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Channel Estimation for Two-Way MIMO Relay
Systems in Frequency-Selective Fading

Environments
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Abstract—In this paper, we investigate the channel estimation
problem for two-way multiple-input multiple-output (MIMO) re-
lay communication systems in frequency-selective fading environ-
ments. We apply the method of superimposed channel training
to estimate the individual channel state information (CSI) of the
first-hop and second-hop links for two-way MIMO relay systems
with frequency-selective fading channels. In this algorithm, a
relay training sequence is superimposed on the received signals at
the relay node to assist the estimation of the second-hop channel
matrices. The optimal structure of the source and relay training
sequences is derived to minimize the mean-squared error (MSE)
of channel estimation. Moreover, the optimal power allocation
between the source and relay training sequences is derived
to improve the performance of channel estimation. Numerical
examples are shown to demonstrate the performance of the
proposed superimposed channel training algorithm for two-way
MIMO relay systems in frequency-selective fading environments.

Index Terms—Channel estimation, MIMO relay, frequency-
selective fading, superimposed training, MMSE, two-way relay,
power allocation

I. INTRODUCTION

Recently, multiple-input multiple-output (MIMO) relay
communication systems have attracted much attention as the
demand for high rate and reliable wireless communications
keeps increasing [1], [2]. In [3] and [4], the optimal relay
precoding matrix for a three-node two-hop MIMO relay
communication system has been developed to maximize the
mutual information between the source and destination nodes.
A unified framework has been developed in [5] to optimize the
source and relay precoding matrices of two-hop MIMO relay
systems based on a broad class of commonly used objective
functions. In [6], the joint transmit and relay precoding design
problems were investigated for two-hop multicasting MIMO
relay systems.
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The MIMO relay communication systems discussed in [2]-
[5] are one-way relay systems, where the signals are trans-
mitted from a source node to a destination node through
relay node(s). In a two-way relay system, two source nodes
exchange their information through relay node(s). Initially
studied by Shannon in [7], two-way relay communications
have attracted great interests recently as they can provide
higher spectral efficiency compared with one-way relay sys-
tems. The joint source and relay optimization for two-way
MIMO relay systems has been studied in [8]-[10].

For the MIMO relay systems discussed in [2]-[10], the
knowledge of the instantaneous channel state information
(CSI) is essential for extracting the source signals at the
destination node and the optimization of MIMO relay systems
through precoding matrices design and power allocation. How-
ever, the instantaneous CSI is unknown in practical wireless
relay communication systems, and therefore, needs to be
estimated at the destination node. In [11], a least-squares
(LS) based channel estimation algorithm was developed for
MIMO relay systems. The performance of [11] was further
analyzed and improved in [12] by using the weighted least-
squares (WLS) fitting method. A two-stage channel estima-
tion algorithm based on the linear minimum mean-squared
error (LMMSE) criterion was introduced in [13], while in
[14], a parallel factor (PARAFAC) analysis based MIMO
relay channel estimation algorithm has been developed. A
superimposed channel training algorithm has been proposed in
[15] for orthogonal frequency division multiplexing (OFDM)
modulated one-way relay systems.

The channel estimation algorithms in [11]-[15] were de-
veloped for one-way MIMO relay systems. Due to a larger
number of unknowns, channel estimation problems are gener-
ally more challenging in two-way relay systems than those in
one-way relay systems. In [16], two-way relay channel estima-
tion algorithms based on the maximum likelihood (ML) and
linear maximum signal-to-noise ratio (SNR) criteria have been
proposed. However, the algorithms in [16] were designed for
single antenna relay systems, and the extension to MIMO relay
systems is not straightforward. Two methods were presented
in [17] for two-way MIMO relay systems, namely, cascaded
channel estimation and individual channel estimation. In the
first algorithm, the cascaded channel matrices are estimated at
two source nodes. However, this approach cannot estimate the
individual second-hop channel matrices, which are essential
for the optimization of MIMO relay networks [10].

This problem has been addressed by the superimposed
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channel training algorithm for two-way MIMO relay systems
in [18], where a training sequence is superimposed at the relay
node. The purpose of superimposing a training matrix at the
relay node is to estimate the CSI of individual first-hop and
second-hop channel matrices at the destination nodes, which
cannot be achieved by simply multiplying the received signals
at the relay node with a relay precoding matrix. Individual CSI
can also be obtained by first estimating the first-hop channel
matrices at the relay node and then forwarding the estimated
channel matrices to the destination nodes, as the individual
channel estimation algorithm in [17]. Obviously, the approach
in [17] increases the cost and complexity of the relay node.

The relay systems in [16]-[18] are assumed to have
frequency-flat fading channels, which is only valid for nar-
rowband communication systems. In this paper, we consider
a more general situation where two-way MIMO relay systems
are operating in frequency-selective fading environments, i.e.,
there are multiple paths between each transmit-receive antenna
pair. We apply the method of superimposed channel training
to estimate the individual channel matrices of the first-hop
and second-hop links for two-way MIMO relay systems in
frequency-selective fading environments. In particular, the
channel training is completed in two time blocks. In the first
time block, both source nodes transmit their training sequences
simultaneously to the relay node. The relay then amplifies the
received signals and superimposes its own training sequences
before broadcasting the superimposed signals to the destina-
tion nodes. The channel estimation processes are implemented
at the destination nodes to minimize the amount of signal
processing at the relay node.

Since the superimposed channel training approach does
not require the relay node to be capable of performing the
advanced signal processing of channel estimation, and hence,
provides an easy and cost-effective implementation of two-
way relay communication systems. Such advantage of the
superimposed channel training approach is particularly im-
portant under frequency-selective channels, as the complexity
at the relay node increases significantly compared with the
frequency-flat fading environment when the approach in [17]
is used. Thus, the superimposed channel estimation method is
preferred from practical point of view.

We derive the optimal source and relay training sequences
by minimizing the sum MSE of channel estimation. We also
optimize the power allocation between the source and relay
training sequences at the relay node. The algorithm developed
in this paper generalizes the results in [18] from frequency-
flat fading channel to frequency-selective fading channels. We
would like to note that such extension is non-trivial as the
optimization problem for channel estimation in frequency-
selective two-way MIMO relay systems is much more com-
plicated than that of frequency-flat relay systems. Moreover,
we develop a new MMSE-based algorithm to retrieve the first-
hop channel matrices, which takes into account the estimation
error inherited from the estimation of the second-hop channel
matrices.

The rest of the paper is organized as follows. The sys-
tem model of a two-way MIMO relay system in frequency-
selective fading environments is presented in Section II.
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Fig. 1. Block diagram of a two-way MIMO relay communication system.

The superimposed channel training algorithm is developed
in Section III, where the optimal training sequences and
power allocation at the source and relay nodes are derived.
Section IV shows numerical simulations to demonstrate the
performance of the proposed algorithm. Conclusions are drawn
in Section V.

II. SYSTEM MODEL

We consider a three-node two-way MIMO relay com-
munication system operating in a frequency-selective fading
environment, where two source nodes, node 1 and node 2,
exchange information through a relay node as shown in Fig. 1.
The source nodes and relay node are equipped with Ns and
Nr antennas, respectively. In this paper, we assume that the
practical half-duplex mode is used at all nodes, i.e., each node
is not able to send and receive signals at the same time. With
this assumption, there is no direct link between two source
nodes as both source nodes are transmitting signals at the first
time block and cannot receive signals from each other. The
implementation of half-duplex mode is common in two-way
relay communications.

Let us denote hri
n,m =

[
hri
n,m,1, · · · , hri

n,m,Q

]T as the Q× 1
first-hop multipath channel vector from the mth antenna at
node i to the nth antenna at the relay node, i = 1, 2,
m = 1, · · · , Ns, and n = 1, · · · , Nr, where (·)T denotes
the matrix (vector) transpose and we assume that all channels
have the same number of taps Q. The extension to systems
with different number of channel taps between each transmit
and receive antenna pair is straightforward. In a similar way,
hir
n,m =

[
hir
n,m,1, · · · , hir

n,m,Q

]T
is used to denote the Q × 1

second-hop multipath channel vector from the mth antenna at
the relay node to the nth antenna at node i.

The channel estimation process is completed in two time
blocks. In the first time block, source node 1 transmits an
Ns×L training signal matrix S = [s1, s2, · · · , sNs ]

T and node
2 transmits an Ns×L training matrix T = [t1, t2, · · · , tNs ]

T ,
respectively, where L > Q is the length of the training
sequence and will be determined later. Cyclic prefixes of
length Lcp ≥ Q are inserted at sm and tn, m,n = 1, · · · , Ns,
to prevent the inter-block interference at the relay node [15].
The received signal vectors at the relay node over L time slots
after removing the cyclic prefix can be written as

yr,n =

Ns∑
m=1

Hr1
n,msm +

Ns∑
m=1

Hr2
n,mtm + vr,n
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=

Ns∑
m=1

CQ(sm)hr1
n,m +

Ns∑
m=1

CQ(tm)hr2
n,m + vr,n,

n = 1, · · · , Nr (1)

where yr,n and vr,n are the L× 1 received signal vector and
noise vector at the nth antenna of the relay node, respec-
tively, Hr1

n,m and Hr2
n,m are L× L circulant channel matrices

whose first columns are given by
[
(hr1

n,m)T ,01×(L−Q)

]T
and[

(hr2
n,m)T ,01×(L−Q)

]T , respectively, and CQ(s) represents an
L × Q column-wise circulant matrix taking s as the first
column.

In the second time block, the relay node amplifies yr,n,
n = 1, · · · , Nr, and superimposes its own training matrix R =
[r1, r2, · · · , rNr ]

T . Thus, the signal vector transmitted by the
nth antenna of the relay node is given by

xr,n =
√
αyr,n + rn, n = 1, · · · , Nr (2)

where α > 0 is the relay amplifying factor. Similarly, a cyclic
prefix is inserted at xr,n prior to the transmission. The received
signal vectors at the source node i, i = 1, 2, after removing
the cyclic prefix are given by1

yi,k =

Nr∑
n=1

Hir
k,nxr,n + vi,k, k = 1, · · · , Ns (3)

where yi,k and vi,k are the L× 1 received signal vector and
noise vector at the kth antenna of node i, respectively, Hir

k,n

is an L × L circulant channel matrix whose first column is[
(hir

k,n)
T , 01×(L−Q)

]T .
The main idea of the superimposed channel training algo-

rithm is to exploit R to estimate the second-hop channels
{hir

k,n} , {hir
k,n, i = 1, 2, k = 1, · · · , Ns, n = 1, · · · , Nr},

and then estimate the first-hop channels {hri
n,m} , {hri

n,m, i =
1, 2, n = 1, · · · , Nr,m = 1, · · · , Ns} using S, T, and the
estimated {hir

k,n}. In this paper, we assume that

1) All channel taps are zero-mean circularly symmetric
complex Gaussian (CSCG) random variables.

2) Channel taps associated with the same transmit-receive
antenna pair, as well as different transmit-receive an-
tenna pairs are independent from each other.

3) Channels are assumed to be quasi-static, i.e., channels
do not change within one cycle of transmission.

4) All noises are independent and identically distributed
(i.i.d.) additive white Gaussian noise (AWGN) with zero
mean and unit variance.

III. MMSE-BASED OPTIMAL TRAINING MATRICES

In this section, we design the optimal training matrices S,
T, R, and the relay amplifying factor α to minimize the MSE
of channel estimation. By substituting (1) and (2) into (3), we

1In this paper, cyclic prefix is removed to facilitate the superimposed
channel training algorithm. It is an interesting topic to combine the proposed
approach and the channel estimation using the cyclic prefix, which may
improve the accuracy of channel estimation.

obtain

yi,k=

Nr∑
n=1

Hir
k,n

(
√
α

Ns∑
m=1

Hr1
n,msm+

√
α

Ns∑
m=1

Hr2
n,mtm+ rn

+
√
αvr,n

)
+ vi,k

=
√
α

Ns∑
m=1

Nr∑
n=1

Hir
k,nH

r1
n,msm+

√
α

Ns∑
m=1

Nr∑
n=1

Hir
k,nH

r2
n,mtm

+

Nr∑
n=1

Hir
k,nrn+v̄i,k, k = 1, · · · , Ns (4)

where

v̄i,k ,
√
α

Nr∑
n=1

Hir
k,nvr,n + vi,k, k = 1, · · · , Ns (5)

is the equivalent noise vector at the kth antenna of node i.
Since both Hir

k,n and Hri
n,m are circulant matrices, (4) can be

rewritten by exploiting the property of circulant matrix as

yi,k

=
√
α

Ns∑
m=1

[
C2Q−1(sm)

Nr∑
n=1

hir
k,n∗hr1

n,m

]

+
√
α

Ns∑
m=1

[
C2Q−1(tm)

Nr∑
n=1

hir
k,n∗hr2

n,m

]
+

Nr∑
n=1

CQ(rn)h
ir
k,n+v̄i,k

=
√
αΦ(s)di1

k +
√
αΦ(t)di2

k +Φ(r)dir
k +v̄i,k, k=1,· · ·, Ns

(6)

where a ∗b denotes the linear convolution between vectors a
and b, and

Φ(s),[C2Q−1(s1),C2Q−1(s2),· · ·,C2Q−1(sNs)]∈CL×(2Q−1)Ns (7)

Φ(t),[C2Q−1(t1),C2Q−1(t2),· · ·,C2Q−1(tNs
)]∈CL×(2Q−1)Ns (8)

Φ(r),[CQ(r1),CQ(r2), · · · ,CQ(rNr )] ∈ CL×QNr (9)

di1
k ,

(Nr∑
n=1

hirk,n∗hr1
n,1

)T
,

(
Nr∑
n=1

hirk,n∗hr1
n,2

)T
,· · ·,

(
Nr∑
n=1

hirk,n∗hr1
n,Ns

)TT
(10)

di2
k ,

(Nr∑
n=1

hirk,n∗hr2
n,1

)T
,

(
Nr∑
n=1

hirk,n∗hr2
n,2

)T
,· · ·,

(
Nr∑
n=1

hirk,n∗hr2
n,Ns

)TT
(11)

dir
k ,
[
(hir

k,1)
T , (hir

k,2)
T , · · · , (hir

k,Nr
)T
]T

. (12)

Here di1
k in (10) and di2

k in (11) can be viewed as the
compound channel from all antennas of node 1 and node 2
to the kth antenna at node i, respectively, and dir

k in (12) is
the channel from all antennas of the relay node to the kth
antennas at node i.

By introducing

A, [
√
αΦ(s),

√
αΦ(t),Φ(r)] ∈ CL×((4Q−2)Ns+QNr)(13)

θi,k ,
[
(di1

k )T , (di2
k )T , (dir

k )T
]T

, k = 1, · · · , Ns (14)
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we can rewrite (6) as

yi,k = Aθi,k + v̄i,k, k = 1, · · · , Ns. (15)

Here θi,k in (14) is the vector of unknowns that need to be
estimated at node i.

Due to its simplicity, a linear estimator is applied at node i
to estimate θi,k as

θ̂i,k = WH
i,kyi,k, k = 1, · · · , Ns, i = 1, 2 (16)

where θ̂i,k denotes an estimation of θi,k, Wi,k is the weight
matrix of the linear receiver, and (·)H denotes the matrix
(vector) Hermitian transpose. As a linear estimator is used,
we can see from (13) that the length of the training sequences
should satisfy L ≥ (4Q − 2)Ns + QNr. Based on (15) and
(16), the sum MSE of channel estimation at two nodes can be
written as

MSE=
2∑

i=1

Ns∑
k=1

tr
(
E
[
(θ̂i,k − θi,k)(θ̂i,k − θi,k)

H
])

=

2∑
i=1

Ns∑
k=1

tr
(
E
[
(WH

i,kA− IB)C
i,k
x (WH

i,kA− IB)
H

+WH
i,kC

i,k
v̄ Wi,k

])
(17)

where tr(·) denotes the matrix trace, In stands for the n× n
identity matrix, B , (4Q− 2)Ns+QNr, Ci,k

x = E
[
θi,kθ

H
i,k

]
is the covariance matrix of θi,k, and Ci,k

v̄ = E
[
v̄i,kv̄

H
i,k

]
is

the noise covariance matrix. Here E[·] stands for the statistical
expectation.

From (5), we have

Ci,k
v̄ =

α

Nr∑
n=1

Q∑
j=1

σir
k,n,j + 1

IL, i=1, 2, k=1, · · · , Ns

where σir
k,n,j = E

[
hir
k,n,j

(
hir
k,n,j

)∗]
is the variance of hir

k,n,j ,
j = 1, · · · , Q, and (·)∗ denotes complex conjugate. Based on
(10)-(12) and (14), we obtain that Ci,k

x = bd
[
Ck

i1,C
k
i2,C

k
ir

]
,

where bd[·] represents a block diagonal matrix and

Ck
ij =E

[
dij
k (d

ij
k )

H
]
=bd

[
Cij

k,1, · · · ,C
ij
k,Ns

]
, j=1, 2 (18)

Ck
ir =E

[
dir
k (dir

k )H
]
=bd

[
Cir

k,1, · · · ,Cir
k,Nr

]
. (19)

By introducing σir
k,n =

[
σir
k,n,1, · · · , σir

k,n,Q

]T and σrj
n,m =[

σrj
n,m,1, · · · , σ

rj
n,m,Q

]T , where σrj
n,m,p = E

[
hrj
n,m,p

(
hrj
n,m,p

)∗]
is the variance of hrj

n,m,p, j = 1, 2, p = 1, · · · , Q, we obtain
that

Cij
k,m =E

( Nr∑
n=1

hir
k,n∗hrj

n,m

)(
Nr∑
n=1

hir
k,n∗hrj

n,m

)H
=

Nr∑
n=1

diag
[
σir

k,n∗σrj
n,m

]
, j=1, 2, m=1, · · · , Ns

Cir
k,n =E

[
hir
k,n(h

ir
k,n)

H
]

=diag
[
σir
k,n,1, · · · , σir

k,n,Q

]
, n = 1, · · · , Nr.

Here diag[x] stands for a diagonal matrix taking x as the
diagonal elements.

A. Structure of Optimal Training Sequences

The matrices Wi,k, i = 1, 2, k = 1, · · · , Ns that minimize
MSE in (17) are given by

Wi,k=
(
ACi,k

x AH+Ci,k
v̄

)−1

ACi,k
x , i=1, 2, k=1,· · ·,Ns

(20)
where (·)−1 denotes the matrix inversion. Substituting (20)
back into (17), the MSE of channel estimation at both source
nodes can be written as

MSE =
2∑

i=1

Ns∑
k=1

tr

([(
Ci,k

x

)−1
+AH

(
Ci,k

v̄

)−1
A
]−1
)
.

(21)
The transmission power constraints at the source nodes are
given by

Ns∑
m=1

sHmsm ≤ P1,

Ns∑
m=1

tHmtm ≤ P2 (22)

where P1 and P2 are the transmission power available at
source nodes 1 and 2, respectively. From (1) and (2), the
transmission power constraint at the relay node is given by

Nr∑
n=1

E
[
tr
(
xr,nx

H
r,n

)]
=

Nr∑
n=1

(
αtr

(
Ns∑

m=1

(
CQ(sm)D

r1
n,mC

H
Q(sm) +CQ(tm)D

r2
n,mC

H
Q(tm)

)
+ IL

)
+ rHn rn

)
≤ Pr (23)

where Dri
n,m , diag

[
σri
n,m,1, · · · , σri

n,m,Q

]
, i = 1, 2, and Pr is

the transmission power available at the relay node. It can be
seen from (23) that the feasible region of α depends on Pr as
0 < α < (Pr −

∑Nr

n=1 r
H
n rn)/Ω, where

Ω,
Nr∑
n=1

tr

(
Ns∑

m=1

(
CQ(sm)Dr1

n,mCH
Q (sm)

+CQ(tm)Dr2
n,mCH

Q (tm)
)
+ IL

)
.

From (21)-(23), the optimal training sequences and the
optimal α design problem can be written as

min
S,T,R,α>0

2∑
i=1

Ns∑
k=1

tr

([(
Ci,k

x

)−1
+AH

(
Ci,k

v̄

)−1
A
]−1
)

(24)

s.t.

Ns∑
m=1

sHmsm ≤ P1 (25)

Ns∑
m=1

tHmtm ≤ P2 (26)

Nr∑
n=1

(
αtr

(
Ns∑

m=1

(
CQ(sm)Dr1

n,mCH
Q (sm)

+CQ(tm)D
r2
n,mC

H
Q(tm)

)
+IL

)
+rHn rn

)
≤Pr.(27)

The following theorem establishes the optimal structure of S,
T, and R as the solution to the problem (24)-(27).
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THEOREM 1: The optimal training matrices S, T, and R
satisfy the following equations for all m,n = 1, · · · , Ns, and
p = 1, · · · , Nr

CH
2Q−1(sm)C2Q−1(sm) = βmI2Q−1,

CH
2Q−1(tn)C2Q−1(tn)=γnI2Q−1, CH

Q(rp)CQ(rp)=δpIQ(28)

CH
2Q−1(sm)C2Q−1(tn) = 0,

CH
2Q−1(sm)CQ(rp) = 0, CH

2Q−1(tn)CQ(rp) = 0 (29)

where βm = sHmsm, γn = tHn tn, and δp = rHp rp.
PROOF: See Appendix A. �
It is worth noting that the training matrices S, T, and R

satisfying (28) and (29) are not unique in general. Indeed,
we are not particularly interested in a unique solution of
the problem. The minimum MSE of channel estimation is
achieved as long as the training matrices satisfy (28) and (29).
One example of achieving (28) and (29) is given below

s1 =Fs̃1, |s̃1,i| =
√

β1/L, i = 1, · · · , L
sm=Fs̃m, s̃m,i =

√
βm/β1s̃1,i e

j2π(i−1)(2Q−1)(m−1)/L,

i = 1, · · · , L, m = 2, · · · , Ns

tm=Ft̃m, t̃m,i =
√
γm/β1s̃1,i e

j2π(i−1)(2Q−1)(Ns−1+m)/L,

i = 1, · · · , L, m = 1, · · · , Ns

rn=Fr̃n, r̃n,i =
√
δn/β1s̃1,i e

j2π(i−1)[(2Q−1)(2Ns−1)+Q(n−1)]/L,

i = 1, · · · , L, n = 1, · · · , Nr

where | · | denotes the modulus of a complex number, j =√
−1, and F is an L×L normalized FFT matrix with [F]m,n =
1√
L
e−j2π(m−1)(n−1)/L. The training matrices shown above

have the advantage that they are easy to implement as the
elements of s̃m (also t̃m and r̃n) have a constant magnitude.

B. Optimal Power Loading

Applying Theorem 1, the MSE function in (21) can be
written as

MSE=

2∑
i=1

Ns∑
k=1

tr

(
Ns∑

m=1

[(
Ci1

k,m

)−1
+ αβmηi,kI2Q−1

]−1

+

Ns∑
m=1

[(
Ci2

k,m

)−1
+αγmηi,kI2Q−1

]−1

+

Nr∑
n=1

[(
Cir

k,n

)−1
+δnηi,kIQ

]−1

)
(30)

where ηi,k is defined in (56). Let us denote cijk,m,q ,[(
Cij

k,m

)−1]
q,q

, cirk,n,p ,
[(
Cir

k,n

)−1]
p,p

, and κi,m ,∑Nr

n=1

∑Q
q=1 σ

ri
n,m,q , i = 1, 2. The problem (24)-(27) with

matrix variables can be equivalently rewritten as the following
problem in scalar variables

min
β,γ,δ,α

Ns∑
m=1

Ns∑
k=1

2Q−1∑
q=1

2∑
i=1

(
1

ci1k,m,q+αβmηi,k
+

1

ci2k,m,q+αγmηi,k

)

+

Nr∑
n=1

Ns∑
k=1

Q∑
p=1

2∑
i=1

1

cirk,n,p+ δnηi,k
(31)

s.t.

Ns∑
m=1

βm ≤ P1 (32)

Ns∑
m=1

γm ≤ P2 (33)

α

(
Ns∑

m=1

κ1,mβm+

Ns∑
m=1

κ2,mγm

)
+

Nr∑
n=1

δn+αLNr≤Pr (34)

α>0, βm≥0, γm≥0,m=1,· · ·,Ns, δn≥0, n=1,· · ·,Nr

(35)

where β , [β1, · · · , βNs ]
T , γ , [γ1, · · · , γNs ]

T , and δ ,
[δ1, · · · , δNr ]

T .
Given that ci1k,m,q , ci2k,m,q , cirk,m,q , and ηi,k are known vari-

ables with fixed α, it can be observed that the fractions in
the objective function (31) are monotonically decreasing and
convex functions with respect to βm, γm, and δn. Moreover,
when α is fixed, the constraints in (32)-(35) are linear in-
equality constraints. Therefore, with fixed α, the problem (31)-
(35) with respect to βm, γm, and δn is a convex optimization
problem where the optimal βm, γm, and δn can be efficiently
obtained through the Karush-Kuhn-Tucker (KKT) optimality
conditions [20] of the problem (31)-(35). The gradient condi-
tions are given by

Ns∑
k=1

2Q−1∑
q=1

2∑
i=1

αηi,k(
ci1k,m,q+αβmηi,k

)2=µ1+µ3ακ1,m, m=1,· · ·,Ns(36)

Ns∑
k=1

2Q−1∑
q=1

2∑
i=1

αηi,k(
ci2k,m,q+αγmηi,k

)2=µ2+µ3ακ2,m, m=1,· · ·,Ns(37)

Ns∑
k=1

Q∑
p=1

2∑
i=1

ηi,k(
cirk,n,p+δnηi,k

)2 = µ3, n = 1, · · · , Nr (38)

where µi ≥ 0, i = 1, 2, 3, are Lagrange multipliers such that
the complementary slackness conditions given by

µ1

(
P1 −

Ns∑
m=1

βm

)
= 0 (39)

µ2

(
P2 −

Ns∑
m=1

γm

)
= 0 (40)

µ3

(
Pr−αNL−

Nr∑
n=1

δn−α

Ns∑
m=1

κ1,mβm−α

Ns∑
m=1

κ2,mγm

)
=0(41)

are satisfied.
When α and µi, i = 1, 2, 3, are fixed, the non-negative βm,

γm, m = 1, · · · , Ns, and δn, n = 1, · · · , Nr, can be found by
using the bi-section search, as the left-hand-side (LHS) of (36),
(37), and (38) are monotonically decreasing functions of βm,
γm, and δn, respectively. An outer bi-section search is applied
to find the optimal µi, i = 1, 2, 3, since the LHS of (32) and
(33) are increasing functions of βm and γm, respectively, and
the LHS of (34) is an increasing function of βm, γm, and δn.
Moreover, in (36), βm is a monotonically decreasing function
of µ1 and µ3, γm is monotonically decreasing with respect
to µ2 and µ3 in (37), while in (38), δn is a monotonically
decreasing function of µ3.
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Fig. 2. NMSE versus α for different P1 = P2 and Pr with N = 2 and
Q = 4.

When α is not fixed, i.e., α is an optimization variable, the
problem (31)-(35) as a whole is not a convex optimization
problem. However, the following theorem states that (31) is a
unimodal function of α.

THEOREM 2: The objective function (31) subjecting to (32)-
(35) is a unimodal (quasi-convex) function with respect to α.

PROOF: See Appendix B. �
To verify Theorem 2, a plot of the MSE value over a range

of feasible values of α is shown in Fig. 2. We consider the
case where all nodes have the same number of antennas,
i.e., Ns = Nr = N = 2, and Q = 4. Fig. 2 shows the
normalized MSE (NMSE) versus α for different P1 = P2

and Pr. Note that the NMSE is obtained by dividing (31)
with L = (5Q − 2)N . It can be seen from Fig. 2 that (31)
is a unimodal function of α. For a unimodal function, the
minimum value can be efficiently found by the golden section
search (GSS) [21] technique. Hence, the optimal α for the
problem (31)-(35) can be found by applying the GSS technique
as described in Table I, where ε is a positive constant close
to 0, and ϕ > 0 is the reduction factor. It is shown in [21]
that the optimal ϕ = 1.618, also known as the golden ratio.
It can be seen from Fig. 2 that the optimal value of α varies
with P1, P2, and Pr. For fixed P1 and P2, the optimal α has
a larger value when Pr increases. For a given Pr, the optimal
value of α decreases when P1 and P2 increases.

Since at each iteration, the GSS method reduces the interval
containing the optimal α to 0.618 times of the interval at the
preceding iteration, the length of the interval of uncertainty
after the nth iteration is Γn = (0.618)nΓ0, where Γ0 is
the length of the initial feasible interval [21]. Therefore, the
complexity of the GSS method depends on the number of
iterations, which is determined by the desired accuracy.

C. Retrieving the Multipath Channel Vectors

Based on (12) and (14), the second-hop channels hir
k,n, i =

1, 2 can be directly obtained from θ̂i,k. The first-hop channels
hr1
n,m and hr2

n,m can be estimated based on θ̂i,k as follows.
Since hir

k,n∗hr1
n,m = T(hir

k,n)h
r1
n,m, where T(h) stands for a

TABLE I
PROCEDURE OF APPLYING THE GOLDEN SECTION SEARCH (GSS) TO FIND

THE OPTIMAL α IN THE PROBLEM (31)-(35).

1) Set a feasible bound [a, b] on α.
2) Define c1 = (ϕ− 1)a+ (2− ϕ)b and c2 = (2− ϕ)a+ (ϕ− 1)b.
3) Solve the problem (31)-(35) for α = c1;

Compute the MSE value defined in (31), fMSE(c1) for α = c1.
4) Repeat Step 3 for α = c2.
5) If fMSE(c1) < fMSE(c2), then assign b = c2.

Otherwise, assign a = c1.
6) If |b− a| ≤ ε, then end.

Otherwise, go to step 2.

(2Q− 1)×Q circulant matrix taking [hT ,01×(Q−1)]
T as its

first column, we have
Nr∑
n=1

hir
k,n∗hr1

n,m=

Nr∑
n=1

T(hir
k,n)h

r1
n,m=di1

k,m, k,m=1,· · ·,Ns (42)

Nr∑
n=1

hir
k,n∗hr2

n,m=

Nr∑
n=1

T(hir
k,n)h

r2
n,m=di2

k,m, k,m=1,· · ·,Ns.(43)

Equations (42) and (43) can be represented in matrix form as

Ψirh
r1
m = ei1m, m = 1, · · · , Ns (44)

Ψirh
r2
m = ei2m, m = 1, · · · , Ns (45)

where

Ψir,

 T(hir
1,1), · · ·, T(hir

1,Nr
)

...
. . .

...
T(hir

Ns,1
),· · ·,T(hir

Ns,Nr
)

, hri
m,

 hri
1,m
...

hri
Nr,m

, i=1, 2,

eijm,

 dij
1,m
...

dij
Ns,m

 , j = 1, 2. (46)

In the following, we develop an LMMSE estimator to
retrieve the first-hop multipath channel vectors {hri

n,m}. Taking
into account the estimation errors in hir

k,m and dij
n,m, we have

hir
k,m = ĥir

k,m + κir
k,m, dij

n,m = d̂ij
n,m + ιijn,m (47)

where ĥir
k,m and d̂ij

n,m are the estimates of hir
k,m and dij

n,m,
respectively, obtained from θ̂i,k, and κir

k,m and ιijn,m are the
estimation error vectors. Substituting (47) back into (44) and
(45), we have(

Ψ̂ir +∆i

)
hrj
m = êijm + gij

m, m = 1, · · · , Ns, j = 1, 2

(48)
where

Ψ̂ir ,

 T(ĥir
1,1), · · ·, T(ĥir

1,Nr
)

...
. . .

...
T(ĥir

Ns,1
),· · ·,T(ĥir

Ns,Nr
)

, êijm,

 d̂ij
1,m
...

d̂ij
Ns,m



∆i ,

 T(κir
1,1), · · ·, T(κir

1,Nr
)

...
. . .

...
T(κir

Ns,1
),· · ·,T(κir

Ns,Nr
)

, gij
m,

 ιij1,m
...

ιijNs,m

.
We can rewrite (48) as

êijm = Ψ̂irh
rj
m + εijm, m = 1, · · · , Ns, j = 1, 2 (49)
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where εijm is the equivalent estimation error vector given by

εijm , ∆ih
rj
m − gij

m. (50)

Using a linear estimator to estimate hrj
m at node i, we have

ĥrj
m = VH

ijmêijm, m = 1, · · · , Ns, j = 1, 2 (51)

where Vijm is the weight matrix of the LMMSE estimator
at node i. From (49) and (51), the sum MSE of the first-hop
channel estimation at node i is given by

MSEi =
2∑

j=1

Ns∑
m=1

tr
(
E
[
(ĥrj

m − hrj
m)(ĥrj

m − hrj
m)H

])
=

2∑
j=1

Ns∑
m=1

tr
(
E
[
(VH

ijmΨir − INrQ)Rhrj
m

×(VH
ijmΨir − INrQ)

H +VH
ijmRεij

m
Vijm

])
(52)

where Rhrj
m

, E
[
hrj
m

(
hrj
m

)H]
is the covariance matrix of hrj

m

and Rεij
m

, E
[
εijm
(
εijm
)H] is the estimation error covariance

matrix. From (46), we have

Rhrj
m

= bd[Drj
1,m, · · · ,Drj

Nr,m
], m = 1, · · · , Ns, j = 1, 2

where Drj
n,m , diag[σrj

n,m,1, · · · , σ
rj
n,m,Q].

The estimation error covariance matrix Rεij
m

is obtained
from (50) as

Rεij
m
=E

[(
∆ih

rj
m − gij

m

) (
∆ih

rj
m − gij

m

)H]
=E

[
∆iRhrj

m
∆H

i

]
+ E

[
gij
m

(
gij
m

)H]
m = 1, · · · , Ns, j = 1, 2.

Due to the circulant structure of ∆i and the fact that Rhrj
m

is
a diagonal matrix, we have

Rεij
m
= bd

[
R1,m

i,j , · · · ,RNs,m
i,j

]
+Rgij

m

m = 1, · · · , Ns, j = 1, 2

where Rgij
m
= E

[
gij
m

(
gij
m

)H] can be obtained from (30) and

Rk,m
i,j =

∑Nr
n=1 diag(σ

rj
n,m∗dκi

k,n
). Here σrj

n,m is defined in
the line after (19) and dκi

k,n
contains the diagonal elements of

Rκi
k,n

, E
[
κir
k,n

(
κir
k,n

)H], which can be obtained from the
MSE expression (30).

The weight matrices Vijm, j = 1, 2,m = 1, · · · , Ns, that
minimize MSEi in (52) are given by

Vijm =
(
ΨirRhrj

m
ΨH

ir +Rεij
m

)−1

ΨirRhrj
m
. (53)

Substituting (53) back into (52), we obtain the MSE of channel
estimation at node i as

MSEi =
2∑

j=1

Ns∑
m=1

tr

([(
Rhrj

m

)−1
+ΨH

ir

(
Rεij

m

)−1
Ψir

]−1
)
.

(54)
It can be seen from (54) that the MSE of the first-hop channel
estimation depends on the covariance matrix of the second-hop
channel estimation error Rεij

m
. When the MSE of the second-

hop channel estimation increases, the MSE of the first-hop
channel estimation also increases.
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Fig. 3. Example 1: NMSE versus P for different α with N = 2 and Q = 4.

IV. NUMERICAL EXAMPLES

In this section, we study the performance of the pro-
posed superimposed channel training algorithm for two-way
MIMO relay systems operating in frequency-selective fading
environments through numerical simulations. We consider a
three-node two-way MIMO relay system where all nodes are
equipped with the same number of antennas, i.e., Ns =
Nr = N . For simplicity, we assume that all channel taps
have unit variances. We use the shortest length of training
sequence possible with L = (5Q − 2)N . For all scenarios,
the normalized MSE (NMSE) of channel estimation at nodes
1 and 2 are computed.

For the first three simulation examples, we assume that all
nodes have the same transmission power Pi = P , i = 1, 2, r.
In the first example, we investigate the performance of the
superimposed channel training algorithm for different α. Fig. 3
shows the NMSE of the proposed algorithm versus P with
different α when N = 2 and Q = 4. The optimal α curve
is obtained by applying the GSS technique to the proposed
superimposed channel training algorithm to obtain the optimal
α for different P . It can be observed from Fig. 3 that the
optimal α curve consistently has the lowest MSE level for all
P . This proves that the GSS technique is able to obtain the
optimal α at different P efficiently.

Interestingly, we notice from Fig. 3 that the optimal α varies
with respect to P , indicating that using a constant α is strictly
suboptimal. Although the NMSE with α = 0.06 is close to the
NMSE using the optimal α for P between 10dB and 30dB,
α = 0.06 yields a higher NMSE than α = 0.04 at P = 5dB.
Moreover, for other simulation examples (e.g. different N and
Q), the NMSE with α = 0.06 might not be close to the NMSE
using the optimal α. In practical systems, a table containing
the value of the optimal α at different P , N , and Q can be
constructed for reference.

In the second example, we study the performance of the
proposed superimposed channel training algorithm when the
optimal α is used under different simulation parameters. We
compare the proposed algorithm with the conventional two-
stage MMSE channel estimation algorithm, where the second-
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Fig. 4. Example 2: NMSE versus P for different N with Q = 6.
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Fig. 5. Example 2: Individual channel NMSE versus P for different N with
Q = 6.

hop channel matrices are estimated at the first stage by using
the training sequence sent from the relay node, and the first-
hop channel matrices are estimated at the second stage by
exploiting the training signals sent from the source nodes
[13]. Fig. 4 demonstrates the NMSE performance of both
methods versus P for different N and Q = 6. As expected,
when the number of antennas increases, the NMSE of channel
estimation at both sides also increases as there are more
unknowns to be estimated. It can also be seen from Fig. 4 that
the performance of the proposed algorithm is always better
than the conventional two-stage channel estimation method,
especially at high power levels.

Fig. 5 demonstrates the NMSE performance of the algorithm
proposed in Section III.C which retrieves the individual CSI
{hir

k,n} and {hri
n,m}. It can be observed that the NMSE

performance for the estimation of {hir
k,n} is always better than

that for the estimation of {hri
n,m}, as the estimation of {hri

n,m}
depends on the estimation of {hir

k,n}.
In the third example, the effect of the number of multipath

Q on the performance of the proposed superimposed channel
training algorithm is investigated. The results are shown in
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Fig. 6. Example 3: NMSE versus Q for different P and N = 2.
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Fig. 7. Example 4: NMSE versus Ps for different Pr with N = 2 and
Q = 6.

Fig. 6 for the case of N = 2. It can be seen that the
NMSE performance of channel estimation improves when Q
increases, as all channel taps are set to have unit variance. It
can also be seen from Fig. 6 that such improvement diminishes
when Q becomes larger.

The fourth simulation example studies the scenario where
the power constraints at the source nodes and relay node are
different. Fig. 7 shows the NMSE of the proposed algorithm
versus P1 = P2 = Ps for different fixed Pr when N = 2
and Q = 6. It can be seen that as expected, the proposed
algorithm has a better NMSE performance when the power at
the source/relay node is increased.

V. CONCLUSIONS

We have applied the method of superimposed channel
training to two-way MIMO relay communication systems in
frequency-selective fading environments. The proposed algo-
rithm can efficiently estimate the individual CSI for two-
way MIMO relay systems with frequency-selective fading
channels. We also derived the optimal structure of the training
sequences that minimize the MSE of the channel estimation
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and optimize the power allocation between the source and
relay training sequences.

APPENDIX A
PROOF OF THEOREM 1

The MSE in (24) can be rewritten as

MSE=

2∑
i=1

Ns∑
k=1

tr



Ck

i1 0 0
0 Ck

i2 0
0 0 Ck

ir

−1

+ηi,k

√αΦH(s)√
αΦH(t)
ΦH(r)

(√αΦ(s),
√
αΦ(t), Φ(r)

)−1
(55)

where

ηi,k,

α Nr∑
n=1

Q∑
j=1

σir
k,n,j+1

−1

, i=1, 2, k=1, · · · , Ns.

(56)
It can be seen that (55) is minimized only if all off-diagonal
matrices of the second term are zero, i.e.,

ΦH(s)Φ(t) =0 ΦH(s)Φ(r) =0 ΦH(r)Φ(t) =0. (57)

Based on (7)-(9) and (57), we have that for m,n = 1, · · · , Ns,
p = 1, · · · , Nr

CH
2Q−1(sm)C2Q−1(tn) = 0, CH

2Q−1(sm)CQ(rp) = 0,

CH
2Q−1(tn)CQ(rp) = 0. (58)

Using (57), MSE in (55) can be written as

MSE=
2∑

i=1

Ns∑
k=1

tr
([(

Ck
i1

)−1
+ αηi,kΦ

H(s)Φ(s)
]−1

+
[(
Ck

i2

)−1
+αηi,kΦ

H(t)Φ(t)
]−1

+
[(
Ck

ir

)−1
+ηi,kΦ

H(r)Φ(r)
]−1
)
. (59)

Since from (18) and (19), Ck
i1, Ck

i2, and Ck
ir are all diagonal,

to minimize (59), ΦH(s)Φ(s), ΦH(t)Φ(t), and ΦH(r)Φ(r)
must be diagonal, and together with (7)-(9), we have

CH
2Q−1(sm)C2Q−1(sm)=Ds,m, CH

2Q−1(tn)C2Q−1(tn)=Dt,n,

CH
Q (rp)CQ(rp) = Dr,p (60)

where Ds,m and Dt,n are (2Q − 1) × (2Q − 1) diagonal
matrices, while Dr,p is a Q×Q diagonal matrix.

It is worth noting that (58) and (60) do not change the
value of sHmsm, tHmtm, and rHn rn in the constraints (25)-
(27). Moreover, tr

(
CQ(sm)Dr1

n,mCH
Q (sm)

)
in the constraint

(27) is minimized if CH
Q (sm)CQ(sm) is diagonal and its

diagonal elements are in the inverse order to that of Dr1
n,m

[22]. Similarly, the term of tr
(
CQ(tm)Dr2

n,mCH
Q (tm)

)
in (27)

is minimized if CH
Q (tm)CQ(tm) is diagonal and its diagonal

elements are in the inverse order to that of Dr2
n,m. Obviously,

these two requirements are satisfied by (60).
Considering (58), (60), and the circulant structure of

C2Q−1(sm), C2Q−1(tn), and CQ(rp), we have

Ds,m = βmI2Q−1, Dt,n = γnI2Q−1, Dr,p = δpIQ

where sHmsm = βm, tHn tn = γn, and rHp rp = δp. �

APPENDIX B
PROOF OF THEOREM 2

By introducing ξ1,m , αβm, ξ2,m , αγm, m = 1, · · · , Ns,
the problem (31)-(35) can be equivalently rewritten as

min
ξ1,ξ2,δ,α

Ns∑
m=1

Ns∑
k=1

2Q−1∑
q=1

2∑
i=1

(
1

ci1k,m,q+ξ1,mηi,k
+

1

ci2k,m,q+ξ2,mηi,k

)

+

Nr∑
n=1

Ns∑
k=1

Q∑
p=1

2∑
i=1

1

cirk,n,p+ δnηi,k
(61)

s.t. 1T ξi ≤ αPi, i = 1, 2 (62)
κT
1 ξ1 + κT

2 ξ2 + 1T δ ≤ Pr − αLNr (63)
α>0, ξi,m≥0, i=1,2, m=1,· · ·,Ns, δn≥0, n=1,· · ·,Nr

(64)

where κi , [κi,1, · · · , κi,Ns ]
T , ξi , [ξi,1, · · · , ξi,Ns ]

T , i =
1, 2, and 1 is a column vector of all ones with a commensurate
dimension.

Let us first ignore the effect of α on all ηi,k by treating them
as known variables. Then the problem (61)-(64) becomes a
convex optimization problem, as (61) is a convex function of
ξ1, ξ2, δ, and (62)-(64) are linear inequality constraints. When
α has a sufficiently small value, the value of (61) is strongly
governed by the constraints in (62), since the constraint (63)
is inactive compared with the constraints in (62) for small
value of α. Once α increases from a small value, the feasible
region specified by (62) expands, and thus, the value of (61)
decreases.

On the other hand, when α is large (close to Pr/(LNr)),
the value of (61) is strongly governed by the constraint (63),
as the constraints in (62) are inactive compared with that of
(63) when α is large. Once α decreases from a large value,
the feasible region specified by (63) expands, leading to the
decreasing of (61).

Now we consider the effect of α on ηi,k. It can be seen
from (56) that ηi,k monotonically decreases with increasing
α, and (61) increases when ηi,k decreases. From the analysis
above, it can be deduced that when α increases from a
significantly small positive number, the objective function
(61) starts to decrease since the potential decrease of (61)
due to the expanded feasible region of (62) dominates the
potential increase of (61) caused by the decreasing ηi,k. The
value of (61) keeps decreasing till a ‘turning point’ where
the decreasing of ηi,k starts to dominate the effect of relaxed
feasible region in (62). After such turning point, the value
of (61) is monotonically increasing with an increasing α.
Therefore, the objective function (31) subjecting to (32)-(35)
is a unimodal function with respect to α. �
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