) = ∇g(Q(n),q(n)) (28)

where property (27) means that the inequality in (11) is tight
when (Q,q) = (Q(n),q(n)) and property (28) is obvious
due to the first order approximation. Note that the gradient
in (28) is with respect toQ and q. To proceed further, letS
denote the feasible set of (14), i.e., the set ofQ andq that
satisfy the constraint (7b), (7c) and (7d). We note thatS is
a compact convex set. Further letu(n+1) be is the obtained
optimal objective of (14) at iterationn+ 1. According to the
updating rule in Algorithm 1, we can derive the following
inequalities

u(n+1) = h(Q(n+1),q(n+1))− g(n)(Q(n+1),q(n+1)) (29)

= max
(Q,q)∈S

h(Q,q)− g(n)(Q,q) (30)

≥ h(Q(n),q(n))− g(n)(Q(n),q(n)) (31)

= h(Q(n),q(n))− g(Q(n),q(n)) (32)

≥ h(Q(n),q(n))− g(n−1)(Q(n),q(n)) = u(n) (33)

where (31) follows from the fact that the objective at the
optimal solution is greater than the one at any feasible solution,
i.e., f(x⋆) = max

x∈X
f(x) ≥ f(x0) wherex⋆ and x0 are an

optimal solution and any feasible solution, respectively,(32)
is due to (27), (33) is due to the affine majorization in (11).
In fact, we have shown that the sequence{u(n)} in nonde-
creasing. Furthermore, the value of{u(n)} is bounded above
due to the limited transmit power, and thus it is guaranteed
to converge. We note that the functionf(X) = log det(X) is
differentiable and strictly concave onX ≻ 0 [34, Section 3.1].
SinceS is a compact convex set, the objective is then shown
to be strongly concave onS due to [31, Lemma 3.1]. As a
result, the sequence(Q(n),q(n)) converges to an accumulation
point denoted by(Q∗,q∗). To establish the convergence to a
KKT point, we first introduce the set of dual variables for the
constraints in (14) which is listed in Table III.

It is easy to check that the Slater’s condition holds for the
convex program at all iterations of Algorithm 1. Thus, the

TABLE III
CONSTRAINTS AND THEIR CORRESPONDING DUAL VARIABLES

Constraints Dual variables
0 ≤ qUj λUj
qUj ≤ q

Uj
λ̃Uj

∑
KD

i=1 Tr(QDi
) ≤ PBS µ

QDi
� 0 ZDi

KKT conditions are necessary and sufficient for optimality
[34, Section 5.5]. With the dual variables introduced in Table
III, the KKT conditions of the optimal value at iterationn (see
[34] for more details) are given as

∇QDi
h(Q(n),q(n))−∇QDi

g(n)(Q(n),q(n))

− µI+ ZDi
= 0, ∀i = 1, . . . ,KD, (34)

∂qUj h(Q
(n),q(n))− ∂qUj g

(n)(Q(n),q(n))

+ λUj − λ̃Uj = 0, ∀j = 1, . . . ,KU, (35)

λUjq
(n)
Uj

= 0; λ̃Uj (q
(n)
Uj

− q
Uj
) = 0, ∀j = 1, . . . ,KU, (36)

Tr(Q
(n)
Di

ZDi
) = 0, ∀i = 1, . . . ,KD, (37)

µ
(
KD∑

i=1

Tr(Q
(n)
Di

)− PBS

)
= 0. (38)

Due to property (28), we can replace∇QDi
g(n)(Q(n),q(n))

and ∂qUj g
(n)(Q(n),q(n)) by ∇QDi

g(Q(n),q(n)) and

∂qUj g(Q
(n),q(n)) on convergence (i.e., asn → ∞),

respectively. Thus,

∇QDi
h(Q(n),q(n))−∇QDi

g(Q(n),q(n))

− µI+ ZDi
= 0, ∀i = 1, . . . ,KD, (39)

∂qUj h(Q
(n),q(n))− ∂qUj g(Q

(n),q(n))

+ λUj − λ̃Uj = 0, ∀j = 1, . . . ,KU. (40)

It is straightforward to see that the set of equations in (36)-(40)
are actually the KKT conditions for the problem (10) and thus
completes the proof. We note that the KKT conditions for the
convex program after convergence are also the necessary ones
for local optimality of the problem (10). Indeed since(Q∗,q∗)
is an optimal solution to the convex program at convergence,
it satisfies [44, Section 2.1]

〈
∇g(∞)(Q∗,q∗)−∇h(Q∗,q∗), (Q′,q′)

− (Q∗,q∗)
〉
≥ 0 for all (Q′,q′) ∈ S (41)

where〈, 〉 stands for the inner product of the arguments, i.e.,
〈
X,Y

〉
= Tr(XHY), the subtraction in (41) is element-wise,

and the gradient is with respect toQ and q. As mentioned
previously, we can replace∇g(∞)(Q∗,q∗) by ∇g(Q∗,q∗),
and thus (41) becomes

〈
∇g(Q∗,q∗)−∇h(Q∗,q∗), (Q′,q′)

− (Q∗,q∗)
〉
≥ 0 for all (Q′,q′) ∈ S (42)

which is the first order necessary conditions for local optimal-
ity of the problem (10) [44, Section 2.1].

The proof of Algorithm 2 follows the same spirit. As
mentioned earlier for the convex approximation in (20),
F (tDi , βDi , ψ

(n)
Di

) = f(tDi , βDi) whenψ(n)
Di

= tDi/βDi , that is

F (tDi , βDi , ψ
(n)
Di

)|
ψ

(n)
Di

=tDi/βDi
= tDiβDi = f(tDi , βDi). (43)
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Furthermore, we also have

∂F (tDi ,βDi ,ψ
(n)
Di

)

∂tDi

∣
∣
∣
∣
ψ

(n)
Di

=tDi/βDi

=
1

ψ
(n)
Di

tDi

∣
∣
∣
∣
∣
ψ

(n)
Di

=tDi/βDi

= βDi =
∂f(tDi , βDi)

∂tDi
(44)

and

∂F (tDi , βDi , ψ
(n)
Di

)

∂βDi

∣
∣
∣
∣
∣
ψ

(n)
Di

=tDi/βDi

=
∂f(tDi , βDi)

∂βDi
. (45)

Let S(n) be the feasible set of the convex program
solved at iterationn. Due to the updating rule in Al-
gorithm 2 (i.e., ψ(n+1)

Di
= t

(n)
Di
/β

(n)
Di

), follows that

F (t
(n)
Di
, β

(n)
Di
, ψ

(n+1)
Di

) = f(t
(n)
Di
, β

(n)
Di

). Similarly, we have
G
(
xUj ,Q,q, x

(n)
Uj
,Q(n),q(n)

)
= −g(x(n)

Uj
,Q(n),q(n)). This

means that(x(n)
Uj
,Q(n),q(n)) ∈ S(n+1) and thusu(n+1) ≥

u(n) whereu(n) is the objective of (16) at iterationn. The
convergence proof to a solution that satisfies KKT conditions
follows the same steps from (29) to (40) presented above.
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