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Abstract—WiFi offloading is regarded as one of the most
promising techniques to deal with the explosive data increase in
cellular networks due to its high data transmission rate andlow
requirement on devices. In this paper, we investigate the mobile
data offloading problem through a third-party WiFi access point
(AP) for a cellular mobile system. From the cellular operator’s
perspective, by assuming a usage-based charging model, we
formulate the problem as a utility maximization problem. In
particular, we consider three scenarios: (i) successive interference
cancellation (SIC) available at both the base station (BS) and
the AP; (ii) SIC available at neither the BS nor the AP; (iii)
SIC available at only the BS. For (i), we show that the utility
maximization problem can be solved by considering its relaxation
problem, and we prove that our proposed data offloading scheme
is near-optimal when the number of users is large. For (ii), we
prove that with high probability the optimal solution is One-
One-Association, i.e., one user connects to the BS and one user
connects to the AP. For (iii), we show that with high probability
there is at most one user connecting to the AP, and all the other
users connect to the BS. By comparing these three scenarios,
we prove that SIC decoders help the cellular operator maximize
its utility. To relieve the computational burden of the BS, we
propose a threshold-based distributed data offloading scheme.
We show that the proposed distributed scheme performs well if
the threshold is properly chosen.

Index Terms—WiFi offloading, utility maximization, user as-
sociation, integer programming, schur convex.

I. I NTRODUCTION

The rapid development of mobile phones and mobile inter-
net services in recent years has generated a lot of data usage
over the cellular network [1]. The unprecedented explosionof
mobile data traffic has led to overloaded cellular networks.
For example, in metro areas and during peak hours, most 3G
networks are overloaded [2]. Mobile users in overloaded areas
will have to experience degraded cellular services, such aslow
data transmission rate and low quality phone calls.

A straightforward approach to address the above problem
is to upgrade the cellular network to the more advanced 4G
network. Another approach is to deploy more base stations
(BSs) with smaller cell size such as femtocells [3], [4].
However, these approaches incur increase in infrastructure
cost. A more cost-effective approach is to offload some of
the mobile traffic to WiFi networks, which is often referred
to as WiFi offloading. It has a few advantages: (i). No user
equipment upgrading is required. This is because most of
the mobile data services are created by smartphones which
already have built-in WiFi modules. (ii). No licensed spectrum
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is required. WiFi devices operate in unlicensed and world-
unified 2.4GHz and 5GHz bands. (iii). High data rates. IEEE
802.11n WiFi can deliver data rates as high as 600Mbps and
IEEE 802.11ac can deliver up to 6.933Gbps [5], which is much
faster than 3G. (iv). Low infrastructure cost. The WiFi routers
are much cheaper than the cellular BSs.

For the aforementioned reasons, WiFi offloading becomes
a hot research topic and has attracted the attention of many
researchers all over the world [6]– [20]. The feasibility of
augmenting 3G using WiFi was investigated in [6]. The perfor-
mance of 3G mobile data offloading through WiFi networks
for metropolitan areas was studied in [7]. The numbers of
APs needed for WiFi offloading in large metropolitan area
was studied in [8]. Different approaches to implement WiFi
offloading and to improve the performance of WiFi offloading
were investigated in [9]– [14]. The load-balancing and user-
association problem for offloading in heterogeneous networks
with cellular networks and small cells are investigated in [15]–
[18]. In [15], the authors investigated the outage probability
and ergodic rate when a flexible cell association scheme is
adopted. In [16], the authors developed a general and tractable
model for data offloading in heterogeneous networks with
different tiers of APs. In [17], the authors investigated the
downlink user association problem for load balancing in a het-
erogeneous cellular networks. In [18], the authors investigated
the data offloading schemes for load coupled networks, and
showed that the optimal loading is tractable when proportional
fairness is considered. Recent works [19]–[22] investigated the
network economics of data offloading through WiFi APs using
game theory [23].

Different from the above work, in this paper, we consider
the scenario that there is a third-party WiFi AP providing
data offloading service with a usage-based charging policy.
We investigate the data offloading problem through such a
third-party WiFi AP for a cellular mobile communication
system. From business perspective, the cellular operator aims
to maximize its revenue. Thus, in this paper, we investigate
the data offloading problem from the economic point of view.
We formulate the problem as a utility maximization problem
and derive the corresponding data offloading schemes for the
cellular operator. In particular, we consider three scenarios,
namely, SIC available at both the BS and the AP, SIC available
at only the BS, and SIC available at neither the BS nor the AP.
We study the different utility functions and propose different
data offloading schemes.

The main contribution and results of this paper are summa-
rized as follows.

• SIC available at both the BS and the AP:The utility
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maximization problem for this case is solved by consid-
ering its relaxation problem. We show that the relaxation
problem is a convex optimization problem. By using the
convex optimization techniques, we prove that there is
at most one user with fractional indicator function. A
data offloading scheme is then obtained by rounding the
fractional indicator function to its nearest integer. It is
strictly proved that the proposed data offloading scheme
is near-optimal when the number of users is large.

• SIC available at neither the BS nor the AP:For this case,
we rigorously prove that when the number of users is
large, the optimal solution is One-One-Association, i.e.,
the user with the best user-to-BS channel connects to the
BS and that with the best user-to-AP channel connects to
the WiFi AP.

• SIC available at only the BS:For this case, we show
that when the number of users is large, there is at most
one user connecting to the WiFi AP, and all the other
users connect to the BS. A polynomial-time algorithm is
developed to find the optimal offloading scheme.

• SIC is beneficial for the cellular operator:We rigorously
prove that SIC decoders are beneficial for the cellular
operator in terms of maximizing its utility.

• Distributed data offloading scheme:We propose a
threshold-based distributed data offloading scheme for the
case when SIC decoders are available at both the BS and
the AP. We prove that the proposed distributed scheme
can achieve the same performance as the centralized data
offloading scheme once the threshold is properly chosen.

The rest of this paper is organized as follows: In Section II,
we describe the system model and the problem formulation.
In Section III, we present the results obtained for the case
when SIC decoders are available at both the BS and the WiFi
AP. In Section IV, we present the results obtained for the case
when SIC decoders are not available at both the BS and the
WiFi AP, and the results for the case when the SIC decoder
is available at the BS side are given in Section V. Then, in
Section VI, we show that SIC decoders are beneficial for the
cellular operator. We also present a high-efficiency distributed
data offloading scheme for the case when SIC decoders are
available at both the BS and the WiFi AP. Simulation results
are given in Section VII. Section VIII concludes the paper.

II. SYSTEM MODEL

In this paper, as shown in Fig. 1, we consider a cellular
network with N users served by a base station (BS). We
assume that there is a third-party WiFi access point (AP)
within the coverage area of the BS. The WiFi AP and the
BS use orthogonal frequencies. Thus, there is no inter-network
interference between WiFi and cellular network. To maximize
the network throughput and improve the overall network
performance, the cellular operator may direct some of its users
to be served by the WiFi AP. Since the WiFi AP belongs to
a third-party operator, data offloading through AP is thus not
for free. The cellular operator has to reward the AP operator
an incentive while guaranteeing an optimized utility.

In this paper, we focus on the uplink scenario. We assume
that all the users adopt fixed power transmission, i.e.,Pi

Fig. 1. System Model

for user i. For the convenience of analysis, we assume that
Pi = P, ∀i. We also assume the users are uniformly distributed
in the coverage area. The channel power gain between useri
and the BS is denoted bygi,B, and that between useri and
the WiFi AP is denoted bygi,A. Unless otherwise specified,
we assume thatgi,B ’s and gi,A’s are strictly positive, mutu-
ally independent, and have continuous probability distribution
function (pdf). The power of the additive Gaussian noises at
the BS and the AP are denoted byσ2

B andσ2
A, respectively. We

also assume that all the channel state information (CSI) and
users’ transmit power are known at the BS. Now, we define
xi ∈ {0, 1} and yi ∈ {0, 1} as two indicator functions to
indicate useri’s connection to BS and AP, respectively. If
useri connects to BS,xi = 1; otherwise,xi = 0. Similarly, if
useri connects to AP,yi = 1; otherwise,yi = 0. Besides, at
any time, useri is only allowed to connect to either BS or AP,
but not to both of them simultaneously, i.e.,xi + yi ≤ 1, ∀i.

In this paper, we assume that the cellular operator charges
its users atλ per nat of data usage, and it pays the third-
party WiFi operator atµ per nat of data usage over the AP.
For convenience, throughout the paper, we use the natural
logarithm. Hence, the data is measured in nats rather than
in bits. Then, the utility function of the operator is definedas

U(x,y) = λRB(x) + (λ− µ)RA(y), (1)

whereRB(x) is the sum-rate at the BS, andRA(y) is the sum-
rate at the WiFi AP. The exact form of the sum-rate depends on
whether the SIC decoder is available. As implied by the name,
in a receiver with a SIC decoder, users’ signals are extracted
from the composite received signal successively, rather than in
parallel. The SIC decoder is able to remove the interference
of the most recently decoded user from the current composite
received signal by subtracting it out. According to [24], ifa
SIC decoder is available at the BS, the sum-rate at the BS
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can be written asRw
B(x) = ln

(

1 +
∑N

i=1
gi,BP

σ2

B

xi

)

; on the
other hand, if the SIC decoder is not available at the BS,

Ro
B(x) =

∑N
i=1 ln

(

1+
xigi,BP

∑
N
j=1,j 6=i xjgj,BP+σ2

B

)

. Similarly, at

the WiFi AP, we haveRw
A(y) = ln

(

1 +
∑N

i=1
gi,AP

σ2

A

yi

)

and

Ro
A(y) =

∑N
i=1 ln

(

1+
yigi,AP

∑
N
j=1,j 6=i yjgj,AP+σ2

A

)

, with or without

SIC decoder.
Depending on whether SIC decoder is available at the

BS/AP, we have the following four possible utility functions

Uww(x,y) = λRw
B(x) + (λ− µ)Rw

A(y), (2)

Uoo(x,y) = λRo
B(x) + (λ− µ)Ro

A(y), (3)

Uwo(x,y) = λRw
B(x) + (λ− µ)Ro

A(y), (4)

Uow(x,y) = λRo
B(x) + (λ− µ)Rw

A(y). (5)

In the rest of the paper, we study the optimal data offloading
schemes for the above four cases.

III. W ITH SIC DECODERS ATBOTH SIDES

In this Section, we investigate the case that both the BS
and the WiFi AP are equipped with a SIC decoder. Thus, the
utility maximization problem of the cellular operator can be
formulated as

Problem 3.1:

max
{xi,yi,∀i}

λ ln

(

1+

N
∑

i=1

Si,Bxi

)

+(λ−µ) ln

(

1+

N
∑

i=1

Si,Ayi

)

,

(6)

s.t. xi ∈ {0, 1}, ∀i, (7)

yi ∈ {0, 1}, ∀i, (8)

xi + yi ≤ 1, ∀i, (9)

whereSi,B ,
gi,BP

σ2

B

andSi,A ,
gi,AP

σ2

A

.
It is observed from this problem formulation that the third-

party operator’s pricing strategyµ has a great influence on the
optimal solution of the above problem. Whenµ is larger than
λ, the cellular operator will not assign any user to the AP.
This is rigorously proved by the following proposition.

Proposition 3.1: When λ ≤ µ, the optimal solution of
Problem 3.1 isx∗ = 1N ,y∗ = 0N , where 1N and 0N

denote the N-dimension all-one vector and all-zero vector,
respectively.

Proof: To provex∗ = 1N and y∗ = 0N is the optimal
solution of Problem 3.1, we have to show thatf(x∗,y∗)
is larger thanf(x,y), wheref(x,y) denotes the objective
function of Problem 3.1 and(x,y) is any feasible solution of
Problem 3.1. Suppose(x̃, ỹ) is a feasible solution of Problem
3.1, then it follows that

f(x̃, ỹ) = λRw
B(x̃) + (λ− µ)Rw

A(ỹ)
a
≤ λRw

B(x̃) + (λ− µ)Rw
A(0N )

b
≤ λRw

B(1N ) + (λ− µ)Rw
A(0N ), (10)

where “a” follows from the fact thatλ−µ ≤ 0 andRw
A(y) is

always nonnegative, and “b” follows from the fact thatRw
B(x)

is an increasing function ofx, and thus the equality holds only
whenx∗ = 1N . �

Proposition 3.1 indicates that the cellular operator will
not offload any mobile data to the WiFi AP if the third-
party operator charges at a price higher than its revenue, i.e.,
µ ≥ λ. On the other hand, from the third-party operator’s
perspective, if the cellular operator does not offload mobile
data through its WiFi AP, it will earn nothing, which is a
lose-lose situation. Thus, a reasonable third-party operator will
charge a price lower thanλ, which is the scenario we consider
in the following studies, i.e.,µ < λ.

Proposition 3.2: The optimal solution of Problem 3.1 is
obtained when (9) holds with equality for arbitraryi.

Proof: This can be proved by contradiction. Suppose
(x∗,y∗) is the optimal solution of Problem 3.1, and it has
an element(x∗

k, y
∗
k) satisfyingx∗

k + y∗k < 1. Then, from (7)
and (8), it follows thatx∗

k = 0, y∗k = 0. Now, we show that
we can always find a feasible solution(x̃, ỹ) with its elements
satisfyingx̃∗

i + ỹ∗i = 1, ∀i with a higher value of (6). We let
x̃−k = x∗

−k, ỹ−k = y∗
−k, where the minus sign before the

letterk in the subscript of a vector refers to all the elements of
the vector except thekth element. Then, since the logarithm
function is an increasing function, it is clear that if we set
x̃∗
k = 1, ỹ∗k = 0 or x̃∗

k = 0, ỹ∗k = 1 will result in a higher value
of (6) than that resulted byx∗

k = 0, y∗k = 0. This contradicts
with our presumption. Proposition 3.2 is thus proved. �

With the results given in Proposition 3.2, we can reduce the
complexity of Problem 3.1 by settingyi = 1 − xi. Problem
3.1 can be converted to the following problem.

Problem 3.2:

max
xi,∀i

λ ln

(

1+
N
∑

i=1

Si,Bxi

)

+(λ−µ) ln

(

1+
N
∑

i=1

Si,A(1−xi)

)

,

(11)

s.t. xi ∈ {0, 1}, ∀i. (12)

This is a nonlinear integer programming problem. When the
number of users is small, it can be solved by exhaustive search.
However, when the number of users is large, exhaustive search
is not applicable due to the high complexity. In this paper,
we solve Problem 3.2 by solving its relaxation problem, and
rigorously prove that the gap between the relaxation problem
and Problem 3.2 is negligible when the number of the users
is large.

Therelaxation problem of Problem 3.2 is given as follows:
Problem 3.3:

max
xi,∀i

λ ln

(

1+

N
∑

i=1

Si,Bxi

)

+(λ−µ) ln

(

1+

N
∑

i=1

Si,A(1−xi)

)

,

(13)

s.t. 0 ≤ xi ≤ 1, ∀i. (14)

Problem 3.3 is a convex optimization problem. To show its
convexity, we only need to show that the objective function
is convex or concave since all the constraints are linear.
Denote the objective function of the relaxation problem asfr,
then fr is convex/concave if its Hessian is positive/negative



4

semidefinite. Denote the Hessian offr asH, we show that
H is negative semidefinite by the following proposition.

Proposition 3.3: The HessianH is negative semidefinite.
Proof: The Hessian off can be written as

H =









∂2f
∂x2

1

· · · ∂2f
∂x1∂xN

...
. . .

...
∂2f

∂xN∂x1

· · · ∂2f
∂x2

N









, (15)

where the diagonal elements and off-diagonal elements can be

obtained as∂
2f

∂x2

k

= − λS2

k,B

(1+
∑

N
i=1

Si,Bxi)
2 − (λ−µ)S2

k,A

(1+
∑

N
i=1

Si,A(1−xi))
2 ,

and ∂2f
∂xk∂xj

=− λSk,BSj,B

(1+
∑

N
i=1

Si,Bxi)
2 − (λ−µ)Sk,ASj,A

(1+
∑

N
i=1

Si,A(1−xi))
2 .

It is observedH can be rewritten as

H=− λ
(

1+
∑N

i=1Si,Bxi

)2B− (λ−µ)
(

1+
∑N

i=1Si,A(1−xi)
)2A,

(16)

where matricesB and A have the same structure as the
following matrix X

X =







S2
1,X · · · S1,XSN,X

...
. . .

...
SN,XS1,X · · · S2

N,X






. (17)

It can be shown that for any vectorc = [c1 · · · cN ]T ,
cTXc can be obtained as

cTXc = (c1S1,X + · · ·+ cNSN,X)2 ≥ 0. (18)

Thus, it is clear that bothB andA are positive semidefinite.
Then, since bothλ andλ − µ are non-negative, it is easy to
see thatH is negative semidefinite. Therefore, the objective
function is strictly concave. �

Problem 3.3 is shown to be convex, and it can be easily
verified that Slater’s condition holds for this problem. Thus,
the duality gap between Problem 3.3 and its dual problem is
zero, and solving its dual problem is equivalent to solving the
original problem.

Now, we consider its dual problem. The Lagrangian of
Problem 3.3 is

L (x,α,β) = (λ −µ) ln

(

1+

N
∑

i=1

Si,A(1 − xi)

)

+λ ln

(

1+

N
∑

i=1

Si,Bxi

)

−
N
∑

i=1

αi(xi − 1) +

N
∑

i=1

βixi, (19)

whereα = [α1 · · · αN ]T and β = [β1 · · · βN ]T are the
nonnegative dual variables associated with the constraints.

The dual function isq(α,β) = maxx L(x,α,β). The
Lagrange dual problem is then given byminα<0,β<0 q(α,β).
Therefore, the optimal solution needs to satisfy the following

Karush-Kuhn-Tucker (KKT) conditions [25]:

αk(x
∗
k − 1) = 0, (20)

βkx
∗
k = 0, (21)

0 ≤ x∗
k ≤ 1, (22)

α∗
k ≥ 0, β∗

k ≥ 0, (23)

∂L (x,α,β)

∂x∗
k

= − (λ− µ)Sk,A

1+
∑N

i=1 Si,A(1− x∗
i )

+
λSk,B

1+
∑N

i=1 Si,Bx∗
i

− αk + βk = 0, (24)

Due to the complexity of the problem, solving the above
KKT conditions will not render us a closed-form solution.
However, from these KKT conditions, we are able to gain
some significant features of the optimal solution.

Theorem 3.1: The optimal solution of the relaxation prob-
lem has at most one user indexed byk (k ∈ {1, 2, · · · , N}),
with a fractionalxk satisfying0 < xk < 1.

Proof: This proposition can be proved by contradiction.
Suppose that there are two arbitrary users denoted bym and
n having fractionalxm andxn, respectively, i.e.,0 < xm < 1
and0 < xn < 1. From (20) and (21), it follows thatαm = 0,
αn = 0, βm = 0, andβn = 0. Then, applying these facts to
(24), it follows that

λSm,B

1+
∑N

i=1 Si,Bx∗
i

− (λ − µ)Sm,A

1+
∑N

i=1 Si,A(1− x∗
i )

= 0, (25)

λSn,B

1+
∑N

i=1 Si,Bx∗
i

− (λ − µ)Sn,A

1+
∑N

i=1 Si,A(1− x∗
i )

= 0. (26)

Then, for these two users, the following equality must hold

Sm,B

Sm,A
=

Sn,B

Sn,A
=

(λ − µ)

λ

1+
∑N

i=1 Si,Bx
∗
i

1+
∑N

i=1 Si,A(1− x∗
i )
. (27)

It is easy to observe thatSm,B

Sm,A
=

Sn,B

Sn,A
is equivalent togm,B

gm,A
=

gn,B

gn,A
, However, it can be verified that the equalitygm,B

gm,A
=

gn,B

gn,A

is satisfied with a zero probability since the channel power
gains are mutually independent and have continuous pdf. This
result contradicts with our presumption. Thus, it is concluded
that there is at most one user with a fractionalxk, i.e., 0 <
xk < 1. Theorem 3.1 is thus proved. �

From Theorem 3.1, it is observed that there is at most
one user with a fractional indicator for the optimal solution
of Problem 3.3. This indicates that the optimal solution of
Problem 3.3 is either equal to or just one-user away from that
of Problem 3.2. Thus, the following scheme is proposed to
find the optimal solution of Problem 3.2.

TABLE I

Proposed Centralized Data Offloading Scheme for Problem 3.1
1). Solve Problem 3.3 by standard convex optimization algorithms, such as
interior-point method [26], or existing solvers such as CVX[27].
2). Convert the obtained solution into a feasible solution of Problem 3.2 by
rounding the fractional indicator function to its nearest integer (0 or 1).

In general, the above algorithm provides a sub-optimal
solution to Problem 3.2. However, due to the special feature
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presented in Theorem 3.1, we are able to prove that the
proposed solution given in the Table I is near-optimal when
the number of users is large.

Theorem 3.2: The gap between the optimal solution of
Problem 3.2 and the proposed solution given in Table I is
negligible when the number of users is large.

Proof: For the convenience of exposition, we denote the
maximum values of Problem 3.2 attained at the optimal
solution and at the proposed solution given in Table I asf∗

o

andf∗
s , respectively. Since the solution given in Table I is also

a feasible solution of Problem 3.2. Thus, it follows that

f∗
s ≤ f∗

o . (28)

On the other hand, it is clear that the maximum value of
Problem 3.2 is upper bounded by its relaxation problem. Thus,
if we denote the maximum values of the relaxation problem
attained at the optimal solution asf∗

r , it follows that

f∗
o ≤ f∗

r . (29)

Combining the above facts together, we have

f∗
s ≤ f∗

o ≤ f∗
r . (30)

Thus, if we are able to show that the gap betweenf∗
s andf∗

r

is negligible when the number of users is large, it is clear that
the gap betweenf∗

s andf∗
o will also be negligible when the

number of users is large.
Now, we show that the gap betweenf∗

s and f∗
r is

negligible when the number of users is large. Suppose
x∗ is the optimal solution of the relaxation problem, and
user k is the user with a fractional indicator functionx∗

k.

Then, the value off∗
r is λ ln

(

1+
∑N

i=1 Si,Bx
∗
i

)

+ (λ −
µ) ln

(

1+
∑N

i=1 Si,A(1− x∗
i )
)

, while the value off∗
s is ob-

tained by either settingxk = 0 when xk < 0.5 or set-
ting xk = 1 when xk ≥ 0.5. Obviously, it follows that
f∗
s > f̃s

∗
, where f̃s

∗
, λ ln

(

1 +
∑N

i=1,i6=k Si,Bx
∗
i

)

+ (λ −
µ) ln

(

1 +
∑N

i=1,i6=k Si,A(1− x∗
i )
)

, which corresponds to the
scenario that userk connects to neither the BS nor the AP.

Then, the gap∆ betweenf∗
s andf∗

r satisfies

∆ < f∗
r − f̃s

∗
= λ ln

(

1 +
Sk,Bx

∗
k

1+
∑N

i=1,i6=k Si,Bx∗
i

)

+ (λ−µ) ln

(

1 +
Sk,A(1−x∗

k)

1+
∑N

i=1,i6=k Si,A(1 − x∗
i )

)

. (31)

Since the users are uniformly distributed in the area, thus when
the number of users is large, it is inferred that the denominators
of the above equation will be very large. Consequently, the
value of∆ is close to zero. Theorem 3.2 is thus proved.�

IV. W ITHOUT SIC DECODERS ATBOTH SIDES

In this section, we consider the scenario that neither the
BS nor the WiFi AP implements the SIC decoder. The utility
maximization problem of the cellular operator for this case
can be formulated as

Problem 4.1:

max
{xi,yi,∀i}

λ

N
∑

i=1

ln

(

1+
xigi,BP

∑N
j=1,j 6=i xjgj,BP + σ2

B

)

+(λ−µ)
N
∑

i=1

ln

(

1+
yigi,AP

∑N
j=1,j 6=i yjgj,AP + σ2

A

)

, (32)

s.t. xi ∈ {0, 1}, ∀i, (33)

yi ∈ {0, 1}, ∀i, (34)

xi + yi ≤ 1, ∀i. (35)

Problem 4.1 is a nonlinear integer programming problem
which is difficult to solve directly due to its high complexity.
Besides, it is not difficult to verify that the relaxation problem
of Problem 4.1 is non-convex. Thus, we are not able to solve
Problem 4.1 in the same way as Problem 3.1. To solve Problem
4.1, we first consider the following two subproblems.

Subproblem 4.1a:

max
{xi,∀i}

λ
N
∑

i=1

ln

(

1+
xigi,BP

∑N
j=1,j 6=i xjgj,BP + σ2

B

)

, (36)

s.t. xi ∈ {0, 1}, ∀i. (37)

Subproblem 4.1b:

max
{yi,∀i}

(λ −µ)

N
∑

i=1

ln

(

1+
yigi,AP

∑N
j=1,j 6=i yjgj,AP + σ2

A

)

, (38)

s.t. yi ∈ {0, 1}, ∀i. (39)

Denote the optimal solution of Subproblem 4.1a asx∗
i , ∀i ∈

{1, 2, · · · , N} and that of Subproblem 4.1b asy∗i , ∀i ∈
{1, 2, · · · , N}. Then, it is clear that ifx∗

i and y∗i satisfy the
constraints (35) for alli ∈ {1, 2, · · · , N}, x∗

i and y∗i will be
the optimal solution for Problem 4.1. In the following, we
will show that when the number of users is large, Problem
4.1 can be solved by individually solving Subproblem 4.1a
and Subproblem 4.1b. It is seen that Subproblem 4.1a and
Subproblem 4.1b have the same structure. As a result, the
optimal solutions of these two subproblems should also have
the same structure. In the following, using Subproblem 4.1b
as an example, we present the optimal solution of the two
subproblems.

Lemma 4.1: i) Sort the users according to their channel
power gains in descending order:g1,A ≥ g2,A ≥ · · · ≥ gN,A.
At an optimal solution, only the firstk∗(≤ N) users transmit,

andk∗ = argmaxk
∑k

i=1 ln

(

1 +
gi,AP

∑
k
j=1,j 6=i gj,AP+σ2

A

)

.

ii) Further, if g1,A ≥ (e−1)σ2

A

P , k∗ = 1. That is, only the
user with the largest channel gain transmits.

Proof: To solve Subproblem 4.1b, we first consider its
relaxation problem, which is given as follows.

Problem 4.2

max
{yi,∀i}

N
∑

i=1

ln

(

1+
yigi,AP

∑N
j=1,j 6=i yjgj,AP + σ2

A

)

, (40)

s.t. 0 ≤ yi ≤ 1, ∀i. (41)
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Let Pi , yiP, ∀i, it is not difficult to observe that Problem
4.2 can be converted to the following problem,

Problem 4.3

max
{Pi,∀i}

N
∑

i=1

ln

(

1+
gi,APi

∑N
j=1,j 6=i gj,APj + σ2

A

)

, (42)

s.t. 0 ≤ Pi ≤ P, ∀i. (43)

This problem is shown to be Schur convex in [28]. By using
the Schur convex properties, it is shown in [28] that the optimal
power allocation is binary power allocation, i.e., either0 or P
for all i. This indicates that the optimal solution for Problem
4.2 is either0 or 1 for all i. Thus, it can be observed that
Problem 4.2 is actually equivalent to Subproblem 4.1b. Then,
the results obtained for Problem 4.3 can be directly applied
to Subproblem 4.1b. Based on the results in [28] (Theorem 1
and 4), it is not difficult to obtain the results presented in this
lemma. Details are omitted here for brevity. �

With the results given in Lemma 4.1, we are now ready for
the following theorem.

Theorem 4.1: When the number of usersN is large, with
high probability, the optimal solution for Problem 4.1 is as
follows.

• Only two users are active in the network: one connects
to the BS and the other connects to the WiFi AP.

• Denote the index of the users connecting to the BS and
the WiFi AP asm and n, respectively. Then, userm
has the best user-to-BS channel, i.e.,m = argmaxi gi,B;
and usern has the best user-to-AP channel, i.e.,n =
argmaxi gi,A.

Proof: Let m = argmaxi gi,B and n = argmaxi gi,A.

From Lemma 4.1 Part (ii), (a) ifgn,A ≥ (e−1)σ2

A

P , then at
the optimal solution for Subproblem 4.1b, only the usern

transmits. Similarly, (b) if there existsgm,B ≥ (e−1)σ2

A

P , then
at the optimal solution for Subproblem 4.1a, only userm
transmits. Finally, (c) ifm 6= n, then the optimal solution
of Problem 4.1 is the one is given in Theorem 4.1.

We now show that, when the number of users is large, these
three conditions ((a) - (c)) hold with high probability. Define

• Event A: There is no user satisfyinggi,A ≥ (e−1)σ2

A

P .

• Event B: There is no user satisfyinggi,B ≥ (e−1)σ2

B

P .
• Event C: There exists one user having the best user-to-BS

channel, and simultaneously having the best user-to-AP
channel.

Hence, the probability that at least one of the three condi-
tions ((a) - (c)) is violated can be written as

Prob{A ∪B ∪ C} ≤ Prob{A}+ Prob{B}+ Prob{C}, (44)

where the inequality results from the well-known union bound.
In the following, we show that Prob{A} → 0, Prob{B} →

0, and Prob{C} → 0 go to zero asN → ∞. First, we look at
Prob{A}, which is given by

Prob{A} = Prob

{

gi,A <
(e− 1)σ2

A

P
, ∀i
}

a
=

(

Prob

{

gA <
(e− 1)σ2

A

P

})N

=

(

∫ (e−1)σ2

A/P

0

dF (gA)

)N

, (45)

where the equality “a” results from the fact that the channel
power gains are i.i.d., andF (gA) denotes the CDF of the

channel power gain. Since
∫ (e−1)σ2

A/P

0 dF (gA) is strictly less
than1, Prob{A} → 0 asN → ∞.

Using the same approach, Prob{B} → 0 asN → ∞.
Now, we consider Prob{C}.

Prob{C} =

(

N
1

)

Prob

{

j = argmaxi gi,A,
andj = argmaxi gi,B

}

(46)

a
= N ∗ Prob {j = argmaxi gi,A}

∗ Prob {j = argmaxi gi,B} (47)

=
1

N
(48)

where the equality “a” results from the fact that the channel
power gains are i.i.d. and have continuous pdf. From (48),
Prob{C} → 0 asN → ∞.

Combining the above results,1−Prob{A∪B ∪C} → 1 as
N → ∞, which completes the proof of Theorem 4.1. �

V. W ITH A SIC DECODER ATONE SIDE

In this section, we consider the scenario that the SIC
decoder is only available at one side. Particularly, we only
study the case that the SIC decoder is only available at the
BS. The case that the SIC decoder is only available at the
WiFi AP is a symmetric case, and thus can be solved in the
same way.

Problem 5.1:

max
{xi,yi,∀i}

λ ln

(

1+
N
∑

i=1

xigi,BP

σ2
B

)

+(λ−µ)
N
∑

i=1

ln

(

1+
yigi,AP

∑N
j=1,j 6=i yjgj,AP + σ2

A

)

, (49)

s.t. xi ∈ {0, 1}, ∀i, (50)

yi ∈ {0, 1}, ∀i, (51)

xi + yi ≤ 1, ∀i. (52)

Similar to Problem 4.1, we are not able to solve this problem
directly or by solving its relaxation problem. To solve Problem
5.1, we first consider the following two subproblems.

Subproblem 5.1a:

max
{xi,∀i}

λ ln

(

1+
N
∑

i=1

xigi,BP

σ2
B

)

, (53)

s.t. xi ∈ {0, 1}, ∀i. (54)

Subproblem 5.1b:

max
{yi,∀i}

(λ −µ)

N
∑

i=1

ln

(

1+
yigi,AP

∑N
j=1,j 6=i yjgj,AP + σ2

A

)

, (55)

s.t. yi ∈ {0, 1}, ∀i. (56)

Denote the optimal solution of Subproblem 5.1a asx∗
i , ∀i ∈

{1, 2, · · · , N} and that of Subproblem 5.1b asy∗i , ∀i ∈
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{1, 2, · · · , N}. Subproblem 5.1a is easy to solve, and the
optimal solution isx∗

i = 1, ∀i. Subproblem 5.1b is exactly
the same as Subproblem 4.1b, and thus the optimal solution
of Subproblem 5.1b can be obtained from Lemma 4.1. It is
obvious thatx∗

i andy∗i cannot satisfy the constraints (52) for
all i ∈ {1, 2, · · · , N}. Thus, Problem 5.1 cannot be solved by
directly solving Subproblem 5.1a and Subproblem 5.1b. This
makes Problem 5.1 more challenging than Problem 4.1.

To solve Problem 5.1, we need the following lemma.
Lemma 5.1: The optimal solution of Problem 5.1 is ob-

tained when (52) holds with equality for alli.
Proof: This can be proved by contradiction. Suppose

(x∗,y∗) is the optimal solution of Problem 5.1, and it has an
element(x∗

k, y
∗
k) satisfyingx∗

k + y∗k < 1. Then, from (50) and
(51), it follows thatx∗

k = 0, y∗k = 0. Now, we show that we
can always find a feasible solution(x̃, ỹ) with its elements
satisfyingx∗

i + y∗i = 1, ∀i, will result in a higher value of
(49). We let x̃−k = x∗

−k, ỹ−k = y∗
−k. Clearly, if we set

x̃∗
k = 1, ỹ∗k = 0 will result in a higher value of (49) than that

resulted byx∗
k = 0, y∗k = 0 since the logarithm function is

an increasing function. This contradicts with our presumption.
Lemma 5.1 is thus proved. �

Based on Lemma 5.1 and the optimal solutions of Subprob-
lems 5.1a and 5.1b, we are now able to obtain the following
lemma, Lemma 5.2, which will be used to prove Theorem 5.1.
Proof of Lemma 5.2 requires assuming the path loss model for
the users’ channel gains. That is, the channel gain is given by
g = αz−γ , whereγ = 2 is the path loss exponent,z is the
distance to either the AP or the BS andα ≥ 0 is a constant
factor. Consequently, the results in Lemma 5.2 and Theorem
5.1 rely on the path loss model, a geometry for the users,
BS and AP and a probability distribution of the users over
the specified geometry. For the convenience of exposition, we
consider a 1 by 1 square area with the BS at coordinate(0, 0)
and the WiFi AP at(1, 1). We will assume that the users
are uniformly distributed. For simplicity, we give the proof of
Lemma 5.2 based on the geometry specified in Fig. 2, but it
is worth pointing out that the proof extends to more general
geometries with minor modifications.

Lemma 5.2: Let z∗ be the solution to the equationαz−γ =
(e−1)σ2

A

P . Let D, as specified in Fig. 2, beD = min{z∗, 0.67}
(the constant, 0.67, is derived in the proof of Lemma 5.2).
Suppose there is at least one user in the quarter circle with
radiusD and centered at the AP, as shown in Fig. 2, then at
the optimal solution to Problem 5.1, at most one user connects
to the AP and all the other users connect to the BS.

Proof: We first consider subproblem 5.1b. Since there is at
least one user in the stated quarter circle, the user with the
strongest channel gain to the AP has a channel gain of at least
(e−1)σ2

A

P . From Lemma 4.1 part (ii), at the optimal solution
to subproblem 5.1b, only the user with the strongest channel
gain transmits. We denote the transmitting user as userk∗, and
refer to the transmitting user as thedominantuser.

Next, returning back to Problem 5.1, letS∗ be the set of
users connected to the WiFi AP under the optimal solution.
Based on Lemma 5.1, all users inS∗C will connect to the BS.
Let where| · | denote the cardinality of a set. We now show
that |S∗| ≤ 1, where| · | by contradiction.

WiFi AP

BS

2
d

−

d

d

1 d−

1

2

(1
)
1

d
−

+

1 d−2

(1
)
1

d
−

+

1

D
d

Fig. 2. Path loss Model.⊗ denotes the non-dominant user, and• denotes
the dominant user.

Suppose first that|S∗| = 2. We have two possible cases:

• Case 1:With a dominant user inS∗. That is, userk∗ ∈
S∗. In this case, if we assign the non-dominant user to
the BS, the utility at the BS sideλRw

B(x) will increase.
On the other hand, from Lemma 4.1 part (ii), the utility
at the AP side is maximized when only userk∗ connects
to the AP. Thus, by assigning the non-dominant user to
the BS, we can also increase the utility at the AP side
(λ − µ)Ro

B(y). Hence, the total utility of the operator
increases if we assign only userk∗ to the AP, and the rest
to the BS. This contradicts the assumption that|S∗| = 2.

• Case 2:Dominant user not inS∗. That is, userk∗ /∈
S∗. Denote the channel power gain of the channel
between the dominant user and the BS ashk∗,B, and
the channel power gains of the channels between the
two non-dominant users and the BS ashm,B andhn,B,
respectively. Now, consider the case where we switch
the connections ofk∗, and m and n. In this case, the
utility of the AP clearly increases by Lemma 4.1 part
(ii), but the utility at the BS may not increase. However,
it is straightforward to verify that the utility at the BS
increases if the following condition holds.

hm,B + hn,B ≥ hk∗,B. (57)

Now, referring to Fig. 2, let the dominant user be a
distance of

√
2 − d away from the BS, whered ≤ D

under the conditions stated in the Lemma. The two users
in S∗ have to be at least distanced away from the AP,
since their channel gains to the AP is weaker than the
dominant user’s. Considering the worst case scenario as
given in Fig. 2, we have

hm,B + hn,B ≥ 2α

(1− d)2 + 1
a
≥ α

(
√
2− d)2

≥ hk∗,B, (58)
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where “a” follows from d ≤ D ≤ 0.67. Hence, in-
equality (57) holds under the conditions stated in Lemma
5.2. Therefore, the total utility increases by switching the
two non-dominant users with the dominant user, which
contradicts our assumption that|S∗| = 2.

Using the same arguments, we can show that any|S∗| > 2
results in a contradiction under the conditions stated in Lemma
5.2. Hence,|S∗| ≤ 1, which completes the proof of Lemma
5.2. �

We are now ready to prove Theorem 5.1.
Theorem 5.1: When the number of usersN is large, with

high probability the optimal solution for Problem 5.1 under
path loss model is: At most one user connects to the AP and
all the other users connect to the BS.

Proof: Since the users are uniformly distributed over the
square of area one given in Fig. 2, the probability that there
is at least one user in the quarter circle with radiusD and
centered at the AP is Prob(AP ) = 1− (1− πD2/4)N . Since
D > 0, Prob(AP ) → 1 as N → ∞. Hence, the condition
in Lemma 5.2 holds with high probability, which implies that
the assertion in Theorem 5.1 holds with high probability.�

Based on the result given in Theorem 5.1, the optimal
solution of Problem 5.1 can be easily found by the following
algorithm, which is given in Table II.

TABLE II

Proposed Data Offloading Scheme for Problem 5.1
1. For k = 1 : N ;

initialize x = [1, 1, · · · , 1]T ; y = [0, 0, · · · , 0]T ;
setx(k) = 0; y(k) = 1;
compute F (k) = U(x,y);

end
2. Find the optimal allocation and the maximum value ofF ,

[Fmax, index] = maxF ;
3. CompareFmax with the utility without offloadingU(1N ,0N ).

VI. RELATED SCENARIOS

A. Benefit of SIC Decoders

In this subsection, we investigate the role of SIC decoders in
the utility maximization of the cellular operator. We rigorously
prove that the SIC decoder is beneficial for the cellular
operator in terms of maximizing its utility.

Theorem 6.1: Let (x∗,y∗), (x̂∗, ŷ∗), (x̃∗, ỹ∗) be the op-
timal solutions of Problem 3.1, 4.1, and 5.1, respectively.In
general, the following inequality always holds,

Uww(x∗,y∗) ≥ Uwo(x̃∗, ỹ∗) ≥ Uoo(x̂∗, ŷ∗). (59)

Proof: To prove Theorem 6.1, we first show that
Uww(x∗,y∗) ≥ Uwo(x̃∗, ỹ∗). It can be observed that
Uww(x∗,y∗) ≥ Uww(x̃∗, ỹ∗). This is due to the fact that
(x̃∗, ỹ∗) is a feasible solution of Problem 3.1, while(x∗,y∗)
is the optimal solution of Problem 3.1. Thus, if we can show
that Uww(x̃∗, ỹ∗) ≥ Uwo(x̃∗, ỹ∗) holds, Uww(x∗,y∗) ≥
Uwo(x̃∗, ỹ∗) will hold. Since Uww(x̃∗, ỹ∗) = λRw

B(x̃
∗) +

(λ − µ)Rw
A(ỹ

∗) and Uwo(x̃∗, ỹ∗) = λRw
B(x̃

∗) + (λ −
µ)Ro

A(ỹ
∗), we only need to show thatRw

A(ỹ
∗) ≥ Ro

A(ỹ
∗)

always holds, which is presented as below.

Assume thatK elements of̃y∗ are equal to1, whereK ∈
{1, 2, · · · , N}. Then, it follows that

Rw
A(ỹ

∗) = ln

(

1 +
K
∑

i=1

gi,AP

σ2
A

)

= ln

(

σ2
A +

∑K
i=1 gi,AP

σ2
A

)

= ln

[(

σ2
A +

∑K
i=1 gi,AP

σ2
A +

∑K
i=2 gi,AP

)(

σ2
A +

∑K
i=2 gi,AP

σ2
A +

∑K
i=3 gi,AP

)

· · ·
(

σ2
A +

∑K
i=K gi,AP

σ2
A

)]

a
=

K
∑

j=1

ln

(

σ2
A +

∑K
i=j gi,AP

σ2
A +

∑K
i=j+1 gi,AP

)

=
K
∑

j=1

ln

(

1 +
gj,AP

σ2
A +

∑K
i=j+1 gi,AP

)

b
≥

K
∑

j=1

ln

(

1 +
gj,AP

σ2
A +

∑K
i=1,i6=j gi,AP

)

= Ro
A(ỹ

∗),

(60)

where we introduce a dumb item
∑K

i=K+1 gi,AP = 0 in the
equality “a” for notational convenience. The inequality “b” fol-
lows from the fact that

∑K
i=1,i6=j gi,AP ≥∑K

i=j+1 gi,AP, ∀j.
Then, it is clear thatUww(x∗,y∗) ≥ Uwo(x̃∗, ỹ∗) always

holds. Using the same approach, we can easily show that
Uwo(x̃∗, ỹ∗) ≥ Uoo(x̂∗, ŷ∗) always holds. Theorem 6.1 is
thus proved. �

From Theorem 6.1, it is observed that SIC decoder plays
an important role in the utility maximization of the cellular
operator. It is beneficial for the operator to equip the BS with
SIC decoders in terms of maximizing its utility.

B. Distributed Data Offloading

In the previous sections, we have obtained the optimal
data offloading schemes for Problem 3.1, 4.1, and 5.1 when
the number of users is large.However, the proposed data
offloading schemes are centralized schemes, which needs the
users to send the user-to-AP and user-to-BS channel power
gains to the BS, and then the BS has to compute the optimal
user association and feedback the decisions to the users. For
Problem 4.1 and 5.1, due to the special structure of the
problems, the proposed centralized algorithms can find the
optimal solution in polynomial time. However, for Problem
3.1, due to the complexity of the problem, the proposed
algorithm puts a heavy computational burden on the BS. Thus,
to relieve the computational burden on BS and reduce the
overhead for CSI and decision transfer, in this section, we
propose a simple but highly efficient distributed data offloading
scheme for Problem 3.1, which is given in Table III.

It is observed from Table III that the BS does not have to
collect the CSI from the users, and it only needs to broadcast
a predetermined thresholdT to the users. Thus, the network
overhead of the distributed algorithm is much lower than
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TABLE III

Proposed Distributed Data Offloading Scheme for Problem 3.1
1). The cellular operator broadcasts an offloading threshold T to each user.

2). Useri computes its value of
Si,B

Si,A
, ∀i. If

Si,B

Si,A
≥ T , it connects to the

BS; Otherwise, it connects to the WiFi AP.

that of the centralized algorithm. On the other hand, the
computational complexity of the distributed algorithm is much
lower than that of the centralized algorithm. For the centralized
algorithm, the BS has to solve a relaxed integer programming
problem to decide the optimal association for each user, whose
worst-case computational complexity isO(N3) [29]. While
for the distributed scheme, the computational complexity is
O(N), since each user only has to compute a ratio (Si,B

Si,A
for

useri) to decide its association. However, it is worth pointing
out that the performance of the distributed algorithm greatly
depends on the value of the thresholdT .

In the following, we show that the distributed data of-
floading scheme can achieve the same performance as the
centralized one given in Table I if the thresholdT is properly
chosen.

Theorem 6.2: There exists an optimal thresholdT ∗, for any
user i other than the user with fractional indicator function,
the following equality holds.

x∗
i =

{

1, if Si,B

Si,A
> T ∗,

0, if Si,B

Si,A
< T ∗,

(61)

whereT ∗ = (λ−µ)
λ

1+
∑N

i=1
Si,Bx∗

i

1+
∑

N
i=1

Si,A(1−x∗
i )

, andx∗
i , ∀i is the optimal

solution of Problem 3.3.
Proof: This proof is based on the KKT conditions given out

in Section III. It is observed from (24) that ifSi,B

Si,A
> T ∗, where

T ∗ = (λ−µ)
λ

1+
∑N

i=1
Si,Bx∗

i

1+
∑

N
i=1

Si,A(1−x∗
i )

, it follows that αi − βi > 0.
From (20) and (21), it is also observed thatαi 6= 0 andβi 6= 0
can not hold simultaneously. Sinceαi andβi are nonnegative,
thus if βi > 0, αi must be equal to zero. Consequently, we
haveαi−βi < 0, which contradicts with the fact thatαi−βi >
0. Thus, it clear thatαi > 0 and βi = 0. Then, from (20),
it follows that xi = 1. Similarly, when Si,B

Si,A
< T ∗, it can be

shown thatαi = 0 andβi > 0, which indicates thatxi = 0.
Theorem 6.2 is thus proved. �

C. Fading Scenarios

In this paper, we consider three cases: (1) With SIC decoders
at both sides; (2) Without SIC decoders at both sides; (3)
With a SIC decoder at one side. It is worth pointing out that
we do not assume any specific distribution of the channel
power gains for Cases (1) and (2). Thus, the results obtained
for Cases (1) and (2) can be directly applied to the block-
fading scenario [30], where the channel remains constant
during each fading block but possibly changes from one block
to another. For the block-fading scenario, we can solve the
utility maximization problem for each fading block, and update
the user association scheme every fading block. This is due
to the fact that there are no coupling constraints between
the fading blocks, and thus maximizing the utility function

for each fading block is equivalent to maximizing the long-
term utility function [31], i.e.,E [U(x,y)], whereU(x,y)
is given by equation (1) and the expectation is taken over
the probability distribution of all the involved channel power
gains. Since we did not assume any specific distribution of the
channel power gains, the result holds for block-fading channels
with any fading distributions, such as Rayleigh fading, Rician
fading, Nakagami fading. However, for Case (3), we assumed
the path loss model when deriving the results. This is due
to the following reason. Using other fading channel models
instead of the path loss model makes the utility maximization
problem for this case mathematically intractable. Thus, the
offloading scheme proposed for this case may not be optimal
if fading channel models are adopted. However, according to
the simulation results presented in Section VII, the offloading
scheme proposed for this case also works well when fading
channel models are considered.

D. Downlink Scenarios

In this paper, we focus on the uplink scenario. In this
subsection, we show how to extend the obtained results to
the downlink scenario. For the downlink scenario, the system
model becomes broadcast channels. For broadcast channels,
there are usually two implementation ways:

• Superposition coding with SIC. The transmitter encodes
the messages for all the receivers using superposition
coding. Each receiver decodes the received message using
SIC. This case is similar to the uplink scenario with SIC.
If we assume both BS and AP adopt this scheme, and
both of them adopt equal power allocation, the resultant
utility maximization problem can be obtained by letting
Si,B =

gi,BP

σ2

i,B

andSi,A =
gi,AP

σ2

i,A

, ∀i in Problem 3.1. Then,

we can solve this problem using the same approach as
Problem 3.1 by introducingg′i,B ,

gi,B
σ2

i,B

andg′i,A ,
gi,A
σ2

i,B

.

• Orthogonal schemes. If SIC decoders are not available at
the receivers, for the broadcast channel, the transmitter
will not encode the message for all users together. Instead,
they will use orthogonal schemes, such as TDMA. For
this case, the resultant user association is trivial, i.e.,in
each time slot, one user is selected to connect to the BS,
and one user is selected to connect to the AP.

VII. N UMERICAL RESULTS

In this section, numerical results are provided to evaluate
the performance of the proposed data offloading schemes.

A. Simulation Parameters

The simulation setup is as follows. We consider a 1 by
1 square area with the base station at coordinate(0, 0) and
the WiFi AP at (1, 1). The number of users is denoted
by N , and theseN users are uniformly scattered in the
square. For simplicity, we assume that the transmit power
of each user is the same and given by1. Unless otherwise
stated, the path loss model is adopted to model the channel
power gain. Let(posxi, posyi) denote the position of user
i, then the channel power gain between it and the BS can
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Fig. 3. With SIC decoders at both sides: normalized utility gap vs. the
number of users.

be modeled asgi,B = (
√

posx2i + posy2i )
−γ , where γ is

the path loss coefficient. Similarly, the channel power gain
between useri and the AP can be modeled asgi,A =
(
√

(1 − posxi)2 + (1− posyi)2)
−γ . In this paper, we consider

the free space path loss model whereγ = 2. The power of
the additive Gaussian noises at the BS and the AP are set to
1, i.e., σ2

B = 1 andσ2
A = 1. The revenue coefficientλ of the

BS is set to 1, and the cost coefficientµ is set to0.5. Matlab
is used for running all the simulations.

B. With SIC Decoders at Both Sides

1) Performance of the Centralized Data Offloading Scheme:
In Fig. 3, we investigate the gap between the proposed central-
ized data offloading scheme given in Table I and the optimal
solution. The optimal solution is obtained by the exhaustive
search. For the purpose of illustration, the gap is normalized
by the utility of the optimal solution. The result presented
in Fig. 3 is averaged over1000 channel realizations for each
N . It is observed from Fig. 3 that the normalized utility gap
decreases with the increase of the number of users. When there
are only two users in the network, the normalized utility gap
is as large as0.85%. When the number of users goes up to16,
the normalized utility gap is almost zero. This is in accordance
with the results presented in Theorem 3.2.

2) Performance of the Distributed Data Offloading Scheme:
In Fig. 4, we investigate the system performance of the
proposed distributed data offloading scheme given in Table
III. The results presented in this figure is averaged over1000
channel realizations. The red dashed lines represent the values
obtained by the centralized data offloading schemes. The
green dotted dashed lines represent the values obtained by
the exhaustive search. In this figure, we study how the value
of the thresholdT affects the performance of the proposed
distributed data offloading scheme.

It is observed from Fig. 4 that the centralized algorithm
can achieve almost the same performance as the exhaustive
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Fig. 4. With SIC decoders at both sides: performance of the distributed data
offloading scheme.

2 4 6 8 10 12 14 16
400

500

600

700

800

900

1000

Number of Users, N

N
um

be
r 

of
 O

pt
im

al
 R

ea
liz

at
io

ns

 

 

P=0 dB
P=1 dB
P=2 dB
P=3 dB

Fig. 5. Without SIC decoder at both sides: performance of thedata offloading
scheme.

search, especially whenN is large. This is in accordance with
our theoretical results. It is observed that the thresholdT plays
a significant role in the distributed algorithm when the number
of users is large. It is observed that the utility gap between
the distributed algorithm and the exhaustive search is as large
as 1.2 whenN = 16 if T is not properly chosen. However,
when N = 2, the largest utility gap is less than0.2. It is
also observed from Fig. 4 that for eachN , there does exists
an optimalT which produces a utility which is almost the
same as the centralized data offloading scheme. This is in
accordance with the results presented in Theorem 6.2.

C. Without SIC Decoders at Both Sides

In Fig. 5, we investigate the performance of the proposed
data offloading scheme for the case that SIC decoders are
not available at both BS and the AP side. In Fig. 5, we
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Fig. 6. With SIC decoder at only BS: performance of the data offloading
scheme.

generate1000 channel realizations for eachN . We count the
number of realizations, in which the proposed data offloading
scheme is optimal. First, it is observed that for all the curves,
the number of realizations that the proposed data offloading
scheme is optimal increases with the increasing number of
users. This is in accordance with our theoretical analysis given
in Section IV. Secondly, it is observed that the transmit power
of the users also plays an important role in the performance
of the proposed data offloading scheme. For the same number
of users, when the transmit power of the users is large,
the number of realizations that the proposed data offloading
scheme is optimal is large. This is due to the fact that whenP

is large, the value of(e−1)σ2

A

P is small, and thus the probability

that g1,A ≥ (e−1)σ2

A

P is large for the same number of users.
Thirdly, it is observed that when the number of users is
larger than10, the proposed data offloading scheme is always
optimal for all the cases. This indicates that the proposed data
offloading scheme can achieve a satisfactory performance even
when the number of users is not very large.

D. With A SIC Decoder at One Side

In Fig. 6, we investigate the performance of the proposed
data offloading scheme for the case that a SIC decoder is only
available at the BS side. In Fig. 6, we generate1000 channel
realizations for eachN . We count the number of realizations,
in which the proposed data offloading scheme is optimal. It is
observed that for all the curves, the number of realizationsthat
the proposed data offloading scheme is optimal increases with
the increasing number of users. This is in accordance with
our theoretical analysis in Section V. Secondly, it is observed
that the transmit power of the users almost does not affect the
performance of the proposed data offloading scheme. This is
quite different from the results obtained in Fig. 5. This is due to
the fact that for this case, the proposed data offloading scheme
is optimal only when bothg1,A ≥ (e−1)σ2

A

P and d < 0.67
are satisfied simultaneously. For the case considered here,the
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Fig. 7. With SIC decoder at only BS: fading scenario.

condition thatd < 0.67 always dominates. Since this condition
is irrelevant with the transmit power, the performance of the
proposed date offloading scheme is not affected by the transmit
power of the users. Finally, it is observed that when the
number of users is larger than12, the proposed data offloading
scheme is always optimal. This indicates that the proposed data
offloading scheme can achieve a good performance even when
the number of users is not large.

In Fig. 7, we investigate the performance of the proposed
data offloading scheme for different fading channel models.
For the Rayleigh fading model, the channel power gains are
exponentially distributed [25], and we assume that the mean
of the channel power gains is one. For the Nakagami-m
fading model, we consider the case thatm = 2, and we
assume that the mean of the channel power gains is one.
The transmit power of each user is assumed to be the same
and equal to1. The results are averaged over 1000 channel
realizations. The optimal offloading schemes are obtained
by exhaustive search. It is observed from Fig. 7 that when
the number of users is small, there is a small gap between
the proposed offloading scheme and the optimal offloading
scheme. However, when the number of users is larger than six,
the proposed offloading scheme can achieve same performance
as the optimal offloading scheme. This is due to the fact
that when the number of users is large, the condition given
in (57) holds with a high probability, and thus the proposed
offloading scheme is optimal with a high probability. Overall,
the proposed offloading scheme works well under different
fading channel models.

E. Benefit of SIC Decoders

In Fig. 8, we compare the utility of the cellular operator for
the three cases studied in this paper. The utility values foreach
case are obtained under their respective optimal data offloading
schemes. The results presented in Fig. 8 are averaged over
1000 channel realizations for eachN . It is observed that the
utility increases with the increasing ofN for all three cases.
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This is in accordance with the theoretical results presented
in previous sections. It is also observed thatUww > Uwo >
Uoo for the sameN . This indicates that SIC decoders have
a significant effect on the utility of the cellular operator.It
is always beneficial for the operator to equip the BS and/or
AP with SIC decoders so as to maximize its utility. This is in
accordance with the results obtained in Theorem 6.1.

VIII. C ONCLUSIONS

In this paper, we have investigated the mobile data offload-
ing problem through a third-party WiFi AP for a cellular mo-
bile system. From the cellular operator’s perspective, we have
formulated the problem as a utility maximization problem.
By considering whether SIC decoders are available at the BS
and/or the WiFi AP, different cases are considered. When the
SIC decoders are available at both the BS and the WiFi AP, the
utility maximization problem can be solved by considering its
relaxation problem. It is strictly proved that the proposeddata
offloading scheme is near-optimal when the number of users
is large. We also propose a threshold-based distributed data
offloading scheme which can achieve the same performance
as the centralized data offloading scheme if the threshold is
properly chosen. When the SIC decoders are not available at
both the BS and the WiFi AP, we have rigorously proved that
the optimal solution is One-One-Association, i.e., one user
connects to the BS and the other user connects to the WiFi
AP. When the SIC decoder is only available at the BS, we
have shown that there is at most one user connecting to the
WiFi AP, and all the other users connect to the BS. We also
have rigorously proved that SIC decoders are beneficial for
the cellular operator in terms of maximizing its utility.
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